
On Locally Checkable Properties

Orna Kupferman1 ?, Yoad Lustig1, and Moshe Y. Vardi2 ??

1 Hebrew University, School of Eng. and Computer Science, Jerusalem 91904, Israel
Email: {orna,yoadl}@cs.huji.ac.il, URL: http://www.cs.huji.ac.il/∼{orna,yoadl}

2 Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.,
and Microsoft Research, Cambridge, U.K. Email:vardi@cs.rice.edu, URL:

http://www.cs.rice.edu/∼vardi

Abstract. The large computational price of formal verification of general ω-
regular properties has led to the study of restricted classes of properties, and
to the development of verification methodologies for them. Examples that
have been widely accepted by the industry include the verification of safety
properties, and bounded model checking. We introduce and study another
restricted class of properties – the class of locally checkable properties. For
an integer k ≥ 1, a language L ⊆ Σω is k-checkable if there is a language
R ⊆ Σk (of “allowed subwords”) such that a word w belongs to L iff all the
subwords of w of length k belong to R. A property is locally checkable if
its language is k-checkable for some k. Locally checkable properties, which
are a special case of safety properties, are common in the specification of
systems. In particular, one can often bound an eventuality constraint in a
property by a fixed time frame.
The practical importance of locally checkable properties lies in the low mem-
ory demand for their run-time verification. A monitor for a k-checkable prop-
erty needs only a record of the last k computation cycles. Furthermore, even
if a large number of k-checkable properties are monitored, the monitors can
share their memory, resulting in memory demand that do not depend on the
number of properties monitored. This advantage of locally checkable proper-
ties makes them particularly suitable for run-time verification. In the paper,
we define locally checkable languages, study their relation to other restricted
classes of properties, study the question of deciding whether a property is
locally checkable, and study the relation between the size of the property
(specified by an LTL formula or an automaton) and the smallest k for which
the property is k-checkable.

1 Introduction

It is generally acknowledged that one of the main obstacles to the development of
complex computerized systems lies in the process of system verification. In system
verification we try to ensure that a model of the system satisfies some specification.

? Supported in part by BSF grant 9800096, and by a grant from Minerva.
?? Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, and ANI-

0216467, by BSF grant 9800096, and by Texas ATP grant 003604-0058-2003. Part of this
work was done while the author was visiting the Isaac Newton Institute for Mathematical
Science, as part of a Special Programme on Logic and Algorithms, supported by a
Guggenheim Fellowship.

Common specification formalisms are based on temporal logic [Pnu81] and automata
on infinite words [Kur94,VW94]. Such formalisms are very expressive, for example
automata over infinite objects can specify all ω-regular properties. Expressiveness,
however, comes at a cost, as verifying a general ω-regular property is sometimes
very costly in terms of the resources needed for the verification. As a result, an
effort is being made to identify and study less expressive formalisms that allow for
an easier verification process. An example of a class of properties that gain a lot
of attention is the class of safety properties [AS85,Sis94]. Safety properties require
the system to always stay within some allowed region, and their verification can be
reduced to invariant checking [KV01a]. A large portion of the properties actually
checked in the industry are safety properties. As a result, specialized algorithms for
safety properties were developed and are successfully used in practice [BBL98].

Even a larger effect on industrial verification was made by the introduction of
bounded model-checking (BMC) [CBRZ01]. In BMC, only a bounded interval of
time at the beginning of the computation is checked. While BMC techniques can be
applied to general temporal logic properties, they correspond the class of bounded
properties – properties that regard only an interval of length k, for some k ≥ 0, in
the beginning of the computation [KV01b]. In practice, it is possible to apply BMC
to significantly large systems. Thus, focusing on a bounded interval of interest at
the beginning of the computation is extremely fruitful in practice.

While BMC techniques check bounded properties, and thus computations are
evaluated from their initial state, it is possible to check bounded properties also
from an arbitrary state of the computation. This is done in symbolic trajectory
evaluation (STE) [SB95,AJS98]. In this work we study properties that are similar
to properties checked by STE: while still focusing our interest on intervals of a
bounded length k ≥ 0, we would like to regard every k-long time interval throughout
the computation.

Let us start with an example: a classical no-starvation specification has the
form “throughout the computation, whenever a req signal is raised, it is followed
by an ack signal raised sometime in the future”. Such a specification can be seen
as characterizing “events” of an unbounded length. The event begins when a req
signal is raised, and ends when an ack signal is raised. In real systems, one can often
bound the time frame within which the event should occur. The user may expect,
for example, that the following bounded version of the no-starvation specification
holds: “throughout the computation, whenever a req signal is raised, it is followed
by an ack signal raised within seven computation cycles”.

We introduce in this paper the novel concept of checkability. A language L ⊆ Σω

is k-checkable if there exists a finite language R ⊆ Σk such that for every word
w ∈ Σω it holds that w ∈ L iff all the k-long subwords of w are elements of R.
In such a case, we say that L is induced by R. A language is locally checkable (or
simply checkable) if it is k-checkable for some k. Note that our bounded version of
“no starvation” can be characterized by an 8-checkable language. For example, a
language in which all 8-long subwords are permissible except those in which a req
was raised in the first cycle but no ack was raised later.

Intuitively, checkable languages are languages that can be verified by a verifier
with a bounded memory – one that has access only to the last k-computation cycles.
The practical importance of this distinction lies the context of runtime verification
[HR02,BGHS04,dR05]. Run-time verification of a property amounts to executing a

2

monitor together with the system allowing the detection of errors in run time. Run-
time monitors for checkable specifications have low memory demand. Furthermore,
in the case of general ω-regular properties, when several properties are checked, we
need a monitor for each property, and since the properties are independent of each
other, so are the state spaces of the monitors. Thus, the memory demand (as well
as the resources needed to maintain the memory) grow linearly with the number
of properties monitored. Such a memory demand is a real problem in practice. In
contrast, we show that a monitor for a k-checkable property needs only a record of
the last k computation cycles. Furthermore, even if a large number of k-checkable
properties are monitored, the monitors can share their memory, resulting in memory
demand that do not depend on the number of properties monitored. This advantage
of checkable languages make them particularly suited to be used as specification
formalism for run-time verification.

An extensively studied family of languages related to checkable languages is that
of locally testable languages [MP71,Wil93]. A language L is locally testable if the
answer to the question “is the word w in L?” is determined by a bounded prefix
of w and by the set of subwords of w of some bounded length k. Thus, checkable
languages are a special case of testable languages: in the case of checkable languages,
the only question one might ask of the set of subwords of length k is about their
containment in a set R. Note that the bounded-memory advantage that holds for
checkable languages does not hold for general testable languages. Indeed, in the
case of testable languages, one must maintain the set of all subswords of length
k seen so far in order to establish membership, and this involves remembering
which subwords were seen at the beginning of the computation. In fact, we prove
that locally testable languages constitute a much more expressive formalism. In
particular, there are locally testable properties that are not locally checkable at all,
and for an arbitrarily large k, there are 2-testable properties that are k-checkable
but not (k − 1)-checkable.

In this paper we define k-checkable and locally checkable languages and study
their properties. We provide some basic constructions and observations, and study
the relation between locally checkable languages and other fragments of ω-regular
properties such as safety properties, bounded properties, uninitialized properties,
and testable properties. In addition, we study the problem of deciding whether a
specification is locally checkable, or k-checkable, and the relation between the size
of the smallest Büchi automaton or LTL formula for a checkable specification and
the smallest k for which the specification is k-checkable.

2 Preliminaries

Consider an alphabet Σ. For a word w = w1w2w3 . . . over Σ, we denote the length
of w by |w|. Note that |w| is either a natural number (in case w ∈ Σ∗), or the
first infinite ordinal ω (in case w ∈ Σω). For i, j ∈ N such that i ≤ j ≤ |w|, we
denote by wi = wiwi+1 . . . the suffix of w starting at the ith letter and denote by
w[i..j] = wiwi+1 . . . wj the subword between the ith and jth letters. For w ∈ Σω,
we denote by suff (w) the set of suffixes of w, i.e. suff (w) = {wi | i ≥ 0}. For
a word w ∈ Σω, we denote by sub(w) the set of finite subwords of w, formally,
sub(w) = {y ∈ Σ∗ | ∃x ∈ Σ∗, z ∈ Σω such that w = xyz}. For k ≥ 0, we denote by
sub(w, k) the set of subwords of w of length k, i.e., sub(w, k) = sub(w) ∩Σk.

3

A language L ⊆ Σω is k-checkable if there exists a finite language R ⊆ Σk

such that w ∈ L iff all the k-long subwords of w are elements of R. That is, L =
{w ∈ Σω | sub(w, k) ⊆ R}. In such a case, we say that L is induced by R. A
language is locally checkable (or simply checkable) if it is k-checkable for some k. A
language L ⊆ Σω is k-co-checkable if there exists a finite language R ⊆ Σk such
that w ∈ L iff there exists a k-long subword of w that is a an element of R. That
is, L = {w ∈ Σω | sub(w, k)∩R 6= ∅}. A language is locally co-checkable (or simply
co-checkable) if it is k-co-checkable for some k.

We assume the reader is familiar with nondeterministic Büchi word automata
(NBWs) [Tho90]. We describe an NBW by a tuple A = 〈Σ, Q, Q0, δ, F 〉, where Σ is
the alphabet, Q is the set of states, Q0 ⊆ Q is the set of initial states, δ : Q×Σ → 2Q

is the transition function, and F ⊆ Q is the set of accepting states. When |Q0| = 1
and |δ(q, σ)| = 1 for all q ∈ Q and σ ∈ Σ, we say that A is a deterministic Büchi
automaton (DBW). For S ⊆ Q, we denote by AS the NBW obtained from A by
changing the set of initial states to S; i.e. AS = 〈Σ, Q, S, δ, F 〉. For s ∈ Q we use
As to denote A{s}. We denote the language of A by L(A). For a fragment of the
ω-regular languages (e.g., k-checkable) and an NBW A, we say that A is in the
fragment (e.g., A is a k-checkable NBW) iff L(A) is in the fragment.

Example 1 Let Σ = {0, 1, 2}. The DBW A below recognizes the language L of all
the words that contain 10, 120 or 220 as subwords. Note that L is the 3-co-checkable
language L co-induced by R = {010, 110, 210, 100, 101, 102, 120, 220}. Indeed, a word
w is in L iff sub(w, 3) ∩R 6= ∅.

qac

0

0

0
0,1,2

1,2

1,2

2

1q0

q2

q1

The DFA in Example 1 exhibits some of the subtlety to be found in co-checkable
languages. At first glance, one would assume that the traversal through a minimal
sub-word of the inducing set should not contain a cycle. This impression, however,
is misleading, as demonstrated in the DBW above, where a traversal through the
subword 120 contains a cycle.

Consider a language R ⊆ Σk of words of length k. We denote by check(R) the
checkable language induced by R. Formally, check(R) = {w ∈ Σω|sub(w, k) ⊆ R}.
Similarly, we denote by co-check(R) the language {w ∈ Σω|sub(w, k)∩R 6= ∅}. For
a checkable (co-checkable) language L, we denote by width(L) the smallest natural
number k for which there exists a set R ⊆ Σk such that L = check(R) (resp.
L = co-check(R)).

4

Note that a checkable language L may be induced by more than one language
of words of length width(L). For example, let Σ = {a, b, c} and L = aω +a∗cω + cω.
Both R1 = {aa, ac, cc} and R2 = {aa, ac, cc, ab} induce L. In this case, however, R2

clearly contains a redundant word.

Proposition 2

1. For each checkable language L there exists a unique minimal inducing set, de-
noted induce(L).

2. For each co-checkable language L there exists a unique maximal inducing set,
denoted co-induce(L).

3. For every checkable language L, it holds that check(induce(L)) = L. For every
co-checkable language L, it holds that co-check(co-induce(L)) = L.

Proof: For a checkable language L ⊆ Σω, we define induce(L) to be the in-
tersection of all languages R ⊆ Σwidth(L) that induce L. Formally, induce(L) =⋂{R ⊆ Σwidth(L) | check(R) = L}. For a co-checkable language L ⊆ Σω, we de-
fine co-induce(L) to be the union of all languages R ⊆ Σwidth(L) that co-induce L.
Formally, co-induce(L) =

⋃{R ⊆ Σwidth(L) | co-check(R) = L}.
For the third claim, consider some k ≥ 0, and some k-checkable language L.

We first prove that L ⊆ check(induce(L)). Let w be a word in L. Then, for every
set R ⊆ Σk that induces L, it holds that sub(w, k) ⊆ R. Therefore, sub(w, k) ⊆
induce(L), and w ∈ check(induce(L)). For the other direction, let w be a word in
check(induce(R). For every set R ⊆ Σk that induces L, it holds that sub(w, k) ⊆ R.
Since L is k-checkable, there exists at least one such set R that induces L so w must
be in L. The proof for the co-checkable case follows similar lines.

3 Basic observations

In this section we study some basic properties of checkable (and co-checkable) lan-
guages.

We begin with the closure of checkable languages with respect to set operations.
For a language R ⊆ Σ∗, the complement of R is the language Σ∗\R. For a language
L ⊆ Σω the complement of L is the language Σω \L. In either case, we denote the
complement of L by comp(L). It is easy to see that checkable languages are not
closed under complementation. For example, the language {aω} over the alphabet
{a, b} is 1-checkable whereas its complement {a, b}ω \ {aω} is not checkable. As we
now show, however, checkable and co-checkable languages complement each other.

Proposition 3 Checkable and co-checkable languages complement each other in the
following ways:

1. The complement of a k-checkable language is k-co-checkable and vice-versa.
2. A finite language R ⊆ Σk induces the k-checkable language L iff Σk \ R co-

induces the k-co-checkable language comp(L).
3. For a co-checkable language L, co-induce(L) = Σwidth(L) \ induce(comp(L)).

Proof: The second proposition follows from noting that for every word w ∈ Σω,
it holds that sub(w, k) ⊆ R iff sub(w, k)∩ (Σk \R) = ∅. Both the first and the third
propositions follow from the second proposition.

5

Note that, in the context of verification, we expect specifications of the type
“whenever a req signal is raised, it is followed by an ack signal raised within seven
computation cycles”, rather then specifications of the type “there exists time win-
dow in which a req signal is raised, and it is followed by an ack signal raised within
seven computation cycles”. Thus, checkable specifications are more suitable for ver-
ification then co-checkable specifications3.

Proposition 4 Let L1 and L2 be k-checkable languages. Then, L1∩L2 is k-checkable,
but L1 ∪ L2 need not be checkable.

Proof: For intersection, it is not hard to see that induce(L1) ∩ induce(L2) in-
duces L1 ∩ L2. For union, consider the language L1 = aω + a∗cω + cω (induced by
{aa, ac, cc}), and L2 = aω + c∗aω + cω (induced by {aa, ca, cc}). For k ≥ 0, note
that every k-long subword of akckaω, appears either in a∗cω or in c∗aω. Therefore,
every k-checkable language that contains both a∗cω and c∗aω must contain akckaω.
Therefore L1 ∪ L2 cannot be k-checkable for any k ≥ 0.

As we discuss further in the sequel, the closure of checkable properties under inter-
section is crucial for efficient run-time verification.

We now proceed with generic constructions of automata for checkable and co-
checkable languages.

Theorem 5.

1. For every R ⊆ Σk there exists a DBW A, with at most O(|Σ|k) states, such that
L(A) = check(R). Similarly, there exists a DBW A′, with the same parameters,
for which L(A′) = co-check(R). Furthermore, both A and A′ can be constructed
using polynomial space.

2. For every R ⊆ Σk, there exists an NBW A, with at most O(k|R|) states, such
that L(A) = co-check(R). Furthermore, A can be constructed in polynomial
time.

Proof: Let R ⊆ Σk be some finite inducing (or co-inducing) language. We start
with the construction of an NBW A for co-check(R) Let A′ be DFW of size O(k|R|)
recognizing R. It is easy to construct A′ by letting it guess a word in R, and then
either reach an accepting sink in case the guess is correct or a rejecting sink in case
it is not. In order to get the NBW A for co-check(R), we add to the initial states
of A′ self loops.

We proceed with the construction of a DBW A for check(R). The main idea is
to construct A so that throughout its run, A’s state either maintains the last k− 1
letters read, or is a rejecting sink. For this purpose, A’s set of states is

⋃k−1
i=0 Σi

as well as a rejecting sink. The initial state is ε, and all states but the sink are
accepting. The run proceeds so that the state of A maintains the last k − 1 letters
read. In case A encounters some k-long subword that is not in R, then A moves
into the rejecting sink. It is not hard to see that the language of A is check(R).
The construction of A′, for the co-checkable case, differs only slightly: the sink is
accepting while all other states are not.
3 This is the case since checkable specifications are safety while co-checkable specifications

are co-safety (see Proposition 7).

6

We turn now to prove the optimality of the last construction. Let R = {σ1 · · ·σk ∈
Σk | σ1 = σk}. For every (k − 1)-long word u ∈ Σk−1 we have uω ∈ check(R). On
the other hand, for two different (k − 1)-long words we have u · vω 6∈ check(R).
Assume, towards contradiction, that there exists an NBW A with less than |Σ|k−1

states for check(R). For each u ∈ Σk−1, let ru = ru
0 ru

1 . . . be an accepting run of A
on uω. Since A has less states then the number of words in Σk−1, there must exist
two different words u, v ∈ Σk−1 for which ru

k−1 = rv
k−1. In such a case, however,

ru
0 . . . ru

k−1r
v
krv

k+1 . . . is an accepting run of A on u · vω. We reached contradiction
implying that such an A with less than |Σ|k−1 states cannot exist.

Note that, as shown in the proof of Theorem 5, there exists R ⊆ Σk for which
the smallest NBW for check(R) has at least |Σ|k−1 states. Thus, applying nonde-
terminizm in order to get an improved construction, is possible only for co-check.

The basic observations made so far suggest that locally checkable specifications
have properties that are desirable in the context of verification. The closure of
checkable properties under intersection is crucial for the fact, discussed in Sec-
tion 1, that run-time verification of several checkable properties requires bounded
memory, which does not depend on the number of properties checked. Indeed, com-
bining the monitors of several k-checkable properties, one gets a new single monitor,
with the same state space as each of the single monitors. Indeed, if the languages
L1, L2, . . . , Ln, for n different k-checkable properties, are induced by R1, R2, . . . , Rn,
respectively, then the intersection R = R1∩R2∩· · ·∩Rn induces L1∩L2∩· · ·∩Ln.
A DBW for check(R), described in Theorem 5, can then serve as a monitor for all
the properties: the DBW is run in parallel to the verified system, and once it moves
to the rejecting sink (note that all other states are accepting) an error is reported.
Note also that while the number of states of the single monitor is exponential in k,
the memory demand is linear in k.

Finally, in the context of model checking we enjoy both the fact that we do not
need our monitors to be deterministic, and the fact that we work with complemented
specifications, which are co-checkable. Therefore, in the context of model checking,
the smaller nondeterministic monitors for co-checkable specifications can be used.

4 Deciding checkability

In this section we study decision problems related to checkability.

4.1 Relation to other families of languages

We start by investigating the relations between checkable and co-checkable lan-
guages and other restricted fragments of ω-regular languages. In section 4.2, we use
these observations in order to decide checkability of languages.

We consider safety, co-safety, and bounded languages first. Let L be a language
of infinite words over Σ. A finite word x ∈ Σ∗ is a bad prefix for L if for all infinite
words y ∈ Σω, the concatenation x · y of x and y is not in L. Thus, a bad prefix for
L is a finite word that cannot be extended into an infinite word in L. In a similar
fashion, a finite word x ∈ Σ∗ is a good prefix for L, if for all infinite words y ∈ Σω,
the concatenation x · y of x and y is in L. A language L is a safety language if every

7

word not in L has a finite bad prefix. A language L is a co-safety language if every
word in L has a finite good prefix [AS85]. For a co-safety language L we denote
by good(L) the set of good prefixes for L. For k ≥ 0, a language L is bounded with
bound k if every k-long word x ∈ Σk is either a good prefix, or a bad prefix for L. A
language L is bounded if there exists k ≥ 0 for which the language is bounded with
bound k. A language is bounded iff it is both safety and co-safety [KV01b].

Two other related families of languages we study are uninitialized [HKKM02]
(also called suffix closed) and liveness [AS85] languages. A language is uninitialized
if for every word w in L, every suffix of w is also in L. Thus, a language L is
uninitialized iff suff (L) ⊆ L. A language L is liveness if for every word w in L and
every word v ∈ Σω, if w is a suffix of v, then v ∈ L. Thus, L is liveness iff Σ∗ ·L ⊆ L.

Proposition 6 A language L ⊆ Σω is uninitialized iff comp(L) is liveness

Proof: We prove that L is not uninitialized iff comp(L) is not liveness. Assume
that comp(L) is not liveness. Then there is w ∈ comp(L) and u ∈ Σ∗ such that
u · w 6∈ comp(L). This means that u · w ∈ L but w 6∈ L, so L is not uninitialized.

Assume now that L is not uninitialized. Then there is w ∈ L such that w = u · v
and v 6∈ L. This means that v ∈ comp(L) but u · v 6∈ comp(L), so comp(L) is not
liveness.

Proposition 7

1. Checkable languages are both safety and uninitialized. Co-checkable languages
are both co-safety and liveness.

2. There exists a safety uninitialized language that is not checkable. There exists a
co-safety liveness language that is not co-checkable.

3. No language, other then ∅ and Σω, is both bounded and checkable (or co-
checkable).

Proof: 1. To see that a checkable language is safety, let L be a checkable language
and x ∈ Σω a word not in L. Then x must contain some k-long subword
x[i..i + k − 1] that is not in induce(L). Therefore, the prefix x[1..i + k − 1] is a
bad prefix for L. The fact a checkable language is uninitialized follows from the
easy observation that for all i ≥ 0 it holds that sub(wi, k) ⊆ sub(w, k), therefore
if sub(w, k) ⊆ R then sub(wi, k) ⊆ R. The results for co-checkable languages
follow.

2. We proceed To show a safety uninitialized language that is not checkable. Let
Σ = 2{p,q,r}, and L ⊆ Σω be the language of words in which whenever a letter
containing q appears, then either a letter containing r appears eventually and
until then only letters containing p appear, or all the letters that appear in the
suffix after the word containing q contains p. For readers familiar with LTL, the
language L corresponds to the formula G(q → (pWr))).
It is easy to see that L is both uninitialized and safety. We prove that L is not
checkable. Assume by way of contradiction that for some k ≥ 0 the language L
is k-checkable. Consider the word w = {p, q} · {p}k · ∅ · {p}ω. Clearly, w 6∈ L.
Therefore, there exists some i ≥ 0 such that w[i..i + k − 1] 6∈ induce(L). There
are three forms of k-long subwords of w: the subword {p, q}·{p}k−1, the subword
{p}k, and for every i < k, the subword {p}i · ∅ · {p}k−i−1. Subwords of the first

8

two forms are also subwords of {p, q} · {p}ω, which is in L. Therefore, subwords
of the first two forms must be in induce(L). Similarly, subwords of the third
form are subwords of {p}k ·∅ ·{p}ω, which is in L. Therefore, all of the subwords
of w are in induce(L) in contradiction to the fact that w 6∈ L.
The complementary language is co-safety liveness language that is not co-
checkable.

3. Finally, we show that a non trivial bounded language is neither checkable nor
co-checkable. Assume, toward contradiction, that there is a language L that is
both bounded, with bound b, and checkable. Let w be some word in L and v
some word not in L. Consider u = w[1..b] · v. Since L is bounded u must be
in L. On the other hand, since L is checkable and v is not in L, the word u
(that contain all the k-long subwords contained in v) cannot be in L. Thus a
contradiction is reached.
Since bounded languages are closed under complementation, the result for co-
checkable languages follows by looking at the complementary languages.

As discussed in Section 1, checkable languages are a special case of testable lan-
guages. A language L is k-testable [MP71,Wil93] if for every two words w1, w2 ∈ Σω,
if w1[0..k − 1] = w2[0..k − 1] and sub(w1, k) = sub(w2, k) then w1 ∈ L iff w2 ∈ L.
A language is locally testable (or simply testable) if it is k-testable for some k ≥ 0.
Every checkable (or co-checkable) language is trivially testable. The other direc-
tion, however, does not hold. As discussed in Section 1, the expressive power of
testable languages has a computational price, as the memory demand for a general
k-testable property is exponential in k. Indeed, while a monitor for a k-checkable
language only has to remember the last k letters, a monitor for a k-testable language
has to remember all the subwords of length k seen so far.

Proposition 8

1. There are testable languages that are neither checkable nor co-checkable.
2. For every k ≥ 0, there exists a 2-testable language that is k-checkable but not

(k − 1)-checkable.
3. For every k-testable property there is an NBW with at most 2|Σ|

O(k)
states.

4. There are k-testable properties for which every NBW has at least 2|Σ|
Ω(k)

states.

Proof: 1. First, we show a testable language neither checkable nor co-checkable.
Let Σ = 2{p,q}. The language L of all words in which all letters contain p and at
least one letter contain q is testable and is neither checkable nor co-checkable.

2. We proceed to show, for every k > 0, a language that is 2-testable and k-
checkable but not (k− 1)-checkable. Consider the alphabet Σ = {1, . . . , k}, and
the language L1 = suff ((1 ·2 · · · k)ω). It is not hard to see that L is 2-checkable,
and is induced by R1 = {1 · 2, 2 · 3, . . . k − 1 · k, k · 1}. Thus, L1 is also 2-
testable. Consider now the alphabet Σ′ = {1, . . . , k, k′} and the languages L2 =
suff ((1·2 · · · k−1·k′)ω). Note that L2 is identical to L1 up to substitution of one
letter. Thus, L2 is 2-checkable, and is induced by R2 = {1·2, 2·3, . . . k−1·k′, k′·1}.
Now, let L = L1 ∪L2. Since a word w is in L iff all its subwords of length 2 are
either all contained in R1 or all contained in R2, the language L is 2-testable.

9

The language L, however, contains no word in which both k and k′ appear. In
order to enforce such uniformity, at least two consecutive appearances of k or
k′ must be seen. It follows that L is k + 1-checkable but its width of cannot be
smaller than k + 1.

3. We proceed to the construction of an NBW for a k-testable language. It is not
hard to see, that it is possible to keep track of the set of k-long subwords seen
so far, using an NBW of size 2|Σ|

O(k)
. Therefore, every k-testable language has

an NBW of size 2|Σ|
O(k)

.
4. Finally, we show the optimality of the last construction. Let S ⊆ Σk be a set

of size |Σ|k−1. Let TS be the testable specification that is satisfied by a word
w ∈ Σω iff sub(w, k) = S. It is not hard to see that a monitor for TS must to
have at least 2|Σ|

k−1
states.

4.2 Decision problems

We now turn to the problem of deciding whether a property is checkable or co-
checkable. We consider properties given as NBWs. We first need to study some
more properties of checkable languages.

Consider a language L. A word x ∈ Σ∗ is a minimal good prefix for L if it is
a good prefix, and no strict prefix or strict suffix of x are good prefixes. Consider
for example the language L = aΣω ∪ bc∗aΣω. It is easy to see that L is a co-safety
language and that the good prefixes of L are the words in aΣ∗ and bc∗aΣ∗. Note
that a is a good prefix, and since ε is not a good prefix, clearly a is a minimal good
prefix. On the other hand, a appears as a subword in any good prefix, and therefore
a is the only minimal good prefix. The set of minimal good prefixes of L is denoted
min(L). For an automaton A, we denote by min(A) the set min(L(A)).

The decision criteria is based on the intuition that a co-checkable language has
a finite set of minimal good prefixes. We would have liked to argue that this is a
sufficient condition for a language to be co-checkable. This, however, is not true as
can be seen by the previous example. Indeed L = aΣω ∪ bc∗aΣω has a finite set of
minimal good prefixes (namely {a}), but is not co-checkable.

Theorem 9. A language L is co-k-checkable iff L is co-safety, liveness, and min(L)
is contained in Σk. Dually, a language L is k-checkable iff L is safety, uninitialized,
and min(comp(L)) is contained in Σk.

Proof: We prove the characterization for co-k-checkable languages. The one for
k-checkable languages is dual. Assume first that L is co-k-checkable. Then, by The-
orem 7, L is co-safety and liveness. We prove that min(L) is is contained in Σk. Let
R = co-induce(L), and let sub(R) denote all the subwords of words in R. We prove
that min(L) ⊆ sub(R). Since R ⊆ Σk, so is sub(R), implying the same for min(L).

In order to prove that min(L) ⊆ sub(R), we first prove that min(L) contains
only finite words of length at most k. To see this, assume, towards contradiction,
that a word w = w1 · · ·wn of length n > k is in min(L). Consider the strict suffix u
of length k of w. Thus, u = wn−k+1 · · ·wn. If u is a good prefix for L, then w is not
minimal. Otherwise, there is a word t ∈ Σω such that u · t 6∈ L. Since R co-induces
L, it follows that sub(u · t, k)∩R = ∅. On the other hand, as w is a good prefix, we

10

know that w · t ∈ L, implying that sub(w · t, k)∩R 6= ∅. Since every k long subword
of w · t that is not a subword of u · t must be a subword of w[1..n− 1], we get that
sub(w[1..n− 1])∩R 6= ∅. Therefore, w[1..n− 1] is a good prefix for L, and w is not
minimal. We reached a contradiction, implying that min(L) contains only words of
length k or less.

Consider a word w ∈ min(L). By the above, every word that has w as a prefix
is in L. Moreover, since L is liveness, every word that has w as a subword is in L.
Recall that the length of w is bounded by k. Therefore, by the maximality of R,
every k-long subword that contains w as a subword is in R, and w ∈ sub(R).

For the other direction, let L be a co-safety and liveness language with min(L) ⊆
Σk. Let R be the set of k-long words that contain minimal good prefixes as subwords.
We prove that L = co-check(R). To see that L ⊆ co-check(R), note that since L is
co-safety, every word w ∈ L starts with a good prefix. Every good prefix contains a
minimal good prefix as a prefix or a suffix. Therefore, w contains a minimal good
prefix as a subword. Hence, w contains a word from R as a subword.

To see that co-check(R) ⊆ L, consider some w ∈ co-check(R). By the definition
of co-checkability, w = x · y · z for y ∈ R. Since y ∈ R, it has a sub word y′ which
is in min(L), and hence is a good prefix for L. Let i be the index of the first letter
of y′ in (the first occurrence of) y′ in w. Then, wi ∈ L since it starts with a good
prefix, and w ∈ L since it has a suffix in L and L is liveness.

Corollary 1. A language L is co-checkable iff L is co-safety, liveness, and min(L)
is finite. Dually, a language L is checkable iff L is safety, uninitialized, and min(comp(L))
is finite.

We can now use the criteria from Corollary 1 in order to decide whether a given
NBW A is checkable or co-checkable. The most challenging part is the test for the
finiteness of the set of minimal good prefixes. For the proof of the next claim we
need the following definition: an NBW A is co-looping if it has a single accepting
state that is a sink.

Theorem 10.

1. For a co-safety DBW A, deciding whether min(A) is finite is in NLOGSPACE.
2. For a co-safety NBW A, deciding whether min(A) is finite is in PSPACE.

Proof: The NBW case reduces to the DBW case by using the polynomial space
determinization of safety and co-safety NBWs [KV01a]. As the test described below
for DBW uses only nondeterministic logarithmic space, we get a polyspace test for
NBW.

Given a DBW A, our strategy is to construct a DFW A′ whose language is
min(A), and decide whether the language of A′ is finite. We now show how to
construct A′.

Let A be an n-states co-safety DBW with language L ⊆ Σω. As a first step we
construct a co-looping DFW Ag with O(n) states such that L(Ag) = good(L(A)).

We say that a state q of A is universal if L(Aq) = Σω. Clearly, replacing all
universal states by a single accepting sink does not change the language of A. We
denote by A′ the resulting automaton. Let w ∈ good(L), since A is deterministic,
after reading w, the automaton A must be in the universal state. On the other

11

hand, if A is in the universal state after reading some finite word w ∈ Σ∗, then A
cannot leave the accepting sink so it must be that w ∈ good(L). If we view A′ as a
DFW (rather then a DBW) we get a DFW for good(L) as needed.

Note that the complexity of the construction involves the computation of the
universal states set (as well as logarithmic space computations). Since a state is
universal iff no cycle of non-accepting states is reachable from it, the universality
of a state can be decided in non-deterministic logarithmic space.

Let nonmin(L) = good(L) \min(L) be the set of non-minimal good prefixes of
L. Given a word w = w1 · · ·wl ∈ good(L), the word w is in nonmin(L) iff either of
the following holds.

1. w[2..l] ∈ good(L) (we classify such words as words of type 1), or
2. w[1..l − 1] ∈ good(L) (we classify such words as words of type 2).

We can construct a DFW A1, for words of type 1, by adding to Ag a new
state q1

in, making it the initial state, and adding to the transition function of Ag a
transition from q1

in to the original initial state of Ag, labeled by all the letters in Σ.
We denote the set of states of A1 by Q1, and its accepting sink by q1

ac.
We can also construct a DFW A2, for words of type 2, by adding a new accepting

sink state q2
ac2 to Ag, making the former accepting state q2

ac non-accepting, and
adding to the transition function of A2 a transition from q2

ac to q2
ac2 labeled by all

the letters in Σ. Note that a word w is in good(L) iff a run of A2 on w ends in
either q2

ac or q2
ac2.

We denote by Amin the cross product of A1 and A2, where the accepting states
set is (Q1 \ {q1

ac}) × {q2
ac}. The words accepted by Amin are exactly good(L) \

nonmin(L) as needed.
The number of state of Amin is quadratic in the number of states of the DBW

A. Since deciding DFW finiteness amounts to deciding if there exists a cycle on a
path between the initial state and an accepting state, deciding finiteness of DFW
is in NLOGSPACE and the complexity result follows.

We can now combine the tests as suggested in Corollary 1.

Theorem 11. The problem of deciding checkability is

1. NLOGSPACE-complete for DBWs.
2. PSPACE-complete for NBWs.

Proof: For the upper bounds, we follow the characterization in Corollary 1 and
check whether L(A) is safety [AS87], uninitialized [HKKM02], and min(comp(L))
is finite. In order to check the latter, we construct a deterministic DBW Ãg for
good(comp(L(A))). In case A is an NBW, we construct a DBW Ã for comp(A) in
polynomial space [KV01a], and can proceed as in Theorem 10.

In case A is DBW, we proceed as follows: We say that a state q of A is useless
if L(Aq) = ∅. Since A is deterministic, after reading a bad prefix A must be in a
useless state. Thus, replacing all the useless states by a single sink, marking the
new sink accepting, and the rest of the states non-accepting, results in a DFW Ag

for the bad prefixes of L(A) which are the good prefixes of comp(A).

12

Note that deciding whether a state is not useless amounts to searching for a
cycle with an accepting state reachable from it. Therefore, deciding uselessness in
can be done in nondeterministic logarithmic space.

Once we constructed Ag, we proceed by checking the finiteness of min(Ag) as
in Theorem 10.

The lower bound for NBWs is proven by a standard reduction from NBW uni-
versality. The same argument, applied to DBW results in a NLOGSPACE-hardness.
We proceed with the details of proofs.

Given an NBW A, we construct an NBW A′ such that A′ ’is checkable iff A is
universal. We denote the language of A by L and the alphabet of A by Σ. Let A′
be an NBW over an alphabet Σ′ such that the language L′ of A′ is not checkable.

For two words w = w1w2 . . . ∈ Σω and v = v1v2 . . . ∈ Σ′ω, let w ⊕ v =
〈w1, v1〉 · 〈w2, v2〉 · · · ∈ (Σ×Σ′)ω. It is easy to build an NBW A× over the alphabet
Σ × Σ′ such that A× accepts a word w ⊕ v ∈ (Σ × Σ′)ω iff either A accepts w or
A′ accepts v. We denote the language of A× by L×.

We prove that L× is checkable iff A is universal. First, if A is universal so
is A×, and therefore L× is checkable. For the other direction, assume by way of
contradiction that A is not universal and yet L× is k-checkable for some k. Consider
a word π not in L×. We say that a word w× = w ⊕ w′ ∈ (Σ × Σ)k agrees with π
when its projection on Σ (i.e. w) is a subword of π. Let R× be the set of words in
induce(L×) that agree with π. Let by R′ ⊆ Σ′k be the projection of R× on Σ′. We
prove that R′ induces L′ in contradiction to the choice of A′.

For every π′ ∈ Σ′ω, the word π ⊕ π′ ∈ (Σ × Σ′)ω is in L× iff sub(π ⊕ π′, k) ⊆
induce(L×). Since π⊕π′ projection on Σ is π, the question whether sub(π⊕π′, k) ⊆
induce(L×) reduces to the question whether sub(π′, k) ⊆ R′. On the other hand,
since π 6∈ L, the definition of A× implies that π ⊕ π′ ∈ L× iff π′ ∈ L′. We get that
π′ ∈ L′ iff sub(π′, k) ⊆ R, i.e., that R induces L′.

We now turn to the dual case, where we want to test an automaton for being
co-checkable. Again, we use the characterization in Corollary 1.

Theorem 12. Deciding co-checkability is

1. NLOGSPACE-complete for DBWs.
2. PSPACE-complete for NBWs.

Proof: For the upper bounds, we apply the criteria of Corollary 1. We have to
check co-safety, liveness and finiteness of min(L). We start with the NBW case. To
check whether L(A) is co-safety we apply the procedure of [Sis94]4. Checking for
liveness can be done as in [AS87]; note that the procedure suggested in [AS87] can
be done in polynomial space. Checking the finiteness of min(L) can be done as in
Theorem 10.

As for DBWs, checking for both liveness and co-safety can be done in NLOGSPACE.
The [AS87] procedure for checking liveness is to construct an automaton A′ with
4 [Sis94] suggests a procedure for deciding and automaton is safety. We can check for co-

safety by complementing A and checking comp(A) for safety. While complementing A
has an exponential blow-up, this blow-up does not increase the complexity of the decision
procedure, since the decision procedure in [Sis94] already involves complementation.

13

the same structure as A in which all the sates are accepting, and then check whether
the language of A′ is Σω. Note that [AS87] assume that A is reduced, i.e., from
every state in A an accepting state can be reached. It is not hard to see that in
the case A is a DBW, the entire procedure (including reducing A) can be done in
NLOGSPACE.

As for checking for co-safety: recall that a state q is universal if L(Aq) = Σω.
We construct a new DBW A′ similar to A in which all universal sates are replaced
by a single accepting sink, and no other state is accepting. It is not hard to see that
A is co-safety iff L(A) = L(A′). Thus, checking whether a DBW is co-safety can be
done in NLOGSPACE.

Checking for finiteness of min(L(A)) can be done as in Theorem 10.
The lower bound for deciding NBWs co-checkability is proven by a reduction from
NBW universality, using the same argument as in Theorem 13. For DBWs, NLOGSPACE-
hardness can be proven by a reduction from graph non reachability.

Given a graph G = 〈V, E〉 and two vertices s, t ∈ V we construct a DBW
A = 〈Σ, Q, q0, δ, F 〉 that is co-checkable iff t is not reachable from s in G. Let
A′ = 〈Σ′, Q′, q′0, δ

′, F ′〉 be some DFW whose language is not liveness. The alphabet
Σ of A is Σ′ ∪ V . The set of states V of A is V ∪Q′ where we identify the vertex
t with q′0. The initial state of A is s. The transition function of A is defined as
follows: for state v ∈ V and letter σ ∈ Σ let δ(v, σ) = σ if (v, σ) ∈ E or δ(v, σ) = v
otherwise. For state s ∈ Q′ and letter σ ∈ Σ let δ(s, σ) = δ′(s, σ) if σ ∈ Σ′ or
δ(s, σ) = s otherwise. The accepting states set F is F ′. If t is not reachable from
s in G, then the language of A is empty, and thus co-checkable. If, on the other
hand, t is reachable in G from t, we show that the language of A is not liveness, and
therefore A is not checkable. Since A′ is not liveness there exists an infinite word x
in L(A′) and a finite word y ∈ Σ∗ for which y ·x is not in L(A′). Denote by p ∈ V ∗

a path from s to t in G. Clearly p ·x is in L(A). However, p · y · p ·x is not in L(A′).
Thus, L(A) is not liveness, and hence not co-checkable.

We now turn to study the problem of deciding whether L is k-checkable or k-
co-checkable for a given k. We describe the reasoning for the case of co-checkability.
The considerations in the case of k-checkability are dual.

From Theorem 9 we know that finding the width of a co-checkable language L
can be reduced to finding the length of its longest minimal good prefix, and deciding
whether L is k-co-checkable can be reduced to checking that L is checkable yet no
minimal good prefix of it is of length k′ > k. In Theorem 10, we constructed a
DFW Amin that accepts exactly all the minimal good prefixes of L. Recall that
when L is co-checkable, the language of Amin is finite, so Amin contains no cycles.
Hence, checking a bound on the length of accepting paths in Amin can be done
nondeterministically in space that is logarithmic in the size of Amin (a longer path
can be guessed). Accordingly, we have the following.

Theorem 13.

1. Given a DBW A and an integer k, deciding whether A is k-checkable (or co-k-
checkable) is NLOGSPACE-complete.

2. Given an DBW A and an integer k, deciding whether A is k-checkable (or
co-k-checkable) is PSPACE-complete.

14

By translating LTL formulas to NBWs, the results above imply an EXPSPACE
upper bound to the problem of deciding whether an LTL formula is checkable or k-
checkable, for a given k. We leave open the question of the tightness of this bound.
As we shall see in Section 5, the fact LTL formulas can be easily complemented
leads, in the case of width bound, to an upper bound that is tighter than the one
obtained by going through NBWs.

5 Bounding the width

In this section we study the relations between the width of a checkable (or co-
checkable) language, and the size of automata or LTL formulas for the language.

5.1 Width vs. automata size

We start with Büchi automata. At first sight, it seems that the width of a language
of a checkable language can be bounded by the diameter of the smallest DBW
recognizing the language. Indeed, it appears that in an accepting run, the traver-
sal through the minimal good prefix should not contain a cycle. This impression,
however, is misleading, as demonstrated in the DBW A from Example 1, where a
traversal through the subword 120 contains a cycle. The diameter of the DBW A is
3, so a bound by the diameter is still possible, but remains open. As detailed below,
our bound depends on the size of A and not only in its diameter. We start with an
upper bound:

Theorem 14.

1. For a checkable (or co-checkable) DBW A with n states, the width of L(A) is
bounded by O(n2).

2. For a checkable (or co-checkable) NBW A with n states, the width of L(A) is
bounded by 2O(n).

Proof: We consider the co-checkable case first. In the proof of Theorem 10, we
constructed a DFW Amin such that L(Amin) = min(A). Since min(A) is finite, no
accepting run of A contains a cycle. Therefore, the size of Amin provides a trivial
bound for the longest word in min(A), and therefore on width L(A).

As for the checkable case, we can consider the complement language. Since the
construction of Amin already involved determinization and complementation the
complexity remains the same.

We now prove an exponential lower bounds on the gap between width and size
of automata by presenting small NBWs that accept checkable and co-checkable
languages of large width. The crucial observation is that an NBW with n states
can “characterize” a word w of length exponential in n, in the sense it accepts all
strings but w.

For natural numbers i, n ≥ 0, we denote by mn(i) ∈ {0, 1}n the n-bit bi-
nary string encoding of i mod 2n (e.g. m4(5) = 0101). We denote by counter(n)
the string mn(0) · # · mn(1) · · ·# · mn(2n − 1) · #. For example, counter(3) =
000#001#010#011#100#101#110#111#. Note that the length of counter(n) is

15

(n + 1)2n. The word counter(n) is characterized by its first n + 1 letters (i.e.
00 · · · 0#), and by the fact that when a letter σ is read, the letter σ′ at distance
n + 1 from σ is fixed by simple rules: if σ is #, then so is σ′. If σ is 0, then σ′ is 1
if all the letters between σ and the next # are 1 and is 0 otherwise. Similar rules
hold if σ is 1. We refer to these rules as the (n + 1)-distance rules.

Each of the (n + 1)-distance rules, as well as the contents of the first (n + 1)
letters, can be easily checked. Therefore, we can construct an NBW that accepts
words that violate one of those rules (simply by guessing which rule is violated and
where).

Theorem 15. There exist an NBW A with O(n) states such that L(A) is k-
checkable but not (k − 1)-checkable, for k = (n + 1)2n + 2 .

Proof: Let Σ be {0, 1, #, b, e}. For n ≥ 0, let xn be the word b · counter(n) · e,
and let L be the language of all words that do not contain xn as a subword. Thus,
L = check(Σ|xn| \ {xn}) and therefore L is (|xn|)-checkable. On the other hand,
every word of length |xn| − 1 can be extended to a word in L, so L is not |xn| − 1
checkable.

It is left to see that L can be accepted by an NBW A of size O(n). In fact, A
is a slight variation of the NBW that detects violations in counter(n). The initial
state of A is an “idle” state that scans the input waiting for a letter b. When a
letter b is read, A attempts to detect a violation of that ensures the word read is
not counter(n). If such violation is detected then A returns to its idle state. If, on
the other hand, an e is seen before a violation was detected then A moves to a
rejecting sink. Thus, A is a co-checkable NBW with O(n) states whose language is
of width (n + 1)2n + 2.

Theorem 16. There exist an NBW A with O(n2) states such that L(A) is k-co-
checkable but not (k − 1)-co-checkable, for k = 2(n + 1)2n.

Proof: We prove the theorem in two steps. First, we describe a language (based
on the word counter(n)) that is (n+1)-co-checkable and has an NBW of size O(n).
Next, we examine a small variation of the language, one that still has a small NBW
accepting it, but is only k-co-checkable for k exponential in n.

For n ≥ 0, we denote by L the language suff (counter(n)ω) of all the suffixes
of the word counter(n)ω. Like counter(n), all the words in L follow the (n + 1)-
distance rules. Furthermore, every word that begins with an (n+1)-long subword of
counter(n) and follows the (n+1)-distance rules, is in L. Since the (n+1)-distance
rules specify a letter by its preceding (n + 1) letters, these rules can be seen as a
set of permissible subwords of length (n+2). Therefore, L is (n+2)-checkable, and
comp(L) is (n+2)-co-checkable. It is also not hard to see that comp(L) is accepted
by an NBW of size O(n) that looks for a violation of the (n + 1)-distance rules, or
a flaw in the first n+1 letters (i.e., two or more # letters appearing within the first
n + 1 letters).

We now look at a variation of counter(n). Let $ be a new letter. For n ≥ 0, we
denote by counter$(n) the word mn(0) ·# ·mn(1) · · ·# ·mn(2n−1) ·$ which differs
from counter(n) only in the last letter. The word counter$(n) is characterized by
rules slightly different from the (n + 1)-distance rules: the rules now allow $ to
appear at distance n + 1 from #, but require that $ is preceded by a block of n 1’s.

16

We refer to these rules as the (n+1)-$-distance rules. As in the case of counter(n),
there exists an NFW of size O(n) that detects violations of the (n + 1)-$-distance
rules.

Consider now the language L′ = suff (counter(n)ω)) ∪ suff (counter$(n)ω), i.e.,
the language of all words that are either a suffix of counter(n)ω or a suffix of
counter$(n)ω. The crucial point is that the word is of one of these types, and
therefore the letter after a block of n 1’s is either always #, or always $. We refer
to a letter that appears after n 1’s as a critical letter. Since every subword of length
2|counter(n)| − 1 contains at most one critical letter, it is impossible to enforce the
uniformity of all critical letters in such a subword, thus L′ is not (2|counter(n)|−1)-
checkable. On the other hand, it is clear that L′ is 2|counter(n)|-checkable, and
comp(L′) is 2|counter(n)|-co-checkable.

It is left to show that comp(L′) has a small NBW. Note that comp(L′) is the in-
tersection of comp(suff (counter(n)ω) and comp(suff (counter$(n)ω), each of which
has an NBW of size O(n). Therefore, by the standard construction of NBWs inter-
section, comp(L′) has an NBW A of size O(n2). Thus, A is a checkable NBW with
O(n2) states whose language is of width 2(n + 1)2n.

5.2 Width vs. formula size

We now turn to consider bounds on the width of a language in terms of an LTL for-
mula defining the language. The main technical tool used in the proof of Theorem 16
is the fact that there is a small NBW detecting violations of the (d + 1)-distance
rules. Since these rules can be easily specified by an LTL formula of size O(d), a
lower bound on the width of languages of LTL formulas follows:

Theorem 17.

(1) There exists an LTL formula ϕ such that the language L(ϕ) is checkable and of
width 2Ω(|ϕ|).

(2) There exists an LTL formula ϕ such that the language L(ϕ) is co-checkable and
of width 2Ω(|ϕ|).

Note that since LTL has a negation operand, Claim (2) above follows trivially from
Claim (1).

It follows that the gap between the size of an LTL formula defining a checkable
language and its width might be exponential. In fact, since LTL formulas are expo-
nentially more succinct than NBWs, Theorems 15 and 16 hint that the gap may be
even doubly exponential. Nevertheless, we now show that the gap cannot be larger
then an exponential.

Theorem 18. For a checkable (or co-checkable) LTL formula ϕ, the width of L(ϕ)
is bounded by 2|ϕ|

3+2.

Proof: Let ϕ be a checkable LTL formula, and let L be its language. We denote
the of width of L by k. Let A be an n states NBW for L, and let Ã be an ñ states
NBW for comp(L). The crux of the proof is the observation that while k may depend
exponentially on n, it depends polynomially on max(n, ñ). Since complementation
in LTL is trivial, the exponential construction of an NBW for the language of an

17

LTL formula bounds both n and ñ [VW86]. We prove, by a pumping-lemma type
argument, that k is bounded by n2ñ + 3.

By Theorem 3, we have that comp(L) is co-induced by Σk \ induce(L). We first
claim that there is a word w ∈ Σk−2 such that there are σ, τ ∈ Σ, for which the
following hold.

(1) σ · w · τ ∈ Σk \ induce(L).
(2) There is σ′ ∈ Σ such that σ′ · w · τ ∈ induce(L).
(3) There is τ ′ ∈ Σ such that σ · w · τ ′ ∈ induce(L).

The existence of w that satisfies Conditions 1-3 follows from the minimality of
k. Since induce(L) contains no redundancies, we also know that

(4) There is t′ ∈ Σω such that σ′ · w · τ · t′ ∈ L.
(5) There is t ∈ Σω such that σ · w · τ ′ · t ∈ L.

Assume by way of contradiction that k ≥ n2ñ + 3. Consider the infinite words
u = σ · w · τ · t′, v = σ′ · w · τ · t′, and p = σ · w · τ ′ · t. The word u contains the
subword σ · w · τ , which is (Condition 1) in Σk \ induce(L). Therefore, u 6∈ L. By
Conditions 4 and 5, the words v and p are in L.

Let ru be an accepting run of Ã on u, and let rv and rp be accepting runs of
A on v and p, respectively. Since k ≥ n2ñ + 3, we also have k − 2 ≥ n2ñ + 1, thus
there is a triple of states su, sv, and sp, of Ã, A, and A respectively, and there is a
partition of w to x · y · z, with y 6= ε, such that the run ru visits su after reading
σ′ · x and after reading σ′ · x · y, the run rv visits sv after reading σ · x and after
reading σ ·x · y, and the run rp visits sp after reading σ ·x and after reading σ ·x · y,

If follows that for all i ≥ 0, we have the following.

– σ · x · yi · z · τ · t′ 6∈ L.
– σ′ · x · yi · z · τ · t′ ∈ L.
– σ · x · yi · z · τ ′ · t ∈ L.

From the last two facts, all subwords of length k of σ′ · x · y2 · z · τ · t′ and of
σ · x · y2 · z · τ ′ · t are in induce(L). Hence, so are all the subwords of length k of
σ · x · y2 · z · τ · t′, contradicting the fact it is not in L.

6 Conclusions

We defined k-checkable and locally checkable languages and studied their proper-
ties. We showed that the memory demand for monitoring k-checkable properties
is independent of the number of properties checked. This advantage of checkable
languages make them particularly suited to be used as specification formalism for
run-time verification.

We studied the relation between locally checkable languages and other fragments
of ω-regular properties and showed that safety properties, uninitialized properties,
and testable properties, all strictly contain checkable properties. We considered the
problem of deciding whether a specification is locally checkable, or k-checkable for a
given k, and showed that both problems are PSPACE-complete. Finally, we studied
the relation between the width of a checkable language and the size of an NBW or

18

LTL formula for the language, and showed that NBWs and LTL formulas can define
checkable languages with an exponentially larger width. An interesting problem that
remains open is the relation between the width of a co-checkable language and the
size of a DBW for it.

References

[AJS98] M. Aagaard, R.B. Jones, and C.-J.H Seger. Combining theorem proving and
trajectory evaluation in an industrial environment. In Proc. 35th DAC, 538–
541, 1998.

[AS85] B. Alpern and F.B. Schneider. Defining liveness. IPL, 21:181–185, 1985.
[AS87] B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed

computing, 2:117–126, 1987.
[BBL98] I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL

formulas. In Proc. 10th CAV, LNCS, 1998.
[BGHS04] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime

verification. In Proc. 5th VMCAI, LNCS 2937, pages 44–57, 2004.
[CBRZ01] E. M. Clarke, A. Bierea, R. Raimi, and Y. Zhu. Bounded model checking using

satisfiability solving. FMSD, 19(1):7–34, 2001.
[dR05] M. d’Amorim and G. Rosu. Efficient monitoring of omega-languages. In Proc.

17th CAV, LNCS, 2005.
[HKKM02] T.A. Henzinger, S.C. Krishnan, O. Kupferman, and F.Y.C. Mang. Synthesis

of uninitialized systems. In Proc. 29th ICALP, LNCS 2380, pages 644–655,
2002. 2002.

[HR02] K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In
Proc. 8th TACAS, LNCS 2280, pages 342–356. 2002.

[Kur94] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Prince-
ton Univ. Press, 1994.

[KV01a] O. Kupferman and M.Y. Vardi. Model checking of safety properties. FMSD,
19(3):291–314, November 2001.

[KV01b] O. Kupferman and M.Y. Vardi. On bounded specifications. In Proc. 8th LPAR,
LNCS 2250, pages 24–38, 2001.

[MP71] R. McNaughton and S. Papert. counter-free automata. MIT Pres, 1971.
[MS72] A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expres-

sions with squaring requires exponential time. In Proc. 13th IEEE Symp. on
Switching and Automata Theory, pages 125–129, 1972.

[Pnu81] A. Pnueli. The temporal semantics of concurrent programs. TCS, 13:45–60,
1981.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on
Foundations of Computer Science, pages 319–327, White Plains, October 1988.

[SB95] C.J.H. Seger and R.E. Bryant. Formal verification by symbolic evaluation of
partially-ordered trajectories. FMSD, 6:147–189, 1995.

[Sis94] A.P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of
Computing, 6:495–511, 1994.

[Tho90] W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer
Science, pages 133–191, 1990.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. 1st LICS, 332–344, 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. I& C,
115(1):1–37, November 1994.

[Wil93] Thomas Wilke. Locally threshold testable languages of infinite words. In Proc.
10th STACS, LNCS 665, pages 607–616, 1993.

19

