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Abstract. Traditional branching-time logics such as CTL? are memoryless: once a
path in the computation tree is quantified at a given node, the computation that led
to that node is forgotten. Recent work in planing suggests that CTL? cannot easily
express temporal goals that refer to whole computations. Such goals require mem-
oryfull quantification of paths. With such a memoryfull quantification, Eψ holds at
a node s of a computation tree if there is a path π starting at the root of the tree
and going through s such that π satisfies the linear-time formula ψ. In this work
we define the memoryfull branching-time logic mCTL? and study its expressive
power and algorithmic properties. In particular, we show that while the satisfiability
problem for mCTL? is 2EXPTIME-complete — not harder than that of CTL?, its
model-checking problem is EXPSPACE-complete — exponentially harder than that
of CTL?. The upper bounds are obtained by extending the automata-theoretic ap-
proach to handle memoryfull quantification, and are much more efficient than these
obtained by translating mCTL? to branching logics with past.

1 Introduction

Since the introduction of temporal logic into computer science by Pnueli in [Pnu77], the
family of temporal logics has been widely accepted as an appropriate formal framework
for the description of dynamic behavior, cf. [MP92]. Within this family, the branching-
time logic CTL? has emerged as one of the more expressive logics [EH86], unifying the
linear-time logic LTL [Pnu77] and the branching-time logic CTL [CE81]. While the modal
fixpoint logic [Koz83] is more expressive than CTL?, it is in some sense a low-level logic,
making it an “unfriendly” logic for users, whereas CTL? can naturally express complex
properties of computation trees. While the appropriateness of a branching-time logic for
practical formal verification is debatable [Var01], CTL? is the right logic for applications
that require computation-tree reasoning.

An example of an application that requires computation-tree reasoning is sanity checks
for the modeling of a system: verification is done with respect to a mathematical model of
the system, and it is important to check that the model, whose generation typically involves
abstraction and reduction techniques, is correct. For example, in order to detect vacuous
satisfaction of specifications, one has to check the satisfaction of witness formulas [KV03],
which are existential formulas describing a nontrivial behavior of the model. Likewise, in
order to check that the model does not disable essential behaviors of the system, one has
to check possibility properties [Lam98], which require computations of the model to be
extendible to computations exhibiting the behaviors.



Another example of a setting in which computation-tree reasoning is required is auto-
mated task planning [FN71,PW92], where given a description of a dynamic domain and of
the basic actions that can be performed on it, and given a goal that defines a success condi-
tion to be achieved, one has to find a suitable plan, that is, a description of the actions to be
executed on the domain in order to achieve the goal. “Classical” planning concentrates on
the so called “reachability” goals, that is, on goals that define a set of final desired states
to be reached (e.g., the red block is above the yellow block). Quite often, practical appli-
cations require plans that deal with goals that are more general than sets of final states.
Several planning approaches have been recently proposed, where temporal logic formulas
are used as goal languages, thus allowing for goals that define conditions on the whole plan
execution paths, i.e., on the sequences of states resulting from the execution of plans (see,
e.g., [BK98,BK00,?,CM98,DLPT02,dGV99,KD01,PT01]). Most of these approaches use
LTL as the goal language. The temporal logic LTL allows one to express reachability goals
(e.g., Fq — reach q), maintainability goals (e.g., Gq — maintain q), as well as goals that
combine reachability and maintainability requirements (e.g., FGq — reach a set of states
where q can be maintained), and Boolean combinations of these goals.

In planning in nondeterministic domains [CRT98b,PS92,War76], actions are allowed
to have different outcomes, and it is not possible to know at planning time which of the
different possible outcomes will actually take place. Nondeterminism in action outcome
is necessary for modeling in a realistic way several practical domains (e.g., robotics, au-
tonomous controllers, etc.). For instance, in a realistic robotic application one has to take
into account that actions like “pick up object” might result in a failure (e.g., if the object
slips out of the robot’s hand). A consequence of nondeterminism is that the execution of a
plan may lead to more than one possible execution path. Therefore, one has to distinguish
between the case the given goal has to be satisfied by all the possible execution paths
(“strong” planning) and the case where the goal has to be satisfied only by some of the
possible execution paths (“weak” planning). In the case of an LTL goal ϕ, strong planning
corresponds to interpreting the formula in a universal way, as the CTL? formula as Aϕ,
while weak planning corresponds to interpret it in an existential way, as the CTL? formula
Eϕ.

Weak and strong plans are two very extreme ways of satisfiability of an LTL formula.
In practical applications, it might be impossible to achieve goals in a strong way: for in-
stance, in the robotic application it might be impossible to fulfill a given task if objects
keep slipping from the robot’s hand. On the other hand, weak plans are too unreliable,
since they achieve the goal only under overly optimistic assumptions on the outcomes of
action executions. In the case of reachability goals, strong cyclic planning [CRT98a,?] has
been shown to provide a viable compromise between weak and strong planning. Formally,
a plan is strong cyclic if each possible partial execution of the plan can always be extended
to an execution that reaches some goal state. Strong cyclic planning allows for plans that
encode iterative trial-and-error strategies, like “pick up an object until succeed”. The ex-
ecution of such strategies may loop forever only in the case the action “pick up object”
continuously fails, and a failure in achieving the goal in the case of such an unfair exe-
cution is usually acceptable. This “always possibly” approach corresponds to Lamport’s
possibility properties mentioned above.

Inspired by the work on strong cyclic planning, Pistore and Vardi went on to explore
the different degrees in which an LTL formula ϕ can be satisfied that exist between the
strong goal Aϕ and the weak goal Eϕ [PV03]. They showed that a two-player game can
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model the spectrum between strong and weak planning. Player A chooses action outcomes
in order to make goal ϕ fail, while player E chooses action outcomes in order to satisfy
the goal ϕ. The degree of strength of the temporal requirement is determined by the struc-
ture of the game: who makes the first move and how many turns. Pistore and Vardi then
proposed a logic based on these path games, using path quantifiers A and E , which can
express the spectrum between strong and weak planning.

While the Pistore-Vardi logic is a branching-time logic, quite close to CTL?, it is dif-
ferent from CTL?. In CTL?, a path quantifier turns a path formula into a pure state formula.
Thus, for example, the formulaAGEϕ holds at a start state s0 if for every state s reachable
from s0 there is a path starting at s that satisfies ϕ; the truth of Eϕ depends only on the
state in which it is evaluated. In contrast, in the Pistore-Vardi logic the formula AEϕ holds
at a start state s0 if for every state s reachable from s0 there is a path starting at s0 and
continuing through s that satisfies ϕ; the truth of Eϕ in a state depends also on the path
that lead to that state. In other words, while CTL? path quantifiers are memoryless, the
path quantifiers A and E are memoryfull1. The Pistore-Vardi logic, however, does not have
a standard logical syntax; for example, it is not closed under conjunction and disjunction.

We propose in this paper a memoryfull variant of CTL?, which unifies CTL? and the
Pistore-Vardi logic. We name the new logic mCTL?. Semantically, mCTL? is obtained
from CTL? by reinterpreting the path quantifiers of the logic to be memoryfull2. With
memoryfull quantification, Eϕ holds at a node s of a computation tree if there is a path
π starting at the root of the tree and going through s such that π satisfies the linear-time
formulaϕ. Syntactically, we add a special proposition present , which is needed to emulate
the ability of CTL? to talk about the “present”. One of our main results is that the addition
of present is needed to make mCTL? at least as expressive as CTL?. (As in [BGK03],
one can translate mCTL? to CTL? via path logic, but this translation is of nonelementary
complexity. We note that present is not required to easily express the Pistore-Vardi logic
in mCTL?; the strong cyclic goal of AEϕ is expressed in mCTL? by the formulaAGEϕ.)
We show that memoryfull quantification can be expressed in CTL? extended with the
ability to refer to the linear past [KP95]. We note that the proposition present of mCTL?

is different from the “Now” used in [FLS02], in the context of branching temporal logics
with past. While the “Now” in [FLS02] is a unary temporal operator, which chops away
the past, our present is an atomic proposition that holds in the present.

We then examine two decision problems related to mCTL?: satisfiability and model
checking. We first show that satisfiability of mCTL?is 2EXPTIME-complete, which is the
same complexity as that of CTL? [EJ88,VS85]. Establishing the upper bound is quite non-
trivial, as the standard automata-theoretic approach to CTL? satisfiability [ES84,KVW00]
is strongly based on the memoryless character of CTL? quantifiers. We describe an ex-
tension of the automata-theoretic framework that can handle memoryfull path quantifiers.
We then show that model checking mCTL?is significantly harder than model checking
CTL?. Model checking mCTL?is EXPSPACE-complete, while model checking CTL? is
PSPACE-complete [EL85]. Since our lower-bound proof uses an mCTL?- formula cor-
responding to Lamport’s possibility properties, it also settles an open question on the
complexity of model checking of such properties, as well as the Pistore-Vardi logic. In

1 It is shown in [BGK03] that the Pistore-Vardi logic is expressible in CTL?, but only a non-
elementary translation, which goes through path logic [HT87], is known.

2 Strictly speaking, mCTL?covers only the finite-alternation fragment of the Pistore-Vardi logic,
leaving out the infinite-alternation fragment.
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addition, our results, together with the linear translation of mCTL? to CTL? with lin-
ear past, imply new results about the complexity of branching temporal logic with past
[LS00,FLS02,Mar03]. Our results show that the transition from memoryless to memory-
full quantifiers is significant. We can see now that the significant complexity gap between
CTL? satisfiability, which is 2EXPTIME-complete, and CTL? model checking, which is
PSPACE-complete, is due to quantifier memoryless, which helps model checking [EL85]
but not satisfiability [VS85].

2 Preliminaries

2.1 The temporal logic memoryfull CTL?

The branching-time logic memoryfull CTL? (mCTL?, for short) combines both branching-
time and linear-time operators [EH86]. A path quantifier E (“for some path”) can prefix
an assertion composed of an arbitrary combination of the linear-time operators X (“next
time”) and U (“until”). The syntax of mCTL? is similar to the syntax of CTL?: there
are two types of formulas in mCTL?: state formulas, whose satisfaction is related to a
specific state, and path formulas, whose satisfaction is related to a specific path. The only
difference in the syntax between the two logics is the fact mCTL? formulas may refer to a
special atomic proposition present , which holds only in the present. Formally, let AP be
a set of atomic proposition names. An mCTL? state formula is either:

– true, false, present , or p, for all p ∈ AP ;
– ¬ϕ1 or ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are mCTL? state formulas;
– Eψ, where ψ is an mCTL? path formula.

An mCTL? path formula is either:

– An mCTL? state formula;
– ¬ψ1, ψ1 ∨ ψ2, Xψ1, or ψ1Uψ2, where ψ1 and ψ2 are mCTL? path formulas.

The logic mCTL? consists of the set of state formulas generated by the above rules.
We define the size |ϕ| of ϕ as the number of state and path subformulas that ϕ has.

Note that our definition of size corresponds to the number of nodes in a reduced DAG rep-
resentation of the formula. We use the usual ∧ and → Boolean abbreviations. Additional
temporal operators can be obtained fromX , U , and their negations (e.g., Fψ1 = trueUψ1

and Gψ1 = ¬F¬ψ1). Finally, the path quantifier A (“for all paths”) can be obtained by
negating the path quantifier E (i.e., Aψ = ¬E¬ψ).

The semantics of mCTL? is defined with respect to computation trees. Given a finite
set D of directions, a D-tree is a set T ⊆ D∗ such that if x · d ∈ T where x ∈ D∗ and
d ∈ D, then also x ∈ T . The elements of T are called nodes, and the empty word ε is the
root of T . The prefix relation induces a partial order ≤ between nodes of T . Thus, for two
nodes x and y, we say that x ≤ y iff there is some z ∈ D∗ such that y = x · z. For every
x ∈ T , the nodes x · d, for d ∈ D, are the successors of x. The direction of a node x · d is
d. The direction of the root is some designated d ∈ D, referred to as the root direction. We
denote the direction of a node y ∈ T by dir(y). A node is a leaf if it has no successors.
For a node x ∈ T , an x-path of T is a minimal set π ⊆ T such that x ∈ π and for every
y ∈ π, either y is a leaf or there exists a unique d ∈ D such that y · d ∈ π. When x = ε,
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we say that π is a path. For a path π and a node x ∈ π, the suffix of π that starts at x is the
x-path π ∩ {y : x ≤ y}.

Given an alphabet Σ, a Σ-labeled D-tree is a pair 〈T, τ〉 where T is a D-tree and
τ : T → Σ maps each node of T to a letter in Σ. Of special interest to us are Σ-labeled
trees in which Σ = 2AP for some set AP of atomic propositions. We call such Σ-labeled
trees computation trees. A computation tree is often given by means of a Kripke structure
K = 〈AP,W,R,win, L〉, whereAP is the set of atomic propositions,W is a set of states,
R ⊆ W ×W is a transition relation that must be total (i.e., for every w ∈ W there exists
w′ ∈ W such that 〈w,w′〉 ∈ R), win is an initial state, and L : W → 2AP maps each
state to the set of atomic propositions true in that state. A path in K is an infinite sequence
of states, π = w0, w1, . . . such that 〈wi, wi+1〉 ∈ R for every i ≥ 0. We define the size
‖K‖ of K as |W | + |R|. The Kripke structure K induces a computation tree 〈TK , τK〉
that corresponds to the unwinding of K from win. Formally, 〈TK , τK〉 is a 2AP -labeled
W -tree where TK ⊆ W ∗ contains exactly all the prefixes of paths in K that start at win
and τK(x), for x ∈ TK , is L(dir(x)), with win being the root direction.

The difference between mCTL? and CTL? is in the semantics of path quantification.
Consider a computation tree. In CTL?, path quantification ranges over paths that start in
the current node. In mCTL?, path quantification ranges over paths that start at the root
and visit the current node. For example, the CTL? formula AGEψ, for a linear formula
ψ holds in a root of a computation tree if a computation satisfying ψ starts from every
node in the tree. When viewed as an mCTL? formula, it holds in a computation tree if for
every node x of the tree, the path from the root to x can be extended to a path satisfying
ψ. As discussed in Section 1, this corresponds to string cyclic plans [CRT98b,DTV99].
In particular, when ϕ = Fp, it states that p has either occurred in the past or is possible
in the future. This corresponds to Lamport’s possibility properties [Lam98]. Thus, when
evaluating path formulas, one cannot ignore the past and satisfaction may depend on the
events that have taken place since the beginning of the execution and until the present.
Below we define the semantics of mCTL? formally.

Consider a computation tree 〈T, τ〉. For two nodes x and c in T and an mCTL? formula
ϕ, we use x, c |= ϕ to indicate that x satisfies ϕ with c being the present. Similarly,
π, x, c |= ψ, for a path formulaψ, iff the suffix of the path π that starts at x satisfies ψ with
c being the present. Formally, we have the following (for known T and τ ).

– For all x, c in T , we have x, c |= true and x, c 6|= false.
– x, c |= p, for p ∈ AP , iff p ∈ τ(x).
– x, c |= present iff x = c.
– x, c |= ¬ϕ1 iff x, c 6|= ϕ1.
– x, c |= ϕ1 ∨ ϕ2 iff x, c |= ϕ1 or x, c |= ϕ2.
– x, c |= Eψ iff there exists a path π such that x ∈ π and π, ε, x |= ψ.
– π, x, c |= ϕ for a state formula ϕ, iff x, c |= ϕ.
– π, x, c |= ¬ψ1 iff π, x, c 6|= ψ1.
– π, x, c |= ψ1 ∨ ψ2 iff π, x, c |= ψ1 or π, x, c |= ψ2.
– π, x, c |= Xψ iff π, x · d, c |= ψ, where d ∈ D is such that x · d ∈ π.
– π, x, c |= ψ1Uψ2 iff π contains a node y ≥ x such that π, y, c |= ψ2 and for all
x ≤ z < y, we have π, z, c |= ψ1.

We say that a computation tree 〈T, τ〉 satisfies an mCTL? formula ϕ iff ε, ε |= ϕ. Note
that while in CTL? path quantification ranges over paths that start in the current node, here
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path quantification ranges over paths that start at the root and visit the current node. Thus,
when evaluating path formulas, one cannot ignore the past and satisfaction may depend on
the events that have taken place since the beginning of the execution and until the present.
Note also that formulas of the form Eψ “reset the present”; thus the satisfaction of Eψ
with respect to x, c is independent of c, and the present is set to x.

The logic mCTL?- is a fragment of mCTL? in which the atomic proposition present

is not allowed. Thus, while CTL? and mCTL? formulas can directly refer to the present
(in CTL?, path quantification starts in the present, and in mCTL?, present holds only in
the present), this is not the case for mCTL?- formulas. As we show in Section 3, mCTL?-
cannot emulate the ability of CTL? to refer to the present, and is strictly weaker than
mCTL?.

Examples Consider the mCTL? formula AG(p → EFq). The formula states that when-
ever a node x is labeled with p, then some path that goes through x has a node labeled
q. Thus, whenever p holds, it is linearly ordered with q. Note that the specification of this
property in CTL? is much more complicated.

The formulaAG(grant → EF (req∧F (ack∧Fpresent))) demonstrates how mCTL?

formulas can use the ability to refer to the present with present in order to refer to the past.
Indeed, the formula states that whenever a node x is labeled with grant , the path from the
root to x has a node labeled with req , followed by a node labeled with ack , followed by
the present. Thus, grants are given only if a request was issued and then acknowledged in
the past.

Finally, The formulaAG(ack → EF (req ∧ F (present ∧ F grant))) gives a different
view of the same sequence of events and demonstrates how mCTL? formulas can refer to
both the past and the future. Indeed, the formula states that whenever a node x is labeled
with ack , the path from the root to x has a node labeled with req and some path that starts
in x has a node labeled with grant . Thus, acknowledgments are given only if a request
was issued in the past and and is going to be granted in the future.

The definition of mCTL? leads to natural theoretical and practical questions: in the
theoretical front, we would like to study how the transition to a memoryfull path quan-
tification influences the expressive power of the logic, its connection to logics with past,
and to standard CTL?, as well as the necessity of the atomic proposition present . In the
practical front, we would like to study how the transition influences the complexity of
the satisfiability and the model-checking problems. The later is of particular interest as
model-checking algorithms for CTL? are based on a bottom-up reasoning, where internal
state formulas are evaluated first and replaced by new atomic propositions [EL85]. Such
reasoning cannot be applied with a memoryfull path quantification.

3 Expressiveness

In this section we discuss the expressive power of mCTL? and mCTL?-. We show that
while mCTL? and CTL? are equally expressive, the ability to point to the present is crucial,
thus mCTL?- is strictly weaker than mCTL?.

Theorem 1. mCTL? and CTL? are equally expressive.
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Proof: We first prove that every CTL? formula has an equivalent mCTL? formula of lin-
ear length. Consider a CTL? formula ψ. An equivalent mCTL? formula can be obtained
from ψ by replacing each subformula of the form Eξ by the formula EF (present ∧ ξ).
Clearly, the translation is linear. For the other direction, we show that every mCTL? for-
mula can be translated to a monadic SnS formula in which all sets quantifiers are over
paths. By [HT87], this fragment of SnS is as expressive as CTL?. Since reference to the
past is easy in first-order logic, the translation of mCTL? formulas to monadic SnS for-
mula in which all sets quantifiers are over paths is similar to the one described in [HT87]
for CTL?.

Note that while the blow up in translating a CTL? formula to an mCTL? formula is
linear, the translation in the other direction goes via monadic SnS and is of nonelementary
complexity3. We now show that this complication originates from the ability of mCTL? to
refer to the past. Thus, if we extend CTL? with past temporal operators, the translation is
linear. Let CTL?lp and CTL?lp- denote the extension of CTL? with past operators, with and
without present , respectively, where formulas are interpreted over computation trees, thus
past is linear [KP95].

Theorem 2. Every mCTL? (mCTL?-) formula has an equivalent CTL?lp (resp. CTL?lp-)
formula of linear length.

Proof: Consider an mCTL? (mCTL?-) formula ψ. An equivalent CTL?lp (resp. CTL?lp-)
formula can be obtained from ψ by replacing each subformula of the form Eξ by the
formulaEF (init ∧ ξ), where F is the past counterpart o of F (that is, Fξ iff ξ holds along
some suffix that starts in the past), and init is a special atomic proposition that labels the
root of the tree (alternatively, init can be replaced by AXfalse, which holds only at the
root). Clearly, the translation is linear.

We note that the complexity of the model-checking and the satisfiability problems for
CTL?lp and CTL?lp- is open [KP95], thus Theorem 2 does not lead to a model-checking or
decidability procedure. In fact, the translation, together with the lower bounds we describe
in Section 4 for mCTL? and mCTL?improves the known lower bounds known for CTL?lp
and CTL?lp-.

Recall that the proposition present emulates the ability of CTL? to talk about the
present. Indeed, the translation we described, of CTL? formulas to mCTL? formulas, uses
present . We now show that the use of present is essential, thus mCTL?- is strictly weaker
than mCTL? (and thus, also CTL?).

Theorem 3. There is a CTL formula with no equivalent mCTL?- formula.

Proof: We prove that the CTL formula ψ = EF (EXp ∧ EX¬p) has no equivalent
mCTL?- formula.

For n ≥ 0, let Kn and K ′
n be the Kripke structures described in Figure 1. It is not

hard to see that Kn satisfies ψ and K ′
n does not. We prove that for all n ≥ 0, no mCTL?-

formula ϕ with less than n X operators can distinguish between Kn and K ′
n. Note that

this implies that no mCTL?- formula is equivalent to ψ. Indeed, if we assume by way of
contradiction that such a formulaϕ exists, it has some fixed number n ofX operators, so it
cannot distinguish between Mn+1 and M ′

n+1, whereas ψ does distinguish between them.

3 In Section 4 we show that mCTL? is at least exponentially more succinct than CTL?

7



p

p

p

p

p

p

p p

p

p

p

p

p

p

p

¬p

¬p

K
′

n
:

. . . n

¬p

¬p

K
n

:

. . . n− 1

Fig. 1. The Kripke structures Kn and K′

n
.

The proof is based on Wolper’s result that no LTL formula with less than n X op-
erators, for n ≥ 0, can distinguish between pn · ¬p · pω and pn+1 · p · pω [Wol81]. We
extend Wolper’s result to computations and formulas over several atomic propositions. For
a computation π and an atomic proposition p, we denote by π|p the projection of π on p.
For two paths π and ρ, an atomic proposition p, and n ≥ 0, we say that π and ρ are
(p, n)-indistinguishable if one of the following holds:

– π|p = ρ|p = pω,
– π|p = ρ|p = (¬p)ω ,
– π|p = pn · ¬p · pω and ρ|p = pn+1 · ¬p · pω, or
– π|p = (¬p)n · p · (¬p)ω and ρ|p = (¬p)n+1 · p · (¬p)ω .

Lemma 1. Consider an LTL formula ξ over the set AP of atomic propositions. Let π and
ρ be (p, n)-indistinguishable for all p ∈ AP . If ξ has less than n X operators, then ξ
cannot distinguish between π and ρ.

The proof of Lemma 1 is by induction on the structure of ξ and is similar to the proof in
[Wol81], which corresponds to the special case where |AP | = 1.

Let 〈Tn, τn〉 and 〈T ′
n, τ

′
n〉 be the 2{p}-labeled {0, 1}-trees corresponding to the un-

winding of Kn and K ′
n, respectively. Let Pn ⊆ Tn be such that x ∈ Pn iff τn(x) = {p},

and let Qn ⊆ Tn be such that x ∈ Qn iff τn(x) = ∅. Define P ′
n and Q′

n similarly with
respect to 〈T ′

n, τ
′
n〉. Note that |Qn| = |Q′

n| = 2.
Consider an mCTL?- formula ϕ. For a state subformula θ of ϕ (that is, θ is an atomic

proposition, a formula of the formEξ, or a Boolean combination of them), denote by f(θ)
and f ′(θ) the set of nodes that satisfy θ in 〈Tn, τn〉 and 〈T ′

n, τ
′
n〉, respectively. We claim

that all the nodes in Pn agree about the satisfaction of θ, and similarly for P ′
n, Qn, and
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Q′
n. Moreover, θ is satisfied in (all the nodes in) Pn iff it is satisfied in (all the nodes in)

P ′
n, and similarly for Qn and Q′

n. Formally, we have the following.

Lemma 2. For every state subformula θ of ϕ, the following holds:

1. Pn ⊆ f(θ) or Pn ∩ f(θ) = ∅,
2. Qn ⊆ f(θ) or Qn ∩ f(θ) = ∅,
3. P ′

n ⊆ f(θ) or P ′
n ∩ f(θ) = ∅,

4. Q′
n ⊆ f(θ) or Q′

n ∩ f(θ) = ∅,
5. Pn ⊆ f(θ) iff P ′

n ⊆ f ′(θ), and
6. Qn ⊆ f(θ) iff Q′

n ⊆ f ′(θ).

Proof: The proof proceeds by an induction on the structure of θ. If θ is an atomic propo-
sition, then θ = p, so f(θ) = Pn, f ′(θ) = P ′

n, and we are done. If θ is a Boolean
combination of state formulas, the lemma follows from the induction hypothesis. If θ is of
the form Eξ, we proceed by an internal induction on the nesting depth of existential path
quantifiers in ξ. For the induction base, if there is no nested path quantifier in ξ, then ξ
is an LTL formula over p. Therefore, by Lemma 1, the formula ξ cannot distinguish be-
tween pn · ¬p · pω and pn+1 · ¬p · pω — the labels of the two paths of both 〈Tn, τn〉 and
〈T ′
n, τ

′
n〉. Therefore, for every node x in Tn or T ′

n, the value of Eξ in x is the (same) value
of ξ in these paths, and we are done. For the induction step, let θ1, . . . , θk be the maximal
strict state subformulas of ξ. Let q1, . . . , qk be new atomic propositions corresponding to
θ1, . . . , θk. Consider an extension of τ and τ ′ to 2{p,q1,...,qk} such that for every 1 ≤ i ≤ k

and x ∈ Tn, we have that qi ∈ τ(x) iff x satisfies θi. Similarly, for every x ∈ T ′
n, we

have that qi ∈ τ ′(x) iff x′ satisfies θi. The induction hypothesis guarantees that the paths
of 〈Tn, τn〉 and 〈T ′

n, τ
′
n〉 are pairwise (qi, n)-indistinguishable, for all 1 ≤ i ≤ k. Hence,

by Lemma 1, the formula ξ cannot distinguish between the paths of 〈Tn, τn〉 and 〈T ′
n, τ

′
n〉.

Therefore, for every node x in Tn or T ′
n, the value of Eξ in x is the (same) value of ξ in

these paths, and we are done.

Lemma 2 implies that for every mCTL?- formula ϕ with less than n X operators, ϕ is
satisfied in the root of 〈Tn, τn〉 iff ϕ is satisfied in the root of 〈T ′

n, τ
′
n〉. Thus, no mCTL?-

formula with less than n X’s can distinguish between Kn and K ′
n, and we are done.

The fact that mCTL?- loses track of the present whenever path quantification is applied
weakens its branching nature. This is reflected in the fact that the CTL formula we have
used in the proof of Theorem 3 is similar to the formula with which Milner shows the dif-
ferences between trace equivalence and bisimulation [Mil80]. This weakness of mCTL?-
motivates us to focus, in the rest of this paper, in the logic mCTL?.

4 Decision Procedures

In this section we study the model-checking and satisfiability problems for mCTL?. We
show that while the satisfiability problem is not harder than the one for CTL?, the model-
checking problem is exponentially harder. For the upper bounds, we need to develop an
automata-theoretic approach for memoryfull branching temporal logic. For that, we start
with definitions of alternating automata and introduce alternating automata with satellites.
We then translate mCTL? formulas to such automata.

9



4.1 Alternating automata

Automata over infinite trees (tree automata) run overΣ-labeledD-trees that have no leaves
[Tho90]. Alternating tree automata generalize nondeterministic tree automata and were
first introduced in [MS87]. Here we define symmetric alternating automata, which cannot
distinguish between the different successors of a node, and send copies to the successors
in either a universal or an existential manner [JW95,Wil99].

Let Ω = {2,3}, and let B+(Ω × Q) be the set of positive Boolean formulas over
Ω × Q; i.e., Boolean formulas built from elements in Ω × Q using ∧ and ∨, where we
also allow the formulas true and false and, as usual, ∧ has precedence over ∨. For a set
S ⊆ Ω ×Q and a formula θ ∈ B+(Ω ×Q), we say that S satisfies θ iff assigning true to
elements in S and assigning false to elements in (Ω ×Q) \ S makes θ true.

Consider a set D of directions. In a nondeterministic automaton A over Σ-labeled D-
trees, with a set Q of states, the transition function δ maps an automaton state q ∈ Q and
an input letter σ ∈ Σ to a set of tuples of states. Each tuple suggests a nondeterministic
choice for the automaton’s next configuration. When the automaton is in a state q and is
reading a node x with successors x · d1, . . . , x · dn, and labeled by a letter σ, it proceeds
by first choosing a tuple 〈q1, . . . , qn〉 ∈ δ(q, σ) and then splitting into n copies, where
copy i enters the state qi and proceeds to the node x · di. In a symmetric automaton, the
transition function δ maps q and σ to a formula in B+(Ω ×Q). Intuitively, an atom 〈2, q〉
corresponds to copies of the automaton in state q, sent to all the successors of the current
node. An atom 〈3, q〉 corresponds to a copy of the automaton in state q, sent to some
successor of the current node. When, for instance, the automaton is in state q, reads a node
x with successors x ·d1, . . . , x ·dn, and δ(q, V (x)) = (2, q1)∧(3, q2)∨(3, q2)∧(3, q3),
the automaton can either send n copies in state q1 to all the successors of x and a copy in
state q2 to one of the successors, or send a copy in state q2 to one of the successors and
a copy in state q3 to one (possibly the same) successor. So, while nondeterministic tree
automata send exactly one copy to each successor, symmetric automata can send several
copies to the same successor. On the other hand, symmetric automata cannot distinguish
between left and right and can send copies to successor nodes only in either a universal or
an existential manner.

Formally, a symmetric automaton is a tuple A = 〈Σ,Q, δ, qin, α〉 whereΣ is the input
alphabet, Q is a finite set of states, δ : Q × Σ → B+(Ω × Q) is a transition function,
qin ∈ Q is an initial state, andα specifies the acceptance condition (a condition that defines
a subset of Qω). Let T = D∗. A run of a symmetric automaton A on an input Σ-labeled
D-tree 〈T, τ〉 is a tree 〈Tr, r〉 (to be formally defined shortly) in which each node is labeled
by an element of D∗ ×Q. Unlike T , in which each node has exactly |D| children, the tree
Tr may have nodes with many children and may also have leaves. Thus, Tr ⊂ IN∗ and a
path in Tr may be either finite, in which case it ends in a leaf, or infinite. Each node of
Tr corresponds to a node of T . A node in Tr, labeled by (x, q), describes a copy of the
automaton that reads the node x of T and visits the state q. Note that many nodes of Tr can
correspond to the same node of T ; in contrast, in a run of a nondeterministic automaton
on 〈T, τ〉 there is a one-to-one correspondence between the nodes of the run and the nodes
of the tree. The labels of a node and its children have to satisfy the transition function.
Formally, the run 〈Tr, r〉 is a (D∗ ×Q)-labeled IN-tree that satisfies the following:

1. ε ∈ Tr and r(ε) = (ε, qin).

10



2. Let y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = θ. Then there is a (possibly empty)
set S ⊆ Ω ×Q, such that S satisfies θ, and for all (c, s) ∈ S, the following hold:

– If c = 2, then for each d ∈ D, there is j ∈ IN such that y · j ∈ Tr and r(y · j) =
(x · d, s).

– If c = 3, then for some d ∈ D, there is j ∈ IN such that y · j ∈ Tr and
r(y · j) = (x · d, s).

For example, if 〈T, τ〉 is a {1, 2}-tree with τ(ε) = a and δ(qin, a) = 3q1 ∧ 2q2, then
the nodes of 〈Tr, r〉 at level 1 include one of the labels (1, q1) or (2, q1), and include both
labels (1, q2) and (2, q2). Note that if θ = true, then y need not have children. This is the
reason why Tr may have leaves. Also, since there exists no set S as required for θ = false,
we cannot have a run that takes a transition with θ = false. Each infinite path ρ in 〈Tr, r〉
is labeled by a word in Qω. Let inf (ρ) denote the set of states in Q that appear in r(ρ)
infinitely often. A run 〈Tr, r〉 is accepting iff all its infinite paths satisfy the acceptance
condition. In Büchi automata, α ⊆ Q, and an infinite path ρ satisfies α iff inf (ρ)∩α 6= ∅.
In co-Büchi automata, α ⊆ Q, and an infinite path ρ satisfies α iff inf (ρ) ∩ α = ∅.

An automaton accepts a tree iff there exists an accepting run on it. We denote by L(A)
the language of the automaton A; i.e., the set of all labeled trees that A accepts. We say
that A is nonempty iff L(A) 6= ∅. We denote by Aq the automaton obtained from A by
making q the initial state. The complement of an automaton A is an automaton Ã that
accepts exactly all the tress that A rejects.

In [KVW00], the authors introduce hesitant alternating automata (HAAs, for short)
and show that CTL? formulas can be translated to such automata. An HAA is an alternating
automaton A = 〈Σ,Q, δ, q0, α〉, where α = 〈G,B〉 with G ⊆ Q and B ⊆ Q. That is, the
acceptance condition of HAAs consists of a pair of sets of states. As in weak alternating
automata [MSS88], there exists a partition ofQ into disjoint setsQ1, . . . , Qm and a partial
order ≤ on these sets such that transitions lead to sets that are lower in the partial order.
Formally, for every q ∈ Qi and q′ ∈ Qj for which q′ occurs in δ(q, σ), for some σ ∈ Σ,
we have Qj ≤ Qi. In addition, each set Qi is classified as either transient, existential, or
universal, such that for each set Qi and for all q ∈ Qi and σ ∈ Σ, the following hold:

1. If Qi is a transient set, then δ(q, σ) contains no states of Qi.
2. If Qi is an existential set, then δ(q, σ) only contains disjunctively related states of Qi.

Thus, no state of Qi is in a scope of a 2, and if δ(q, σ) is rewritten in DNF, then there
are no two states of Qi in the same disjunct.

3. If Qi is a universal set, then δ(q, σ) only contains conjunctively related elements of
Qi. Thus, no state of Qi is in a scope of a 3, and if δ(q, σ) is rewritten in CNF, then
there are no two states of Qi in the same conjunct.

It follows that every infinite path π of a run 〈Tr, r〉 gets trapped within some existential or
universal setQi. The path then satisfies an acceptance condition 〈G,B〉 if and only if either
Qi is an existential set and inf(π) ∩ G 6= ∅, or Qi is a universal set and inf(π) ∩ B =
∅. Note that the acceptance condition of HAAs combines the Büchi and the co-Büchi
condition: existential sets refer to the Büchi condition G and universal sets refer to the
co-Büchi condition B.

Given a transition function δ, let δ̃ denote the dual function of δ. That is, for every q
and σ with δ(q, σ) = θ, let δ̃(q, σ) = θ̃, where θ̃ is obtained from θ by switching 2 and 3,
switching ∨ and ∧, and switching true and false. If, for example, θ = 2p ∨ (true ∧ 3q)
then θ̃ = 3p ∧ (false ∨ 2q),
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Lemma 3. [MSS88,KVW00] Given an HAA A = 〈Σ,Q, δ, qin, 〈G,B〉〉, the alternating
automaton Ã = 〈Σ,Q, δ̃, qin, 〈B,G〉〉 is an HAA that complements A.

A satellite for an HAA A = 〈Σ,Q, δ, qin, α〉 is a deterministic word automaton U =
〈Σ,Q′, δ′, q′in〉 with no acceptance condition. For a node x = d0 · · · dk of a Σ-labeled
D-tree 〈T, τ〉, let word to(x) = τ(ε) · τ(d0) · τ(d0 · d1) · τ(d0 · d1 · · · dk−1) be the word
that labels the path from the root to x. When the HAA reads a node x of the input tree,
its transitions may depend on δ′(qin,word to(x)), namely on the state in which U would
have been if we had run it along the paths of the tree. Formally, the transition function of
A is δ : Q × Σ × Q′ → B+(Ω × Q), and is such that when A is in state q as it reads
the node x, it proceeds according to δ(q, τ(x), δ′(q′in,word to(x))). Technically, an HAA
with a satellite is equivalent to the HAA obtained by taking the product of A and U : the
new state space is Q × Q′, and whenever the product is in state 〈q, q′〉 and reads a node
x, the transition from 〈q, q′〉 is obtained from δ(q, τ(x), q′) by replacing each atom 2s or
3s by 2(s, δ′(q′, τ(x))) or 3(s, δ′(q′, τ(x))), respectively. The acceptance condition of
the product HAA is induced by F . The partition of the state space to sets, the partial order
on the sets, and their classification into transient, universal, and existential are induced by
these in A.

Note that satellites are only a convenient way to describe HAA in which the state
space can be partitioned to two components, one of which is deterministic, independent
of the other, has no influence on the acceptance, and runs on all the branches of the tree.
In particular, Lemma 3 holds also for HAA with satellites. It is sometimes convenient to
describe the HAA and its satellite separately. In addition to clarity, the separation to A
and U enables a tighter analysis of the complexity of the nonemptiness problem. Recall
that the solution of the emptiness problem for alternating automata involves alternation
removal, which results in a nondeterministic automaton with exponentially many states.
While the product of an HAA with n states and a satellite with n′ states has nn′ states,
there is a need to pay the exponential price of alternation removal in the process of the
nonemptiness check only for A. Formally, we have the following.

Theorem 4. The nonemptiness problem for an HAA with n states and a satellite with n′

states can be solved in time 2O(n logn′+n2 logn).

Proof: Let A be an HAA with n states, and let U be its satellite with n′ states. We first
claim that A is not empty iff it accepts a tree of branching degree n. The proof of the
claim is similar to the linear branching degree property of µ-calculus [CE81,SE89]. Now,
we can translate A to a nondeterministic parity tree automaton A′ over trees of branching
degree n, with nO(n) states, index O(n) [MS95], and with the same satellite U . By taking
the product of A′ and U , we get a nondeterministic parity automaton with n′nO(n) states,
index O(n), and no satellite. Checking the nonemptiness of such an NPT requires time
n′O(n)nO(n2) = 2O(n logn′+n2 logn) [EJ88,PR89].

Theorem 5. The 1-letter nonemptiness problem for an HAA with n states, depth m, and
a satellite with n′ states can be solved in space O(m log2(nn′)).

Proof: Let A be an HAA with n states and depth m, and let U be its satellite with
n′ states. We can translate A to an HAA with nn′ states, depth m, and no satellite. By
[KVW00], checking the 1-letter nonemptiness of such an HAA requires spaceO(m log2(nn′)).
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4.2 From mCTL? to HAA

In this section we describe a translation of mCTL? formulas to HAA. In the sequel, we use
the translation in order to obtain satisfiability and model-checking decision procedures for
mCTL?.

We first need some definitions. For an mCTL? formula ψ, let sf (ψ) be the set of state
subformulas of ψ. For two formulas θ and ϕ of ψ, we say that θ is maximal in ϕ if θ is
a strict state subformula of ϕ and there exists no state formula “between them”, namely,
there exists no strict subformula ξ of ϕ such that θ is a strict subformula of ξ. We denote by
max(ϕ) the set of all formulas maximal in ϕ. For example,max(A((X¬p)U(EXq))) =
{¬p,EXq}. Consider an mCTL? formula ψ and a computation tree 〈T, τ〉. We say that
a 2sf (ψ)-labeled tree 〈T, g〉 is sound for ψ if for all x ∈ T and θ ∈ sf (ψ), we have that
x, ε |= θ iff θ ∈ g(x). Thus, a node x is labeled by exactly all the formulas in sf (ψ) that
are satisfied in x, with ε being the present (note that the fact ε is the present is important
only for θ = present).

Theorem 6. Given an mCTL? formula ψ, we can construct an HAA Aψ with 2O(|ψ|)

states, depth O(|ψ|), and a satellite with 22O(|ψ|)

states, such that Aψ runs on 2sf (ψ)-
labeled trees and accepts exactly all trees that are sound for ψ and satisfy ψ.

Proof: We first define the satellite U for Aψ . Consider a subformula of ψ of the formEξ.
Let Uξ = 〈2sf (ψ), Qξ,Mξ, Q

in
ξ , αξ〉 be a nondeterministic Büchi automaton on infinite

words such that Uξ accepts exactly all the computations satisfying ξ [VW94]. Note that Uξ
regards the formulas maximal in ϕ as atomic propositions (Uξ ignores the other formulas
in sf (ψ)). Let Udξ = 〈2sf (ψ), 2Qξ ,Md

ξ , {Q
in
ξ }〉 be the deterministic automaton with no

acceptance condition obtained by applying the subset construction [RS59] to Uξ. Thus,
for all S ∈ 2Qξ and σ ∈ 2sf (ψ), we have that Md

ξ (S, σ) =
⋃
s∈SMξ(s, σ). Now, the

satellite U = 〈2sf (ψ), Q′, δ′, q′in〉 is the crossproduct of all the automata Udξ above (for all
the subformulas Eξ of ψ). Intuitively, U supplies to Aψ the information required in order
to evaluate path formulas on paths that start in the root of the tree and visit the current
node. When there is a need to check that Eξ holds in some node x, the automaton Aψ

guesses a state q that is a member of the current state S ∈ 2Qξ of Udξ (recall that 2Qξ is a
component in the state space of the satellite) and it executes U qξ along some x-path. The
position in which Aψ starts the execution of Uqξ is the only position in which the atomic
proposition present holds. Note that a correct guess of q and a successful run of U qξ along
some x-path are possible iff there is a path that visits x and satisfies ξ, which corresponds
to the semantics of Eξ.

As in the case of the HAA for CTL? [KVW00], we construct Aψ by induction on the
structure of ψ. With each subformula ϕ of ψ, we associate an HAA A′

ϕ composed from
HAAs associated with formulas maximal in ϕ. We assume that the state sets of composed
HAAs are disjoint (otherwise, we rename states). The HAA A′

ϕ assumes that the tree
is sound for the formulas in max(ϕ) and only checks the satisfaction of ϕ under this
assumption. We then define Aψ as the intersection of A′

ψ with an automaton that checks,
by sending copies to the different A′

ϕ automata, that the input tree is indeed sound with
respect to ψ.

– If ϕ = p for p ∈ AP or p = present , then A′
ϕ is the one-state HAA that goes to true

when it reads σ with p ∈ σ and goes to false otherwise.
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– If ϕ = ¬ϕ1, then A′
ϕ is Ãϕ1 — the HAA obtained by dualizing the HAA Aϕ1 for ϕ1.

If ϕ = ϕ1 ∨ ϕ2, then A′
ϕ = 〈2sf (ψ), Q1 ∪Q2 ∪ {qin}, δ, qin, 〈G1 ∪G2, B1 ∪ B2〉〉,

where A′
ϕi

= 〈2sf (ψ), Qi, δi, qiin, 〈G
i, Bi〉〉, qin is a new state and δ is defined as

follows. For states in Q1 and Q2, the transition function δ agrees with δ1 and δ2, re-
spectively. For the state qin and for all σ ∈ 2sf (ψ) and q′ ∈ Q′, we have δ(qin, σ, q′) =
δ(q1in, σ, q

′) ∨ δ(q2in, σ, q
′). Thus, in the state qin, the HAA A′

ϕ sends all the copies
sent by A′

ϕ1
or all the copies sent by A′

ϕ2
. The singleton {qin} constitutes a transient

set, with the ordering {qin} > Qi for all the sets Qi in Q1 and Q2.
– If ϕ = Eξ, where ξ is an mCTL? path formula, we proceed as follows. Let Uξ =
〈2sf (ψ), Qξ,Mξ, Q

in
ξ , αξ〉. Recall that the state space Q′ of the satellite U is the prod-

uct of the state spaces of the deterministic automata for the path formulas. Thus, each
state q′ ∈ Q′ has a component for each of these automata, and in particular for U dξ .
Consider a state q′ ∈ Q′. Let q′|ξ be the state of Udξ in q′. Note that q′|ξ ∈ 2Qξ . Then,
A′
ϕ = 〈2sf (ψ), Qξ, δ

′, qin, 〈αξ , ∅〉〉 is defined so that from its initial state qin, it con-
sults the satellite’s state q′ and executes Uξ along a single path, starting from some
state in q′ξ . The proposition present holds exactly at the node in which the execu-
tion of Uξ starts, thus its first transition assumes that present holds. Formally, for all
σ ∈ 2sf (ψ) and q′ ∈ Q′, we have

δ′(qin, σ, q
′) =

∨

s∈q′
|ξ

∨

s′∈Mξ(s,σ∪{present})

3s′.

Also, for all q ∈ Qξ, we have δ′(q, σ, q′) =
∨
qi∈Mξ(q,σ) 3qi. If Mξ(q, σ) = ∅, then

δ(q, σ, q′) = false. Note that the only transition in which the input from the satellite
is taken into an account is the transition from qin, where A′

ϕ chooses a state from q|ξ
to proceed with. Note also that Qξ constitutes a single existential set. The HAA A′

ϕ

accepts a 2sf () -labeled tree from node x iff x satisfies ϕ, assuming the input tree is
sound for the formulas in max(ϕ). The states in Qξ constitute an existential set of the
HAA.

We now add to A′
ψ transitions that check that the input tree is indeed sound for ψ, thus

the letter read at nodex describes the set of formulas satisfied in x. For this purpose, we add
a new state qcheck . Whenever Aψ is in state qcheck and reads a letter σ, it sends copies sent
from the initial states of the HAA A′

ϕi
= 〈2sf (ψ), Qi, δi, qiin, 〈G

i, Bi〉〉, for all ϕi ∈ σ,
sends copies sent from the initial states of the HAA Ã′

ϕi
= 〈2sf (ψ), Q̃i, δ̃i, qiin, 〈B

i, Gi〉〉,
for all ϕi 6∈ σ, (and also sends a copy that stays in qcheck to all the successors). Formally,
for all σ ∈ 2sf (ψ) and q′ ∈ Q′, we have

δ(qcheck , σ, q
′) = 2qcheck ∧

∧

ϕi∈σ

δi(qiin, σ, q
′) ∧

∧

ϕi 6∈σ

δ̃i(qiin, σ, q
′).

The HAA Aψ = 〈2sf (ψ), Q, δ, qin, 〈G,B〉〉 is such that Q is the union of {qin, qcheck}
with the union of the state spaces of A′

θ, for θ ∈ sf (ψ). The initial state qin checks
for the satisfaction of ψ and for the soundness with respect to ψ, thus δ(qin, σ, q′) =

δψ(qψin, σ, q
′) ∧ δ(qcheck , σ, q

′), where δψ and qψin are the transition function and initial
state of A′

ψ . Finally, G =
⋃
ϕi∈sf (ψ)G

i and B =
⋃
ϕi∈sf (ψ)B

i. The state qin is transient
and the state qcheck constitute a singleton universal set of the HAA.
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The arguments about the correctness of the construction, its size, and its depth, are
similar to these in [KVW00], and are given in Appendix A.1

4.3 Satisfiability

Theorem 7. The satisfiability problem for mCTL? is 2EXPTIME-complete.

Proof: We start with the upper bound. Consider an mCTL?- formula ψ. By Theorem 6,
there is an HAA Aψ with 2O(|ψ|) states, depth O(|ψ|), and a satellite with 22O(|ψ|)

states
such that L(Aψ) is exactly the set of 2sf (ψ)-labeled trees that are sound for ψ and satisfy
ψ. The HAA Aψ is nonempty iff ψ is satisfiable. By Theorem 4, the nonemptiness of Aψ

can be decided in time 22O(|ψ|)

, which is therefore also the time required for deciding the
satisfiability of ψ.

It is left to prove the lower bound. By Theorem 1, each CTL? formula can be linearly
translated to an equivalent mCTL? formula. The lower bound then follows from the fact
CTL? satisfiability is 2EXPTIME-hard [VS85].

Note that the application of the 2EXPTIME lower bound of CTL? satisfiability is not
possible for mCTL?-, and the exact complexity of the satisfiability problem for this logic
is left open.

4.4 Model Checking

For CTL?, the automata-theoretic approach is similar for satisfiability and model checking:
the HAA for a CTL? formula ψ accepts exactly all 2AP -labeled trees that satisfy ψ, so
satisfiability is reduced to emptiness and model checking to 1-letter emptiness (that is,
emptiness for an automaton with a singleton alphabet) of the product of the HAA with
the system [KVW00]. In the case of mCTL?, the need to execute the word automata for
the path formulas from the root of the tree, has forced us to define the HAA with respect
to 2sf (ψ)-labeled trees. While this was not a problem for satisfiability, it is a problem for
model checking, where we need to take the product of the HAA with a Kripke structure
that is labeled by 2AP . Fortunately, this is not a real problem, as it is possible to guess
an extension of the 2AP -labeling to a 2sf (ψ)-labeling, and then let the HAA check the
soundness of the guess.

Theorem 8. Given an mCTL? formula ψ, we can construct an HAA AAP
ψ with 2O(|ψ|)

states, depth O(|ψ|), and a satellite with 22O(|ψ|)

states, such that AAP
ψ runs on 2AP -

labeled trees and accepts exactly all trees that satisfy ψ.

Proof: The construction is similar to the one described in Theorem 6, only that we have
to adjust the HAA and its satellite to the alphabet 2AP . Intuitively, instead of having the
input tree labeled by subsets of sf (ψ), we let the satellite guess the richer labels, and then
let the HAA check the guess. Thus, the satellite is nondeterministic — on top of its de-
terministic transition we add a guess of the subset of sf (ψ) to be read in the successor
node. Yet, running the HAA on a 2AP -labeled tree, and letting it check the guesses, guar-
antees that word to(x) can be viewed as a word in (2sf (ψ))∗ rather than a word in (2AP )∗.
Accordingly, δ′(qin,word to(x)) is a singleton, as in the case of a deterministic satellite.
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Formally, if in the construction in Theorem 6 we ended up with a satellite U =
〈2sf (ψ), Q′, δ′, q′in〉 and HAA Aψ = 〈2sf (ψ), Q, δ, qin, 〈G,B〉〉, now we have a satellite
UAP = 〈2AP , Q′ × 2sf (ψ), δ′AP , q

′
in〉 where for all 〈q′, σ〉 ∈ Q′ × 2sf (ψ) and σ′ ∈ 2AP ,

we have δ′AP (〈q′, σ〉, σ′) = {δ′(q′, σ)}×2sf (ψ), and AAP
ψ = 〈2AP , Q, δAP , qin, 〈G,B〉〉,

where for all q ∈ Q, σ′ ∈ 2AP , and 〈q′, σ〉 ∈ Q′ × 2sf (ψ), we have δAP (q, σ′, 〈q′, σ〉) =
δ(q, σ, q′) ∧

∧
ϕi∈σ

δi(qiin, σ, q
′) ∧

∧
ϕi 6∈σ

δ̃i(qiin, σ, q
′).

Theorem 9. The model-checking problem for mCTL? is EXPSPACE-complete.

Proof: We start with the upper bound. Consider an mCTL? formula ψ. By Theorem 6,
there is an HAA Aψ with 2O(|ψ|) states, depth O(|ψ|), and a satellite with 22O(|ψ|)

states,
such that L(Aψ) is exactly the set of computation trees satisfying ψ. Consider a Kripke
structure K. By [KVW00], K satisfies ψ iff the 1-letter HAA obtained by taking the
product of K with Aψ is not empty. The product has |K|2O(|ψ|) states, depth O(|ψ|), and
a satellite with 22O(|ψ|)

states. Thus, by Theorem 5, its 1-letter nonemptiness problem can
be solved in space |ψ| log2(|K|22O(|ψ|)

) = |ψ|(log2 |K| + 2O(|ψ|) log |K|+ 2O(ψ)). Note
that the complexity is only logarithmic in the size of the structure, and the exponential
dependency is in the length of the formula, which is usually much smaller.

In order to prove the EXPSPACE lower bound, we do a reduction from the exponential
tiling problem. In this problem, we are given a fixed set T of tiles, two relations H,V ⊆
T × T , an integer n, a tuple of n tiles 〈t0, . . . , tn−1〉 ∈ Tn, and a tile tfin ∈ T . The
problem is to decide whether there is m ≥ 0 such that it is possible to tile a (2n × m)-
square so that horizontal neighbors belong toH , vertical neighbors belong to V , the first n
tiles in the first row are to, . . . , tn−1, and the first tile in the last row is tfin . Thus, formally,
a legal tiling is a function t : {0, . . . , 2n − 1} × {0, . . . ,m − 1} → T such that: (1) for
all 0 ≤ i ≤ 2n − 2 and 0 ≤ j ≤ m − 1, we have that H(t(i, j), t(i + 1, j)), (2) for
all 0 ≤ i ≤ 2n − 1 and 0 ≤ j ≤ m − 2, we have that V (t(i, j), t(i, j + 1)), (3) for all
0 ≤ j ≤ n − 1, we have that t(0, j) = tj , and (4) t(0,m − 1) = tfin . The exponential
tiling problem is known to be EXPSPACE-complete [Lew78].

Given a tiling problem T = 〈T,H, V, n, t0, . . . , tn−1, tfin 〉, we construct an mCTL?

formula ϕ over a fixed set AP of atomic propositions such that a legal tiling for T exists
iff the universal model MAP for AP (that is, a clique in which each node is labeled by a
different subset of AP ) satisfies ϕ. The formula ϕ is of length polynomial in T , and the
size of MAP is fixed, so we actually prove that the EXPSPACE lower bound holds for
structures of a fixed size.

Some of the atomic propositions in AP encode tiles in T . We refer to a word π ∈
(2AP )ω as an attempt to encode a legal tiling t. We divide the word π to blocks of length
n. Every block corresponds to a single location (in which we place a single tile) in the
(2n × m)-square. An atomic proposition in AP that acts as a 2n-counter encodes the
column i ∈ {0, . . . , 2n − 1} of the location. The tile in each location is encoded in the
first point in the block. In addition, we mark the first point of each block by an atomic
proposition b, and mark the first point of blocks that encode locations with i = 2n − 1 by
an atomic proposition l. Proper increase of the counter as well as correct labelling of b and
l can be forced by an LTL formula ξ.

Let t0 . . . t2n−1, t
′
0 . . . t

′
2n−1 be two successive rows of the tiling t. For each 0 ≤ i ≤

2n−1 we know, given ti, the possible values for ti+1 (these for whichH(ti, ti+1), in case
i < 2n − 1) and the possible values for t′i (these for which V (ti, t

′
i)). Consistency with

16



H and V gives us a necessary condition for a word to encode a legal tiling. In addition,
the tiling should satisfy the edge conditions; it should start with tinit and has tfin in some
position in which the value of the counter is 0. It is easy to come up with an LTL formula
θ that guarantees the satisfaction of the conditions on horizontal neighbors and the edge
conditions.

The difficult part in the reduction is in guaranteeing that the condition for vertical
neighbors, which are exponentially far, holds. This is where the memoryfullness of ϕ
comes into the picture. By pointing to t[i, j] in the present (using present), we can relate
it with t[i, j − 1]. Indeed, t[i, j − 1] is encoded in a point in which a block that has the
same counter value as the current block starts, and for which there is exactly one point in
which l holds before we reach the present.

The formula ϕ is then of the form

E[ξ ∧ θ ∧G(b→ EF (b ∧ η0 ∧
∧

1≤i≤n

η1(i) ∧ η2)],

stating that the structure contains a path satisfying ξ and θ and in which whenever a block
starts (this is the b on the left hand side of the →), the path from the root to the present
has a point in which a block starts (this is the b in the conjunct in the scope of EF ), this
block is in the previous row (this is enforced by η0 = ((¬l)U(l ∧ X((¬l)Upresent),
which requires a single l between this b and the present), it has the same counter value as
the block that starts now (this is enforced by η1, which also uses present , and refers to
the values of the counter bit by bit), and the tiles encoded in this block and the block in
the present are allowed by V (this is enforced by η2, which is a disjunction on the values
allowed by V , with respect to the point in which b holds (encoding the value of the left
element of the pair) and the point in which present holds (encoding the value of the right
element)).

If MAP satisfies ϕ, then the path satisfying its existential requirement encodes a legal
tiling for T . Likewise, a legal tiling for T can be encoded in a path of MAP that satisfies
the existential requirement in ϕ. Accordingly,MAP satisfies ϕ iff there is a legal tiling for
T .

Of special interest is the mCTL? formula AGEξ, for an LTL formula ξ. As discussed
in Section 1, the formula is useful for checking possibility properties as well as in strong
cyclic planning. In the full version, we show that our lower bound proof holds also for
formulas of this form. The proof is based on the fact that pointing to the present with
present can be emulated by pointing to a location in the computation in which some
special event occurs. In more detail, we add to the set of atomic propositions a special
proposition #, and instead of the universal model MAP , we take two copies of MAP ,
such that # does not hold in the states of the first copy and holds in all the states of the
second copy. The formula we check is EFAξ (that is, the dual of possibility properties),
where a path that satisfies the existential requirement encodes a legal tiling. Checking of
vertical neighbors in all counters is done by referring to the value of the counter in the
position in which the value of # flips from false to true. It follows that the EXPSPACE
lower bound applies also for model checking of the less expressive mCTL?-, the Pistore-
Vardi logic, and possibility properties.

We note that since CTL? model checking is PSPACE complete, the EXPSPACE lower
bound for mCTL? model checking implies that mCTL?is exponentially more succinct
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than CTL?. Also, since mCTL?- can be linearly translated to CTL?lp, the latter suggests
an alternative proof to the fact CTL?lp is exponentially more succinct than CTL? [Mar03].
In addition, it implies an EXPSPACE lower bound for the model-checking problem of
CTL?lp, a problem that was left open in [KP95] (see also [LS00]).

5 Discussion

We introduced and study mCTL? — a variant of CTL? in which path quantification ranges
over paths that start in the beginning of the execution of the system and go through the
present. We argued for the appropriateness of mCTL? for sanity checks and for planning
in a nondeterministic domain, and showed that memoryfull path quantification can lead
to formulas that are exponentially more succinct. Studying the algorithmic properties of
memoryfull path quantification, we showed that while the transition from memoryless to
memoryfull path quantification does not make the satisfiability problem harder, it does
make the model-checking problem exponentially harder.

The fragment CTL of CTL? has received a lot of attention, and its model-checking
problem can be solved in linear time [CES86]. One can also define the logic mCTL, which
is the memoryfull counterpart of CTL. Thus, mCTL is the fragment of mCTL? in which
every temporal operator is immediately preceded by a path quantifier. The logic mCTL-
is then the fragment of mCTL in which the atomic proposition present is not allowed.
Unfortunately, mCTL and mCTL- are not of much interest. As we show in the full version,
their expressive power is very limited (essentially, the fact its path formulas cannot contain
a Boolean assertion containing present makes mCTL as expressive as mCTL-, where
present is lost with each application of a temporal operator), and still, their model-checking
problem is at least NP-hard (the proof is similar to the NP-harness for the model checking
of the fragment of LTL in which the only temporal operator is F [SC85]).
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A Proofs

A.1 Correctness of the construction in Theorem 6

We prove the correctness of the construction by induction on the structure of ϕ. The proof
is immediate for the case ϕ is of the form p, ¬p, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, or Aξ. We consider
here the case where ϕ = Eξ. If a node x in a tree 〈T, τ〉 satisfies ϕ with c being the
present, then there exists a path π in 〈T, τ〉 such that x ∈ π and π |= ξ with c being the
present. Thus, there exists an accepting run r of Uξ on a word w that agrees with π on the
formulas in max(ϕ). Let s be the state of Uξ that r visits when it reads the position of w
that corresponds to node x. By the definition of Udξ , the state s is a member of the set Sξ —
the component of the state q′ ∈ Q that U visits when it reads node x. The HAA Aψ visits
nodes of the tree in the present. Hence, since r is accepting, there is a run of Uξ that starts
in state s on the suffix of w that starts in the position that corresponds to x, and in which
present holds when the node x is read. It follows that a run of Aϕ that chooses to proceed
with s and agrees with r on the x-path that corresponds to the suffix of π can accept 〈T, τ〉
from node x. Indeed, by the definition of A′

ϕ, the copies that proceeds according to δ′

satisfy the acceptance condition. In addition, by the induction hypothesis, copies sent by
qcheck fulfill the acceptance condition. Now, if a run r of Aϕ accepts a tree 〈T, τ〉 from
node x, then there must be a state s such that Uξ can reach s when reads the word that
labels the path from the root to x, and Uξ accepts, from state s, the word that labels some
x-path. Thus, the path π obtained by concatenating the path from the root to x and the
above x-path is accepted by Uξ , and therefore, it satisfies ξ. Hence, by the semantics of
mCTL?-, the node x of 〈T, τ〉 satisfies ϕ.

We now consider the size of U and Aψ. We start with the size of the satellite U .
Since the size of Uξ is exponential in |ξ| [VW94] and the subset construction involves an
additional exponential blow up, the size of Udψ is doubly exponential in |ξ|. Hence, the size
of U is at most doubly exponential in |ψ|. We now turn to the size of Aψ. For every ϕ, we
prove, by induction on the structure of ϕ, that the size of Aϕ is exponential in |ϕ|.

– Clearly, for ϕ = p for some p ∈ AP , the size of Aϕ is constant.
– For ϕ = ¬ϕ1, we have |Aϕ| = |Aϕ1 |. By the induction hypothesis, |Aϕ1 | is exponen-

tial in |ϕ1|. Thus, |Aϕ| is surely exponential in |ϕ|.
– For ϕ = ¬ϕ1 or ϕ = ϕ1 ∨ ϕ2, we have |Aϕ| = O(|Aϕ1 | + |Aϕ2 |). By the induction

hypothesis, |Aϕ1 | is exponential in |ϕ1| and |Aϕ2 | is exponential in |ϕ2|. Thus, |Aϕ|
is surely exponential in |ϕ|.

– Forϕ = Eξ, we know, by [VW94], that the size of the word automatonUξ is exponen-
tial in |ξ|. Therefore, A′

ϕ is exponential in |ϕ|. Also, |Σ ′| is exponential in |max(ϕ)|
and, by the induction hypothesis, for all ϕi ∈ max(ϕ), the size of Aϕi is exponential
in |ϕi|. Therefore, Aϕ is also exponential in |ϕ|.

Finally, since each subformula of ψ induces exactly one set, the depth of Aψ is linear
in |ψ|.
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