
An Abstraction-Refinement Framework for Multi-Agent Systems

Thomas Ball
Microsoft Research∗

Orna Kupferman
Hebrew University†

Abstract

Abstraction is a key technique for reasoning about sys-
tems with very large or even infinite state spaces. When a
system is composed of reactive components, the interaction
between the components is modeled by a multi-player game
and verification corresponds to finding winners in the game.
We describe an abstraction-refinement framework for multi-
player games, with respect to specifications in the alternat-
ing µ-calculus (AMC). Our framework is based on abstract
alternating transition systems (AATSs). Each agent in an
AATS has transitions that over-approximate its power and
transitions that under-approximate its power. We define the
framework, define a 3-valued semantics for AMC formulas
in an AATS, study the model-checking problem, define an
abstraction preorder between AATSs, suggest a refinement
procedure (in case model checking returns an indefinite an-
swer), and study the completeness of the framework. For
the case of predicate abstraction, we show how reasoning
can be automated with a theorem prover.

Abstractions of multi-player games have been studied in
the past. Our main contribution with respect to earlier work
is that we study general (rather than only turn-based) ATSs,
we add a refinement procedure on top of the model checking
procedure, and our abstraction preorder is parameterized
by a set of agents.

1 Introduction

We consider how to verify systems composed fromreactive
components. Each component is anopen system, which in-
teracts with its environment and whose behavior depends
on the state of the system as well as the behavior of the en-
vironment. Modeling languages for open systems, such as
CSP [16] and I/O Automata [22], distinguish betweenin-
ternalnondeterminism — choices made by the system, and
externalnondeterminism — choices made by the environ-
ment. Such a distinction exists naturally also in software,

∗Address: One Microsoft way, Redmond, WA 98052, USA,
Email: tball@microsoft.com

†Address: School of Computer Science and Engineering, Jerusalem
91904, Israel. Email: orna@cs.huji.ac.il

where processes have internal and external variables.
A game-theoretic property arises naturally: can the sys-

tem resolve its internal choices so that the satisfaction of a
property is guaranteed no matter how the environment re-
solves the external choices? For example, ifP1 andP2 are
processes that assign values to the variablesx and y, we
wish to verify properties like “it is possible forP1 to make
x always bigger thany, no matter howP2 behaves” or “it
is possible forP1 to eventually preventP2 from makingy
positive”. Such analternatingsatisfaction can be viewed
as a winning condition in a two-player game between the
system and the environment [24].

Alternating transition systems(ATSs) model reactive
components and their interactions, providing a general
framework for verification of systems composed from re-
active components [1].Alternating temporal logics(ATLs)
logically characterize ATSs and have, in addition to the
usual universal and existential path quantifiers, a path quan-
tifier that is parameterized by a setΩ of agents1. The path
quantifier ranges over those paths that the agents inΩ can
force the system into no matter how the other agents behave.
For example, the ATL formula〈〈Ω〉〉 f(x = y) means that
the agents inΩ can cooperate to makex andy equal in the
next state. Dually,[[Ω]] f(x = y) means that the agents inΩ
cannot prevent the next values ofx andy from being equal.

The game theoretic-approach, which is the essence of
ATS and ATL, has turned out to be very useful. In par-
ticular, games are used in compositional verification [9],
reasoning about security protocols [19], multi-agent plan-
ning [28, 29], control and synthesis [24], and more. The
complexity of game solving, however, is higher than that of
model checking [1]. Thus, methods for coping with large
state spaces are even more crucial than in verification of
closed systems.

A key technique for coping with very large or even in-
finite state spaces isabstraction. Abstraction frameworks
in the 3-valued semantics [3] are typically based onmodal
transition systems(MTS). Such systems have two types of
transitions: may transitions, which over-approximate the
transitions of the concrete system, andmust transitions,

1We adopt the terminology of game theory and refer to the underlying
components asagents.

1

which under-approximate the transitions of the concrete
system. Accordingly, verification of universal and existen-
tial properties is done with respect to may and must transi-
tions, respectively. One can extend the abstraction frame-
work to anabstraction-refinementframework, in which an
indefinite answer carries with it information that enables the
refinement of the abstract system. In the case of 3-valued
semantics, the information comes from analyzing the source
of the answer being unknown [25, 26].

We describe an abstraction-refinement framework for
games, based on ATSs and ATL. Our abstraction frame-
work for games is based on lifting the notions of may
and must transitions toabstract alternating transition sys-
tems(AATSs), where the may transitions over-approximate
the power of the agents, and the must transitions under-
approximate them. Accordingly, must transitions are help-
ful for the verification of properties referring to the ability
of the agents to achieve a goal (〈〈 〉〉 properties), and may
transitions are helpful for the verification of properties re-
ferring to their disability ([[]] properties).

Two earlier works in this direction are [15] and [8].
In [15], the authors describe an abstract interpretation of
game properties: the basic modalities〈〈Ω〉〉 fand[[Ω]] fof
ATL correspond to the predicate transformersCPreΩ and
UPreΩ, which take as an argument a set of agents and re-
turn the controllable and uncontrollable predecessors of it.
These predicates are extended in [15] to predicates that op-
erate on sets of abstract states, and are used in an abstract
model-checking procedure for thealternatingµ-calculus.
In [8], the authors suggest an abstraction framework for
turn-based games. In a turn-based game, a single agent pro-
ceeds in each position. Thus, turn-based games can model
systems with a limited type of concurrency – one in which
a single component proceeds in each transition. As noted in
[8], the extension of the turn-based setting described there
to general concurrent games is technically difficult. As we
explain below, the extension carries with it interesting the-
oretical observations and significantly extends the type of
systems for which abstraction can be applied2.

In addition to defining AATSs, a 3-valued semantics for
the alternatingµ-calculus with respect to them, and a corre-
sponding model-checking procedure, we make the follow-
ing contributions. In case the model-checking procedure
returns an indefinite answer, we accompany the answer by
a suggestion for arefinement. Such an automatic refine-
ment procedure does not exist in previous works on abstract
games. As in the case of MTS, our procedure analyzes the
sources to the “unknown” answer [25, 26]3.

2In addition, the abstraction in the turn-based setting are limited to
agent-preservingabstractions, where concrete states that correspond to the
same abstract state agree on the agent that proceeds in them. Such a limi-
tation does not exist in our general case.

3Note that the standard method of counterexample-based refinement
cannot be applied in the 3-valued semantics.

We define an abstraction preorder between AATSs. An
alternating-simulationpreorder between ATSs is defined
in [2]. The preorder there is parameterized by a setΩ of
agents andS ≤Ω S ′ reflects the fact that the agents inΩ
are more powerful inS than inS ′. That is, if an alternating
µ-calculus formulaψ that expresses the ability of the agents
in Ω to achieve some goal is satisfied inS ′, it also is satis-
fied inS. In contrast, our order reflects the abstraction level
of the agents inΩ. Thus, ifψ has a definite value inS ′,
and this value may be either “true” or “false”, then it would
have a definite value also inS. Our order also is different
from the one in [8], which does not take a set of agents as a
parameter.

We argue that our definition is the appropriate one in the
context of abstraction. In particular, we show that our or-
der, when parameterized with a setΩ of agents, is logically
characterized by the fragment of the alternatingµ-calculus
in which all 〈〈 〉〉 and [[]] quantifiers are parameterized by
setsΩ′ ⊆ Ω of agents4.

Finally, for the special case of predicate abstraction of
software, we show how a theorem prover can be used in or-
der to automatically generate the may and must transitions
of the AATS. This involves an extension of the traditional
notions ofweakest preconditionto programs with internal
nondeterminism and expressing the existence of may and
must transitions by means of first order logic formulas that
use the extended notions. We demonstrate our approach
by verifying properties of a program composed of two pro-
cesses that concurrently assign variables to integers.

A nice theoretical contribution of our framework is that
it unifies three games: the model-checking game (cf. [27]),
the abstraction game (cf. [7]), and the game between the
different agents. In particular, though the may and must
transitions of an AATS have the same structure, which is
similar to the one of an ATS, the special case of an AATS
with a single agent corresponds to an MTS with hyper-
must transitions. Thus, AATSs provide a good explanation,
based on the game nature of model checking and abstrac-
tion, of the asymmetry between must and may transitions.
The appropriateness of the model is also reflected in the
fact that AATSs enjoy monotonicity [26] and completeness
[6]. From a practical point of view, handling general ATSs
broadens the scope of abstraction to systems with full con-
currency. In particular, the success of the game-theoretic
approach in the verification of security protocols and multi-
agent planning is in systems with full concurrency [19, 29],
thus the richer setting is the interesting one.

Due to the lack of space, some details are omitted. A full
version can be found in the authors’ URLs.

4Note that we allow the formulas to refer to both the abilities and dis-
abilities of the agents ofΩ. This is in contrast to the “Ω-universal” frag-
ment of [2], where the simulation relation refers to the truth-value lattice
(rather than the information lattice), and only the〈〈 〉〉 quantifier is allowed.

2 The Model

2.1 Alternating transition systems

In ordinary transition systems, each transition corresponds
to a possible step of the system. Inalternating transition
systems(ATSs, for short) [1], each transition corresponds to
a possible move in a game between the underlying compo-
nents of the system. We refer to the components asagents.
In each move of the game, every agent chooses a set of suc-
cessor states. The game then proceeds to the state in the
intersection of the sets chosen by all agents. Equivalently,
each agent puts a constraint on the choice of the successor
state, and the game proceeds to a state that satisfies the con-
straints imposed by all the agents.

Formally, an ATS is a 6-tupleS = 〈Π,Σ, S, sin, π, δ〉,
whereΠ is a set of propositions,Σ is a finite set of agents,S
is a set of states,sin is an initial state,π : S ×Π → {T,F}
maps each state and proposition to the truth value of the
proposition in the state, andδ : S×Σ → 22S

is a transition
function that maps a state and an agent to a nonempty set
of moves, where each move is a set of possible next states.
Whenever the system is in states, each agentσ chooses
a setSσ ∈ δ(s, σ). In this way, an agentσ ensures that
the next state of the system will be in its moveSσ. How-
ever, which state inSσ will be next depends on the moves
made by the other agents, because the successor ofs must
lie in the intersection

⋂
σ∈Σ Sσ of the moves made by all

the agents. We require that the transition function is non-
blocking and that the agents together choose a unique next
state: assumingΣ = {σ1, . . . , σn}, for every states ∈ S
and every setS1, . . . , Sn of movesSi ∈ δ(s, σi), the inter-
sectionS1 ∩ . . . ∩ Sn is a singleton.

For two statess ands′, we say thats′ is asuccessorof s
if whenever the systemS is in states, the agents inΣ can
cooperate so thats′ will be the next state. Thus, for each
σ ∈ Σ, there isSσ ∈ δ(s, σ) such that{s′} =

⋂
σ∈Σ Sσ.

Consider a states ∈ S, an agentσ ∈ Σ, and a setA ∈
δ(s, σ). If A contains a states′ such that the transition to
s′ is disabled no matter how the other agents proceed, we
can removes′ from A. Accordingly, we assume that the
transitions of the ATS contains no redundancy, in the sense
that all the states inA are successors ofs.

Example 2.1 Consider two variablesx andy ranging over
the integersZ. We use the predicates to indicate whether
x andy agree on their sign (that is, they are both positive
or both negative) and the predicatep to indicate whetherx
andy agree on their parity (that is, they are both odd or both
even). Figure 1 describes a program that assigns values to
x andy. For clarity, the next values ofx andy are termed
x′ andy′, respectively. The program is a synchronous com-
position of two processesP1 andP2. The processes have
internal nondeterministic choices. For example, whenP1

P1:
while true do

if s ∧ p thenx′ := x− 1 | x ; y′ := y − 1 | y;
if ¬s ∧ p thenx′ := x− 1 | x | x+ 1;
if s ∧ ¬p thenx′ := x− 1 | x | x+ 1

P2:
while true do

if ¬s ∧ p theny′ := y | y + 1;
if ¬s ∧ ¬p thenx′ := x | x+ 1 ; y′ := y | y + 1

Figure 1. The processes P1 and P2.

executesx′ := x − 1 | x | x + 1, it can resolve the nonde-
terministic choice in three possible ways and it can makex′

eitherx− 1, x, orx+ 1.
Note that in some cases bothP1 andP2 assign values to

the variables (for example, when¬s ∧ p thenP1 assigns a
value tox andP2 assigns a value toy) and in some cases
onlyP1 orP2 assigns value (for example, whens∧¬p, only
P1 assigns a value tox, and the value ofy is unchanged).

The ATS that corresponds to the composition ofP1 with
P2 has state spaceZ ×Z and has the following transitions:

• If s ∧ p, then

– δ((x, y), P1) = {{(x − 1, y − 1)}, {(x −
1, y)}, {(x, y − 1)}, {(x, y)}}.

– δ((x, y), P2) = {{(x − 1, y − 1), (x −
1, y), (x, y − 1), (x, y)}}.

• If ¬s ∧ p, then

– δ((x, y), P1) = {{(x − 1, y), (x − 1, y +
1)}, {(x, y), (x, y+ 1)}, {(x+ 1, y), (x+ 1, y+
1)}}.

– δ((x, y), P2) = {{(x − 1, y), (x, y), (x +
1, y)}, {(x−1, y+1), (x, y+1), (x+1, y+1)}}.

• If s ∧ ¬p, then

– δ((x, y), P1) = {{(x − 1, y)}, {(x, y)}, {(x +
1, y)}}.

– δ((x, y), P2) = {{(x−1, y), (x, y), (x+1, y)}}.

• If ¬s ∧ ¬p, then

– δ((x, y), P1) = {{(x, y), (x, y + 1), (x +
1, y), (x+ 1, y + 1)}}.

– δ((x, y), P2) = {{(x, y)}, {(x, y + 1)}, {(x +
1, y)}, {(x+ 1, y + 1)}}.

For example, if the current values ofx and y are
(−6, 2), thus¬s andp, thenP1 can either decreasex by
1 and force(x′, y′) to be in{(−7, 2), (−7, 3)}, leavex un-
changed and force(x′, y′) to be in{(−6, 2), (−6, 3)}, or in-
creasex by 1 and force(x′, y′) to be in{(−5, 2), (−5, 3)}.
ProcessP1, however, cannot influence the next value
of y and it therefore cannot influence which values in-
side the sets would be the next ones. ProcessP2 can
either leavey unchanged and force(x′, y′) to be in
{(−7, 2), (−6, 2), (−5, 2)}, or increasey by 1 and force
(x′, y′) to be in {(−7, 3), (−6, 3), (−5, 3)}. As with P1,
processP2 cannot influence the next value ofx and it there-
fore cannot influence which values inside these sets would
be the next ones. OnceP1 andP2 have made their choices,
(x′, y′) is fixed.

An ordinarylabeled transition system, or Kripke structure,
is the special case of an ATS where the setΣ = {sys} of
agents is a singleton set. In this special case, the sole agent
sys can always determine the successor state: for all states
q ∈ S, the transitionδ(q, sys) must contain a nonempty set
of moves, each of which is a singleton set.

Often, we are interested in the cooperation of a subset
Ω ⊆ Σ of the agents. GivenΩ, we defineδ(q,Ω) =
{T : for eachσ ∈ Ω there existsSσ ∈ δ(q, σ) andT =⋂

σ∈Ω Sσ}. For example, if Σ = {a, b, c},
δ(q, a) = {{q1, q2, q5}, {q3, q4}} and δ(q, b) =
{{q1, q4, q5}, {q2, q3}}, then δ(q, {a, b}) =
{{q1, q5}, {q2}, {q4}, {q3}}. Intuitively, whenever the
system is in stateq, the agents inΩ can choose a set
T ∈ δ(q,Ω) such that, no matter what the other agents do,
the next state of the system is inT . In particular, when
all agents cooperate, they can decide the next state, thus,
δ(q,Σ) is a set of singletons. Likewise,δ(q, ∅) contains the
single set of all successors ofq.

2.2 Alternating µ-calculus

The temporal logic AMC (Alternating µ-calculus) is the
alternating extension of theµ-calculus [18]. Formulas of
AMC are defined with respect to a finite setΠ of proposi-
tions and a finite setΣ of agents. Formulas of AMC are
interpreted over states of an ATS. The∀ fand∃ fmodal-
ities of theµ-calculus are replaced in AMC by the modal-
ity 〈〈Ω〉〉 f, for a setΩ of agents. The path quantifier〈〈Ω〉〉
ranges over computations that the agents inΩ can force the
system into. Thus, the AMC formula〈〈Ω〉〉 fθ intuitively
means that the agents inΩ can cooperate to makeθ true
in the next state (they can “enforce” the next state to sat-
isfy θ). Formally, q |= 〈〈Ω〉〉 fθ iff there is T ∈ δ(q,Ω)
such thatq′ |= θ for all q′ ∈ T . It is often useful to ex-
press an AMC formula in a dual form. For this purpose,
we use the path quantifier[[Ω]], for a setΩ of agents. Then,
[[Ω]] fθmeans that the agents inΩ cannot cooperate to make

θ false in the next state (they cannot avoidθ). Note that5

[[Ω]] fθ = ¬〈〈Ω〉〉 f¬θ. The least and greatest fixed-point
operatorsµz.θ(z) andνz.θ(z) can be applied to monotonic
AMC formulas and enable the specification of global prop-
erties. For a full definition of the syntax and semantics of
AMC see [1].

Example 2.2 Consider the ATS from Example 2.1. The
state(1,−1) satisfies〈〈P1〉〉 f(x 6= y). Indeed, by in-
creasingx by 1 (or leaving it unchanged), the processP1

can guarantee that, no matter howP2 modifies the value
of y, the next values ofx andy would be different. The
state(1,−1) also satisfies〈〈P2〉〉 f(x 6= y). Indeed, by
decreasingy by 1 (or leaving it unchanged), the process
P2 can guarantee that, no matter howP1 modifies the
value of x, the next values ofx and y would be differ-
ent. Finally,(1,−1) also satisfies〈〈{P1, P2}〉〉 fνz.(x =
y) ∧ 〈〈{P1}〉〉 fz. Indeed, by decreasingx by 1 and in-
creasingy by 1, the two processes can collaborate and make
x = y = 0, and thenP1 can keepx = y = 0 forever.

We would like to be able to answer questions like “can
P1 make sure thatx andy eventually always agree on their
parity?”, “CanP2 makey eventually negative?”, “canP1

andP2 collaborate so that eventuallyx andy never have
the same sign?”, and so on. The way we do it is by reason-
ing about a finite state AATS that abstracts the interaction
between the two processes.

3 Abstraction

For finite state systems, abstraction frameworks often are
based onmodal transition systems(MTS) [20]. Tradi-
tional MTS have two types of transitions:must (under-
approximating transitions) andmay (over-approximating
transitions). The idea is that universal properties of a con-
crete system can be proven by referring to the may transi-
tions of the abstract systems whereas existential properties
can be proven by referring to the must transitions. In the
case of multi-agent systems, we do not consider universal
and existential properties. Instead, we refer to properties
that the agents can force the system to satisfy and proper-
ties they cannot avoid. Accordingly, rather than using may
and must transitions in order to under- and over- approxi-
mate the transitions, we are going to use them in order to
under- and over- approximate the power of the agents.

5On the other hand, note that the path quantifiers〈〈 〉〉 and[[]] are not
semantically dual with respect to the set of agents: if the agents inΩ can
enforce a setτ of successor states, then the agents inΣ\Ω cannot avoidτ .
Therefore,q |= 〈〈Ω〉〉 fψ impliesq |= [[Σ \Ω]] fψ. The converse of this
statement, however, is not necessarily true.

3.1 Abstract ATS

An AATS is an ATSS ′ = 〈Π,Σ, SA, sin, π, δmust , δmay〉
in which the labeling functionπ : SA × Π → {T,F,⊥} is
three-valued, and there are two types of transitions,δmust :
SA × Σ → 22SA andδmay : SA × Σ → 22SA .

The elements of{T,F,⊥} can be arranged in an “infor-
mation lattice” [17] in which⊥ v T and⊥ v F. Note
that for two valuesv1, v2 ∈ {T,F,⊥}, we havev1 v v2 iff
v1 6= ⊥ impliesv1 = v2.

Consider an ATSS = 〈Π,Σ, SC , cin, π, δ〉. LetSA be a
set of abstract states and letρ : SC → SA be an abstraction
function6. We extendρ to subsets ofSC in the expected
way, thusρ(C) =

⋃
c∈C ρ(c). We also usec ∈ a to indicate

thatρ(c) = a.
An AATS S ′ = 〈Π,Σ, SA, ain, π

′, δmust , δmay〉 is an
abstraction ofS if for all concrete statesc ∈ Sc, we have
π′(ρ(c)) v π(c), and for all abstract statesa ∈ SA and
agentsσ ∈ Σ, the following hold:

• δmust(a, σ) = {A ⊆ SA : for all c ∈ a there isCc ∈
δ(c, σ), andA =

⋃
c∈a ρ(Cc)}.

• δmay(a, σ) = {A ⊆ SA : there isc ∈ a andCc ∈
δ(c, σ) andA = ρ(Cc)}.

Intuitively, A ∈ δmust(a, σ) if for eachc ∈ a, the agent
σ can force the successor ofc to correspond to a state in
A. Likewise,A ∈ δmay(a, σ) if for somec ∈ a, the agent
σ can force the successor ofc to correspond to a state in
A. Recall that in MTS, must transitions are used in order
to prove existential properties or refute universal properties,
whereas may transitions are used in order to prove universal
properties or refute existential ones. In AATSs, must tran-
sitions are used in order to prove〈〈 〉〉 properties and refute
[[]] properties, whereas may transitions are used in order to
prove[[]] properties and refute〈〈 〉〉 properties.

As with the usual transitions of an ATS, we can refer
to themust andmay transitions of a set of agents in an
AATS. Thus,δmust(q,Ω) underapproximates the power of
the agents inΩ when they cooperate, andδmay(q,Ω) over-
approximates their power.

Remark 3.1 An MTS can be viewed as a special case of an
AATS – one with a single agentsys. Recall that then, the
ATS S is such thatδ(c, sys) is a set of singletons. Accord-
ingly, in an abstraction ofS, we haveA ∈ δmust(a, sys)
iff for every c ∈ a, there exists{c′c} ∈ δ(c, sys) and
A =

⋃
c∈a ρ(c

′
c). Also, {a′} ∈ δmay(a, sys) iff there is

c ∈ a and{c′} ∈ δ(c, sys) such thata′ = ρ(c′). Thus, the
definition coincides with the standard definition for hyper-
must and may transitions [21]. The fact that we get hyper-
must highlights that AATSs naturally have the game nature

6Note that sinceS is a general ATS, we do not have to limitρ to an
agent preserving function, as is the case with the restricted case of turn-
based ATSs [8].

of model checking and abstraction “built in”: each of the
setsA ∈ δmust(a, sys) corresponds to a choice the system
is making from each of the concrete states that correspond
to a. In order for an existential property to hold ina, each
of the concrete states should have a successor that satisfies
the existential property, and thusδmust(a, sys) should have
a setA all of whose states satisfy the property.

We define a3-valued semanticsof AMC formulas with
respect to AATSs. The value of a formulaθ in a statea
of an AATSA = 〈Π,Σ, SA, ain, π

′, δmust , δmay〉, denoted
[(A, a) |= θ], is defined as follows. Due to the lack of space,
we do not include the semantics of fixed-point operators7.
The latter is similar to the one described for 3-valuedµ-
calculus in [4], where the semantics we give below to the
〈〈 〉〉 operator, replaces the one described there for the usual
modal operators ofµ-calculus.

[(A, a) |= p] = π(a, p).

[(A, a) |= ¬θ] =

 T if [(A, a) |= θ] = F.
F if [(A, a) |= θ] = T.
⊥ otherwise.

[(A, a) |= θ1 ∧ θ2] =

T if [(A, a) |= θ1] = T and

[(A, a) |= θ2] = T.
F if [(A, a) |= θ1] = F or

[(A, a) |= θ2] = F.
⊥ otherwise.

[(A, a) |= 〈〈Ω〉〉 fθ] =

T if there isA ∈ δmust(a,Ω)
such that[(A, a′) |= θ] = T
for all a′ ∈ A.

F if for all A ∈ δmay(a,Ω),
we have[(A, a′) |= θ] = F
for somea′ ∈ A.

⊥ otherwise.

Abstracting an ATS may cause the truth value of some
formulas to become indefinite, but definite values are con-
sistent with the values in the concrete ATS. Formally, we
have the following:

Theorem 3.2 Consider an ATSS, an AATSA that is an
abstraction ofS, a statea of A, and an AMC formulaθ.
For all c ∈ a, we have[(S, c) |= θ] w [(A, a) |= θ].

Remark 3.3 The semantics of the〈〈Ω〉〉 foperator corre-
sponds to our intuition, where in order to prove that the
agents inΩ can force the concrete system to a set of states
that satisfyθ, one should check that they can achieve this
task in the abstraction even if we under-approximate their
power and over-approximate the power of the complemen-
tary set of agents. Indeed, the semantics of the〈〈Ω〉〉 fop-
erator is equivalent to one in which the agents inΩ pro-
ceed with their must transitions and the agents inΣ \ Ω

7Note that this makes the description of the semantics much cleaner
as we do not have to view a formula as a mapping from environments (3-
valued assignments to the free variables) to mappings ofSA to {T,F,⊥}.

proceed with their may transitions. Formally,[(A, a) |=
〈〈Ω〉〉 fϕ] = T iff there isA ∈ δmust(a,Ω) such that for all
A′ ∈ δmay(a,Σ \ Ω), we have that[(A, a′) |= θ] = T for
all a′ ∈ A ∩A′.

Example 3.4 Consider the ProcessesP1 and P2 de-
scribed in Example 2.1. We define an AATSSs

according to the predicates. Thus, Ss has two
states, which we denote bys and −. Formally
Ss = {{s}, {P1, P2}, {s,−}, s, π′, δmust , δmay}, where
π′(s, s) = T, π′(−, s) = F, and the transitions are as fol-
lows.

•δmust(s, P1) = {{s}} •δmust(s, P2) = {{s,−}}
•δmay(s, P1) = {{s}, {−}} •δmay(s, P2) = {{s}}
•δmust(−, P1) = {{s,−}} •δmust(−, P2) = {{s,−}}
•δmay(−, P1) = {{s}, {−}} •δmay(−, P2) = {{s}, {−}}

Let us explain theδmust transition ofP1 from s. By the
definition ofδmust , we have that{s} ∈ δmust(s, P1) iff for
all (x, y) that satisfys, the processP1 can force(x′, y′) to
satisfys. This is true, as for allx andy that satisfys, the
setδmust((x, y), P1) contains the set{(x, y)}.

Note that the must transitions underapproximate the
power of the processes and the may transitions overapprox-
imate their power. For example, while the only must transi-
tion of P1 from s is to {s}, it is possible forP1 to resolve
the nondeterminism in the state(0, 0), which satisfiess, so
that the next state will be(−1, 0), which does not satisfys.
This is reflected in the may transitions, which overapprox-
imate the power of the processes, and also contains the set
{−}. Likewise, while the only must transition ofP2 from s
is to{s,−}, indicatingP2 cannot influence the next values,
there are states (in fact, all states except for those in which
x = 0 or y = 0) that satisfys for which s is guaranteed
to stay true in the next state no matter howP1 resolves its
internal nondeterminism, thus{s} ∈ δmay(s, P2).

Even though our abstraction is based on a single pred-
icate, we can verify some properties. For example, since
[(Ss, s) |= 〈〈P1〉〉 fs] = T, Theorem 3.2, implies that
c |= 〈〈P1〉〉 fs for all concrete statesc that satisfys. In
fact, [(Ss, s) |= νz.s ∧ 〈〈P1〉〉z] = T; thus once in as state,
P1 can forces forever.

3.2 AMC model checking

The standard symbolicµ-calculus model-checking algo-
rithm of [11] can be extended to a symbolic model-checking
algorithm for AMC formulas with respect to ATSs. As we
show now, this can be done also with respect to AATSs,
yielding a symbolic model-checking algorithm with respect
to the abstraction. In more details, the algorithm starts
with the innermost subformulas of the specification and
computes, for each subformulaθ, the sets|θ|T and |θ|F

of abstract statesa such that[(A, a) |= θ] = T and
[(A, a) |= θ] = F, respectively. For Boolean and fixed-
point operators, the algorithm proceeds as known symbolic
multi-valued model-checking algorithms (c.f., [5]). For the
symbolic operator〈〈Ω〉〉, the algorithm proceeds according
to the following characterization:

• |〈〈Ω〉〉 fθ|T = {a : ∃A ∈ δmust(a,Ω) s.t.A ⊆ |θ|T},

• |〈〈Ω〉〉 fθ|F = {a : ∀A ∈ δmay(a,Ω), A ∩ |θ|F 6= ∅}.

As discussed in [8], an alternative algorithm reduces the
model checking of an AMC formulaθ in an AATSA to
model checking of an AMC formulaθ′ in an ATSS such
that the transition fromθ andA to θ′ andS involves only a
linear blow up. Such a reduction is possible also in our case
(and is in fact simpler than the one described in [8], as our
reduction does not have to end up in a turn-based ATS and
does not need the technicality that the latter involves).

3.3 Completeness of abstraction

We now show that our abstraction framework is complete in
the sense discussed in [6, 7]. Thus, we can model check a
specificationθ in an infinite ATS, by reasoning about finite
abstractions of it. It is shown in [2] that two states of an
ATS satisfy the same AMC formulas iff they arealternat-
ing bisimilar. An infinite ATS can, in general, have an infi-
nite number of alternating-bisimulation equivalence classes.
When, however, we are concerned with the ability of a finite
number of AMC formulas to distinguish between states of
an ATS, the number of equivalence classes is finite. This
finiteness is the key to our completeness result.

In caseθ is a safety property (in particular, ifθ is in safe-
AMC — the syntactic fragment of AMC in which formulas
are in positive normal form and only the greatest fixed-point
operator is allowed), things are simple, asθ induces a fi-
nite set of equivalence classes, each consisting of concrete
states that are indistinguishable by the subformulas ofθ.
Formally, we have the following:

Theorem 3.5 Consider an ATSS, a statec ofS, and a safe-
AMC formulaθ. There is a finite AATSA such thatA is an
abstraction ofS and[(A, ρ(c)) |= θ] ∈ {T,F}.

Once we allowθ to include least fixed-points, things are
more complicated, as the alternating-bisimulation equiva-
lence classes described above are with respect to an AATS
augmented with a fairness condition [1]. Thus, complete-
ness is achievable, but goes beyond the model we study
here.

4 Abstraction preorder

An alternating simulationpreorder between two AATSs is
defined in [2]. The order is parameterized by a setΩ of

agents and corresponds to the ability of the agents inΩ to
restrict the ATS to a smaller set of behaviors in the simu-
lated ATS. In this section we define an abstraction preorder
that also is parameterized by a set of agents. Our order,
however, corresponds to the agents inΩ being less abstract
in the simulated ATS.

For a setS, consider two sets∆ and∆′ in 22S

. We say
that ∆ is more refined than∆′ if for every setA′ ∈ ∆′,
there isA ∈ ∆ such thatA ⊆ A′. Thus, each of the
sets in∆′ can be restricted to a set in∆. For example, if
S = {q1, q2, q3, q4} then{{q1}, {q2}, {q3}}} is more re-
fined than{{q1, q2}, {q2, q3}}. Intuitively, if both ∆ and
∆′ describe the transitions of some agentσ from stateq,
thenσ is more refined with the transitions in∆ than with
these in∆′, as it can force the ATS into smaller sets (and
possibly more sets) of next successors.

Every must transition is a may transition in the sense that
if the agent can force a set in a must transition, it can force
a subset of it in a corresponding may transition. Formally,
we have the following:

Lemma 4.1 For every statea and agentσ, we have that
δmay(a, σ) is more refined thanδmust(a, σ).

We can now define a preorder�Ω between AATSs. The
preorder is parameterized by a setΩ of agents. Intuitively,
S �Ω S′ if the behavior of each of the agents inΩ is less
abstract inS than inS ′.

We first extend the definition of “more refined” to
sets over different, but related, domains. Consider two
setsS and S′, and a relationH ⊆ S × S′. For a set
∆ ∈ 22S

, we useH(∆) to denote the set of sets ob-
tained by replacing each members of a set in∆ by all
elementss′ ∈ S′ with H(s, s′). Thus,A′ ∈ H(∆) if
there isA ∈ ∆ andA′ =

⋃
s∈A{s′ : H(s, s′)}. Now,

we say that∆ is more refined than∆′ with respect to
H (moreH-refined, for short) iffH(∆) is more refined
than ∆′. Thus, each of the sets in∆′ has a set in∆
that corresponds to it. Likewise,∆′ is moreH-refined
than ∆ iff ∆′ is more refined thanH(∆). Thus, each of
the sets in∆ has a set in∆′ that corresponds to it. For
example, ifS = {q1, q2, q3, q4, q5}, S′ = {a1, a2, a3}, and
H = {(q1, a1), (q2, a1), (q3, a2), (q4, a3), (q5, a3)},
then {{q1, q2}, {q4}} is more H-refined than
{{a1, a2}} and {{a1}, {a2}} is more H-refined than
{{q1, q2, q3}, {q3, q4}}.

Lemma 4.2 Consider two setsS and S′, and a relation
H ⊆ S × S′. Consider four sets∆1,∆2 ∈ 22S

and

∆′
1,∆

′
2 ∈ 22S′

. If ∆1 is moreH-refined than∆′
1 and

∆2 is moreH-refined than∆′
2, then{A1 ∩ A2 : A1 ∈

∆1 andA2 ∈ ∆2} is moreH-refined than{A′
1∩A′

2 : A′
1 ∈

∆′
1 andA′

2 ∈ ∆′
2}.

Consider two AATSsS = 〈Π,Σ, S, sin, π, δmust , δmay〉
and S ′ = 〈Π′,Σ, S′, s′in, π

′, δ′must , δ
′
may〉. For a subset

Ω ⊆ Σ of agents, a relationH ⊆ S×S′ is anΩ-abstraction
relation fromS to S ′ if for all pairs 〈s, s′〉 ∈ H, the follow-
ing conditions hold:

(1) π(s) w π′(s′).

(2) For all σ ∈ Ω, we have thatδmust(s, σ) is moreH-
refined thanδ′must(s

′, σ).

(3) For all σ ∈ Ω, we have thatδ′may(s′, σ) is moreH-
refined thanδmay(s, σ).

If H is anΩ-abstraction fromS to S ′ and〈s, s′〉 ∈ H,
we write(S, s) �Ω (S ′, s′), which indicates that the agents
in Ω are less abstract in(S, s) than in (S ′, s′). That is,
the must transitions, which under-approximate the agents’
power, are more refined inS than inS ′ (so inS, the under-
approximation is “less under”). Dually, the may transitions,
which over-approximate their power, are more refined inS ′
than inS (so inS, the over-approximation is “less over”).

When(S, sin) �Ω (S ′, s′in), we writeS �Ω S ′. Note
that the definition of�Ω refers to the individual agents in
Ω. Thus, by Lemma 4.2, we have the following:

Lemma 4.3 LetH be anΩ-abstraction fromS to S ′. For
all 〈s, s′〉 ∈ H andΩ′ ⊆ Ω, the following holds:

(2) δmust(s,Ω′) is moreH-refined thanδ′must(s
′,Ω′).

(3) δ′may(s′,Ω′) is moreH-refined thanδmay(s,Ω′).

WhenS �σ S ′ for all agentsσ, we say thatS is less ab-
stract thanS ′, denotedS � S ′.

Remark 4.4 It may be thatS �Ω1 S ′, S 6�Ω2 S ′, S ′ �Ω2

S, andS ′ 6�Ω1 S. For example, suppose thatPx assigns
values tox, Py assigns values toy, in S we maintain the
concrete value ofx and the parity ofy, and inS ′ we main-
tain the parity ofx and the concrete value ofy. Then,
S �Px

S ′, S 6�Py
S ′, S ′ �Py

S, andS ′ 6�Px
S.

Remark 4.5 Recall that our definition refers to the abstrac-
tion level of the agents, and not the power of the agents with
respect to each other. To emphasize this fact further, con-
sider two programs, each being a composition of two pro-
cessesP1 andP2. In the first program,P1 can increase or
decrease by 1 the value of bothx andy, andP2 does noth-
ing. In the second program,P1 can increase or decrease by
1 the value ofx, andP2 can increase or decrease by 1 the
value ofy. Clearly,P1 is more powerful in the first pro-
gram, and the simulation order of [2] would show that. On
the other hand, the first program is not less abstract, with re-
spect to eitherP1 or P2, than the second program. Accord-
ingly, if we examine two AATSs, abstracted, say, according
to a predicate referring to the parity ofx andy, then there is
no abstraction relation between the two AATSs.

By viewing a concrete ATS as an AATS whosemay and
must transition relations are equivalent to the transition re-
lation of the ATS, we can use the abstraction preorder to
relate a concrete system and its abstraction, with respect to
all subsets of agents. Formally, we have the following:

Theorem 4.6 Consider an ATSS = 〈Π,Σ, SC , cin, π, δ〉,
a set of abstract statesSA, and a functionρ : SC → SA.
Let the AATSS ′ = 〈Π′,Σ, SA, ain, π

′, δmust , δmay〉 be the
abstraction ofS according toρ, and letH ⊆ SC × SA be
such thatH(c, a) iff ρ(c) = a. For all setsΩ of agents,H
is anΩ-abstraction relation fromS to S ′.

While theµ-calculus logically characterizes the abstrac-
tion preorder on MTSs [13], AMC characterizes the ab-
straction preorder on AATSs. Formally, for a setΩ of
agents, let AMCΩ be the fragment of AMC in which all
〈〈 〉〉 and[[]] quantifiers are parameterized by a setΩ′ ⊆ Ω
of agents. Note that we do not require the formulas to be in
a positive normal form. Thus, AMCΩ formulas refer both
to the strength and weakness of the agents ofΩ. This is in
contrast to the fragmentΩ-AMC of [2], where the simula-
tion relation refers to the truth-value lattice rather than the
information lattice, and accordinglyΩ-AMC formula are in
positive normal form and can refer only to the power of the
agents ofΩ.

Theorem 4.7 Let S = 〈Π,Σ, S, sin, π, δmust , δmay〉 and
S ′ = 〈Π′,Σ, S′, s′in, π

′, δ′must , δ
′
may〉 be two AATSs. Con-

sider a setΩ of agents. For every two statesa ∈ S and
a′ ∈ S′, we have that(S, a) �Ω (S ′, a′) iff [(S, a) |= θ] w
[(S ′, a′)) |= θ] for all AMLΩ formulasθ.

Note that, by Theorem 4.6, we have that Theorem 3.2 is
a special case of Theorem 4.7.

As with usual simulation relations and alternating-
simulation relations [23, 2], a maximalΩ-abstraction rela-
tion H between two AATSs can be calculated as a fixed-
point of intermediate relations (the sequenceH0,H1, . . .
used in the proof of Theorem 4.7). Accordingly, we have
the following:

Theorem 4.8 Given two AATSsS and S ′ and a setΩ of
agents, deciding whetherS �Ω S ′ can be done in polyno-
mial time.

5 Refinement

In case the model-checking procedure returns an indefinite
answer, we accompany the answer by a suggestion for are-
finement. As in the case of MTS, our procedure analyzes
the sources to the “unknown” answer. Technically, as in
[25, 26], the refinement procedure first finds afailure state
– a state in which the evaluation of the specification became

indefinite (with respect to some subformula), and then re-
fines the AATS in a way that makes the satisfaction of this
subformula definite. We first show that our model of AATSs
enjoys monotonicity, thus the refined AATS gives a definite
truth value to at least all formulas that have a definite truth
value in the AATS before the refinement.

5.1 Monotonicity

As argued in [26], refining an MTS by splitting a state into
two states may result in an MTS with fewer must transi-
tions. As a result, formulas that have a definite value in the
original MTS may have an indefinite value in the refined
MTS. The solution to this annoying fact is to have hyper-
must transitions. As we now show, splitting states of an
AATS S1 that abstracts a concrete ATS results in an AATS
S2 such thatS2 � S1. Thus, by Theorem 4.7, monotonicity
holds in our framework.

Theorem 5.1 Consider an ATSS = 〈Π,Σ, S, cin, π, δ〉.
LetS1 andS2 be sets of abstract states and letρ1 : S → S1

and ρ2 : S → S2 be such that for allc, c′ ∈ S, if
ρ2(c) = ρ2(c′), thenρ1(c) = ρ1(c′). LetS1 andS2 be the
AATSs induced byρ1 andρ2, respectively. Then,S2 � S1.

5.2 Refinement based on failure states

We can now turn to the problem of finding failure states and
using them for refining the AATS. For simplicity, we first
handlealternating modal logic(AML), that is, AMC with-
out the fixed-point operator. We then discuss, in Section 5.3,
the treatment of fixed points.

For an abstract statea and a formulaϕ, we say thata
is a failure state with respect toϕ if [(A, a) |= ϕ] = ⊥
even thoughA has definite value for subformulas ofϕ in the
relevant states. Formally,a is a failure state with respect to
ϕ if [(A, a) |= ϕ] = ⊥, and in addition, eitherϕ = p ∈ Π
or ϕ = 〈〈Ω〉〉 fθ and [(A, a′) |= θ] ∈ {T,F}, for all the
successorsa′ of a.

Note that ifa is a failure state with respect to〈〈Ω〉〉 fθ,
then for all A ∈ δmust(a,Ω), there isa′ ∈ A with
[(A, a′) |= θ] = F, and there isA ∈ δmay(a,Ω) such that
for all a′ ∈ A, we have that[(A, a′) |= θ] = T.

The drawback of the above definition is that it defines
a to be a failure state with respect toθ even if the indef-
inite value ofθ in a is irrelevant to the indefinite value of
the specification in the initial state of the AATS. In order
to restrict attention torelevantfailure states, the procedure
that searches for failure states proceeds in a top-down man-
ner. The procedureFRFS (find relevant failure states) we
describe is similar to the one in [26], only that the treat-
ment of the∀ fmodality there is generalized to our〈〈Ω〉〉 f
modality.

The procedureFRFS(a, ψ) gets as input an abstract state
a and a formulaψ such that[(A, a) |= θ] = ⊥ and return
an abstract statea′ and a subformulaψ′ of ψ such thata′ is
a failure state with respect toψ′, and the indefinite value of
ψ′ in a′ is relevant to the value ofψ in a being indefinite.

Formally,FRFS(a, ψ) proceeds as follows.

• If ψ = p, then return〈a, ψ〉.

• If ψ = ¬θ, then returnFRFS(a, θ).

• If ψ = θ1 ∨ θ2, then let i be min{1, 2} such that
[(A, a) |= θi] = ⊥; returnFRFS(a, θi).

• If ψ = 〈〈Ω〉〉 fθ, then if for all the successorsa′ of a,
we have[(A, a) |= θ] ∈ {T,F}, return〈a, ψ〉. Oth-
erwise, leta′ be a successor ofa for which [(A, a) |=
θ] = ⊥; returnFRFS(a′, θ).

It is not hard to see that since the initial call toFRFS is
with a pair〈a, ψ〉 for which [(A, a) |= ψ] = ⊥, the “let”
statements in the procedure are guaranteed to be satisfied,
and it eventually returns a relevant failure state.

Let a be a relevant failure state with respect toϕ. We
describe a separation ofa into two abstract statesaT andaF

such that the value ofϕ in both states is definite. Intuitively,
aT abstracts the set of concrete states ina that satisfyϕ, and
aF abstracts those states that do not satisfyϕ. Formally, we
have the following:

• If ϕ = p, thenconcT (a) = {c ∈ a : p ∈ L(c)} and
concF (a) = {c ∈ a : p 6∈ L(c)}.

• If ϕ = 〈〈Ω〉〉 fθ, we define

– concT (a) = {c ∈ a : there isCc ∈ δ(c,Ω)
such that[(A, a′) |= θ] = T] for all a′ ∈ ρ(Cc)}.

– concF (a) = {c ∈ a : for all Cc ∈ δ(c,Ω),
there isa′ ∈ ρ(Cc) with [(A, a′) |= θ] = F]}.

Note thatconcT andconcF form a partition of the con-
crete states ina. We refineρ to map the states inconcT (a)
to aT and map states inconcF (a) to aF .

Theorem 5.2 Iterating the abstraction-refinement process
with respect to an abstraction of a finite ATS is guaranteed
to terminate with a definite answer.

The proof, detailed in the full version, shows that in each
of the cases, the suggested separation ofa causes the value
of ϕ in aT and aF to become definite. In addition, the
monotonicity of our framework implies that no truth value
of other formulas with respect to other states becomes in-
definite.

5.3 Handling fixed-points

Consider a fixed-point formulaψ = µz.θ(z). The model-
checking algorithm in Section 3.2 calculates the set|ψ|T as
the fixed point of the sequence|ψ|0T = ∅, |ψ|1T = θ(|ψ|0T),
. . ., |ψ|i+1

T = θ(|ψ|iT), and it calculates|ψ|F as the fixed

point of the sequence|ψ|0F = SA, |ψ|1F = ¬θ(|ψ|1F), . . .,
|ψ|i+1

F = ¬θ(|ψ|iF). If |ψ|T ∪ |ψ|F 6= SA, then there is

a minimal indexi such that|ψ|iT ∪ |ψ|iF 6= SA. Accord-
ingly, when we definea to be a failure state with respect to
a fixed-point formulaψ with variablez, we parameterize the
definition also with an integeri – the iteration in which the
value of the variablez becomes indefinite. The reasoning
then is along the same lines described for AML formulas.

In fact, every refinement algorithm of MTSs that is based
on a symbolic model-checking procedure can be adjusted
to AATSs. Indeed, as demonstrated above, such an adjust-
ment replaces the treatment of the modal operator∀ fwith
the one described in Section 5.2 for〈〈Ω〉〉 f. We note, how-
ever, that while such a refinement procedure exists for the
temporal logic CTL [26], the refinement procedure for the
µ-calculus is based on Zielonka’s enumerative algorithm for
solving parity games, and thus it is not symbolic [14].

6 Predicate Abstraction

In this section we focus on the special case where the ATS
models several concurrent processes, each given as a pro-
gram. Each program location is associated with a statement
s = s1 | s2 | · · · | sn, which denotes an internal nondeter-
minism: when the process executess, it chooses1 ≤ i ≤ n
and executessi.

When each abstract state is associated with a program
location, and thus it also is associated with a statement, we
can calculate the may and must transitions by a theorem
prover. For a statements and a predicatee over the state
space, theweakest preconditionWP(s, e) is such that the
execution ofs from every state that satisfiesWP(s, e) re-
sults in a state that satisfiese, andWP(s, e) is the weak-
est predicate for which the above holds [10]. For exam-
ple, for an assignment statementx := v, we have that
WP(x := v, e) = e[x/v] (that is,e with all occurrences
of x replaced byv). In the case of MTSs, weakest precon-
ditions can be used in order to automate the generation of
must and may transitions [12]. As we show now, the same
can be done in AATSs, given a definition of weakest precon-
dition that takes internal nondeterminism into an account.

For a statements = s1 | s2| · · · | sn with internal nonde-
terminism, we have thatWP(s, e) =

∨
1≤i≤n WP(si, e).

Note that since the nondeterminism is internal, taking the
disjunctions of the different weakest preconditions reflects
the fact that satisfying one of them is sufficient in order
to guarantee that the process can resolve the nondetermin-

istic choices and reach a state satisfyinge. For example,
WP(x := x+ 2 | x := x− 4, x = 5) is x = 3 ∨ x = 9. In
other words, if the agent can choose between increasingx
by 2 or decreasingx by 4, the weakest condition with which
it can force the system into a state satisfyingx = 5 is that
x = 3 or x = 9.

For a concrete statec, let s = sc
1 | sc

2 | · · · | sc
nc be the

statement that agentσ can choose atc. For a setτ of abstract
states,τ ∈ δmust(a, σ) iff for all c ∈ a, we have thatc
implies

∨
1≤i≤nc WP(s, τ). Also, τ ∈ δmay(a, σ) iff there

is c ∈ a for which c implies
∨

1≤i≤nc WP(s, τ).

Example 6.1 Consider again the ATS from Example 2.1.
We define an AATSSs,p according to the predicatess andp.
Thus, the AATS has four states, which we denote bysp, s,
p, and−. In the full version, we describe theSs,p in detail.
Finding the transitions ofSs,p is not an easy task, and we
used a theorem prover to generate them. For example, the
fact that{−} does not belong toδmay(s, P1) follows from
the validity of the FOL formula¬∃x, y.s(x, y)∧¬p(x, y)∧
[(¬s(x − 1, y) ∧ ¬p(x − 1, y)) ∨ (¬s(x, y) ∧ ¬p(x, y)) ∨
(¬s(x+ 1, y) ∧ ¬p(x+ 1, y))].

In the full version, we show how useful properties of
the program from Example 2.1 can be proven by reasoning
aboutSs,p. We also relate the AATSSs,p with the AATSSs

described in Example 3.4, and show thatSs,p � Ss.

References

[1] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-
time temporal logic.JACM, 49(5):672–713, 2002.

[2] R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Al-
ternating refinement relations. InProc. 9th CONCUR, LNCS
1466, pages 163–178, 1998.

[3] G. Bruns and P. Godefroid. Model checking partial state
spaces with 3-valued temporal logics. InProc 11th CAV,
pages 274–287, 1999.

[4] G. Bruns and P. Godefroid. Model checking with 3-valued
temporal logics. InProc 31st ICALP, LNCS 3142, pages
281–293, 2004.

[5] M. Chechik, B. Devereux, and S. Easterbrook. Implementing
a multi-valued symbolic model checker. InProc. 7th TACAS,
LNCS 2031, pages 404–419, 2001.

[6] D. Dams and K.S. Namjoshi. The existence of finite abstrac-
tions for branching time model checking. InProc. 19th LICS,
pages 335–344, 2004.

[7] D. Dams and K.S. Namjoshi. Automata as abstractions. In
Proc. 6th VMCAI, LNCS 3385, pages 216–232, 2005.

[8] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued
abstractions of games: Uncertainty, but with precision. In
Proc. 19th LICS, pages 170–179, 2004.

[9] L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Detecting
errors before reaching them. InProc. 12th CAV, LNCS 1855,
pages 186–201, 2000.

[10] E.W. Dijksta. A Discipline of Programming. Prentice-Hall,
1976.

[11] E.A. Emerson and C.-L. Lei. Efficient model checking in
fragments of the propositionalµ-calculus. InProc. 1st LICS,
pages 267–278, 1986.

[12] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-
based model checking using modal transition systems. In
Proc. 12th CONCUR, LNCS 2154, pages 426–440, 2001.

[13] P. Godefroid and R. Jagadeesan. Automatic abstraction us-
ing generalized model checking. InProc. 14th CAV, LNCS
2404, pages 137–150, 2002.

[14] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Don’t
know in theµ-calculus. InProc. 6th CVMAI, LNCS 3385,
pages 233–249, 2005.

[15] T.A. Henzinger, R. Majumdar, F.Y.C. Mang, and J-F Raskin.
Abstract interpretation of game properties. InProc. 7th SAS,
LNCS 1824, pages 245–252, 2000.

[16] C.A.R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[17] S.C. Kleene.Introduction to Metamathematics. North Hol-
land, 1987.

[18] D. Kozen. Results on the propositionalµ-calculus.Theoret-
ical Computer Science, 27:333–354, 1983.

[19] S. Kremer and J.-F. Raskin. A game-based verification of
non-repudiation and fair exchange protocols. InProc. 12th
CONCUR, LNCS 2154, pages 551–565, 2001.

[20] K.G. Larsen and G.B. Thomsen. A modal process logic. In
Proc. 3rd LICS, Edinburgh, 1988.

[21] K.G. Larsen and L. XinXin. Equation solving using modal
transition systems. InProc. 5th LICS, pages 108–117, 1990.

[22] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[23] R. Milner. A Calculus of Communicating Systems, LNCS 92,
Springer Verlag, 1980.

[24] A. Pnueli and R. Rosner. On the synthesis of a reactive mod-
ule. InProc. 16th POPL, pages 179–190, 1989.

[25] S. Shoham and O. Grumberg. A game-based framework for
CTL counterexamples and 3-valued abstraction-refinement.
In Proc. 15th CAV, LNCS 2725, pages 275–287, 2003.

[26] S. Shoham and O. Grumberg. Monotonic abstraction-
refinement for CTL. InProc. TACAS, LNCS 2988, pages
546–560, 2004.

[27] C. Stirling. Games and modalµ-calculus. InProc. 13th
STACS, LNCS 1055, pages 298–312, 1996.

[28] W. van der Hoek and M. Wooldridge. Tractable multi agent
planning for epistemic goals. InProc. 1st International
Conference on Autonomous Agents and Multiagent Systems,
pages 1167 – 1174. ACM Press, 2002.

[29] W. van der Hoek and M. Wooldridge. Cooperation, knowl-
edge, and time: Alternating-time temporal epistemic logic
and its applications.Studia Logica, 75(1):125– 157, 2003.

