
Weak Alternating Automata Are Not That Weak∗

Orna Kupferman†

Hebrew University

Moshe Y. Vardi‡

Rice University

Abstract

Automata on infinite words are used for specification and verification of nonterminating pro-

grams. Different types of automata induce different levels of expressive power, of succinctness,

and of complexity. Alternating automata have both existential and universal branching modes

and are particularly suitable for specification of programs. In a weak alternating automaton,

the state space is partitioned into partially ordered sets, and the automaton can proceed from

a certain set only to smaller sets. Reasoning about weak alternating automata is easier than

reasoning about alternating automata with no restricted structure. Known translations of al-

ternating automata to weak alternating automata involve determinization, and therefore involve

a double-exponential blow-up. In this paper we describe a quadratic translation, which cir-

cumvents the need for determinization, of Büchi and co-Büchi alternating automata to weak

alternating automata. Beyond the independent interest of such a translation, it gives rise to a

simple complementation algorithm for nondeterministic Büchi automata.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s. Motivated by decision problems

in mathematics and logic, Büchi, McNaughton, and Rabin developed a framework for reasoning

about infinite words and infinite trees [Büc62, McN66, Rab69]. The framework has proved to be

very powerful. Automata, and their tight relation to second-order monadic logics were the key to

the solution of several fundamental decision problems in mathematics and logic [Tho90]. Today,

automata on infinite objects are used for specification and verification of nonterminating programs.

The idea is simple: when a program is defined with respect to a finite set P of propositions,

each of the program’s states can be associated with a set of propositions that hold in this state.

Then, each of the program’s computations induces an infinite word over the alphabet 2P , and

the program itself induces a language of infinite words over this alphabet. This language can be

defined by an automaton. Similarly, a specification for a program, which describes all the allowed

∗A preliminary version appeared in the proceedings of the 5th Israeli Symposium on Theory of Computing and

Systems, 1997.
†Address: School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel.

Email: orna@cs.huji.ac.il, URL: http://www.cs.huji.ac.il/∼orna
‡Address: Department of Computer Science, Rice University, Houston TX 77005-1892, U.S.A.

Email: vardi@cs.rice.edu, URL: http://www.cs.rice.edu/∼vardi.

1

computations, can be viewed as a language of infinite words over 2P , and can therefore be defined

by an automaton. In the automata-theoretic approach to verification, we reduce questions about

programs and their specifications to questions about automata. More specifically, questions such

as satisfiability of specifications and correctness of programs with respect to their specifications

are reduced to questions such as nonemptiness and language containment [VW86, Kur94, VW94].

The automata-theoretic approach separates the logical and the combinatorial aspects of reasoning

about programs. The translation of specifications to automata handles the logic and shifts all the

combinatorial difficulties to automata-theoretic problems.

As automata on finite words, automata on infinite words either accept or reject an input word.

Since a run on an infinite word does not have a final state, acceptance is determined with respect to

the set of states visited infinitely often during the run. There are many ways to classify an automaton

on infinite words. One is the type of its acceptance condition. For example, in Büchi automata,

some of the states are designated as accepting states, and a run is accepting iff it visits states from

the accepting set infinitely often [Büc62]. Dually, in co-Büchi automata, a run is accepting iff it

visits states from the accepting set only finitely often. More general are Muller automata. Here, the

acceptance condition is a set α of sets of states, and a run is accepting iff the set of states visited

infinitely often is a member of α [Mul63].

Another way to classify an automaton on infinite words is by the type of its branching mode.

In a deterministic automaton, the transition function δ maps a pair of a state and a letter into a

single state. The intuition is that when the automaton is in state q and it reads a letter σ, then

the automaton moves to state δ(q, σ), from which it should accept the suffix of the word. When the

branching mode is existential or universal , δ maps q and σ into a set of states. In the existential

mode, the automaton should accept the suffix of the word from one of the states in the set, and

in the universal mode, it should accept the suffix from all the states in the set. In an alternating

automaton [CKS81], both existential and universal modes are allowed, and the transitions are given

as Boolean formulas over the set of states. For example, δ(q, σ) = q1 ∨ (q2 ∧ q3) means that the

automaton should accept the suffix of the word either from state q1 or from both states q2 and q3.

It turns out that different types of automata have different expressive power. For example,

unlike automata on finite words, where deterministic and nondeterministic (existential) automata

have the same expressive power, deterministic Büchi automata are strictly less expressive than

nondeterministic Büchi automata [Lan69]. That is, there exists a language L over infinite words

such that L can be recognized by a nondeterministic Büchi automaton but cannot be recognized

by a deterministic Büchi automaton. It also turns out that some types of automata may be more

succinct than other types. For example, though alternating Büchi automata are as expressive as

nondeterministic Büchi automata (both recognize exactly all ω-regular languages), alternation makes

Büchi automata exponentially more succinct. That is, translating an alternating Büchi automaton

to a nondeterministic one might involve an exponential blow-up (see [DH94]).

Since the combinatorial structure of alternating automata is rich, translating specifications to

alternating automata is much simpler than translating them to nondeterministic automata. Alter-

nating automata enable a complete partition between the logical and the combinatorial aspects of

reasoning about programs, and they give rise to cleaner and simpler verification algorithms [Var96].

2

The ability of alternating automata to switch between existential and universal branching modes

also makes their complementation very easy. For example, in order to complement an alternating

Muller automaton on infinite words, one only has to dualize its transition function and acceptance

condition [MH84, Lin88]. In contrast, complementation is a very challenging problem for nonde-

terministic automata on infinite words. In particular, complementing a nondeterministic Büchi

automaton involves an exponential blow-up [Saf88, Mic88].

In [MSS86], Muller et al. introduced weak alternating automata. In a weak alternating automa-

ton, the automaton’s set of states is partitioned into partially ordered sets. Each set is classified

as accepting or rejecting. The transition function is restricted so that in each transition, the au-

tomaton either stays at the same set or moves to a set smaller in the partial order. Thus, each

run of a weak alternating automaton eventually gets trapped in some set in the partition. Accep-

tance is then determined according to the classification of this set. The special structure of weak

alternating automata is reflected in their attractive computational properties and makes them very

appealing. For example, while the best known complexity for solving the membership problem for

Büchi alternating automata is quadratic time, we know how to solve the membership problem for

weak alternating automata in linear time [KVW00].

Weak alternating automata are a special case of Büchi alternating automata. Indeed, the con-

dition of getting trapped in an accepting set can be replaced by a condition of visiting states of

accepting sets infinitely often. The other direction, as it is easy to see, is not true. In fact, it is

proven in [Rab70, MSS86], that, when defined on trees, a language L can be recognized by a weak

alternating automaton iff both L and its complement can be recognized by Büchi nondeterministic

automata. Nevertheless, when defined on words, weak alternating automata are not less expressive

than Büchi alternating automata, and they can recognize all the ω-regular languages. To prove this,

[MSS86, Lin88] suggest a linear translation of deterministic Muller automata to weak alternating

automata. Using, however, the constructions in [MSS86, Lin88] in order translate a nondeterministic

Büchi or co-Büchi automaton A into a weak alternating automaton, one has no choice but to first

translate A into a deterministic Muller automaton. Such a determinization involves an exponential

blow-up [Saf88]. Even worse, if A is an alternating automaton, then its determinization involves a

doubly-exponential blow-up, and hence, so does the translation to weak alternating automata. Can

these blow-ups be avoided?

In this paper we answer this question positively. We describe a simple quadratic translation of

Büchi and co-Büchi alternating automata into weak alternating automata. Beyond the independent

interest of such a translation, it gives rise to a simple complementation algorithm for nondeterminis-

tic Büchi automata. The closure of nondeterministic Büchi automata under complementation plays

a crucial role in solving decision problems of second order logics. As a result, many efforts have

been put in proving this closure and developing simple complementation algorithms. In [Büc62],

Büchi suggested a complementation construction, which indeed solved the problem, yet involved a

complicated combinatorial argument and a doubly-exponential blow-up in the state space. Thus,

complementing an automaton with n states resulted in an automaton with 22O(n)
states. In [SVW87],

Sistla et al. suggested an improved construction, with only 2O(n2) states, which is still, however,

not optimal. Only in [Saf88], Safra introduced an optimal determinization construction, which also

3

enabled a 2O(n log n) complementation construction, matching the known lower bound [Mic88]. An-

other 2O(n log n) construction was suggested by Klarlund in [Kla91], which circumvented the need for

determinization.

While being the heart of many complexity results in verification, the optimal constructions in

[Saf88, Kla91] are complicated. In particular, the intricacy of the algorithms makes their implemen-

tation difficult. We know of no implementation of Klarlund’s algorithm, and the implementation of

Safra’s algorithm [THB95] has to cope with the involved structure of the states in the complemen-

tary automaton. The lack of a simple implementation is not due to a lack of need. Recall that in

the automata-theoretic approach to verification, we check correctness of a program with respect to a

specification by checking containment of the language of the program in a language of an automaton

that accepts exactly all computations that satisfy the specification. In order to check the latter,

we check that the intersection of the program with an automaton that complements the specifica-

tion automaton is empty. Due to the lack of a simple complementation construction, verification

tools have to restrict the specification automaton or improvise other solutions. For example, in the

verification tool COSPAN [Kur94], the specification automaton must be deterministic (it is easy to

complement deterministic automata [CDK93]). In the verification tool SPIN [Hol91], the user has

to complement the automaton by himself; thus, together with the program, SPIN gets as input a

nondeterministic Büchi automaton, called the Never-Claim, which accepts exactly all computations

that do not satisfy the specification.

The complementary automaton constructed in our procedure here is similar to the one con-

structed in [Kla91], but as our construction involves alternation, it is simpler and easily imple-

mentable. Consider a nondeterministic Büchi automaton B. We can easily complement B by

regarding it as a universal co-Büchi automaton. Now, using our construction, we translate this

complementary automaton to a weak alternating automaton W. By [MH84], weak alternating

automata can be translated to nondeterministic Büchi automata. Applying their (exponential yet

simple) translation to W, we end up with a nondeterministic Büchi automaton N that complements

B. For B with n states, the size of N is 2O(n log n), meeting the known lower bound [Mic88] and the

complicated constructions suggested in [Saf88, Kla91].

2 Alternating Automata

Given an alphabet Σ, an infinite word over Σ is an infinite sequence w = σ0 · σ1 · σ2 · · · of letters

in Σ. We denote by wl the suffix σl · σl+1 · σl+2 · · · of w. An automaton on infinite words is

A = 〈Σ, Q, qin, ρ, α〉, where Σ is the input alphabet, Q is a finite set of states, ρ : Q × Σ → 2Q

is a transition function, qin ∈ Q is an initial state, and α is an acceptance condition (a condition

that defines a subset of Qω). Intuitively, ρ(q, σ) is the set of states that A can move into when it is

in state q and it reads the letter σ. Since the transition function of A may specify many possible

transitions for each state and letter, A is not deterministic. If ρ is such that for every q ∈ Q and

σ ∈ Σ, we have that |ρ(q, σ)| = 1, then A is a deterministic automaton.

A run of A on w is a function r : IN → Q where r(0) = qin (i.e., the run starts in the initial

state) and for every l ≥ 0, we have r(l + 1) ∈ ρ(r(l), σl) (i.e., the run obeys the transition function).

4

In automata over finite words, acceptance is defined according to the last state visited by the run.

When the words are infinite, there is no such thing “last state”, and acceptance is defined according

to the set Inf (r) of states that r visits infinitely often, i.e.,

Inf (r) = {q ∈ Q : for infinitely many l ∈ IN,we have r(l) = q}.

As Q is finite, it is guaranteed that Inf (r) 6= ∅. The way we refer to Inf (r) depends on the acceptance

condition of A. Several acceptance conditions are studied in the literature. We consider here two:

• Büchi automata, where α ⊆ Q, and r accepts w iff Inf (r) ∩ α 6= ∅.

• co-Büchi automata, where α ⊆ Q, and r accepts w iff Inf (r) ∩ α = ∅.

Since A is not deterministic, it may have many runs on w. In contrast, a deterministic automaton

has a single run on w. There are two dual ways in which we can refer to the many runs. When A is

an existential automaton (or simply a nondeterministic automaton, as we shall call it in the sequel),

it accepts an input word w iff there exists an accepting run of A on w. When A is a universal

automaton, it accepts an input word w iff all the runs of A on w are accepting. Alternation

was studied in [CKS81] in the context of Turing machines and in [BL80, CKS81, MH84] for finite

automata. In particular, [MH84] studied alternating automata on infinite words. Alternation enables

us to have both existential and universal branching choices.

For a given set X, let B+(X) be the set of positive Boolean formulas over X (i.e., Boolean

formulas built from elements in X using ∧ and ∨), where we also allow the formulas true and false.

For Y ⊆ X, we say that Y satisfies a formula θ ∈ B+(X) iff the truth assignment that assigns true

to the members of Y and assigns false to the members of X \ Y satisfies θ. For example, the sets

{q1, q3} and {q2, q3} both satisfy the formula (q1 ∨ q2) ∧ q3, while the set {q1, q2} does not satisfy

this formula.

Consider an automaton A as above. We can represent ρ using B+(Q). For example, a transition

ρ(q, σ) = {q1, q2, q3} of a nondeterministic automaton A can be written as ρ(q, σ) = q1 ∨ q2 ∨ q3.

If A is universal, the transition can be written as ρ(q, σ) = q1 ∧ q2 ∧ q3. While transitions of

nondeterministic and universal automata correspond to disjunctions and conjunctions, respectively,

transitions of alternating automata can be arbitrary formulas in B+(Q). We can have, for instance,

a transition δ(q, σ) = (q1 ∧ q2)∨ (q3 ∧ q4), meaning that the automaton accepts a suffix wi of w from

state q, if it accepts wi+1 from both q1 and q2 or from both q3 and q4. Such a transition combines

existential and universal choices.

Formally, an alternating automaton on infinite words is a tuple A = 〈Σ, Q, qin, δ, α〉, where

Σ, Q, qin, and α are as in automata, and δ : Q × Σ → B+(Q) is a transition function. While a run

of a nondeterministic automaton is a function r : IN → Q, a run of an alternating automaton is a

tree r : Tr → Q for some Tr ⊆ IN∗. Formally, a tree is a (finite or infinite) nonempty prefix-closed

set T ⊆ IN∗. The elements of T are called nodes, and the empty word ε is the root of T . For every

x ∈ T , the nodes x · c ∈ T where c ∈ IN are the children of x. A node with no children is a leaf . We

sometimes refer to the length |x| of x as its level in the tree. A path π of a tree T is a set π ⊆ T

such that ε ∈ π and for every x ∈ π, either x is a leaf, or there exists a unique c ∈ IN such that

5

x · c ∈ π. Given a finite set Σ, a Σ-labeled tree is a pair 〈T, V 〉 where T is a tree and V : T → Σ

maps each node of T to a letter in Σ. A run of A on an infinite word w = σ0 · σ1 · · · is a Q-labeled

tree 〈Tr, r〉 such that the following hold:

• r(ε) = qin.

• Let x ∈ Tr with r(x) = q and δ(q, σ|x|) = θ. There is a (possibly empty) set S = {q1, . . . , qk}

such that S satisfies θ and for all 1 ≤ c ≤ k, we have x · c ∈ Tr and r(x · c) = qc.

For example, if δ(qin, σ0) = (q1∨q2)∧ (q3∨q4), then possible runs of A on w have a root labeled qin,

have one node in level 1 labeled q1 or q2, and have another node in level 1 labeled q3 or q4. Note

that if θ = true, then x need not have children. This is the reason why Tr may have leaves. Also,

since there exists no set S as required for θ = false, we cannot have a run that takes a transition

with θ = false.

A run 〈Tr, r〉 is accepting iff all its infinite paths, which are labeled by words in Qω, satisfy the

acceptance condition. A word w is accepted iff there exists an accepting run on it. Note that while

conjunctions in the transition function of A are reflected in branches of 〈Tr, r〉, disjunctions are

reflected in the fact we can have many runs on the same word. The language of A, denoted L(A),

is the set of infinite words that A accepts. Thus, each word automaton defines a subset of Σω. We

denote by L(A) the complement language of A, that is the set of all words in Σω \ L(A).

In [MSS86], Muller et al. introduce weak alternating automata (WAAs). In a WAA, the accep-

tance condition is α ⊆ Q, and there exists a partition of Q into disjoint sets, Qi, such that for each

set Qi, either Qi ⊆ α, in which case Qi is an accepting set, or Qi ∩ α = ∅, in which case Qi is a

rejecting set. In addition, there exists a partial order ≤ on the collection of the Qi’s such that for

every q ∈ Qi and q′ ∈ Qj for which q′ occurs in δ(q, σ), for some σ ∈ Σ, we have Qj ≤ Qi. Thus,

transitions from a state in Qi lead to states in either the same Qi or a lower one. It follows that

every infinite path of a run of a WAA ultimately gets “trapped” within some Qi. The path then

satisfies the acceptance condition if and only if Qi is an accepting set. Thus, we can view a WAA

with an acceptance condition α as both a Büchi automaton with an acceptance condition α, and a

co-Büchi automaton with an acceptance condition Q\α. Indeed, a run gets trapped in an accepting

set iff it visits infinitely many states in α, which is true iff it visits only finitely many states in Q\α.

3 Useful Observations on Runs of Alternating Co-Büchi Automata

Consider a co-Büchi alternating automaton A = 〈Σ, Q, qin, δ, α〉. Let 〈Tr, r〉 be an accepting run of

A on a word w. For two nodes x1 and x2 in Tr, we say that x1 and x2 are similar iff |x1| = |x2|

and r(x1) = r(x2). We say that the run 〈Tr, r〉 is memoryless iff for all similar nodes x1 and x2,

and for all y ∈ IN∗, we have that x1 · y ∈ Tr iff x2 · y ∈ Tr, and r(x1 · y) = r(x2 · y). Intuitively,

similar nodes correspond to two copies of A that have the same “mission”: they should both accept

the suffix w|x1| from the state r(x1). In a memoryless run, subtrees of 〈Tr, r〉 with similar roots

coincide. Thus, same missions are fulfilled in the same way. It turns out that when we consider

runs of co-Büchi automata, we can restrict ourselves to memoryless runs. Formally, we have the

following theorem.

6

Theorem 3.1 [EJ91] If a co-Büchi automaton A accepts a word w, then there exists a memoryless

accepting run of A on w.

We note that [EJ91] proves a stronger result, namely the existence of memoryless accepting runs

for parity alternating automata. Since the co-Büchi acceptance condition is a special case of the

parity acceptance condition, the result cited above follows.

Let |Q| = n. It is easy to see that for every run 〈Tr, r〉, every set of more than n nodes of the same

level contains at least two similar nodes. Therefore, in a memoryless run of A, every level contains

at most n nodes that are roots of different subtrees. Accordingly, we represent a memoryless run

〈Tr, r〉 by an infinite dag (directed acyclic graph) Gr = 〈V,E〉, where

• V ⊆ Q × IN is such that 〈q, l〉 ∈ V iff there exists x ∈ Tr with |x| = l and r(x) = q. For

example, 〈qin, 0〉 is the only vertex of Gr in Q × {0}.

• E ⊆
⋃

l≥0(Q ×{l}) × (Q× {l + 1}) is such that E(〈q, l〉, 〈q ′, l + 1〉) iff there exists x ∈ Tr with

|x| = l, r(x) = q, and r(x · c) = q′ for some c ∈ IN.

Thus, Gr is obtained from 〈Tr, r〉 by merging similar nodes into a single vertex. We say that a vertex

〈q′, l′〉 is a successor of a vertex 〈q, l〉 iff E(〈q, l〉, 〈q ′, l′〉). We say that 〈q′, l′〉 is reachable from 〈q, l〉

iff there exists a sequence 〈q0, l0〉, 〈q1, l1〉, 〈q2, l2〉, . . . of successive vertices such that 〈q, l〉 = 〈q0, l0〉,

and there exists i ≥ 0 such that 〈q′, l′〉 = 〈qi, li〉. Finally, we say that a vertex 〈q, l〉 is an α-vertex iff

q ∈ α. It is easy to see that 〈Tr, r〉 is accepting iff all paths in Gr have only finitely many α-vertices.

Consider a (possibly finite) dag G ⊆ Gr. We say that a vertex 〈q, l〉 is endangered in G iff only

finitely many vertices in G are reachable from 〈q, l〉. We say that a vertex 〈q, i〉 is safe in G iff all

the vertices in G that are reachable from 〈q, l〉 are not α-vertices. Note that, in particular, a safe

vertex is not an α-vertex.

Given a memoryless accepting run 〈Tr, r〉, we define an infinite sequence G0 ⊇ G1 ⊇ G2 ⊇ . . . of

dags inductively as follows.

• G0 = Gr.

• G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is endangered in G2i}.

• G2i+2 = G2i+1 \ {〈q, l〉 | 〈q, l〉 is safe in G2i+1}.

Lemma 3.2 For every i ≥ 0, there exists li such that for all l ≥ li, there are at most n− i vertices

of the form 〈q, l〉 in G2i.

Proof: We prove the lemma by an induction on i. The case where i = 0 follows from the definition

of G0. Indeed, in Gr all levels l ≥ 0 have at most n vertices of the form 〈q, l〉. Assume that the

lemma’s requirement holds for i, we prove it for i + 1. Consider the dag G2i. We distinguish

between two cases. First, if G2i is finite, then G2i+1 is empty, G2i+2 is empty as well, and we are

done. Otherwise, we claim that there must be some safe vertex in G2i+1. To see this, assume, by

7

way of contradiction, that G2i is infinite and no vertex in G2i+1 is safe. Since G2i is infinite, G2i+1

is also infinite. Also, each vertex in G2i+1 has at least one successor. Consider some vertex 〈q0, l0〉

in G2i+1. Since, by the assumption, it is not safe, there exists an α-vertex 〈q ′
0, l

′
0〉 reachable from

〈q0, l0〉. Let 〈q1, l1〉 be a successor of 〈q′0, l
′
0〉. By the assumption, 〈q1, l1〉 is also not safe. Hence,

there exists an α-vertex 〈q′1, l
′
1〉 reachable from 〈q1, l1〉. Let 〈q2, l2〉 be a successor of 〈q′1, j

′
1〉. By

the assumption, 〈q2, l2〉 is also not safe. Thus, we can continue similarly and construct an infinite

sequence of vertices 〈qj , lj〉, 〈q
′
j, l

′
j〉 such that for all i, the vertex 〈q′j , l

′
j〉 is an α-vertex reachable from

〈qj, lj〉, and 〈qj+1, lj+1〉 is a successor of 〈q′j , l
′
j〉. Such a sequence, however, corresponds to a path in

〈Tr, r〉 that visits α infinitely often, contradicting the assumption that 〈Tr, r〉 is an accepting run.

So, let 〈q, l〉 be a safe vertex in G2i+1. We claim that taking li+1 = max{l, li} satisfies the

lemma’s requirement. That is, we claim that for all j ≥ max{l, li}, there are at most n − (i + 1)

vertices of the form 〈q, j〉 in G2i+2. Since 〈q, l〉 is in G2i+1, it is not endangered in G2i. Thus, there

are infinitely many vertices in G2i that are reachable from 〈q, l〉. Hence, by König’s Lemma, G2i

contains an infinite path 〈q, l〉, 〈q1, l + 1〉, 〈q2, l + 2〉, For all k ≥ 1, the vertex 〈qk, l + k〉 has

infinitely many vertices reachable from it in G2i and thus, it is not endangered in G2i. Therefore,

the path 〈q, l〉, 〈q1, l + 1〉, 〈q2, l + 2〉, . . . exists also in G2i+1. Recall that 〈q, l〉 is safe. Hence, being

reachable from 〈q, l〉, all the vertices 〈qk, l + k〉 in the path are safe as well. Therefore, they are not

in G2i+2. It follows that for all j ≥ l, the number of vertices of the form 〈q, j〉 in G2i+2 is strictly

smaller than their number in G2i. Hence, by the induction hypothesis, we are done.

By Lemma 3.2, G2n is finite. Hence the following corollary.

Corollary 3.3 G2n+1 is empty.

Each vertex 〈q, l〉 in Gr has a unique index i ≥ 1 such that 〈q, l〉 is either endangered in G2i or safe

in G2i+1. Given a vertex 〈q, l〉, we define the rank of 〈q, l〉, denoted rank(q, l), as follows.

rank(q, l) =

[

2i If 〈q, l〉 is endangered in G2i.

2i + 1 If 〈q, l〉 is safe in G2i+1.

For k ∈ IN, let [k] denote the set {0, 1, . . . , k}, and let [k]odd denote the set of odd members of [k].

By Corollary 3.3, the rank of every vertex in Gr is in [2n]. Recall that when 〈Tr, r〉 is accepting, all

the paths in Gr visit only finitely many α-vertices. Intuitively, rank(q, l) hints how difficult it is to

get convinced that all the paths of Gr that visit the vertex 〈q, l〉 visit only finitely many α-vertices.

Easiest to get convinced about are vertices that are endangered in G0. Accordingly, they get the

minimal rank 0. Then come vertices that are safe in the graph G1, which is obtained from G0 by

throwing away vertices with rank 0. These vertices get the rank 1. The process repeats with respect

to the graph G2, which is obtained from G1 by throwing away vertices with rank 1. As before, we

start with the endangered vertices in G2, which get the rank 2. We continue with the safe vertices

in G3, which get the rank 3. The process repeats until all vertices get some rank. Note that no

α-vertex gets an odd rank.

In the lemmas below we make this intuition formal.

8

Lemma 3.4 For every vertex 〈q, l〉 in Gr and rank i ∈ [2n], if 〈q, l〉 6∈ Gi, then rank(q, l) < i.

Proof: We prove the lemma by an induction on i. Since G0 = Gr, the case where i = 0 is

immediate. For the induction step, we distinguish between two cases. For the case i + 1 is even,

consider a vertex 〈q, l〉 6∈ Gi+1. If 〈q, l〉 6∈ Gi, the lemma’s requirement follows from the induction

hypothesis. If 〈q, l〉 ∈ Gi, then 〈q, l〉 is safe in Gi. Accordingly, rank(q, l) = i, meeting the lemma’s

requirement. For the case i + 1 is odd, consider a vertex 〈q, l〉 6∈ Gi+1. If 〈q, l〉 6∈ Gi, the lemma’s

requirement follows from the induction hypothesis. If 〈q, l〉 ∈ Gi, then 〈q, l〉 is endangered in Gi.

Accordingly, rank(q, l) = i, meeting the lemma’s requirement.

Lemma 3.5 For every two vertices 〈q, l〉 and 〈q ′, l′〉 in Gr, if 〈q′, l′〉 is reachable from 〈q, l〉, then

rank(q′, l′) ≤ rank(q, l).

Proof: Assume that rank(q, l) = i. We distinguish between two cases. If i is even, in which case

〈q, l〉 is endangered in Gi, then either 〈q′, l′〉 is not in Gi, in which case, by Lemma 3.4, its rank is

at most i− 1, or 〈q′, l′〉 is in Gi, in which case, being reachable from 〈q, l〉, it must be endangered in

Gi and have rank i. If i is odd, in which case 〈q, l〉 is safe in Gi, then either 〈q′, l′〉 is not in Gi, in

which case, by Lemma 3.4, its rank is at most i−1, or 〈q ′, l′〉 is in Gi, in which case, being reachable

from 〈q, l〉, it must by safe in Gi and have rank i.

Lemma 3.6 In every infinite path in Gr, there exists a vertex 〈q, l〉 with an odd rank such that all

the vertices 〈q′, l′〉 in the path that are reachable from 〈q, l〉 have rank(q ′, l′) = rank(q, l).

Proof: By Lemma 3.5, in every infinite path in Gr, there exists a vertex 〈q, l〉 such that all the

vertices 〈q′, l′〉 in the path that are reachable from 〈q, l〉 have rank(q ′, l′) = rank(q, l). We need to

prove that the rank of 〈q, l〉 is odd. Assume, by way of contradiction, that the rank of 〈q, l〉 is some

even i. Thus, 〈q, l〉 is endangered in Gi. Then, the rank of all the vertices in the path that are

reachable from 〈q, l〉 is also i. By Lemma 3.4, they all belong to Gi. Since the path is infinite, there

are infinitely many such vertices, contradicting the fact that 〈q, l〉 is endangered in Gi.

We have seen that if a co-Buchi alternating automaton has an accepting run on w, then it also has

a very structured accepting run on w. In the next section we employ this structured run in order to

translate Büchi and co-Büchi alternating automata to weak alternating automata. In [LT00], Löding

and Thomas use the structured runs in order to a priori define runs of weak alternating automata as

dags of bounded width. This enables them to prove the appropriate determinacy result directly. In

[Pit00], Piterman uses the structured runs in order to extend linear temporal logic with alternating

word automata.

The ranks defined in this section are closely related to the progress-measures introduced in

[Kla90] and to their properties studied in Section 3 there. Progress measures are a generic con-

cept for quantifying how each step of a program contributes to bringing a computation closer to

its specification. Progress measures are used in [Kla91] for reasoning about automata on infinite

words. The ranks defined above also measure progress: they indicate how far the automaton is

9

from satisfying its co-Büchi acceptance condition. When we use these ranks, we consider, unlike

[Kla91], alternating automata. Consequently, we do not need to follow a subset construction and

to consider several ranks simultaneously. Thus, much of the complication in [Kla91] is handled by

the rich structure of the automata. In Section 5 we will get back to this point and see that once

alternation is removed, the two approaches essentially coincide.

4 From Büchi and Co-Büchi to Weak Alternating Automata

In this section we present a translation of Büchi and co-Büchi alternating automata to weak alter-

nating automata. We first describe a quadratic construction and then suggest a pre-processing that

reduces the blow-up in the average case.

4.1 The construction

Theorem 4.1 Let A be an alternating co-Büchi automaton. There is a weak alternating automaton

A′ such that L(A′) = L(A) and the number of states in A′ is quadratic in that of A.

Proof: Let A = 〈Σ, Q, qin, δ, α〉, and let n = |Q|. We define A′ = 〈Σ, Q′, q′in, δ′, α′〉, where

• Q′ = Q × [2n]. Intuitively, when the automaton is in state 〈q, i〉 as it reads the letter σl (the

l’th letter in the input), then it guesses that in a memoryless accepting run of A on w, the

rank of 〈q, l〉 is i. An exception is the initial state q ′in explained below.

• q′in = 〈qin, 2n〉. That is, qin is paired with 2n, which is an upper bound on the rank of 〈qin, 0〉.

• We define δ′ by means of a function

release : B+(Q) × [2n] → B+(Q′).

Given a formula θ ∈ B+(Q), and a rank i ∈ [2n], the formula release(θ, i) is obtained from θ

by replacing an atom q by the disjunction
∨

i′≤i〈q, i
′〉. For example,

release(q3 ∧ q5, 2) = (〈q3, 2〉 ∨ 〈q3, 1〉 ∨ 〈q3, 0〉) ∧ (〈q5, 2〉 ∨ 〈q5, 1〉 ∨ 〈q5, 0〉).

Now, δ′ : Q′ × Σ → B+(Q′) is defined, for a state 〈q, i〉 ∈ Q′ and σ ∈ Σ, as follows.

δ′(〈q, i〉, σ) =

[

release(δ(q, σ), i) If q 6∈ α or i is even.

false If q ∈ α and i is odd.

That is, if the current guessed rank is i then, by employing release, the run can move in its

successors to any rank that is not greater than i. If, however, q ∈ α and the current guessed

rank is odd, then, by the definition of ranks, the current guessed rank is wrong, and the run

is rejecting.

• α′ = Q × [2n]odd . That is, infinitely many guessed ranks along each path should be odd.

10

We first show that A′ is weak. For that, we define a partition of the states of A′ and an order on

this partition so that the weakness conditions hold. Each rank i ∈ [2n] induces the set Qi = Q×{i}

in the partition. Thus, two states 〈q, i〉 and 〈q ′, i′〉 are in the same set iff i = i′. We define the

order ≤ by Qi ≤ Qi′ iff i ≤ i′. It is easy to see that the weakness conditions hold: for every state

〈q, i〉 ∈ Q′ and σ ∈ Σ, the states appearing in δ′(〈q, i〉, σ) belongs to sets Qi′ ≤ Qi, and every set Qi

is either contained in α or disjoint from α. By the definition of α′, it follows that the copies of A′

are allowed to get trapped in sets with odd ranks and are not allowed to get trapped in sets with

even ranks.

We now prove the correctness of the construction. We first prove that L(A′) ⊆ L(A). Consider

a word w accepted by A′. Let 〈Tr, r
′〉 be the accepting run of A′ on w. Consider the Q-labeled tree

〈Tr, r〉 where for all x ∈ Tr with r′(x) = 〈q, i〉, we have r(x) = q. Thus, 〈Tr, r〉 projects the labels of

〈Tr, r
′〉 on their Q element. It is easy to see that 〈Tr, r〉 is a run of A on w. Indeed, the transitions

of A′ only annotate transitions of A by ranks. We show that 〈Tr, r〉 is an accepting run. Since

〈Tr, r
′〉 is accepting, then, by the definition of α′, each infinite path of 〈Tr, r

′〉 gets trapped in a set

Q×{i} for some odd i. By the definition of δ ′, no accepting run can visit a state 〈q, i〉 with an odd

i and q ∈ α. Hence, the infinite path actually gets trapped in the subset (Q \ α) × {i} of Q × {i}.

Consequently, in 〈Tr, r〉, all the paths visits states in α only finitely often, and we are done.

It is left to prove that L(A) ⊆ L(A′). Consider a word w accepted by A. Let 〈Tr, r〉 be the

accepting run of A on w. Consider the Q′-labeled tree 〈Tr, r
′〉 where r′(ε) = 〈r(ε), 2n〉, and for

all other x ∈ Tr, we have r′(x) = 〈r(x), i〉, where i is the rank of 〈r(x), |x|〉 in Gr. We claim

that 〈Tr, r〉 is an accepting run of A′. We first prove that it is a run. Since r(ε) = qin and

q′in = 〈qin, 2n〉, the root of the tree 〈Tr, r
′〉 is labeled legally. We now consider the other nodes

of 〈Tr, r
′〉. Let S = {q1, . . . , qk} be the set of labels of ε’s successors in 〈Tr, r〉. As 2n is the

maximal rank that a vertex can get, each successor c of ε in Tr has rank(r(c), 1) ≤ 2n. Therefore,

the set S′ = {〈q1, rank(q1, 1)〉, . . . , 〈qk, rank(qk, 1)〉} satisfies δ′(〈qin, 2n〉, σ0). Hence, the first level

of 〈Tr, r
′〉 is also labeled legally. For the other levels, consider a node x ∈ Tr such that x 6= ε

and rank(r(x), |x|) = i. Let S = {q1, . . . , qk} be the set of labels of x’s successors in 〈Tr, r〉. By

Lemma 3.5, each successor x · c of x in Tr has rank(r(x · c), |x · c|) ≤ i. Also, by the definition

of ranks, it cannot be that r(x) ∈ α and i is odd. Therefore, the set S ′ = {〈q1, rank(q1, |x| +

1)〉, . . . , 〈qk, rank(qk, |x|+1)〉} satisfies δ′(〈r(x), i〉, σ|x|). Hence, the tree 〈Tr, r
′〉 is a run of A′ on w.

Finally, by Lemma 3.6, each infinite path of 〈Tr, r
′〉 gets trapped in a set with an odd index, thus

〈Tr, r
′〉 is accepting.

Remark 4.2 As explained above, the automaton A′ being at state 〈q, i〉 as it reads the l’th letter

in the input, corresponds to a guess that in a memoryless accepting run of A on w, the rank of 〈q, l〉

is i. Accordingly, the function release (and the transition function δ ′ that is based on it) enables the

transition from a guessed rank i to any rank that is smaller than i. As a result, while the number

of states in A′ is O(n2), a transition δ′(〈q, i〉, σ) may be n times longer than the transition δ(q, σ),

leading to δ′ that is O(n2) times larger than δ. Nevertheless, since for all θ ∈ B+(Q), all i ∈ [2n], and

all j < i, the formula release(θ, j) is a subformula of the formula release(θ, i), the blow-up described

above is not present if we maintain δ ′ as a dag, so that subformulas that are shared by several

transitions are not duplicated. Another way to keep δ ′ only O(n) times larger than δ is to redefine

11

release(θ, i) to replace an atom q by the disjunction (q, i) ∨ (q, i − 1) ∨ (q, i − 2). Thus, instead of a

transition to any rank smaller than i, a transition is enabled only to ranks i, i− 1 and i− 2. Then,

the automaton A′ being at state 〈q, i〉 as it reads the l’th letter in the input, corresponds to a guess

that in a memoryless accepting run of A on w, the rank of 〈q, l〉 is at most i. Since we can simulate

one big decrease in the guessed rank by several small decreases (in particular, having i − 2 in the

transition enables us to “jump over” odd ranks), the correctness proof given above can easily be

adjusted to the new definition of release.

As discussed in [MS87], one can complement an alternating automaton by dualizing its transition

function and acceptance condition. Formally, given a transition function δ, let δ̃ denote the dual

function of δ. That is, for every q and σ with δ(q, σ) = θ, we have δ̃(q, σ) = θ̃, where θ̃ is obtained

from θ by switching ∨ and ∧ and by switching true and false. If, for example, θ = q1 ∨ (true∧ q2)

then θ̃ = q1∧ (false∨ q2). The dual of an acceptance condition α is a condition that accepts exactly

all the words in Qω that are not accepted by α. In particular, we have the following.

Theorem 4.3 [MS87] For an alternating Büchi automaton A = 〈Σ, Q, qin, δ, α〉, the alternating

co-Büchi automaton Ã = 〈Σ, Q, qin, δ̃, α〉 satisfies L(Ã) = Σω \ L(A).

The complementation construction in Theorem 4.3 is not only conceptually simple, but it also

involves no blow-up. In addition, complementing a WAA does not sacrifice its weakness. Hence,

Theorems 4.1 and 4.3 imply the following theorem.

Theorem 4.4 Let A be an alternating Büchi automaton. There is a weak alternating automaton

A′ such that L(A′) = L(A) and the number of states in A′ is quadratic in that of A.

In Section 5, we use the translation described in Theorem 4.1 in order to obtain a simple

complementation construction for nondeterministic Büchi automata. As we shall note there, the

known lower bound on the complexity of the latter then implies that the quadratic blow-up involved

in moving from co-Büchi alternating automata to WAA cannot be reduced to a linear one.

4.2 Improving the construction

A drawback of our construction is that it never performs better than its worst-case complexity.

Indeed, the quadratic blow-up is introduced in the translation of A to A′ regardless of the structure

of A and would occur even if, say, A is a weak automaton. In order to circumvent such an unnecessary

blow up, we suggest to first calculate the minimal rank required for A (formally defined below), and

then to construct A′ with respect to this rank. The discussion below assumes that A is a co-Büchi

automaton, yet applies also for the dual case, where A is a Büchi automaton.

Consider the sequence of dags G0, G1, . . . , G2n+1. With every Gi, we can associate a maximal

width, namely the maximal number of vertices of the form 〈q, l〉, for some fixed l, in Gi. Following

Lemma 3.2, the maximal width of G2i is n − i. In practice, the transition from G2i to G2i+2 often

reduces the width by more than one vertex. We say that j ∈ [n] is required for A iff there exists

12

a word w ∈ L(A) such that for every memoryless run 〈Tr, r〉 of A on w, the sequence G0, G1, . . .

of dags with G0 = Gr is such that the width of G2j is bigger than 0. Note that this implies that

G2j+1 is not empty.

Let A′ = 〈Σ, Q′, q′in, δ′, α′〉. For every j ∈ [n], we define the weak alternating automaton A′
j as

follows. Intuitively, A′
j restricts the runs of A′ to guess only ranks smaller than 2j. Formally, the

state space of A′
j is Q × [2j], its initial state is 〈qin, 2j〉, and its transition function and acceptance

condition are the restrictions of δ ′ and α′ to the states in Q × [2j]. It is easy to see that for every

j, the language of A′
j is contained in the language of A′. On the other hand, the language of A′

j

contains only these words in L(A′) for which G2j+1 is empty. It follows that the minimal rank

required for A is the minimal j ∈ [n] for which L(A) ⊆ L(A′
j).

Theorem 4.5 Let A be an alternating co-Büchi automaton. The problem of finding the minimal

rank required for A is PSPACE-complete.

Proof: Recall that the minimal rank required for A is the minimal j ∈ [n] for which L(A) ⊆ L(A ′
j).

Since the language-containment problem for alternating co-Büchi automata is in PSPACE, we can

find the minimal rank in polynomial space by successive language-containment checks. For the lower

bound, we do a reduction from the emptiness problem for alternating co-Büchi automata, whose

PSPACE-hardness follows from the results in [CKS81]. Given an alternating co-Büchi automaton

A = 〈Σ, Q, qin, δ, α〉, we prove that A is empty iff the minimal rank required for A is 0. For technical

convenience, we assume that no formula θ in the range of δ is a tautology (since we can replace a

transition to a θ that is a tautology by a transition to an accepting sink, the emptiness problem

is clearly PSPACE-hard already for automata satisfying this assumption). Assume first that A is

empty. Then, L(A) ⊆ L(A′
j) for all j ∈ [n], and in particular for j = 0. For the other direction,

note that the set of states in A′
0 is Q×{0}, and its transitions coincide with these of A. Also, since

0 is even, the accepting set of A′
0 is empty. Hence, as no formula in δ′ is a tautology, A′

0 accepts no

word. Accordingly, L(A) ⊆ L(A′
0) only if A is empty.

Since for all i ∈ [2n] we have that L(A′
i) ⊆ L(A), the automaton A′

j , where j is the minimal

rank required for A, is equivalent to A. Hence the following theorem.

Theorem 4.6 Let A be an alternating co-Büchi automaton with n states and let j be the minimal

rank required for A. There is a weak alternating automaton A′ such that L(A′) = L(A) and the

number of states in A′ is 2nj.

We note that while the problem of finding the minimal rank required for A requires space that

is polynomial in A, the automaton A is typically small, and the bottle-neck of the computation is

usually the application of A′ (e.g., taking its product with a system with a large state space). Thus,

finding the minimal rank j required for A and using A′
j instead of A′ may be of great practical

importance.

13

5 Complementing Nondeterministic Büchi Automata

In this section we apply our results in order to complement nondeterministic Büchi automata. We

first describe, in Section 5.1, a construction that uses alternating automata. We then describe, in

Section 5.2, a construction that uses the analysis in Section 3 without explicitly using alternating

automata.

5.1 Complementation via alternating automata

Unlike the case with alternating automata, complementation of nondeterministic automata is a

complicated problem. Following Theorem 4.3, all one needs in order to complement a nondeter-

ministic Büchi automaton is some translation of universal co-Büchi automata to nondeterministic

Büchi automata. In [MH84], Miyano and Hayashi suggest a translation of alternating Büchi au-

tomata to nondeterministic Büchi automata. We present (a simplified version of) their translation

in Theorem 5.1 below.

Theorem 5.1 [MH84] Let A be an alternating Büchi automaton. There is a nondeterministic

Büchi automaton A′, with exponentially many states, such that L(A′) = L(A).

Proof: The automaton A′ guesses a run of A. At a given point of a run of A′, it keeps in

its memory a whole level of the run tree of A. As it reads the next input letter, it guesses the

next level of the run tree of A. In order to make sure that every infinite path visits states in α

infinitely often, A′ keeps track of states that “owe” a visit to α. Let A = 〈Σ, Q, qin, δ, α〉. Then

A′ = 〈Σ, 2Q × 2Q, 〈{qin}, ∅〉, δ
′ , 2Q ×{∅}〉, where δ′ is defined, for all 〈S,O〉 ∈ 2Q × 2Q and σ ∈ Σ, as

follows.

• If O 6= ∅, then

δ′(〈S,O〉, σ) = {〈S ′, O′ \ α〉 | S′ satisfies
∧

q∈S

δ(q, σ), O′ ⊆ S′, and O′ satisfies
∧

q∈O

δ(q, σ)}.

• If O = ∅, then

δ′(〈S,O〉, σ) = {〈S ′, S′ \ α〉 | S′ satisfies
∧

q∈S

δ(q, σ)}.

The translation in Theorem 5.1, however, does not handle alternating (and in particular univer-

sal) co-Büchi automata, which is what one gets by dualizing a nondeterministic Büchi automaton.

Here is where our construction in Theorem 4.1 becomes essential. Thus, given nondeterministic

Büchi automaton B, we suggest the following complementation construction for B.

1. Following Theorem 4.3, construct from B its dual co-Büchi universal automaton B̃. The

automaton B̃ satisfies L(B̃) = Σω \ L(B).

14

2. Following Theorem 4.1, construct from B̃ its equivalent weak alternating automaton W. The

automaton W satisfies L(W) = Σω \ L(B).

3. Following Theorem 5.1, construct from W its equivalent nondeterministic Büchi automaton

N . The automaton N satisfies L(N) = Σω \ L(B).

If B has n states, then B̃ has n states as well, W has O(n2) states, and N has 2O(n2) states.

By [Mic88, Saf88], however, an optimal complementation construction for nondeterministic Büchi

automata results in an automaton N with 2O(n log n) states. Before we describe how we do get, using

Theorem 4.1, such an optimal automaton N , let us note that the above scheme implies that the

translation described in Theorem 4.1 cannot be improved to a linear translation. Indeed, being able

to construct from B̃ to an equivalent WAA W with only O(n) states, we are also able to construct

N with 2O(n) states, contradicting the 2O(n log n) lower bound.

In order to get N with 2O(n log n) states, we exploit the special structure of W as follows. Let

B = 〈Σ, Q, qin, δ, α〉. Consider a state 〈S,O〉 of N . Each of the sets S and O is a subset of Q× [2n].

We say that P ⊆ Q × [2n] is consistent iff for every two states 〈q, i〉 and 〈q ′, i′〉 in P , if q = q′ then

i = i′. We claim the following.

Claim 1. Restricting the states in N to pairs 〈S,O〉 for which S is a consistent subset of Q × [2n]

is allowable; that is, the resulting N still complements B.

Claim 2. There are 2O(n log n) consistent subsets of Q × [2n].

By the two claims, as O is always a subset of S, it is easy to restrict the state space of N to

2O(n log n) states. In order to prove Claim 1, recall that the automaton W visiting a state 〈q, i〉 after

reading l letters of an input word w corresponds to a guess that the rank of 〈q, l〉 in an accepting and

memoryless run of B̃ on w is i. We have seen that if there is an accepting and memoryless run 〈Tr, r〉

of B̃ on w, then a run of W that follows the ranks in Gr is accepting. Since every vertex in Gr has

a unique rank, the copies of W that are created in each level l in this accepting run are consistent,

in the sense that the set of states visited by copies of W in level l in the run is consistent. In N , all

the states in S correspond to copies of W that read the same prefix of w. Hence, a state 〈S,O〉 for

which S is inconsistent corresponds to a level l in a run of W whose copies are inconsistent. Hence,

the automaton N can ignore states 〈S,O〉 with inconsistent S.

In order to prove Claim 2, observe that we can characterize a consistent set by the projection of

its pairs on Q, augmented by an assignment f : Q → [2n]. Since there are 2n such projections and

nO(n) = 2O(n log n) such assignments, we are done.

Composing the three constructions is straightforward. Below we define the automaton N di-

rectly, by means of B’s components. Given a nondeterministic Büchi automaton A = 〈Σ, Q, qin, δ, α〉,

we define a nondeterministic Büchi automaton A′ such that L(A′) = Σω \ L(A). Let |Q| = n. For

a set P ∈ 2Q×[2n], we say that P is possible iff there exists no pair 〈q, i〉 in P such that i is odd and

q ∈ α. For two sets P and P ′ in 2Q×[2n] and a letter σ ∈ Σ, we say that P ′ covers 〈P, σ〉 iff for every

pair 〈q, i〉 ∈ P and state q′ ∈ δ(q, σ), there exists i′ ≤ i such that the pair 〈q′, i′〉 is in P ′.

The automaton A′ = 〈Σ, Q′, q′in, δ′, α′〉, where

15

• Q′ = {〈S,O〉 : S ∈ 2Q×[2n], O ⊆ S, and S is possible and consistent }.

• q′in = 〈{〈qin, 2n〉}, ∅〉.

• For a state 〈S,O〉 ∈ Q′ and a letter σ ∈ Σ, we define δ′(〈S,O〉, σ) as follows.

◦ If O 6= ∅, then

δ′(〈S,O〉, σ) = { 〈S ′, O′ \ (Q × [2n]odd)〉 : S′ covers 〈S, σ〉, O′ ⊆ S′,

O′ covers 〈O, σ〉, and S ′ is possible and consistent }.

◦ If O = ∅, then

δ′(〈S,O〉, σ) = { 〈S ′, S′ \ (Q × [2n]odd)〉 : S′ covers 〈S, σ〉

and S′ is possible and consistent }.

• α′ = {〈S, ∅〉 : S ∈ 2Q×[2n] and S is possible and consistent}.

As discussed in Section 4.2, we advise to construct the automaton W according to the minimal

rank j required for B̃. Then, each state of N corresponds to a consistent set augmented by an

assignment f : Q → [2j]. Accordingly, the automaton N has only 2O(n+j log n) states.

5.2 Complementation without alternating automata

In this section we give an alternative description of our complementation construction, which is

independent of alternating automata. The ideas behind the construction are these used in Section 4

for the transformation of alternating co-Büchi automata to weak alternating automata. We repeat

these ideas here for the benefit of readers who’d like to see a complementation construction that

does not go through alternating automata.1 The construction that follows essentially coincides with

the one described in [Kla91].

Let A = 〈Σ, Q, qin, δ, α〉 be a nondeterministic Büchi automaton with |Q| = n, and let w = σ0 ·σ1·

be a word in Σω. We define an infinite dag G that embodies all the possible runs of A on w. Formally,

G = 〈V,E〉, where

• V ⊆ Q × IN is the union
⋃

l≥0(Ql × {l}), where Q0 = {qin} and Ql+1 =
⋃

q∈Ql
δ(q, σl).

• E ⊆
⋃

l≥0(Ql × {l}) × (Ql+1 × {l + 1}) is such that E(〈q, l〉, 〈q′, l + 1〉) iff q′ ∈ δ(q, σl).

We refer to G as the run dag of A on w. We say that a vertex 〈q ′, l′〉 is a successor of a

vertex 〈q, l〉 iff E(〈q, l〉, 〈q′, l′〉). We say that 〈q′, l′〉 is reachable from 〈q, l〉 iff there exists a sequence

〈q0, l0〉, 〈q1, l1〉, 〈q2, l2〉, . . . of successive vertices such that 〈q, l〉 = 〈q0, l0〉, and there exists i ≥ 0 such

that 〈q′, l′〉 = 〈qi, li〉. Finally, we say that a vertex 〈q, l〉 is an α-vertex iff q ∈ α. It is easy to see

that A accepts w iff G has a path with infinitely many α-vertices. Indeed, such a path corresponds

to an accepting run of A on w.

A ranking for G is a function f : V → [2n] that satisfies the following two conditions:

1We have found it easier to teach the direct construction. (See http://www.cs.rice.edu/∼vardi/av.html.)

16

1. For all vertices 〈q, l〉 ∈ V , if f(〈q, l〉) is odd, then q 6∈ α.

2. For all edges 〈〈q, l〉, 〈q′, l′〉〉 ∈ E, we have f(〈q′, l′〉) ≤ f(〈q, l〉).

Thus, a ranking associates with each vertex in G a rank in [2n] so that the ranks along paths

decreased monotonically, and α-vertices get only even ranks. Note that each path in G eventually

gets trapped in some rank. We say that the ranking f is an odd ranking if all the paths of G

eventually get trapped in an odd rank. Formally, f is odd iff for all paths 〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . .

in G, there is j ≥ 0 such that f(〈qj, j〉) is odd, and for all i ≥ 1, we have f(〈qj+i, j + i〉) = f(〈qj, j〉).

Lemma 5.2 A rejects w iff there is an odd ranking for G.

Proof: We first claim that if there is an odd ranking for G, then A rejects w. To see this, recall

that in an odd ranking, every path in G eventually gets trapped in an odd rank. Hence, as α-vertices

get only even ranks, it follows that all the paths of G, and thus all the possible runs of A on w, visit

α only finitely often.

Assume now that A rejects w. We describe an odd ranking for G. As in Section 3, we say that

a vertex 〈q, l〉 is endangered in a (possibly finite) dag G′ ⊆ G iff only finitely many vertices in G′

are reachable from 〈q, l〉. The vertex 〈q, l〉 is safe in G′ iff all the vertices in G′ that are reachable

from 〈q, l〉 are not α-vertices. Note that, in particular, a safe vertex is not an α-vertex. We define

an infinite sequence G0 ⊇ G1 ⊇ G2 ⊇ . . . of dags inductively as follows.

• G0 = G.

• G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is endangered in G2i}.

• G2i+2 = G2i+1 \ {〈q, l〉 | 〈q, l〉 is safe in G2i+1}.

Consider the function f : V → IN where

f(〈q, l〉) =

[

2i If 〈q, l〉 is endangered in G2i.

2i + 1 If 〈q, l〉 is safe in G2i+1.

Recall that A rejects w. Thus, each path in G has only finitely many α-vertices. Therefore, the same

arguments used in the proof of Lemma 3.2 can be used here in order to show that G2n is finite and

G2n+1 is empty, implying that f above maps the vertices in V to [2n]. We claim further that f is an

odd ranking. First, since a safe vertex cannot be an α-vertex and f(〈q, l〉) is odd only for safe 〈q, l〉,

the first condition for f being a ranking holds. Second, as in Lemma 3.5, for every two vertices 〈q, l〉

and 〈q′, l′〉 in G, if 〈q′, l′〉 is reachable from 〈q, l〉, then f(〈q ′, l′〉) ≤ f(〈q, l〉). In particular, this holds

for 〈q′, l′〉 that is a successor of 〈q, l〉. Hence, the second condition for ranking holds too. Finally, as

in Lemma 3.6, for every infinite path in G, there exists a vertex 〈q, l〉 with an odd rank such that

all the vertices 〈q′, l′〉 in the path that are reachable from 〈q, l〉 have f(〈q ′, l′〉) = f(〈q, l〉). Hence, f

is an odd ranking.

17

By Lemma 5.2, an automaton A′ that complements A can proceed on an input word w by

guessing an odd ranking for the run dag of A on w. We now define such an automaton A ′ formally.

We first need some definitions and notations.

A level ranking for A and w is a function g : Q → [2n] ∪ {⊥}, such that if g(q) is odd, then

q 6∈ α. Let R be the set of all level rankings. For two level rankings g and g ′, we say that g′ covers

g if for all q and q′ in Q, if g(q) ≥ 0 and q′ ∈ δ(q, σ), then 0 ≤ g′(q′) ≤ g(q).

We define A′ = 〈Σ,R× 2Q, q′in, δ′,R× {∅}〉, where

• q′in = 〈gin, ∅〉, where gin(qin) = 2n and gin(q) = ⊥ for all q 6= qin. Thus, the odd ranking that

A′ guesses maps the root 〈qin, 0〉 of the run dag to 2n.

• For a state 〈g, P 〉 ∈ R × 2Q and a letter σ ∈ Σ, we define δ′(〈g, P 〉, σ) as follows.

◦ If P 6= ∅, then

δ′(〈g, P 〉, σ) = { 〈g′, P ′〉 : g′ covers g, and

P ′ = {q′ : there is q ∈ P such that q′ ∈ δ(q, σ) and g′(q′) is even}}.

◦ If P = ∅, then

δ′(〈g, P 〉, σ) = {〈g′, P ′〉 : g′ covers g, and P ′ = {q′ : g′(q′) is even}}.

Thus, when A′ reads the l’th letter in the input, for l ≥ 1, it guesses the level ranking for

level l in the run dag. This level ranking should cover the level ranking of level l − 1. In

addition, in the P component, A′ keeps track of states whose corresponding vertices in the

dag have even ranks. Paths that traverse such vertices should eventually reach a vertex with

an odd rank. When all the paths of the dag have visited a vertex with an odd rank, the set

P becomes empty, and is initiated by new obligations for visits in odd ranks according to the

current level ranking. The acceptance condition R× {∅} then checks that there are infinitely

many levels in which all the obligations have been fulfilled.

Note that the automaton A′ here is equivalent to the one described in Section 5. Indeed, each

state 〈g, P 〉 ∈ R × 2Q in A′ above corresponds to the state 〈S,O〉 ∈ 2Q×[2n] × 2Q×[2n] of A′ there,

where S = {〈q, g(q)〉 : g(q) 6= ⊥} and O = {〈q, g(q)〉 : q ∈ P and g(q) 6= ⊥}. Clearly, S and O

and possible and consistent, and O ⊆ S. Similarly, since the sets S and O in the state space of A ′

of Section 5 are possible and consistent, each state 〈S,O〉 there induces a level ranking and thus

corresponds to a state here.

6 Discussion

We described a quadratic translation of Büchi and co-Büchi alternating automata to weak alter-

nating automata and showed how our translation yields a simple complementation algorithm for

nondeterministic Büchi automata. Another application of our translation is the solution of the

18

nonemptiness problem. It is shown in [KVW00] that the nonemptiness problem for nondetermin-

istic tree automata and the nonemptiness problem for alternating word automata over a singleton

alphabet are equivalent and that their complexities coincide. We refer to both problems as the

nonemptiness problem. Recall that the nonemptiness problem for weak automata can be solved

in linear time [KVW00]. On the other hand, the best known upper bound for the nonemptiness

problem for Büchi and co-Büchi automata is quadratic time. Using our translation, one can solve

the nonemptiness problem for a Büchi or a co-Büchi automaton A by first translating it to a weak

automaton A′. The size of A′ is O(nj), where j is the minimal rank required for A, yielding a

nonemptiness algorithm of the same complexity.

In [KV98b], we extend the ideas of this paper and describe an efficient translation of stronger

types of alternating automata to weak alternating automata. This enables us to improve known

upper bounds for the nonemptiness problem. Given an alternating parity automaton [Mos84, EJ91]

with n states and k sets, we construct an equivalent weak alternating automaton with O(nk) states.

Given an alternating Rabin automaton [Rab69] with n states and k pairs, we construct an equivalent

weak alternating automaton with O(n2k+1·k!) states. Our constructions yield O(nk) and O(n2k+1·k!)

upper bounds for the nonemptiness problem for parity and Rabin automata, respectively, matching

the known bound for parity automata [EJS93] and improving the known O(nk)3k bound for Rabin

automata [EJ88, PR89].

Recall that while weak alternating word automata are not less expressive than Büchi alternating

word automata, weak alternating tree automata are strictly less expressive than Büchi alternating

tree automata. Precisely, when defined on trees, a language L can be recognized by a weak al-

ternating automaton iff both L and its complement can be recognized by Büchi nondeterministic

automata. This result follows from expressiveness results in second order logic [Rab70], and the

equivalence of weak alternating tree automata and weak second-order logic [Rab70]. In [KV99], we

extend the ideas in this paper to handle tree automata. Given two nondeterministic Büchi tree

automata U and U ′ that recognize a language and its complement, we construct a weak alternating

tree automaton A equivalent to U . The number of states in A is quadratic in the number of states of

U and U ′. Precisely, if U and U ′ has n and m states, respectively, the automaton A has (nm)2 states.

The known linear translation of weak alternating tree automata to formulas in the alternation-free

fragment of µ-calculus [KV98a] then implies a quadratic translation of Büchi automata as above

to alternation-free µ-calculus, extending the scope of efficient symbolic model checking to highly

expressive specification formalisms.

Acknowledgment We thank Nils Klarlund for clarifying the relation between [Kla91] and

this work.

References

[BL80] J.A. Brzozowski and E. Leiss. Finite automata and sequential networks. Theoretical Computer

Science, 10:19–35, 1980.

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. Internat. Congr.

Logic, Method and Philos. Sci. 1960, pages 1–12, Stanford, 1962. Stanford University Press.

19

[CDK93] E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A unified approach for showing language

containment and equivalence between various types of ω-automata. Information Processing Letters

46, pages 301–308, (1993).

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association for

Computing Machinery, 28(1):114–133, January 1981.

[DH94] D. Drusinsky and D. Harel. On the power of bounded concurrency I: Finite automata. Journal of

the ACM, 41(3):517–539, 1994.

[EJ88] E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proc.

29th IEEE Symposium on Foundations of Computer Science, pages 328–337, White Plains, October

1988.

[EJ91] E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proc. 32nd IEEE

Symposium on Foundations of Computer Science, pages 368–377, San Juan, October 1991.

[EJS93] E.A. Emerson, C. Jutla, and A.P. Sistla. On model-checking for fragments of µ-calculus. In

Computer Aided Verification, Proc. 5th Int. Conference, volume 697, pages 385–396, Elounda,

Crete, June 1993. Lecture Notes in Computer Science, Springer-Verlag.

[Hol91] G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall International Editions,

1991.

[Kla90] N. Klarlund. Progress Measures and finite arguments for infinite computations. PhD thesis, Cornell

University, 1990.

[Kla91] N. Klarlund. Progress measures for complementation of ω-automata with applications to temporal

logic. In Proc. 32nd IEEE Symposium on Foundations of Computer Science, pages 358–367, San

Juan, October 1991.

[Kur94] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,

1994.

[KV98a] O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: from linear-time to

branching-time. In Proc. 13th IEEE Symposium on Logic in Computer Science, pages 81–92,

June 1998.

[KV98b] O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata emptiness. In Proc.

30th ACM Symposium on Theory of Computing, pages 224–233, Dallas, 1998.

[KV99] O. Kupferman and M.Y. Vardi. The weakness of self-complementation. In Proc. 16th Symp. on

Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes in Computer Science, pages

455–466. Springer-Verlag, 1999.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time

model checking. Journal of the ACM, 47(2):312–360, March 2000.

[Lan69] L.H. Landweber. Decision problems for ω–automata. Mathematical Systems Theory, 3:376–384,

1969.

[Lin88] P. Lindsay. On alternating ω-automata. Theoretical computer science, 43:107–116, 1988.

[LT00] C. Löding and W. Thomas. Alternating automata and logics over infinite words. In Theoretical

Compter Science - Exploring New Frontiers of Theoretical Informatics, volume 1872 of Lecture

Notes in Computer Science, pages 521–535. Springer-Verlag, 2000.

20

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information and

Control, 9:521–530, 1966.

[MH84] S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical Computer Science,

32:321–330, 1984.

[Mic88] M. Michel. Complementation is more difficult with automata on infinite words. CNET, Paris,

1988.

[Mos84] A.W. Mostowski. Regular expressions for infinite trees and a standard form of automata. In

Computation Theory, volume 208 of Lecture Notes in Computer Science, pages 157–168. Springer-

Verlag, 1984.

[MS87] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical Computer

Science, 54:267–276, 1987.

[MSS86] D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic theory of the

tree and its complexity. In Proc. 13th Int. Colloquium on Automata, Languages and Programming.

Springer-Verlag, 1986.

[Mul63] D.E. Muller. Infinite sequences and finite machines. In Proc. 4th IEEE Symp. on Switching Circuit

Theory and Logical design, pages 3–16, 1963.

[Pit00] N. Piterman. Extending temporal logic with ω-automata. M.Sc. Thesis, The Weizmann Institute

of Science, Israel, 2000.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th ACM Symposium

on Principles of Programming Languages, pages 179–190, Austin, January 1989.

[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction of

the AMS, 141:1–35, 1969.

[Rab70] M.O. Rabin. Weakly definable relations and special automata. In Proc. Symp. Math. Logic and

Foundations of Set Theory, pages 1–23. North Holland, 1970.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symposium on Foundations of

Computer Science, pages 319–327, White Plains, October 1988.

[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi automata with

applications to temporal logic. Theoretical Computer Science, 49:217–237, 1987.

[THB95] S. Tasiran, R. Hojati, and R.K. Brayton. Language containment using non-deterministic omega-

automata. In Proc. of CHARME ’95: Advanced Research Working Conference on Correct Hardware

Design and Verification Methods, volume 987 of Lecture Notes in Computer Science, pages 261–277,

Frankfurt, October 1995. Springer-Verlag.

[Tho90] W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science, pages

165–191, 1990.

[Var96] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and

G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, volume 1043 of Lecture

Notes in Computer Science, pages 238–266. Springer-Verlag, Berlin, 1996.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.

In Proc. First Symposium on Logic in Computer Science, pages 332–344, Cambridge, June 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation,

115(1):1–37, November 1994.

21

