
When Does Abstraction Help?

Guy Avni and Orna Kupferman

School of Computer Science and Engineering, Hebrew University, Israel

Abstract

Abstraction is a leading technique for coping with large state spaces. Abstrac-
tion over-approximates the transitions of the original system or the automaton that
models it and may introduce nondeterminism. In applications where determinism
is essential, we say that an abstraction function is helpful if, after determining and
minimizing the abstract automaton, we end up with fewer states than the original
automaton. We show that abstraction functions are not always helpful; in fact,
they may introduce an exponential blow-up. We study the problem of deciding
whether a given abstraction function is helpful for a given deterministic automaton
and show that it is PSPACE-complete.

Keywords: Formal methods, Abstraction, Deterministic finite automata

1. Introduction

The automata-theoretic approach has proven to be a very versatile and fruitful
approach for formal reasoning about systems and their on-going behaviors. Au-
tomata are used in order to model both systems and specifications. One of the big
challenges in practice is the need to reason about automata with huge state spaces.
In abstraction, we cope with the huge state spaces by translating the automata to
ones with smaller state spaces [1]. Typically, by hiding some of the information
associated with each state, different states of the original automaton are mapped to
the same abstract state.

Technically, if the original automatonA has state space Q, then the abstraction
consists of a functionα : Q→ A, whereA is the set of abstract states and is smaller
than Q. The transitions in such abstractions are defined so that there is a transition
with the letter σ from one abstract state a to the other abstract state a′ if some
concrete state that is mapped to a has a σ-transition to some concrete state that is
mapped to a′. Such over-approximating abstractions are very useful in practice. In
particular, if the language of an automaton whose language over-approximates the
language of a system is contained in the language of the specification, then we can

Preprint submitted to Information Processing Letter July 21, 2013

conclude that the system satisfies the specification. Moreover, when the answer is
negative, it is possible to refine the abstract automaton until a definite answer to the
verification problem is obtained (see work on counterexample-guided abstraction
refinement [2]).

In addition to extending the language of the original automaton, abstraction
also increases its nondeterminism. In particular, it may be that the original automa-
ton is deterministic (that is, each of its states has a single outgoing σ-transition for
each letter σ) whereas the abstraction is nondeterministic. Indeed, if several con-
crete states, each with a different σ-successor, are mapped to the same abstract
state a, then a may have several σ-successors.

The fact that abstraction does not preserve determinism is a serious drawback,
as algorithms for deterministic automata are typically much simpler than ones in
the nondeterministic setting. Also, for some problems, such as synthesis or rea-
soning about probabilistic systems, solutions are known only for deterministic au-
tomata, and determination is required when the input to the problem is nondeter-
ministic [3, 4]. For some algorithms, such as trigger querying or reasoning about
memoryful formalisms, determinism is essential not only in the specification but
also in the system [5, 6].

In this work we ask whether, given the need to determinize the abstract automa-
ton, abstraction still leads to smaller automata. Formally, consider a deterministic
finite automaton (DFA, for short) A, and let Aα be a nondeterministic finite au-
tomaton (NFA, for short) obtained from A by applying an abstraction function α.
Let Dα be the minimal DFA equivalent to Aα. We ask whether Dα is smaller than
A. If so, we say that α is helpful.

We show that, surprisingly, abstractions are not always helpful. In fact, we
show a family of DFAs and abstraction functions for them for which the abstract
automata are exponentially bigger than the original automata. We also study the
problem of deciding whether a given abstraction function is helpful for a given
DFA and show that it is PSPACE-complete.

2. Preliminaries

Automata. A nondeterministic finite automaton (NFA, for short) is a tuple A =
〈Σ, Q, δ,Q0, F 〉, where Σ is an alphabet, Q is a set of states, δ : Q× Σ→ 2Q is a
transition function,Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of accepting
states. We refer to |Q| as the size of |A|, and we assume that it is complete: every
state has an outgoing transition. We say that A is deterministic if |Q0| = 1 and for
every q ∈ Q and σ ∈ Σ, we have |δ(q, σ)| ≤ 1. For q, q′ ∈ Q and σ ∈ Σ with
q′ ∈ δ(q, σ), we say that q′ is a σ-successor of q.

2

A run of A on a word u = u1, . . . , un ∈ Σ∗ is a sequence of states r =
r0, r1, . . . , rn such that r0 ∈ Q0 and for every 0 ≤ i < n we have ri+1 ∈
δ(ri, ui+1). The run r is accepting iff rn ∈ F . Since A is non-deterministic,
there can be more than one run on a single word. A word w ∈ Σ∗ is accepted by
A if A has an accepting run on w. The language of A, denoted L(A), is the set of
words in Σ∗ that A accepts.

Abstracting Automata. An abstraction function for an NFA A is a function α :
Q → A, for a set A, which we assume to be smaller than Q. We refer to Q as
the concrete states and to A as the set of abstract states. The function α induces
a partition of Q, where two states q and q′ are in the same set if α(q) = α(q′).
We sometimes refer to abstract states as sets of concrete states. In particular, for
a concrete state c ∈ Q and an abstract state a ∈ A, we use the notation c ∈ a to
indicate that α(c) = a.

Consider an NFA A and an abstraction function α. The abstraction of A ac-
cording to α is the NFA A[α] = 〈Σ, A, δα, A0, Fα〉, where A0 = {α(q0) : q0 ∈
Q0}, Fα = {a ∈ A : a ∩ F 6= ∅}, and δα is defined as follows: Consider ab-
stract states a, a′ ∈ A and a letter σ ∈ Σ. We define δα : A × Σ → 2A so that
a′ ∈ δα(a, σ) iff there exists c ∈ a and c′ ∈ a′ such that c′ ∈ δ(c, σ). Note that
A[α] over-approximates A in the sense that each accepting run r0, r1, . . . , rn of
A on a word w induces an accepting run α(r0), α(r1), . . . , α(rn) of A[α] on w.
Thus, L(A) ⊆ L(A[α]).

Abstraction Helps. Consider a DFA A and an abstraction function for it α. It
is easy to see that even though A is deterministic, the automaton A[α] may be
nondeterministic. For example, if c and c′ are states of A and α is an abstraction
function with α(c) = α(c′) yet α(δ(c, σ)) 6= α(δ(c′, σ)), then the abstract state
α(c) has at least two σ-successors. Since DFAs are as expressive as NFAs, there
is a DFA D such that L(D) = L(A[α]). However, D may be exponentially bigger
than A[α]. Moreover, even the minimal DFA that recognizes L(A[α]) may be
big. We say that an abstraction is helpful if the size of the minimal DFA D′ with
L(D′) = L(A[α]) is at most the size of the original automaton A.

Remark 1. Recall that A[α] over-approximates A. Researchers have also studied
abstractions that under-approximate the original automaton. This type of abstrac-
tion preserves determinism and is thus always helpful in the sense studied here.

3. Abstraction is Not Always Helpful

Consider an NFAA and an abstraction function α. As seen above, the automa-
ton A[α] may be nondeterministic even when A is a DFA. In this section we study

3

the size of the minimal DFA that recognizes L(A[α]). We show that it may actually
be exponentially larger than A. Formally, we have the following.

Theorem 1. Abstraction of DFAs may involve an exponential blow-up.

Proof. We describe a family A1,A2, . . . of DFAs and corresponding abstraction
functions α1, α2, . . ., such that An has O(n) states whereas the smallest DFA that
recognizes L(An[αn]) is exponential in n.

The DFA An (see Figure 1) consists of n chains, each having 5 states. Its
alphabet is {1, . . . , n,#, $}. The abstraction αn maps the first state in all chains
to one state and maps all other states to themselves. Thus, as shown in the figure,
there is an abstract transition from the initial abstract state to itself. Clearly, the
language L(An[αn]) is

Ln = {$∗#x1x2 . . . xm#x : xi ∈ {1, .., n} for all 1 ≤ i ≤ m, and x ∈ {x1, .., xm}}.

We claim that every DFA that recognizes Ln has at least 2n states. Indeed,
when a DFA forLn reads the second #, it has to remember the subset of {1, . . . , n}
that was read so far. Intuitively, while in Ai the number of leading $’s in the word
direct the automaton as to which letter it should expect at the end of the word, the
abstraction hides this number, forcing the abstract automaton to guess it, or, in the
deterministic setting, to remember all letters read so far.

2, 3, . . . , n 1, 2, . . . , n

1

1, 3, . . . , n 1, 2, . . . , n

2

...1, 2, . . . , n− 1 1, 2, . . . , n

n

1

2

n

$

...
$

$

Figure 1: A description of the automata An and An[αn].

4. Deciding Whether Abstraction Helps

In this section we show that given a DFA and an abstraction function for it, the
problem of deciding whether the abstraction is helpful is PSPACE-complete.

Formally, we define the decision problem AH (for Abstraction Helps), as fol-
lows.

4

Definition 1. Consider a DFA A with state space Q, and an abstraction function
α : Q → A, where A is a set of abstract states. Let D be the minimal DFA such
that L(D) = L(A[α]). An input 〈A, α〉 is in AH iff the number of states in D is at
most that in A.

We start with the upper bound.

Theorem 2. The problem AH is in PSPACE.

Proof. Given A and α, let D[α] be the DFA obtained by determining A[α]. The
algorithm has to construct D[α], minimize it, and compare the size of the obtained
minimal automaton with the size ofA. Since the size ofD[α] is at most exponential
in the size of A, and it can be constructed and minimized on-the-fly, this can be
done in PSPACE.

In order to prove that AH is PSPACE-hard, we show a reduction from the
decision problem ALL-Long-NFA: For an NFA A with n states, we say that A ∈
ALL-Long-NFA iff for all w ∈ Σ∗, if |w| ≥ n then w ∈ L(A). The problem is
similar to ALL-NFA – the problem of deciding whether a given NFA A is such
that L(A) = Σ∗. The latter is known to be PSPACE-hard and it is easy to reduce it
to ALL-Long-NFA.

Theorem 3. The problem AH is PSPACE-hard.

Proof. We describe a reduction from ALL-Long-NFA to AH. Given an NFA B, we
construct a DFA C and an abstraction function α such that B is in ALL-Long-NFA
iff 〈C, α〉 is in AH. Assume that B has n states, where we assume n ≥ 3. We
define C and α so that C[α] simulates runs of three automata: the NFAAn−2[αn−2],
described in Theorem 1, the NFA B, and an automaton CNTn (for “count”) that
accepts words of length at least n. Let Σ1 be the alphabet of An−2 and Σ2 be
the alphabet of B. Then, the alphabet of C and CNTn is Σ1 × Σ2. As detailed
in the sequel, we construct C and α so that C has at least n + 1 states, and C[α]
accepts a word in Σ∗ iff its length is at least n and either its projection on Σ1 is in
An−2[αn−2] or its projection on Σ2 is in L(B).

We first show that if we construct C and α as above, then B ∈ ALL-Long-NFA
iff 〈C, α〉 ∈ AH. First, recall that if B ∈ ALL-Long-NFA, then B accepts all words
of length at least n. Thus, by our construction, the language L(C[α]) is the set of
words that are of length at least n. Since L(C[α]) can be recognized by a DFA with
n + 1 states whereas C has at least n + 1 states, we conclude that 〈C, α〉 ∈ AH.
For the other direction, if B /∈ ALL-Long-NFA, there is a word of length at least
n that B does not accept. Then, a DFA that recognizes L(C[α]) must, intuitively,
distinguish between words in L(An−2[α]) = Ln−2 and words that are not in Ln−2.

5

Since a DFA that recognizes Ln−2 has at least 2n−2 states, a DFA that recognizes
L(C[α]) also has at least 2n−2 states. Thus, 〈C, α〉 /∈ AH.

We continue to describe and prove the reduction formally. Recall that the input
to ALL-Long-NFA is an NFA B and the input to the AH problem is a DFA C
and an abstraction function α for it. We first replace the NFA B by a DFA B′,
which would be a component in the DFA C. We do this by splitting states that
have multiple outgoing transitions labeled with the same letter. Note that this naive
determinization process changes the language of B; thus L(B) 6= L(B′). This is
still fine because we are going to define the abstraction function to map the different
copies of the same state to the same abstract state, so C[α] does simulate runs of
the original automaton B.

We proceed to define the automata in detail. Let B = 〈Σ2, QB, δB, q
B
0 , FB〉 (for

technical convenience, we assume that B has a single initial state). We construct
the DFA B′ = 〈Σ2, QB′ , δB′ , q

B′
0 , FB′〉, where QB′ , δB′ , qB

′
0 , and FB′ are defined as

follows:

• For a state q ∈ QB, we define the non-determinicity degree of q, denoted dq,
as maxσ∈Σ2 |δB(q, σ)|. Then, QB′ = {〈q, i〉 : q ∈ QB, i ∈ {1, . . . , dq}}.
Note that |QB| ≤ |QB′ | ≤ |QB|2.

• Consider a state q ∈ QB and a letter σ ∈ Σ2. Let δB(q, σ) = {q1, . . . , qk},
where the order of the qi’s is chosen arbitrarily. In B′, the state q induces
the k states 〈q, 1〉, . . . , 〈q, k〉. Since k ≤ dq, it is possible to define, for
1 ≤ i ≤ k, the transition δB′(〈q, i〉, σ) = 〈qi, 1〉.

• qB′0 = 〈qB0 , 1〉.

• FB′ = {〈q, i〉 : q ∈ FB, i ∈ {1, . . . , dq}}.

B
q0 q2

q1

q3

a

a a
b

a a B′
a0

a2

a1

a3

a
b

a
a

a

a

Figure 2: An example of constructing, given an NFA B, a DFA B′ and an abstraction function α2.

Next, we define the abstraction function α2 : QB′ → QB by α2(〈q, i〉) = q. It
is easy to see that the abstracting automaton B′[α2] coincides with the NFA B.

For example, consider the automata in Figure 2. The left automaton is the
original NFA B, the right automaton is the DFA B′, and the dashed states in it
represent the abstraction function α2. Consider the state q0 in B. Since dq0 = 2,

6

we split q0 into two states. We define δB′(〈q0, 1〉, b) = 〈q3, 1〉 and δB′(〈q0, 2〉, a) =
〈q2, 1〉. Since α2(〈q0, 1〉) = α2(〈q0, 2〉) = a0, we have that a2 is a-successor of a0

and a3 is a b-successor of a0, as in the original automaton.
Recall that n = |QB|. Let An−2 = 〈Σ1, QAn−2 , δAn−2 , q

An−2

0 , FAn−2〉 be the
DFA described in the proof of Theorem 1, and let αn−2 : QAn−2 → Q′An−2

be the
abstraction function used there. Let Σ = Σ1 × Σ2. We define the DFA CNTn =
〈Σ, QCNTn , δCNTn , 0, {n}〉, where QCNTn = {0, . . . , n}, for 0 ≤ i ≤ n − 1 and
σ ∈ Σ, we have δCNTn(i, σ) = i+ 1, and δCNTn(n, σ) = n. It is easy to see that
L(CNTn) = {w : |w| ≥ n}.

We are now ready to define the DFA C and the abstraction function α for
it. We define C = 〈Σ, QAn−2 × QB′ × QCNTn , δC , 〈q

An−2

0 , qB
′

0 , 0〉, FC〉, where
FC = (QAn−2 × FB′ × {n}) ∪ (FAn−2 × QB′ × {n}), and δC is defined as
follows. For 〈σ1, σ2〉 ∈ Σ and 〈a, b, i〉 ∈ QAn−2 × QB′ × QCNTn , we define
δC(〈a, b, i〉, 〈σ1, σ2〉) = 〈δAn−2(a, σ1), δB′(b, σ2), δCNTn(i, 〈σ1, σ2〉)〉. Note that
since B′, An−2, and CNTn are deterministic, so is C. Note also that C has at least
n+ 1 states, as required.

We define the abstraction function α : (QAn−2 ×QB′ ×QCNTn)→ (Q′An−2
×

QB ×QCNTn) by α(〈a, b, i〉) = 〈αn−2(a), α2(b), i〉.
Consider a word w ∈ (Σ1 × Σ2)∗ = Σ∗. Let w1 ∈ Σ∗1 and w2 ∈ Σ∗2 be w’s

projection on Σ1 and Σ2. We prove that w ∈ L(C[α]) iff w ∈ L(CNTn), and
w1 ∈ L(An−2[αn−2]) or w2 ∈ L(B).

Consider a run r of C[α] on w. Let r1, r2, and r3 be the projections of r on
Q′An−2

, QB, and QCNTn , respectively. We claim that r is a legal run of C[α] on w
iff r1, r2, and r3 are legal runs on the words w1, w2, and w, respectively. That is,
C[α] simulates runs of An−2[αn−2], B, and CNTn.

We start with the initial states. By the definition of C[α], its initial state is
α(〈qAn−2

0 , qB
′

0 , 0〉) = 〈αn−2(q
An−2

0), α2(qB
′

0), 0〉. The statesαn−2(q
An−2

0), α2(qB
′

0),
and 0 are initial in An−2[αn−2], B, and CNTn, respectively.

Consider two abstract states aC[α] = 〈a, b, i〉 and a′C[α] = 〈a′, b′, i′〉 in C[α]

and a letter σ = 〈σ1, σ2〉 ∈ Σ. We claim that a′C[α] is a σ-successor of aC[α] iff
a′ is a σ1-successor of a in An−2[αn−2], b′ is a σ2-successor of b in B, and i′ is a
σ-successor of i in CNTn.

Recall that a′C[α] is a σ-successor of aC[α] iff there are concrete states c ∈ aC[α]

and c′ ∈ a′C[α] such that c′ is a σ-successor of c. By the definition of α, we have
that c = 〈ca, cb, i〉 and c = 〈c′a, c′b, i′〉, where ca ∈ a, cb ∈ b, c′a ∈ a′ and c′b ∈ b′.
By the definition of the transition function δC , we have that c′ is a σ-successor of
c iff c′a is a σ1-successor of ca, c′b is a σ2-successor of cb, and i′ is a σ-successor
of i. Thus, αn−2(c′a) = a′ is a σ1-successor of αn−2(ca) = a, α2(c′b) = b′ is a
σ2-successor of α2(cb) = b, and i′ is a σ-successor of i, and we are done.

7

Consider an index 0 ≤ j ≤ k, and let rj = 〈a, b, i〉 and rj+1 = 〈a′, b′, i′〉.
By the above, rj+1 is a σj+1-successor of rj iff a′ is a σ1

j+1-successor of a in
An−2[αn−2], b′ is a σ2

j+1-successor of b in B, and i′ is a σj+1-successor of i in
CNTn. We conclude that r is a legal run of C[α] on w iff r1, r2, and r3 are legal
runs of An−2[αn−2], B, and CNTn on w1, w2, and w, respectively.

Finally, we continue to prove that r is accepting in C[α] iff r3 is accepting in
CNTn, and r1 is accepting in An−2[αn−2] or r2 is accepting in B. We prove the
first direction and the second is dual.

By definition, F ′C = {α(q) : q ∈ FC}. We claim that F ′C is a union of two sets:
F ′1 = Q′An−2

×FB ×{n} and F ′2 = F ′An−2
×QB ×{n}. Recall that FC is a union

of two sets of states: F1 = QAn−2 × FB′ × {n} and F2 = FAn−2 × QB′ × {n}.
Since a state 〈a, i〉 ∈ FB′ iff a ∈ FB, it holds that α(F1) = F ′1. Since the accepting
states of An−2 are mapped to themselves, it holds that α(F2) = F ′2.

If r is accepting, its last state is in F ′1 or F ′2. In both cases, r3 is accepting since
it ends in the state n. In the first case, r1 is accepting since it ends in a state in
F ′An−2

, and in the second case r3 is accepting since it ends in FB, and we are done.
To conclude the proof of the theorem, we claim that B ∈ ALL-Long-NFA iff

〈C, α〉 ∈ AH. Recall that an automaton B of size n is in ALL-Long-NFA iff for
every word w ∈ Σ∗2, if |w| ≥ n then w ∈ L(B). Also, recall that 〈C, α〉 ∈ AH iff
the smallest DFA that accepts L(C[α]) is at most the size of C.

For the first direction, assume that B ∈ ALL-Long-NFA. We claim that then,
L(C[α]) = {w ∈ Σ∗ : |w| ≥ n}. Consider a word w ∈ Σ∗ and let w1 be its
projection on Σ1. If |w| < n, then w /∈ L(CNTn) and thus, by the simulation
proven above, we have that w /∈ L(C[α]). If |w| ≥ n, then w ∈ L(CNTn). Since
B ∈ ALL-Long-NFA, we know that w1 ∈ L(B). Thus, by the simulation proven
above, w ∈ L(C[α]), and we are done. To conclude this direction, since L(C[α]) is
the set of words over Σ that are longer than n, there is a deterministic automaton
that accepts L(C[α]) with n+ 1 states. Namely, the automaton CNTn, which has
n+ 1 states. Since the size of C is at least n+ 1, we are done.

For the second direction, assume that B /∈ ALL-Long-NFA. We claim that
in this case there is no DFA that has less than 2n−2 states that recognizes L(C[α]).
Assume by way of contradiction thatD is such a DFA. Since B /∈ ALL-Long-NFA,
there is a word w2 = w2

1 . . . w
2
m ∈ Σ∗2 such that |w2| = m ≥ n and w2 /∈ L(B).

Consider the words over Σ1 that are of length m− 2, have a (possibly empty)
prefix of $’s, followed by the letter #, followed by a string that contains letters from
a subset of {1, . . . , n− 2}. Denote this set of words byWn−2. For example, if n =
5 and m = 6, then $#12, $$#1,#123 ∈ Wn−2. Since m > n− 2, all subsets
of {1, . . . , n− 2} appear in Wn−2, and since every word in Wn−2 corresponds to
a single subset of {1, . . . , n− 2}, we have |Wn−2| = 2n−2. Consider the runs of

8

D on words whose projection on Σ1 is in Wn−2. Since there are less than 2n−2

states in D, there are two different such words for which the run of D reaches the
same state. Denote their projection on Σ1 by u and v, and their matching subsets
of {1, . . . , n− 2}, by U and V , respectively.

As in similar proofs that are based on the language An−2[αn−2], we can use
a letter in the symmetric difference of U and V in order to fool D and get a con-
tradiction. Formally, since U 6= V there is, without loss of generality, a letter
i ∈ U \ V . Consider the two words: w1 = (u#i) ⊗ w2 and w′1 = (v#i) ⊗ w2,
where for a = a1 . . . ak ∈ Σk

1 and b = b1 . . . bk ∈ Σk
2 we define a ⊗ b =

〈a1, b1〉, . . . , 〈ak, bk〉 ∈ Σk. Note that since the length w2 is m, and the lengths
of u and v is m− 2, w1 and w′1 are well defined.

Clearly, w1 ∈ L(C[α]), as its length is m ≥ n and, since i ∈ U , its projection
on Σ1, namely u#i, is in L(An−2[αn−2]). However, w′1 /∈ L(C[α]). Indeed,
since i /∈ V , its projection on Σ1, namely v#i, is not in L(An−2[αn−2]), and its
projection on Σ2, namely w2, is not in L(B). On the other hand, D accepts w1 iff
it accepts w′1, contradicting the fact L(D) = L(C[α]).

We conclude that every deterministic automaton that recognizes L(C[α]) must
have at least 2n−2 states. Since the size of C is at most n2 · 5(n− 2) · (n+ 1), we
are done.

References

[1] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.

[2] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided
abstraction refinement for symbolic model checking, Journal of the ACM 50
(2003) 752–794.

[3] A. Pnueli, R. Rosner, On the synthesis of a reactive module, in: Proc. 16th
ACM Symp. on Principles of Programming Languages, pp. 179–190.

[4] M. Vardi, Automatic verification of probabilistic concurrent finite-state pro-
grams, in: Proc. 26th IEEE Symp. on Foundations of Computer Science, pp.
327–338.

[5] O. Kupferman, Y. Lustig, What triggers a behavior?, in: Proc. 7th Int. Conf. on
Formal Methods in Computer-Aided Design, IEEE Computer Society, 2007,
pp. 146–153.

[6] O. Kupferman, M. Vardi, Memoryful branching-time logics, in: Proc. 21st
IEEE Symp. on Logic in Computer Science, pp. 265–274.

9

	Introduction
	Preliminaries
	Abstraction is Not Always Helpful
	Deciding Whether Abstraction Helps

