
The Unfortunate-Flow Problem1

Orna Kupferman2

School of Computer Science and Engineering, The Hebrew University, Israel3

Gal Vardi4

School of Computer Science and Engineering, The Hebrew University, Israel5

Abstract6

In the traditional maximum-flow problem, the goal is to transfer maximum flow in a network by directing,7

in each vertex in the network, incoming flow into outgoing edges. The problem is one of the most8

fundamental problems in TCS, with application in numerous domains. The fact a maximal-flow algorithm9

directs the flow in all the vertices of the network corresponds to a setting in which the authority has control10

in all vertices. Many applications in which the maximal-flow problem is applied involve an adversarial11

setting, where the authority does not have such a control.12

We introduce and study the unfortunate flow problem, which studies the flow that is guaranteed to13

reach the target when the edges that leave the source are saturated, yet the most unfortunate decisions14

are taken in the vertices. When the incoming flow to a vertex is greater than the outgoing capacity, flow15

is lost. The problem models evacuation scenarios where traffic is stuck due to jams in junctions and16

communication networks where packets are dropped in overloaded routers.17

We study the theoretical properties of unfortunate flows, show that the unfortunate-flow problem is18

co-NP-complete and point to polynomial fragments. We introduce and study interesting variants of the19

problem: integral unfortunate flow, where the flow along edges must be integral, controlled unfortunate20

flow, where the edges from the source need not be saturated and may be controlled, and no-loss controlled21

unfortunate flow, where the controlled flow must not be lost.22

2012 ACM Subject Classification Mathematics of computing→ Graph theory→ Network flows23

Keywords and phrases Flow Network, Graph Algorithms, Games24

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.12525

1 Introduction26

A flow network is a directed graph in which each edge has a capacity, bounding the amount of flow27

that can travel through it. The amount of flow that enters a vertex equals the amount of flow that28

leaves it, unless the vertex is a source, which has only outgoing flow, or a target, which has only29

incoming flow. The fundamental maximum-flow problem gets as input a flow network and searches30

for a maximal flow from the source to the target [4, 10]. The problem was first formulated and31

solved in the 1950’s [8, 9]. It has attracted much research on improved algorithms, variants, and32

applications [6, 5, 11, 15].33

The maximum-flow problem can be applied in many settings in which something travels along a34

network. This covers numerous application domains, including traffic in road or rail systems, fluids35

in pipes, packets in a communication network, and many more [1]. Less obvious applications involve36

flow networks that are constructed in order to model settings with an abstract network, as in the37

case of scheduling with constraints [1]. In addition, several classical graph-theory problems can be38

reduced to the maximum-flow problem. This includes the problem of finding a maximum bipartite39

matching, minimum path cover, maximum edge-disjoint or vertex-disjoint path, and many more40

[4, 1]. Variants of the maximum-flow problem can accommodate further settings, like circulation41

problems [18], multiple source and target vertices, costs for unit flows, multiple commodities, and42

more [7].43

EA
T

C
S

© Orna Kupferman and Gal Vardi;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Don Sannella; Article No. 125; pp. 125:1–125:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.125
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

125:2 The Unfortunate-Flow Problem

Studies of flow networks so far assume that the vertices in the network are controlled by a central44

authority. Indeed, maximum-flow algorithms directs the flow in all vertices of the network. In many45

applications of flow networks, however, vertices of the network may not be controlled. Thus, every46

vertex may make autonomous and independent decisions regarding how to direct incoming flow to47

outgoing edges.48

Consider, for example, a road network of a city, where the source s models the center of the city49

and the target t models the area outside the city. In order to evacuate the center of the city, drivers50

navigate from s to t. In each vertex, every incoming driver chooses an arbitrary outgoing edge with51

free capacity. If the outgoing capacity from a vertex is less than the incoming flow, then a traffic jam52

occurs, and flow is lost. As another example, consider a communication network in which packets53

are sent from a source router s and should reach a target router t. Whenever an internal router54

receives a packet it forwards it to an arbitrary neighbor router. If the outgoing capacity from a vertex55

is less than the incoming flow, then packets are dropped, and flow is lost.56

In both examples, we want to find the flow that is guaranteed to reach the target in the worst57

scenario. We now formalize this intuition. Let G = 〈V,E, c, s, t〉 be a flow network, where 〈V,E〉58

is a directed graph, c : E → IN assigns a capacity for each edge, and s, t are the source and target59

vertices. A preflow is a function f : E → IR that assigns to each edge e ∈ E, a flow in [0, c(e)] such60

that the incoming flow to each vertex is greater or equal to its outgoing flow. A saturating preflow61

is a preflow in which all outgoing edges from s are saturated, and for every vertex v ∈ V \ {s, t},62

the outgoing flow from v is the minimum between the incoming flow to v and the outgoing capacity63

from v. That is, in a saturating preflow, flow loss occurs in a vertex v if and only if the incoming64

flow to v is greater than the capacity of the edges outgoing from v. The unfortunate flow value of65

G is the minimal flow that reaches t in a saturating preflow. Thus, it is the flow that is guaranteed66

to reach t when the edges that leave s are saturated, yet the most unfortunate routing decisions are67

taken in junctions. In the unfortunate-flow problem, we want to find the unfortunate flow value of G.68

I Example 1. Consider the flow network G appearing in Figure 1 (a). A maximum flow in G has69

value 8, attained, for example, with the preflow in (b). A saturating preflow in G appears in (c), and70

has value 5. While the edges leaving s are saturated, the routing of 7 flow units to the vertex at the71

bottom leads to a loss of 4 flow units in this vertex. J72

s t
9

5

5

2

5

3

1

s t
8/9

5/5

3/5

0/2

5/5

3/3

1

s t
9/9

4/5

5/5

2/2

2/5

3/3

1

(a) (b) (c)

Figure 1 A flow network G, and preflows that attain its maximum-flow and unfortunate-flow values.

We introduce the unfortunate-flow problem, study the theoretical properties of saturating pre-73

flows, and study the complexity of the problem. We also introduce and study interesting variants74

of the problem: integral unfortunate flow, where the flow along edges must be integral, controlled75

unfortunate flow, where the edges from the source need not be saturated and may be controlled, and76

no-loss controlled unfortunate flow, where the controlled flow must avoid loss.77

Before we describe our contribution, let us review flow games and their connection to our contri-78

bution here. In flow games [14], the vertices of a flow network are partitioned between two players.79

Each player controls how incoming flow is partitioned among edges outgoing from her vertices.80

Then, one player aims at maximizing the flow that reaches t and the other player aims at minimizing81

it. It is shown in [14] that when the players are restricted to integral strategies, thus when the flows82

along the edges are integers, then the problem of finding the maximal flow that the maximizer player83

O. Kupferman, G. Vardi 125:3

can guarantee is ΣP2 -complete. The restriction to integral strategies is crucial. Indeed, unlike the84

case of the traditional maximum-flow problem, non-integral strategies may be better than integral85

ones. In fact, the problem of finding a maximal flow for the maximizer in a setting with non-integral86

strategies was left open in [14]. The unfortunate-flow problem can be viewed as a special case of87

flow games, in which the maximizer player controls no vertex.88

We start with the complexity of the unfortunate-flow problem. We consider the decision-problem89

variant, where we are given a threshold γ > 0 and decide whether the unfortunate flow value is at90

least γ. In the case of maximal flow, the problem can be solved in polynomial time [9], and so91

are many variants of it. We first show that, quite surprisingly, the unfortunate-flow problem is co-92

NP-hard and that it is NP-hard to approximate within any multiplicative factor. We then point to a93

polynomial fragment. Intuitively, the fragment restricts the number of vertices in which flow may be94

lost, which we pinpoint as the computational bottleneck. Formally, we say that a vertex is a funnel95

if its incoming capacity is greater than its outgoing capacity. We show that the unfortunate-flow96

problem can be solved in time O(2|H| · (|E|2log|V | + |E||V |log2|V |)), where H ⊆ V is the set97

of funnels in G. In particular, the problem can be solved in strongly-polynomial time if the network98

has a logarithmic number of funnels. Our solution reduces the problem to a sequence of min-cost99

max-flow problems [1], implying the desirable integral flow property: the unfortunate-flow value can100

always be attained by an integral flow. The integral flow property implies a matching co-NP upper101

bound, thus the unfortunate-flow problem is co-NP-complete.102

In some scenarios, we have some initial control on the flow. For example, in evacuation scen-103

arios, as in the example of traffic leaving the city, police may direct cars at the center of the city, but104

has no control on them once they leave the center. Likewise, when entering or evacuating stadiums,105

police may direct the crowd to different gates, but has no control on how people proceed once they106

pass the gates [13]. We study the controlled unfortunate-flow problem, where the outgoing flow from107

s is bounded and controlled. Formally, there is an integer α ≥ 0 such that the total outgoing flow108

from s is bounded by α, and it is possible to control how this outgoing flow is partitioned among109

the edges that leave s. Our goal is to control this flow so that the flow that reaches t in the most110

unfortunate case is maximized. 1 We show that the integral-flow property no longer holds in this111

setting. Thus, there are networks in which an optimal strategy is to partition the α units of flow that112

leave s into non-integers. A troublesome implication of this is that an algorithm that guesses the113

strategy has to go over unboundedly many possibilities. This challenge is what has left flow games114

undecidable [14]. We show that we can still reduce the controlled unfortunate-flow problem into the115

second alternation level of the theory of real numbers under addition and order [17]. The reduction116

implies membership in ΣP2 , and we show a matching lower bound. Thus, the controlled unfortunate-117

flow problem is ΣP2 -complete. We also study a generalization of the problem, where control can be118

placed in a subset of the vertices.2119

Finally, in some scenarios it is crucial for flow not to get lost. For example, in evacuation120

scenarios, we may prefer to give up an evacuation attempt under a loss risk, and in communication121

networks, we may tolerate low traffic and not tolerate dropping of packets. We say that a flow122

network G is safe if all saturating preflows have no loss. For example, networks with no funnels are123

clearly safe. It is easy to see that G is safe if its unfortunate flow value is equal to the maximal flow124

the source can generate, thus to the capacity of the edges outgoing from the source. This gives a125

co-NP algorithm for deciding the safety of a network. We show one can do better and reduce the126

1 We note that this is different from work done in evacuation planning, where the goal is to find routes and schedules
of evacuees (for a survey, see [16]).

2 Not to confuse with the problem of finding critical nodes for firefighters [2, 3]. While there the firefighters block
the fire, in our setting they direct the evacuation. Thus, there, the goal is to block undesired vulnerabilities in the
network, and here the goal is maximize desired traffic.

ICALP 2018

125:4 The Unfortunate-Flow Problem

safety problem to a maximum weighted flow problem, which can be solved in polynomial time. We127

then turn to study the no-loss controlled unfortunate-flow problem, where we control the flow in128

edges from s, and we want to maximize the flow to t but in a way that flow loss is impossible. We129

show that the problem is NP-complete.130

Due to space limitations, some examples and proofs are omitted and can be found in the full131

version, in the authors’ URLs.132

2 Preliminaries133

A flow network is G = 〈V,E, c, s, t〉, where V is a set of vertices, E ⊆ V × V is a set of directed134

edges, c : E → IN is a capacity function, and s, t ∈ V are source and target vertices. The capacity135

function assigns to each edge e ∈ E a nonnegative capacity c(e) ≥ 0. We define the size of G,136

denoted |G| by |V | + |E| + |c|, where |c| is the size required for encoding the capacity function c,137

thus assuming the capacities are given in binary. For a vertex v ∈ V , let E�v and Ev� be the sets138

of incoming and outgoing edges to and from v, respectively. That is, E�v = (V × {v}) ∩ E and139

Ev� = ({v}×V)∩E. A sink is a vertex v with no outgoing edges, thus Ev� = ∅. We assume that140

t is a sink, it is reachable from s, andE�s = ∅. We also assume that 〈V,E〉 does not contain parallel141

edges and self loops. For a vertex v ∈ V , let c(�v) =
∑
e∈E�v c(e) and c(v�) =

∑
e∈Ev� c(e) be142

the sums of capacities of edges that enter and leave v, respectively. We say that a vertex v ∈ V is a143

funnel if c(v�) < c(�v). We use Cs to denote the total capacity of edges outgoing from the source,144

thus Cs = c(s�).145

A preflow in G is a function f : E → IR that satisfies the following two properties:146

For every e ∈ E, we have that 0 ≤ f(e) ≤ c(e).147

For every vertex v ∈ V \ {s}, the incoming flow to v is greater or equal to its outgoing flow.148

Formally,
∑
e∈E�v f(e) ≥

∑
e∈Ev� f(e).149

For a preflow f and an edge e ∈ E, we say that e is saturated if f(e) = c(e). We extend f to150

vertices: for every vertex v ∈ V , let f(�v) =
∑
e∈E�v f(e) and f(v�) =

∑
e∈Ev� f(e). For a151

vertex v ∈ V \ {s, t}, the flow loss of f in v, denoted lf (v), is the quantity that enters v and does152

not leave v. Formally, lf (v) = f(�v) − f(v�). Then, Lf =
∑
v∈V \{s,t} lf (v) is the flow loss of153

f . The value of a preflow f , denoted val(f), is f(�t); that is, the incoming flow to t. Note that154

val(f) = f(s�)−Lf . A flow is a preflow f with Lf = 0. A maximum flow is a flow with a maximal155

value.156

A saturating preflow is a preflow in which all edge in Es� are saturated, and for every v ∈157

V \ {s, t}, we have f(v�) = min{f(�v), c(v�)}. That is, in a saturating preflow, flow loss may158

occur in a vertex v only if the incoming flow to v is bigger than the capacities of the edges outgoing159

from v.160

The unfortunate value of a flow network G, denoted uval(G), is the minimal value of a saturating161

preflow in G. That is, it is the value that is guaranteed to reach t when the edges that leave s are162

saturated, yet the most unfortunate routing decisions are taken in junctions. An unfortunate saturat-163

ing preflow is a saturating preflow that attains the network’s unfortunate value. The unfortunate flow164

problem (UF problem, in short) is to decide, given a flow network G and a threshold γ > 0, whether165

uval(G) ≥ γ.166

3 The Complexity of the Unfortunate-Flow Problem167

In this section we study the complexity of the unfortunate-flow problem. We start with bad news and168

show that the problem is co-NP-hard, and in fact is NP-hard to approximate within any multiplicative169

O. Kupferman, G. Vardi 125:5

factor. A more precise analysis of the complexity then enables us to point to a polynomial fragment170

and to prove an integral-flow property, which implies a matching co-NP upper bound.171

I Theorem 2. The UF problem is co-NP-hard.172

Proof. We show a reduction from CNF-SAT to
the complement problem, namely deciding whether
uval(G) < γ for some γ ∈ IN. Let ψ = C1∧ . . .∧Cm
be a CNF formula over the variables x1 . . . xn. We
assume that every literal in x1, . . . , xn, x̄1, . . . , x̄n ap-
pears in exactly k clauses inψ. Indeed, every CNF for-
mula can be converted to such a formula in polynomial
time and with a polynomial blowup. We construct a
flow network G = 〈V,E, c, s, t〉 as demonstrated in
Figure 2. Let Z = {x1, . . . , xn, x̄1, . . . , x̄n}. For a
literal z ∈ Z and a clause Ci, the network G contains
an edge 〈z, Ci〉 iff Ci contains z. Thus, each vertex
in Z has exactly k outgoing edges. The capacities of
these edges are 1. Each vertex Ci has two outgoing
edges – to t and to the sink u. In Appendix A.1, we
prove that ψ is satisfiable iff uval(G) < kn − m +
1. J

Figure 2: The flow network G.
The capacities of the edges entering
C1, . . . , Cm are 1.

173

By a simple manipulation of the network G constructed in the reduction in the proof of The-174

orem 2, we can obtain, given a CNF-SAT formula ψ, a network G′ such that if ψ is satisfiable, then175

uval(G′) = 0, and otherwise, uval(G′) ≥ 1. Hence the following (a detailed proof can be found in176

Appendix A.2).177

I Theorem 3. It is NP-hard to approximate the UF problem within any multiplicative factor.178

Following the hardness of the problem, we turn to analyze its complexity in terms of the different179

parameters of the flow network. Our analysis points to a class of networks for which the UF problem180

can be solved in polynomial time.181

Consider a flow network G = 〈V,E, c, s, t〉. Let H ⊆ V \ {s, t} be the set of funnels in G.182

Thus, H = {v : c(�v) > c(v�)}. For L ⊆ V , let FL be a set of saturating preflows in which183

edges outgoing from vertices in L are saturated, and flow loss may occur only in vertices in L. Thus,184

f ∈ FL iff f is a saturating preflow in G such that for every u ∈ L, we have f(u�) = c(u�), and185

for every u ∈ V \ L, we have lf (u) = 0. By the definition of a saturating flow, flow loss in G may186

occur only in vertices in H . Accordingly, we have the following.187

I Lemma 4.
⋃
L⊆H FL contains all the saturating preflows in G.188

By Lemma 4, a search for the unfortunate value of G can be restricted to preflows in FL, for189

L ⊆ H . Accordingly, the UF problem can be solved by solving 2|H| optimization problems, solv-190

able by either linear programming (Theorem 5) or a reduction to the min-cost max-flow problem191

(Theorem 6).192

I Theorem 5. Consider a flow network G and let H be the set of funnels in G. The UF problem193

for G can be solved in time 2|H| · poly(|G|).194

Proof. The algorithm goes over all the subsets of H and for each subset L ⊆ H , finds a minimum-195

value preflow in FL. The latter is done by linear programming. Given L, the linear program for FL196

ICALP 2018

125:6 The Unfortunate-Flow Problem

is described below. The variable xe, for every e ∈ E, stands for f(e). The program is of size linear197

in |G|, thus the overall complexity is 2|H| · poly(|G|).198

minimize
∑
e∈E�t xe

subject to 0 ≤ xe ≤ c(e) for each e ∈ E
xe = c(e) for each u ∈ L ∪ {s}, e ∈ Eu�∑
e∈Eu� xe ≤

∑
e∈E�u xe for each u ∈ L∑

e∈Eu� xe =
∑
e∈E�u xe for each u 6∈ L ∪ {s, t}

199

J200

The complexity of solving each linear program in the algorithm described in the proof of The-201

orem 5 is polynomial in |G|, but not strongly polynomial. Thus its running time depends (polyno-202

mially) on the number of bits required for representing the capacities in G. We now describe an203

alternative algorithm whose complexity depends only on the number of vertices and edges in the204

network.205

Our algorithm reduces the problem of finding a minimal-value preflow in FL to the min-cost206

max-flow problem in flow networks with costs [1]. A flow network with costs is G = 〈V,E, a, c, s, t〉,207

where 〈V,E, c, s, t〉 is a flow network and a : E → IR is a cost function. The cost of a flow f in208

G, denoted cost(f), is
∑
e∈E a(e) · f(e). In the min-cost max-flow problem we are given a flow209

network with costs, and find a maximum flow with a minimum cost. By [1], this problem can be210

solved in time O(|E|2log|V |+ |E||V |log2|V |).211

I Theorem 6. Consider a flow network G = 〈V,E, c, s, t〉 and let H be the set of funnels in G.212

The UF problem for G can be solved in time O(2|H| · (|E|2log|V |+ |E||V |log2|V |)).213

Proof. The algorithm finds, for each subset L ⊆ H , a minimum-value preflow inFL by a reduction214

to the min-cost max-flow problem. By Lemma 4, the minimum value found for some L ⊆ H is215

uval(G).216

Consider the flow network with costs G′ = 〈V ′, E′, a, c′, s, t′〉 that is obtained from G as follows.217

We add a new vertex t′ and edges 〈u, t′〉 for every u ∈ L ∪ {t}, thus V ′ = V ∪ {t′} and E′ =218

E ∪ (L ∪ {t}) × {t′}. The capacity c′(e) for every new edge e ∈ E′ \ E is large (for example, it219

may be Cs), and for every e ∈ E, we have c′(e) = c(e). Let C = max{c(e) : e ∈ E} denote the220

maximal capacity in G. For edges e ∈ L × {t′}, we define a(e) = −1; for edges e ∈ L × V , we221

define a(e) = −C · |V |2; and for all the other edges, we define a(e) = 0. Intuitively, the costs of222

the edges in L× V are negative and small enough, so that a min-cost max-flow in G′ would have to223

saturate them first, and only then try to direct flow to edges in L× {t′}.224

In Appendix A.3, we prove the correctness of the following algorithm: First, find a min-cost225

max-flow f ′ in G′. If val(f ′) < Cs or cost(f ′) > −C · |V |2 ·
∑
e∈L×V c(e), then FL = ∅.226

Otherwise, the minimal value of a preflow in FL is Cs + cost(f ′) +C · |V |2 ·
∑
e∈L×V c(e). Since227

the min-cost max-flow problem can be solved in time O(|E|2log|V |+ |E||V |log2|V |) [1] and there228

are 2|H| subsets of funnels to check, the required complexity follows. J229

I Corollary 7. The UF problems for networks with a logarithmic number of funnels can be solved230

in strongly-polynomial time.231

We say that a preflow f : E → IR is integral if f(e) ∈ IN for all e ∈ E. It is sometimes desirable232

to restrict the flow to an integral one, for example in settings in which the objects we transfer along233

the network cannot be partitioned into fractions. We now show that the UF problem always has an234

integral-flow solution, and that such a solution can be obtained by the algorithm shown in the proof235

of Theorem 6. Essentially (see proof in Appendix A.4), it follows from the fact that the min-cost236

O. Kupferman, G. Vardi 125:7

max-flow problem has an integral solution. As we show in Section 4, this integral flow property is237

not maintained in variants of the UF problem.238

I Theorem 8. The UF problem has an integral-flow solution: for every flow network, there exists239

an integral unfortunate saturating preflow. Moreover, such integral preflow can be found by the240

algorithm described in the proof of Theorem 6.241

The integral-flow property suggests an optimal algorithm for solving the UF problem:242

I Theorem 9. The UF problem is co-NP-complete.243

Proof. Hardness in co-NP is proven in Theorem 2. We prove membership in NP for the comple-244

mentary problem: given γ > 0 and a flow network G, we need to decide whether uval(G) < γ.245

According to Theorem 8, it is enough to decide whether there is a saturating preflow f in which for246

every e ∈ E, the value f(e) is an integer, and val(f) < γ. Given a function f : E → IN, checking247

whether f satisfies these requirements can be done in polynomial time, implying membership in248

NP. J249

4 The Controlled Unfortunate-Flow Problem250

In this section we study the controlled unfortunate-flow problem, where the outgoing flow from s is251

bounded and controlled. That is, there is 0 ≤ α ≤ Cs such that the total outgoing flow from s is252

bounded by α, and it is possible to control how this outgoing flow is partitioned among the edges that253

leave s. Our goal is to control this flow so that the flow that reaches t in the worst case is maximized.254

As discussed in Section 1, this problem is motivated by scenarios where we have an initial control255

on the flow, say by positioning police at the entrance to a stadium or at the center of a city we need256

to evacuate, or by transmitting messages we want to send from a router we own.257

For α ≥ 0, a regulator with bound α is a function g : Es� → IR that directs α flow units from258

s. Formally, for every e ∈ Es�, we have 0 ≤ g(e) ≤ c(e), and
∑
e∈Es� g(e) ≤ α. A controlled259

saturating preflow that respects a regulator g is a preflow f : E → IR such that for every e ∈ Es�,260

we have f(e) = g(e), and for every v ∈ V \ {s, t}, we have f(v�) = min{f(� v), c(v�)}.261

Thus, unlike saturating preflow, here the edges in Es� need not be saturated and the flow in them is262

induced by g. The unfortunate g-controlled value of G, denoted cuval(G, g), is the minimal value263

of a controlled saturating preflow that respects g. Then, the unfortunate α-controlled value of G,264

denoted cuval(G, α) is the maximal unfortunate g-controlled value of G for some regulator g with265

bound α. In the controlled unfortunate flow problem (CUF problem, for short), we are given a flow266

network G, a bound α ≥ 0, and a threshold γ > 0, and we need to decide whether cuval(G, α) ≥ γ.267

Thus, in the CUF problem we need to decide whether there is a regulator g with bound α that ensures268

a value of at least γ.269

For two regulators g and g′, we denote g ≥ g′ if for every e ∈ Es�, we have g(e) ≥ g′(e). In the270

following theorem we show that the g-controlled unfortunate value is monotonic with respect to g.271

Thus, increasing g can only increase the value. In particular, it follows that a maximal cuval(G, α)272

is obtained with α = Cs and a regulator g in which g(e) = c(e) for every e ∈ Es�. Thus, if the273

outgoing flow from s is not bounded, then the optimal behavior is to saturate the edges in Es�.274

Essentially (see full proof in Appendix A.5), it follows from the fact that given g and g′ such that275

g ≥ g′, and a minimum-value controlled saturating preflow f that respects g, we can construct a276

controlled saturating preflow f ′ that respects g′ and such that val(f) ≥ val(f ′).277

I Theorem 10. Consider a flow network G, and let g, g′ be two regulators such that g ≥ g′. Then,278

cuval(G, g) ≥ cuval(G, g′).279

ICALP 2018

125:8 The Unfortunate-Flow Problem

We now turn to study the complexity of the CUF problem. We first explain why the problem280

is challenging. One could expect an algorithm in which, given G, α, and γ, we guess an integral281

regulator g : Es� → IN with bound α, and then use an NP oracle in order to check whether282

cuval(G, g) ≥ γ. The problem with the above idea is that it restricts the regulators to integral ones.283

In Theorem 11 below we show that in some cases, an optimal regulator must use non-integral values.284

Accordingly, an algorithm that guesses a regulator, as has been the case with the guessed flows in285

Theorem 9, has to go over unboundedly many possibilities. In fact, when an arbitrary set of vertices286

(rather than the source only) may be controlled, the problem is not known to be decidable [14].287

I Theorem 11. Integral regulators are not optimal: There is a flow network G such that for every288

integral regulator g : Es� → IN with bound 2 we have cuval(G, g) = 1, but there is a regulator289

g′ : Es� → IR with bound 2 such that cuval(G, g′) = 2.290

Proof. Consider the flow network G appearing in
Figure 3. For every pair 〈ui, uj〉 for 1 ≤ i < j ≤ 4,
the network G contains a vertex vij with incom-
ing edges from ui and uj . The capacities of the
edges in G are all 1. It is not hard to see that for
every integral regulator g with bound 2 we have
cuval(G, g) = 1. Indeed, for such g there is a con-
trolled saturating preflow that respects g, which dir-
ects a flow of 2 to some vertex vij , causing a loss
of 1 in vij . Consider now the regulator g′ that as-
signs a flow of 0.5 to every edge in Es�. In this
case, a flow of more than 1 cannot be directed to
any vertex vij and therefore cuval(G, g′) = 2. J

Figure 3: The flow network G. All capa-
cities are 1.

291

We turn to solve the CUF problem. Theorem 11 forces us to consider non-integral regulators.292

We do this by a reduction to a problem with a similar challenge, namely the second alternation293

level of the theory of real numbers under addition and order. There, we are given a formula of294

the form ∃x1 . . . xn∀y1 . . . ymF (x1, . . . , xn, y1, . . . , ym), where F is a propositional combination295

of linear inequalities of the form a1x1 + . . . anxn + b1y1 + . . . + bmym ≤ d, for constant integers296

a1, . . . , an, b1, . . . , bm, and d, and we have to decide whether there is an assignment of x1, . . . , xn297

to real numbers so that F is satisfied for every assignment of y1, . . . , ym to real numbers. Even298

though the domain of possible solutions is infinite, It is shown in [17] that the problem can be solved299

in ΣP2 , namely the class of problems that can be solved by a nondeterministic polynomial Turing300

machine that has an oracle to some NP-complete problem. In [14], a ΣP2 lower bound is proven301

for the problem of finding the value of a flow game, where the outgoing flow of a subset of the302

vertices can be controlled. Recall that in the CUF problem, only the flow from the source vertex can303

be controlled. While this corresponds to the “exists-forall” nesting of quantifiers that characterizes304

reasoning in ΣP2 , it not clear how to reduce Boolean formulas to unfortunate flows. Indeed, in305

the reduction in [14], control in intermediate vertices is used in order to model disjunctions in the306

formulas. In the CUF problem, such a control is impossible, as all vertices in the network except for307

the source are treated in a conjunctive manner.308

I Theorem 12. The CUF problem is ΣP2 -complete.309

Proof. We first prove membership in ΣP2 by a reduction to the second alternation level of the theory310

of real numbers under addition and order. Given G, α, and γ, we construct a propositional combin-311

ation F of linear inequalities over the variables xe for every e ∈ Es�, and variables ye, for every312

e ∈ E. The formula F states that the values of the variables xe corresponds to a regulator g with313

bound α, and that if the values of the variables ye correspond to a controlled saturating preflow f314

O. Kupferman, G. Vardi 125:9

that respects g then val(f) ≥ γ. Then, our problem amounts to deciding whether there are real315

values xe such that for every real values ye the formula F holds.316

For the lower bound, we describe a reduction from QBF2, namely satisfiability for quanti-317

fied Boolean formulas with one alternation of quantifiers, where the external quantifier is “ex-318

ists”. Let ψ be a propositional formula over the variables x1, . . . , xn, y1, . . . , ym, and let θ =319

∃x1 . . . ∃xn∀y1 . . . ∀ymψ. Also, let X = {x1, . . . , xn}, X̄ = {x̄1, . . . , x̄n}, Y = {y1, . . . , ym},320

Ȳ = {ȳ1, . . . , ȳm}, Z = X ∪ Y , and Z̄ = X̄ ∪ Ȳ . We construct a flow network Gθ and define α321

and γ, such that θ holds iff there is a regulator g with bound α such that cuval(Gθ, g) ≥ γ.322

We assume that ψ is given in a positive normal form; that is, ψ is constructed from the literals in323

Z ∪ Z̄ using the Boolean operators ∨ and ∧, and that there is k ≥ 1 such that every literal in Z ∪ Z̄324

appears in ψ exactly k times. Clearly, every Boolean propositional formula can be converted with325

only a quadratic blow-up to an equivalent one that satisfies these conditions.326

We first translate ψ into a Boolean circuit Cψ with k(2n+ 2m) inputs – one for each occurrence327

of a literal in ψ. For example, in Figure 4, on the left, we describe Cψ for ψ = x ∨ (x̄ ∧ y) ∧ ((x ∧328

ȳ) ∨ (y ∨ ȳ ∨ x̄)). Each gate in Cψ has fan-in 2 and fan-out 1. We say that an input assignment to329

Cψ is consistent if it corresponds to an assignment to the variables in Z. That is, for each variable330

z ∈ Z, there is a value b ∈ {0, 1} such that all the k inputs that correspond to the literal z have value331

b and all the k inputs that correspond to the literal z̄ have value 1− b. If the input to Cψ is consistent332

then Cψ computes the value of ψ for the corresponding assignment.333

Figure 4: The Boolean circuit Cψ and the external-source flow network Gψ .

Now, we translate Cψ to an external-source flow network Gψ = 〈V,E, c, t〉: a flow network in334

which there is no source vertex, and an input flow is given externally. Formally, some of the edges335

in E have an unspecified source, to be later connected to edges with an unspecified target. The idea336

behind the translation is as follows: The capacities in Gψ are all 1. Each OR gate in Cψ induces a337

vertex v that has in-degree 2 and out-degree 1. Thus, if the incoming flow in each incoming edge to338

v is 0 or 1, then its outgoing flow is 1 iff at least one of its incoming edges has flow 1. Then, each339

AND gate in Cψ induces a vertex v that has in-degree 2 and out-degree 2, yet, one of the two edges340

that leaves v leads to a sink. Accordingly, if the incoming flow in each incoming edge to v is 0 or 1,341

then the outgoing flow in the edge that does not lead to the sink must be 1 iff both incoming edges342

have flow 1. For example, the Boolean circuit Cψ from Figure 4 is translated to the external-source343

flow network Gψ to its right.344

Given a flow from the external source, we define the unfortunate value of Gψ as the minimal345

value of a controlled saturating preflow that respects the external flow. The following lemma can be346

easily proved by induction on the structure of ψ.347

I Lemma 13. Consider a Boolean formula ψ and its corresponding external-source flow network348

Gψ .349

1. Given input flows to Gψ , if we increase some input flow, then the new unfortunate value of Gψ is350

greater than or equal to the original unfortunate value.351

ICALP 2018

125:10 The Unfortunate-Flow Problem

2. Given input flows in {0, 1} to Gψ , the unfortunate value of Gψ is equal to the output of Cψ with352

the same input. Thus, if the input flow to Gψ corresponds to a consistent input to Cψ , then the353

unfortunate value of Gψ is the value of ψ for the corresponding assignment.354

We complete the reduction by constructing the flow network Gθ that uses Gψ as a sub-network355

as shown in Figure 5. The vertices dy1 , . . . , dym
are associated with the variables in Y . The vertices356

xi, x̄i, yi, ȳi for every i are associated with the literals in Z ∪ Z̄. Each outgoing edge from a literal357

vertex that enters Gψ is connected to an input of Gψ that corresponds to this literal. The outgoing358

edge from the subnetwork Gψ corresponds to an edge from the target vertex of Gψ . In Appendix A.6359

we describe the network Gθ for the case ψ = (x ∨ y) ∧ (x̄ ∨ ȳ).360

Figure 5: The flow network Gθ.

In Appendix A.7, we prove that θ holds iff there is a regulator g with bound (2k+1)m+(k+1)n361

such that for every controlled saturating preflow f that respects g we have val(f) ≥ m+ n+ 1.362

J363

In Theorem 11 we showed that in some cases an optimal regulator must use non-integral values.364

Sometimes, however, it is desirable to restrict attention to integral regulators. In the following the-365

orem (see proof in Appendix A.8) we show that the ΣP2 -completeness stays valid also for integral366

regulators.367

I Theorem 14. Let G be a flow network and let α, γ be integral constants. Deciding whether there368

exists an integral regulator g : Es� → IN with bound α such that cuval(G, g) ≥ γ, is ΣP2 -complete.369

I Remark. [Bounded Global Control] In the CUF problem, it is possible to control the flow370

leaving the source. This could be generalized by letting an authority control also internal vertices in371

the network. In the bounded global control problem, we get as input a flow network G, a number372

k ≥ 0, and a threshold γ > 0, and we need to decide whether we can guarantee an unfortunate flow373

of at least γ by controlling the outgoing flow in at most k vertices. Note that while in the problem of374

finding critical nodes for firefighters [2, 3], a firefighter blocks the fire, in our setting the firefighters375

direct the evacuation. Thus, there, the goal is to block undesired vulnerabilities in the network, and376

here the goal is maximize desired traffic in the network. The formal definition of the bounded global377

control problem goes through the flow games of [14], which includes the notion of strategies for378

controlling flow. The ΣP2 algorithm for solving flow games with integral flows can be extended to379

solve the bounded global control problem. By making the control on the source vertex essential (say,380

O. Kupferman, G. Vardi 125:11

by adding a transition with a large capacity to a sink), the CUF problem can be reduced to the global381

control problem with k = 1, implying ΣP2 completeness.382

5 Safe Networks and No-Loss Unfortunate Flow383

In this section we consider settings in which loss must be avoided. We say that a flow network G is384

safe if Lf = 0 for every saturating preflow f . For example, networks with no funnels are clearly385

safe. It is easy to see that G is safe iff uval(G) = Cs. Together with Theorem 9, this gives a co-NP386

algorithm for deciding the safety of a network. We first show that by reducing the safety problem387

to the maximum weighted flow problem, we can decide safety in polynomial time. Essentially, the388

reduction checks, for every vertex v ∈ V , whether it is possible to direct to v flow that is greater389

than its outgoing capacity, and the weights are used in order to filter flow incoming to v. For details,390

see Appendix A.9.391

I Theorem 15. Deciding whether a flow network is safe can be done in polynomial time.392

We now consider the case where the total outgoing flow from s is controlled, and we need to find393

an optimal regulator that guarantees no flow loss. Formally, in the no-loss controlled unfortunate-394

flow problem (NLCUF problem, for short), we are given a flow network G and an integer γ > 0,395

and we need to decide whether there exists a regulator g such that
∑
e∈Es� g(e) ≥ γ, and for every396

controlled saturating preflow that respects g the flow loss is 0 (equivalently, cuval(G, g) = γ). That397

is, decide whether there is a regulator that ensures no loss and a value of at least γ. We show398

that the NLCUF problem is NP-complete. For the upper bound one could expect an algorithm in399

which we guess an integral regulator g : Es� → IN in which the total flow is at least γ, and400

then use Theorem 15 in order to check in polynomial time whether flow loss is possible. However,401

Theorem 11 shows that in some cases a regulator must use non-integral values in order to ensure that402

flow loss is impossible. Consequently, our algorithm is more complicated and uses a result from the403

theory of real numbers with addition.404

I Theorem 16. The NLCUF problem is NP-complete.405

Proof: We start with the upper bound. For a rational number q we denote by #(q) the length of q,406

namely, if q = a/bwith a, b relatively prime, then #(q) is the sum of the number of bits in the binary407

representations of a and b. Consider a formula ϕ = ∃x1, ..., xn∀y1, ..., ymF (x1, ..., xn, y1, ..., ym),408

where F is a propositional combination of linear inequalities of the form a1x1 + ...+anxn+b1y1 +409

...+bmym ≤ d for integral constants a1, ..., an, b1, ..., bm, and d. The variables x1, ..., xn, y1, ..., ym410

are real. In [17] (in the proof of Theorem 3.1 there) it is shown that ϕ holds iff there exists rational411

values x1, ..., xn such that for every i the length #(xi) is polynomial in the size of ϕ and for every412

real values y1, ..., ym the formula F holds.413

We construct a propositional combination F of linear inequalities over the variables xe, for414

every e ∈ Es�, and ye, for every e ∈ E. The formula F states that the values of the variables xe415

correspond to a regulator g with bound γ, and that if the values of the variables ye correspond to a416

controlled saturating preflow f that respects g, then Lf = 0. Then, our problem amounts to deciding417

whether there are real values xe such that for every real values ye, the formula F holds. By [17], it418

is enough to check whether there are rational values xe for e ∈ Es� with polynomial lengths such419

that for every real values ye for e ∈ E, the formula F holds. Given values for the variables xe,420

checking whether for every real values ye the formula F holds can be done in polynomial time with421

the algorithm shown in the proof of Theorem 15. Hence the membership in NP.422

ICALP 2018

125:12 The Unfortunate-Flow Problem

We proceed to the lower bound. We show a re-
duction from CNF-SAT. Let ψ = C1 ∧ . . . ∧ Cm be a
CNF formula over the variables x1 . . . xn. We denote
Z = {x1, . . . , xn, x̄1, . . . , x̄n}. We assume that for
every literal z ∈ Z there is at least one clause in ψ
that does not contain z. We construct a flow network
G = 〈V,E, c, s, t〉 as demonstrated in Figure 6. For a
literal z ∈ Z and a clause Ci, the network G contains
an edge 〈z, Ci〉 iff the clause Ci does not contain the
literal z. Let γ = 2n. In Appendix A.10, we show
that ψ is satisfiable iff there is a regulator that ensures
no loss and a value of at least γ. J

Figure 6: The flow network G. Unless
stated otherwise, the capacities are 1.423

Sometimes it is desirable to restrict attention to integral regulators. As we show below, NP-424

completeness applies for them too (see Appendix A.11 for proof).425

I Theorem 17. Let G be a flow network and let γ > 0 be an integer. Deciding whether there426

exists an integral regulator g : Es� → IN in G such that
∑
e∈Es� g(e) ≥ γ, and for every controlled427

saturating preflow that respects g the flow loss is 0, is NP-complete.428

6 Discussion429

The unfortunate-flow problem captures settings in which the authority has no control on how flow430

is directed in the vertices of a flow network. For many problems, a transition from a cooperative431

setting to an adversarial one dualizes the complexity class to which the problem belongs, as in432

NP for satisfiability vs. co-NP for validity. In the case of flow, the polynomial complexity of the433

maximum-flow problem is not preserved when we move to the dual unfortunate-flow problem, and434

we prove that the problem is co-NP-complete.435

On the positive side, the integral-flow property of maximal flow is preserved in unfortunate436

flows. This property, however, is lost once we move to controlled unfortunate flows, where non-437

integral regulators may be more optimal than integral ones. The need to consider real-valued flows438

questions the decidability of the controlled unfortunate-flow problem. As we show, the problem439

is decidable, by a reduction to the second alternation level of the theory of real numbers under440

addition and order [17]. There, the infinite domain of the real numbers is reduced to a finite one,441

namely rational numbers of length polynomial in the input. A direct algorithm for the controlled442

unfortunate-flow problem, thus one that does not rely on [17], is still open. Such a direct algorithm443

would reduce the real-number domain to a finite one in a tighter manner – one that depends on444

the network. We see several interesting problems in this direction, in particular finding a sufficient445

granularity that a regulator may need, and bounding the non-optimality caused by integral regulators.446

Similar problems are open in the settings of flow games with two or more players [14, 12].447

Finally, the unfortunate-flow problem sets the stage to problems around network design, where448

the goal is to design networks with maximal unfortunate flows. In particular, in network repair, we449

are given a network and we are asked to modify it in order to increase its unfortunate flow value.450

Different algorithms correspond to different types of allowed modifications. For example, we may451

be allowed to change the capacity of a fixed number of edges. Note that unlike the case of maximal452

flow, here a repair may reduce the capacity of edges. Also, unlike the case of maximal flow, there is453

no clear theory of minimal cuts that may assist us in such a repair.454

O. Kupferman, G. Vardi 125:13

References455

1 R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: Theory, algorithms, and applications.456

Prentice Hall Englewood Cliffs, 1993.457

2 C. Bazgan, M. Chopin, M. Cygan, M.R. Fellows, F. V. Fomin, and E. Leeuwen. Parameterized458

complexity of firefighting. Journal of Computer and Systems Science, 80(7):1285–1297, 2014.459

3 J. Choudhari, A. Dasgupta, N. Misra, and M.S. Ramanujan. Saving critical nodes with firefighters is460

FPT. In Proc. 44th Int. Colloq. on Automata, Languages, and Programming, volume 80 of LIPIcs,461

pages 135:1–135:13, 2017.462

4 T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press and463

McGraw-Hill, 1990.464

5 E.A. Dinic. Algorithm for solution of a problem of maximum flow in a network with power estim-465

ation. Soviet Math. Doll, 11(5):1277–1280, 1970. English translation by RF. Rinehart.466

6 J. Edmonds and R.M. Karp. Theoretical improvements in algorithmic efficiency for network flow467

problems. Journal of the ACM, 19(2):248–264, 1972.468

7 S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow prob-469

lems. SIAM Journal on Computing, 5(4):691–703, 1976.470

8 L.R. Ford and D.R. Fulkerson. Maximal flow through a network. Canadian journal of Mathematics,471

8(3):399–404, 1956.472

9 L.R. Ford and D.R. Fulkerson. Flows in networks. Princeton Univ. Press, Princeton, 1962.473

10 A.V. Goldberg, É. Tardos, and R.E. Tarjan. Network flow algorithms. Technical report, DTIC474

Document, 1989.475

11 A.V. Goldberg and R.E. Tarjan. A new approach to the maximum-flow problem. Journal of the476

ACM, 35(4):921–940, 1988.477

12 S. Guha, O. Kupferman, and G. Vardi. Multi-player flow games. In Proc. 17th International478

Conference on Autonomous Agents and Multiagent Systems, 2018.479

13 S. Keren, A. Gal, and E. Karpas. Goal recognition design for non optimal agents. In Proc. 29th480

AAAI conference, pages 3298–3304, 2015.481

14 O. Kupferman, G. Vardi, and M.Y. Vardi. Flow games. In Proc. 37th Conf. on Foundations of482

Software Technology and Theoretical Computer Science, volume 93 of Leibniz International Pro-483

ceedings in Informatics (LIPIcs), pages 38:38–38:16, 2017.484

15 A. Madry. Computing maximum flow with augmenting electrical flows. In Foundations of Com-485

puter Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 593–602. IEEE, 2016.486

16 L. Qingsong, G. Betsy, and S. Shashi. Capacity constrained routing algorithms for evacuation487

planning: A summary of results. In International Symposium on Spatial and Temporal Databases,488

pages 291–307. Springer, 2005.489

17 E.D. Sontag. Real addition and the polynomial hierarchy. Information Processing Letters,490

20(3):115–120, 1985.491

18 É. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3):247–492

255, 1985.493

A Examples and Proofs494

A.1 A proof of the reduction in the proof of Theorem 2495

Assume that ψ is satisfiable and let τ be a satisfying assignment for ψ. Consider the following496

saturating preflow f : In each vertex di, the incoming flow of 2k is directed to the vertex xi if xi497

holds in τ and otherwise it is directed to the vertex x̄i. Then, in these vertices the incoming flow is498

greater than the outgoing capacity and therefore the outgoing edges are saturated. In every vertex Ci499

with a positive incoming flow, f directs a flow of 1 to the sink u and the rest is directed to t. Since500

ICALP 2018

125:14 The Unfortunate-Flow Problem

τ satisfies ψ, every vertex Ci has a positive incoming flow and therefore val(f) = kn −m. Hence501

uval(G) < kn−m+ 1.502

Assume now that ψ is not satisfiable and let f be a saturating preflow. For each vertex di, the503

outgoing flow in at least one outgoing edge is greater than or equal to k. We denote by li a literal in504

{xi, x̄i} that has an incoming flow of at least k. These literals induce an assignment to x1, . . . , xn.505

By our assumption, this assignment does not satisfy ψ. Thus, at least one vertex in C1, . . . , Cm has506

an incoming flow of 0 from the vertices l1, . . . , ln. Hence, the total outgoing flow from the vertices507

l1, . . . , ln is kn and from this flow at most m− 1 is lost. Therefore, the incoming flow to t is at least508

kn− (m− 1) and thus uval(G) ≥ kn−m+ 1.509

A.2 A proof of Theorem 3510

The network G constructed in the reduction in the proof of Theorem 2 is such that uval(G) ≤ kn−m511

if the given CNF-SAT formula ψ is satisfiable and uval(G) ≥ kn − m + 1 otherwise. Let G′ be512

the network obtained from G by adding a new vertex v, making v the target of G′, adding an edge513

with capacity kn −m from t to a sink, and an edge with capacity 1 from t to v. Thus, if the flow514

that reaches t is at most kn − m, then all of it can be directed to the sink. Consequently, if ψ is515

satisfiable, then uval(G′) = 0, and otherwise, uval(G′) ≥ 1. Since every approximation algorithm516

(within any factor) can determine whether the value is positive or 0, then approximation within any517

factor is NP-hard.518

A.3 Correctness proof of the algorithm in the proof of Theorem 6519

We first show that there exists a preflow in FL with flow loss greater than or equal to β for some β ≥520

0 iff there exists a flow in G′ with valueCs and cost less than or equal to−C ·|V |2 ·(
∑
e∈L×V c(e))−521

β. Assume that there exists a preflow f in FL with Lf ≥ β. This preflow induces a flow f ′522

in G′ where for every v ∈ L we have f ′(〈v, t′〉) = lf (v). Since f is a saturating preflow, then523

val(f ′) = Cs. Also, since
∑
u∈L lf (v) ≥ β and for every e ∈ L × V we have f(e) = c(e), then524

cost(f ′) ≤ −C · |V |2 · (
∑
e∈L×V c(e)) − β. Conversely, assume that there exists a flow f ′ in G′525

with val(f ′) = Cs and cost(f ′) ≤ −C · |V |2 · (
∑
e∈L×V c(e)) − β. It is known that for every526

network flow with costs there exists an integral min-cost max-flow [1]. Let f ′′ be an integral min-527

cost max-flow in G′. Thus, val(f ′′) = Cs and cost(f ′′) ≤ −C · |V |2 · (
∑
e∈L×V c(e)) − β. Since528

cost(f ′′) ≤ −C · |V |2 ·
∑
e∈L×V c(e) and f ′′ is integral, then for every e ∈ L × V we must have529

f ′′(e) = c(e). Indeed, otherwise cost(f ′′) =
∑
e∈E′ f ′′(e)a(e) = (−C · |V |2) ·

∑
e∈L×V f

′′(e) +530

(−1) ·
∑
e∈L×{t′} f

′′(e) ≥ (−C · |V |2) · [(
∑
e∈L×V c(e))− 1]− |V | · (|V | − 1) ·C > −C · |V |2 ·531 ∑

e∈L×V c(e) +C · |V |2 −C · |V |2 = −C · |V |2 ·
∑
e∈L×V c(e). The flow f ′′ induces a preflow f532

in FL with Lf ≥ β.533

Since there exists a preflow inFL with flow loss greater than or equal to β iff there exists a flow in534

G′ with valueCs and cost less than or equal to−C·|V |2·(
∑
e∈L×V c(e))−β, then we have thatFL 6=535

∅ iff there exists a flow in G′ with value Cs and cost less than or equal to −C · |V |2 ·
∑
e∈L×V c(e).536

Note that a flow in G′ with value Cs is a maximum flow. Assume that FL 6= ∅ and let γ ≥ 0 be537

the maximal flow loss in a preflow in FL, namely γ = max{Lf : f ∈ FL}. Note that according538

to Theorem 5 there exists a maximum for this set. Let −C · |V |2 · (
∑
e∈L×V c(e)) − β be the539

cost of a min-cost max-flow in G′. Since there exists a preflow in FL with flow loss γ then there540

exists a maximum flow f ′ in G′ with cost(f ′) ≤ −C · |V |2 · (
∑
e∈L×V c(e)) − γ. Therefore,541

β ≥ γ. Conversely, since there exists a flow in G′ with value Cs and cost less than or equal to542

−C · |V |2 · (
∑
e∈L×V c(e)) − β, then there exists a preflow in FL with flow loss greater than or543

equal to β, and thus γ ≥ β. Hence β = γ. Therefore, if the min-cost max-flow in G′ has value Cs544

and cost α = −C · |V |2 · (
∑
e∈L×V c(e)) − β for some β ≥ 0, then the maximal flow loss of a545

O. Kupferman, G. Vardi 125:15

preflow in FL is β = −α−C · |V |2 ·
∑
e∈L×V c(e), and thus the minimal value of a preflow in FL546

is Cs − β = Cs + α+ C · |V |2 ·
∑
e∈L×V c(e).547

Accordingly, the algorithm finds a min-cost max-flow f ′ in G′. If val(f ′) < Cs or cost(f ′) >548

−C · |V |2 ·
∑
e∈L×V c(e), then FL = ∅. Otherwise, the minimal value of a preflow in FL is549

Cs + cost(f ′) + C · |V |2 ·
∑
e∈L×V c(e). Since the min-cost max-flow problem can be solved in550

time O(|E|2log|V |+ |E||V |log2|V |) [1] and there are 2|H| subsets of funnels to check, the required551

complexity follows.552

A.4 A proof of Theorem 8553

The algorithm shown in the proof of Theorem 6 runs over all the subsets of H and for each subset554

L ⊆ H finds a minimum-value preflow in FL. In the proof of Theorem 6 it is shown that if555

FL 6= ∅ and γ = max{Lf : f ∈ FL}, then a min-cost max-flow in G′ has value Cs and cost556

−C · |V |2 · (
∑
e∈L×V c(e)) − γ. Since the min-cost max-flow problem always has a solution in557

which all flows are integral [1], let f ′ be an integral min-cost max-flow in G′. Thus val(f ′) = Cs558

and cost(f ′) = −C · |V |2 · (
∑
e∈L×V c(e))− γ. In the proof of Theorem 6 it is also shown that an559

integral flow in G′ with value Cs and cost −C · |V |2 · (
∑
e∈L×V c(e))− γ induces a preflow in FL560

with flow loss γ. Hence, the preflow that f ′ induces in FL is integral and has a maximal flow loss.561

Since this is the case for every L ⊆ H , then the UF problem has an integral-flow solution.562

A.5 A proof of Theorem 10563

Let G = 〈V,E, c, s, t〉, and let f be a minimum-value controlled saturating preflow that respects g.564

We construct a controlled saturating preflow f ′ that respects g′ and such that val(f ′) ≤ val(f). The565

preflow f ′ is obtained from f by reducing flows in edges according to the following process: We566

start with f ′ = f . For every e ∈ Es�, if g′(e) < g(e) then we change f ′ such that f ′(e) = g′(e).567

Now, for some vertices the incoming flow in f ′ might be less than the outgoing flow. We fix this568

with the following steps. Let V = {v1, . . . , vn}. We choose a vertex v ∈ V \ {s, t} such that569

f ′(v�)− f ′(�v) is maximal. Then, we find the minimal i such that 〈v, vi〉 ∈ E and f ′(〈v, vi〉) > 0570

and reduce the flow in 〈v, vi〉 such that f ′(v�) = f ′(�v). If there is not enough flow in 〈v, vi〉,571

then we reduce the flow there to 0 and then find the next i such that 〈v, vi〉 ∈ E and f ′(〈v, vi〉) > 0572

and reduce the flow there too. We repeat this until f ′(v�) = f ′(�v). Then we find the next vertex573

v ∈ V \ {s, t} such that f ′(v�) − f ′(�v) is maximal and repeat the above steps. We finish this574

process when for every v ∈ V \{s, t}, we have f ′(v�) = min{f ′(�v), c(v�)}. Since f ′ is obtained575

from f by reducing flow in some edges, then val(f ′) ≤ val(f).576

We show that the above process terminates after a finite number of iterations. Assume that the577

process does not terminate. Since we only reduce flows, there is a finite number of iterations in578

which a flow in an edge is reduced to 0. Thus, from some point, for every v ∈ V , there is an edge579

ev ∈ Ev� such that a flow reduction in Ev� occurs only in ev . Let U ⊆ V be the vertices from580

which we reduce flow infinitely many times. Thus, from some point we reduce flow only for edges581

ev for v ∈ U . Every vertex v ∈ U must have a vertex u ∈ U such that eu = 〈u, v〉. Therefore, the582

subgraph induced by the vertices U and the edges {ev : v ∈ U} consists of disjoint cycles. Hence,583

if for some v ∈ U we have ev = 〈v, w〉 then w ∈ U . Note that from some point, for every vertex584

v ∈ U the incoming flow is less than its outgoing capacity. Thus, from some point, if we reduce a585

flow of ε from an edge eu = 〈u, v〉 then u, v ∈ U and a flow of at least ε should be reduced later586

from the edge ev . Since in every iteration we choose a vertex from which the flow reduction that is587

needed is maximal, then in the next iteration a flow of at least ε will be reduced. Hence, a flow of at588

least ε will be reduced in every iteration from this point and on. Since the flows are bounded below589

by 0 then this process cannot continue for infinitely many iterations.590

ICALP 2018

125:16 The Unfortunate-Flow Problem

A.6 An example of the reduction in Theorem 12591

Figure 7: The flow network Gθ for θ = ∃x∀y(x ∨ y) ∧ (x̄ ∨ ȳ).

A.7 A proof of the reduction in the proof of Theorem 12592

we prove that θ holds iff there is a regulator g with bound (2k+ 1)m+ (k+ 1)n such that for every593

controlled saturating preflow f that respects g we have val(f) ≥ m + n + 1. Assume first that θ594

holds. Let π be an assignment for X such that for every assignment for Y , the formula ψ holds.595

Consider the regulator g where for every vertex u ∈ dy1 , . . . , dym we have g(〈s, u〉) = 2k + 1,596

for every vertex x in X such that π(x) = 1 we have g(〈s, x〉) = k + 1 and g(〈s, x̄〉) = 0, and597

for every vertex x ∈ X such that π(x) = 0 we have g(〈s, x〉) = 0 and g(〈s, x̄〉) = k + 1. Note598

that
∑
e∈Es� g(e) = (2k + 1)m + (k + 1)n. Thus, the input flows to Gψ for the variables X must599

be consistent with the assignment π and for every i, the vertex uxi
must have an incoming flow of600

1. Since for each i, the vertex dyi
has an incoming flow of 2k + 1, then either yi or ȳi must have601

an incoming flow of at least k + 1. Therefore, for every i, the outgoing edges of either yi or ȳi602

are saturated. Hence, according to Lemma 13 (1), a minimum-value controlled saturating preflow603

should direct a flow of 2k + 1 to either yi or ȳi. Thus, the input flows to Gψ for the variables Y are604

consistent with some assignment τ to these variables. According to Lemma 13 (2), the unfortunate605

value of Gψ for these input flows is the value of ψ for the assignments π and τ , which is 1. Therefore,606

for every controlled saturating preflow f that respects g we have val(f) = m+ n+ 1.607

Now, assume that θ does not hold. We show that for every regulator g in Gθ such that
∑
e∈Es� g(e) ≤608

(2k + 1)m+ (k + 1)n, there is a controlled saturating preflow f that respects g such that val(f) <609

m+ n+ 1. First, in order to ensure an incoming flow of at least 1 to every vertex uyi , the regulator610

g must have g(〈s, dyi
〉) = 2k + 1. Since

∑
e∈Es� g(e) ≤ (2k + 1)m + (k + 1)n, then in order to611

ensure also an incoming flow of 1 to every vertex uxi , the regulator g must have g(〈s, xi〉) = k + 1612

or g(〈s, x̄i〉) = k+ 1. Therefore, the input flows to Gψ for the variables X are consistent with some613

assignment π. According to the assumption, for every assignment to X there is an assignment to Y614

such that ψ does not hold. Let τ be such an assignment to Y . A preflow that assigns to the vertices615

Y ∪ Ȳ flows that respect τ , namely a flow of 2k + 1 to the literals that hold in τ , will result in input616

flows to Gψ for the variables Y that are consistent with τ . According to Lemma 13 (2), in this case617

the unfortunate value of Gψ is 0 and therefore the incoming flow to t will be less than m+ n+ 1.618

O. Kupferman, G. Vardi 125:17

A.8 A proof of Theorem 14619

According to Theorem 2, given an integral regulator g, deciding whether the minimal value of a620

controlled saturating preflow that respects g is at least γ is in co-NP. Thus we can guess an integral621

regulator g such that
∑
e∈Es� g(e) ≤ α and then use an NP oracle in order to check whether the622

minimal value of a controlled saturating preflow that respects g is at least γ. Hence the ΣP2 upper623

bound.624

For the lower bound, note that the reduction described in the proof of Theorem 12 holds also for625

integral regulators.626

A.9 A proof of Theorem 15627

Consider a flow network G = 〈V,E, c, s, t〉. For every vertex v ∈ V \ {s, t}, we construct a flow628

network Gv in which every edge e is associated with a weight av(e). The weighted flow network629

Gv = 〈Vv, Ev, av, cv, s, tv〉 is obtained by extending G as follows. We add a new vertex tv and new630

edges from every vertex in V to tv , thus, Vv = V ∪ {tv} and Ev = E ∪ V × {tv}. The capacity631

cv for the new edges is large and for every e ∈ E we have cv(e) = c(e). For every edge e ∈ E�v
632

we have av(e) = 1 and for every e 6∈ E�v we have av(e) = 0. We show that flow loss is possible633

in G iff there is a vertex v ∈ V such that the maximum weighted flow in Gv has weight greater than634 ∑
v′∈V c(〈v, v′〉), that is, there is a flow f in Gv such that

∑
e∈Ev

av(e)f(e) >
∑
v′∈V c(〈v, v′〉).635

Intuitively, the maximum weighted flow in Gv has weight greater than
∑
v′∈V c(〈v, v′〉) iff an incom-636

ing flow of more than
∑
v′∈V c(〈v, v′〉) to v is possible in G iff flow loss is possible in v. Checking637

for every v ∈ V whether the maximum weighted flow in Gv has weight greater than
∑
v′∈V c(〈v, v′〉)638

can be done in polynomial time by solving a linear program.639

Assume that flow loss is possible. Let f be a saturating preflow in G such that lf (v) > 0 for640

some vertex v ∈ V , that is, the incoming flow to v is greater than its outgoing capacity. The preflow641

f induces a flow f ′ in Gv , where the flow losses in f and the flow in t are directed to the vertex642

tv . Thus, for every u ∈ V \ {s, t} we have f ′(〈u, tv〉) = lf (u) and f ′(〈t, tv〉) = f(� t). In643

the flow f ′ the incoming flow to v is greater than the outgoing capacity from v in G and therefore644 ∑
e∈Ev

av(e)f ′(e) >
∑
v′∈V c(〈v, v′〉).645

Now, assume that there is a vertex v ∈ V \ {s, t} such that there is a flow in Gv with weight646

greater than
∑
v′∈V c(〈v, v′〉). Hence, there is a flow f in Gv such that the incoming flow to the647

vertex v is greater than
∑
v′∈V c(〈v, v′〉). The flow f induces a preflow f ′ in G, where for every648

e ∈ E we have f ′(e) = f(e). Note that f ′ is a preflow in G but it may not be a saturating preflow.649

We change f ′ according to the following steps in order to obtain a saturating preflow in G such that650

the flow in each edge e ∈ E is greater or equal to f(e). We denote V = {v1, . . . , vn}. First, for651

every e ∈ Es� we change f ′ such that f ′(e) = c(e). Then, we choose a vertex u ∈ V \ {s, t} such652

that min{f ′(�u), c(u�)} − f ′(u�) is maximal. We find the minimal i such that 〈u, vi〉 ∈ E and653

f ′(〈u, vi〉) < c(〈u, vi〉) and increase the flow in 〈u, vi〉 such that f ′(u�) = min{f ′(�u), c(u�)}.654

If there is not enough free capacity in 〈u, vi〉 then we increase the flow there to c(〈u, vi〉) and find655

the next i such that 〈u, vi〉 ∈ E and f ′(〈u, vi〉) < c(〈u, vi〉) and increase the flow there also. We656

repeat this until f ′(u�) = min{f ′(�u), c(u�)}. Then, we find the next u ∈ V \ {s, t} such657

that min{f ′(�u), c(u�)} − f ′(u�) is maximal and repeat the above steps. We finish this process658

when for every u ∈ V \ {s, t} we have f ′(u�) = min{f ′(�u), c(u�)}. Since in this process659

we only increase flows, then we still have that the incoming flow to the vertex v is greater than660 ∑
v′∈V c(〈v, v′〉) and therefore there is a flow loss in v.661

We now show that the above process terminates after a finite number of iterations. Assume that662

the process does not terminate. Since we only increase flows, there is a finite number of iterations in663

which a flow in an edge e ∈ E is increased to c(e). Thus, from some point, for every u ∈ V there is664

ICALP 2018

125:18 The Unfortunate-Flow Problem

an edge eu ∈ Eu� such that a flow increase in Eu� occurs only in eu. Let U ⊆ V be the vertices665

in which we commit a flow increase infinitely many times. Thus, from some point we add flow only666

to edges eu for u ∈ U . Every vertex w ∈ U must have a vertex u ∈ U such that eu = 〈u,w〉.667

Therefore, the subgraph induced by the vertices U and the edges {eu : u ∈ U} consists of disjoint668

cycles. Hence, if for some u ∈ U we have eu = 〈u,w〉 then w ∈ U . Note that for every vertex669

u ∈ U the flow in eu is always less than c(eu). Thus, from some point, if we add a flow of ε to an670

edge eu = 〈u,w〉 then u,w ∈ U and a flow of at least ε should be added later to the edge ew. Since671

in every iteration we choose a vertex to which the flow increase that is needed is maximal, then in672

the next iteration a flow of at least ε will be added. Hence, a flow of at least ε will be added in every673

iteration from this point and on. Since the sum of the flows in the edges of G is bounded above by674 ∑
e∈E c(e), then this process cannot continue for infinitely many iterations.675

A.10 A proof of the reduction in the proof of Theorem 16676

Assume that ψ is satisfiable and let π be a satisfying assignment. Consider the regulator g in which677

for each literal z ∈ Z that holds in π we have g(〈s, z〉) = 2 and for every other edge e ∈ Es� we678

have g(e) = 0. Thus, the total outgoing flow from s is 2n. We show that every saturating preflow in679

G that respects g has no flow losses. First, a flow loss cannot occur in a vertex ui because for every680

i either xi or x̄i has an incoming flow of 0. A flow loss also cannot occur in a vertex z ∈ Z since681

its outgoing capacity is at least 2. Finally, since π satisfies ψ, each clause Ci contains at least one682

literal that holds in π and therefore there is at least one literal z ∈ Z with g(〈s, z〉) > 0 such that683

〈z, Ci〉 6∈ E. Thus, the incoming flow to Ci is at most n − 1 and hence a flow loss cannot occur in684

the vertex Ci.685

Now assume that ψ is not satisfiable and let g be a regulator with
∑
e∈Es� g(e) ≥ 2n. We show686

that there is a saturating preflow in G that respects g and has flow losses. First, if there is some i such687

that g(〈s, xi〉) + g(〈s, x̄i〉) > 2 then a flow greater than 1 can be directed to ui and thus a flow loss688

occurs. Since
∑
e∈Es� g(e) ≥ 2n we assume that for every i we have g(〈s, xi〉) + g(〈s, x̄i〉) = 2.689

If for some i we have g(〈s, xi〉) > 0 and g(〈s, x̄i〉) > 0 then a flow greater than 1 can be directed to690

ui and thus a flow loss occurs. Otherwise, for every i we have g(〈s, xi〉) = 2 or g(〈s, x̄i〉) = 2 and691

therefore g induces an assignment to the variables x1, . . . , xn. Since ψ is not satisfiable, there is a692

clause Ci that does not contain literals z ∈ Z with g(〈s, z〉) = 2 and therefore a flow of n can be693

directed to the vertex Ci, resulting in a flow loss.694

A.11 A proof of Theorem 17695

Given an integral regulator, deciding whether a flow loss is possible can be done in polynomial time696

according to Theorem 15. Hence the NP upper bound.697

For the lower bound, note that the reduction shown in the proof of Theorem 16 holds also for698

integral regulators.699

	Introduction
	Preliminaries
	The Complexity of the Unfortunate-Flow Problem
	The Controlled Unfortunate-Flow Problem
	Safe Networks and No-Loss Unfortunate Flow
	Discussion
	Examples and Proofs
	A proof of the reduction in the proof of Theorem 2
	A proof of Theorem 3
	Correctness proof of the algorithm in the proof of Theorem 6
	A proof of Theorem 8
	A proof of Theorem 10
	An example of the reduction in Theorem 12
	A proof of the reduction in the proof of Theorem 12
	A proof of Theorem 14
	A proof of Theorem 15
	A proof of the reduction in the proof of Theorem 16
	A proof of Theorem 17

