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Abstract. Of special interest in verification are safety properties, which assert
that the system always stays within some allowed region. For closed systems,
the theoretical properties of safety properties as well as their practical advantages
with respect to general properties are well understood. For open (a.k.a. reactive)
systems, whose behavior depends on their on-going interaction with the environ-
ment, the common practice is to use the definition and algorithms of safety for
closed systems, ignoring the distinction between input and output signals. In a
recent work, Ehlers and Finkbeiner introduced reactive safety – a definition of
safety for the setting of open systems. Essentially, reactive safety properties re-
quire the system to stay in a region of states that is both allowed and from which
the environment cannot force it out. In this paper we continue their study and ex-
tend it to other families of properties. In the setting of closed systems, each safety
property induces a set of finite bad prefixes – ones after which the property must
be violated. The notion of bad prefixes enables a reduction of reasoning about
safety properties to reasoning about properties of finite computations. We study
reactive bad prefixes, their detection in theory and in practice, and their approxi-
mation by either a non-reactive safety property or by reasoning about the syntax
of the formula. We study the dual notion, of reactive co-safety properties, and
the corresponding theory of reactive good prefixes. For both safety and co-safety
properties, we relate the definitions in the closed and open settings, and argue
that our approach strictly extends the range of properties for which we can apply
algorithms that are based on finite computations. Since the reactive setting is par-
ticularly challenging for general properties, such an application is significant in
practice.

1 Introduction

In formal verification, we verify that a system meets a desired property by checking
that a mathematical model of the system meets a formal specification that describes
the property. Of special interest are properties asserting that the observed behavior of
the system always stays within some allowed set of finite behaviors, in which nothing
“bad” happens. For example, we may want to assert that every message received was
previously sent. Such properties of systems are called safety properties. Intuitively, a
property ψ is a safety property if every violation of ψ occurs after a finite execution
of the system. In our example, if in a computation of the system a message is received
without previously being sent, this occurs after some finite execution of the system. 1

1 Note that the adjective safety describes the properties and not the system. One may say that a
system is safe if it satisfies safety specifications, but our use here refers to the specifications



In order to formally define what safety properties are, we refer to computations of
a nonterminating system as infinite words over an alphabet Σ. Typically, Σ = 2AP ,
where AP is the set of the system’s atomic propositions. Consider a language L of
infinite words over Σ. A finite word u over Σ is a bad prefix for L iff for all infinite
words v over Σ, the concatenation u · v of u and v is not in L. Thus, a bad prefix for
L is a finite word that cannot be extended to an infinite word in L. A language L is a
safety language if every word not in L has a finite bad prefix.

Safety has been widely studied in the formal-verification community; c.f., [1, 8,
14]. The theoretical properties of safety properties as well as their practical advantages
with respect to general properties are well understood. The definition and studies of
safety, however, treat all the atomic propositions as equal. Thus, they do not distinguish
between input and output signals and are suited for closed systems – ones that do not
maintain an interaction with their environment. In open (also called reactive) systems
[6, 12], the system interacts with the environment, and a correct system should satisfy
the specification with respect to all environments. A good way to think about the open
setting is to consider the situation as a game between the system and the environment.
The interaction between the players in this game generates a computation, and the goal
of the system is that only computations that satisfy the specification will be generated.

Technically, one has to partition the setAP of atomic propositions to a set I of input
signals, which the environment controls, and a setO of output signals, which the system
controls. An open system is then an I/O-transducer – a deterministic automaton over
the alphabet 2I in which each state is labeled by an output in 2O. Given a sequence
of assignments to the input signals (each assignment is a letter in 2I ), the run of the
transducer on it induces a sequence of assignments to the output signals (that is, letters
in 2O). Together these sequences form a computation, and the transducer realizes a
specification ψ if all its computations satisfy ψ [12].

The transition from the closed to the open setting modifies the questions we typi-
cally ask about systems. Most notably, the synthesis challenge, of generating a system
that satisfies the specification, corresponds to the satisfiability problem in the closed
setting and to the realizability problem in the open setting. As another example, the
equivalence problem between LTL specifications is different in the closed and open set-
tings [5]. That is, two specifications may not be equivalent when compared with respect
to arbitrary systems on I ∪ O, but be open equivalent; that is, equivalent when com-
pared with respect to I/O-transducers. To see this, note for example that a satisfiable
yet non-realizable specification is equivalent to false in the open but not in the closed
setting.

As mentioned above, the classical definition of safety does not distinguish between
input and output signals. The definition can still be applied to open systems, as a special
case of closed systems with Σ = 2I∪O. In [2], the authors introduced reactive safety –
a definition of safety for the setting of open systems. The definition in [2] is by means
of sets of trees with directions in 2I and labels in 2O. The use of trees naturally locate
reactive safety between linear and branching safety. Here, we suggest an equivalent yet
differently presented definition, which explicitly use realizability. In our definition, a
prefix u ∈ (2I∪O)∗ is bad with respect to a property ψ if the system cannot realize ψ
after the generation of u. Thus, reactive safety properties require the system to stay in a



region of states that is both allowed and from which the environment cannot force it out.
In order to indicate that in the open setting we take the environment into an account,
we use the term green safety to refer to safety in the open setting, and refer to classical
safety as black safety, or, when clear from the context, safety. To see the difference
between the green and black definitions, consider the specification ψ = G(err →
Ffix ), with I = {fix} and O = {err}. Thus, the system controls the generation of
errors, the environment controls the fixes, and the specification is satisfied if every error
is eventually fixed. Note that ψ is realizable using the system strategy “never err”. Also,
ψ is clearly not a safety property, as every prefix can be extended to one that satisfies
ψ. On the other hand, ψ is green safe. Indeed, every computation that violates ψ has a
green bad prefix – a prefix that ends when the system errs. Once this prefix has been
generated, the system has no way to realize the specification, as it is the environment
that controls the fixes.

We continue the study of green safety in [2]. We first give further examples to spec-
ifications that are green safe but not safe and study their properties. We study green bad
prefixes and show that, unlike the closed setting, they are not closed under extensions,
and we relate their closure under extension to black safety. We show how one can take
advantage of green safety when the specification is not safe (but is green safe) and lift
the algorithmic advantages of safety properties to green safety properties. We do so by
mapping green safety properties to open-equivalent black safety properties. The map-
ping is the same as a mapping suggested in [2] by means of nodes in the tree in which
a violation starts. In addition to the fact that our definition uses realizability explicitly,
which we find simpler, our definition and results apply to general languages, and not
only to green or black safety languages. We further formalize the connection between
green and black safety by showing that a property is green safe iff it is open equivalent
to a black safe property.

We extend the green approach to other families of properties. In the setting of closed
systems, the fragment of co-safety properties dualizes the one of safety properties: a
property is co-safe if its complement is safe. Equivalently, a property is co-safe if every
computation that satisfies it has a good prefix – one after which the property aught to
hold. In the open setting, dualization is more involved, as one has not only to comple-
ment the property but to also to dualize the roles of the system and the environment.
Since the game between the system and the environment is determined [4], in the sense
that either there is an I/O-transducer that realizes ψ (that is, the system wins) or there
is anO/I-transducer that realizes ¬ψ (that is, the environment wins), such a dualization
is possible, and we actually have four fragments of languages that are induced by du-
alization of the green safety definition. The different fragments correspond to whether
we talk about safety or co-safety, and whether it is the system or the environment that
we consider. We study the theoretical properties of the fragments and the connections
among them.

In the closed setting, the intersection of safe and co-safe properties induces the
fragment of bounded properties – there is an integer k ≥ 0 such that every word of
length k is either a good or a bad prefix [9]. We study boundedness in the open setting
and show that the fact green bad and good prefixes are not closed under extension makes



the boundedness issue more complicated, as a computation may have both infinitely
many good and infinitely many bad prefixes.

In the closed setting, detection of special (bad or good) prefixes has the flavor of
validity checking. Accordingly, the problem of deciding whether an LTL specification
is safe or co-safe is PSPACE-complete [14]. In the setting of open systems, detection of
special prefixes has the flavor of realizability. Thus, reasoning about special prefixes is
more complicated. In particular, it is shown in [2] that the problem of deciding whether
an LTL formula is reactive safe is 2EXPTIME-complete. Similar bounds hold for the
problem of detecting special prefixes. Thus, especially in the open setting, it is inter-
esting to find efficient ways to approximate the language of special prefixes and their
detection. We suggest such an approximation by means of informative green prefixes.
The notion of informative prefixes was introduced for the closed setting in [8]. Essen-
tially, a prefix is informative for a safety property ψ if the syntax of ψ explains why
it is a bad prefix. Lifting the notion to open systems involves an approximation that is
based both on examining the syntax, rather than the semantics of the property, and an
approximation of realizability by satisfiability. We argue that for natural specifications,
the approximations are accurate.

Finally, our ability to replace green safe properties by simpler safe properties as well
as the fact that our syntactic-based approximation is accurate for natural specifications
are useful not only for easier reasoning about but also in order to assess the quality of
specifications. This later point is very important in the context of property-based design
[13]. The setting of open systems is particularly challenging for property assurance:
solving the synthesis problem, decomposition of specifications is not always possible,
making the detection of dependencies among different components of the specification
much more difficult.

Due to the lack of space, some proofs are omitted from this version and can be
found in the full version, in the authors’ URLs.

2 Preliminaries
2.1 Linear temporal logic

The logic LTL is a linear temporal logic. Formulas of LTL are constructed from a setAP
of atomic proposition using the usual Boolean operators and the temporal operators G
(“always”), F (“eventually”),X (“next time”), andU (“until”). We define the semantics
of LTL with respect to a computation π = σ0, σ1, σ2, . . ., where for every j ≥ 0, we
have that σj is a subset of AP , denoting the set of atomic propositions that hold in
the j-th position of π. We use π |= ψ to indicate that an LTL formula ψ holds in the
computation π. We use ‖ψ‖ to denote the set of computations in (2AP )ω that satisfy ψ.
A full definition of the syntax and semantics of LTL can be found in [11].

2.2 Safety languages and formulas

Consider a language L ⊆ Σω of infinite words over the alphabet Σ. A finite word
u ∈ Σ∗ is a bad prefix for L if for all v ∈ Σω , we have u · v 6∈ L. Thus, a bad prefix
is a finite word that cannot be extended to an infinite word in L. Note that if u is a bad



prefix, then all the finite extensions of u are also bad prefixes. A language L is a safety
language if every word not in L has a finite bad prefix [1, 8, 14]. For a language L, we
denote by bp(L) the set of all bad prefixes for L. We say that an LTL formula ψ is a
safety formula iff ‖ψ‖ is a safety language.

2.3 Open systems

We model open systems by transducers. Let I and O be finite sets of input and output
signals, respectively. Given x = i0 · i1 · i2 · · · ∈ (2I)ω and y = o0 · o1 · o2 · · · ∈ (2O)ω ,
we denote their composition by x⊕ y = (i0, o0) · (i1, o1) · (i2, o2) · · · ∈ (2I∪O)ω . An
I/O-transducer is a tuple T = 〈I,O, S, s0, η, L〉, where S is a set of states, s0 ∈ S is
an initial state, η : S × 2I → S is a transition function, and L : S → 2O is a labeling
function. The run of T on a (finite or infinite) input sequence x = i0 · i1 · i2 · · ·, with
ij ∈ 2I , is the sequence s0, s1, s2, . . . of states such that sj+1 = η(sj , ij+1) for all
j ≥ 0. The computation of T on x is then x⊕ y, for y = L(s0) ·L(s1) ·L(s2) · · · Note
that T is responsive and deterministic (that is, it suggests exactly one successor state for
each input letter), and thus T has a single run, generating a single computation, on each
input sequence. We extend η to finite words over 2I in the expected way. In particular,
η(s0, x), for x ∈ (2I)∗ is the |x|-th state in the run on x. A transducer T induces a
strategy f : (2I)∗ → 2O such that for all x ∈ (2I)∗, we have that f(x) = L(η(s0, x)).
Given an LTL formula ψ over I ∪O, we say that ψ is I/O-realizable if there is a finite-
state I/O-transducer T such that all the computations of T satisfy ψ [12]. We then say
that T realizes ψ. When it is clear from the context, we refer to I/O-realizability as
realizability, or talk about realizability of languages over the alphabet 2I∪O.

Since the realizability problem corresponds to deciding a game between the system
and the environment, and the game is determined [4], realizability is determined too, in
the sense that either there is an I/O-transducer that realizes ψ (that is, the system wins)
or there is an O/I-transducer that realizes ¬ψ (that is, the environment wins). Note that
in an O/I-transducer the system and the environment “switch roles” and the system is
the one that provides the inputs to the transducer. A technical detail is that in order for
the setting of O/I-realizability to be dual to the one in I/O-realizability we need, in
addition to switching the roles and negating the specification, to switch the player that
moves first and consider transducers in which the environment initiates the interaction
and moves first. Since we are not going to delve into constructions, we ignore this point,
which is easy to handle.

3 Green Safety
Let I and O be sets of input and output signals, respectively. Consider a language L ⊆
(2I∪O)ω . For a finite word u ∈ (2I∪O)∗, let Lu = {s : u · s ∈ L} be the set of all
infinite words s such that u · s ∈ L. Thus, if L describes a set of allowed computations,
then Lu describes the set of allowed suffixes of computations starting with u.

We say that a finite word u ∈ (2I∪O)∗ is a system bad prefix for L iff Lu is not
realizable. Thus, a system bad prefix is a finite word u such that after traversing u,
the system does not have a strategy to ensure that the interaction with the environment
would generate a computation in L. We use sbp(L) to denote the set of system bad



prefixes for L. Note that by determinacy of games, whenever Lu is not realizable by the
system, then its complement is realizable by the environment. Thus, once a bad prefix
has been generated, the environment has a strategy to ensure that the entire generated
behavior is not in L.

A language L ⊆ (2I∪O)
ω is a green safety language if every word not in L has a

system bad prefix.

Example 1. Let I = {q}, O = {p}, ψ = Gp ∨ FGq, and L = ‖ψ‖. Note that ψ
is realizable using the system strategy “always output p”. We show L is green safe.
Consider a word w /∈ L. Since w does not satisfy Gp, there must be a prefix u of w
such that u contains a position satisfying ¬p. Since words with prefix u do not satisfy
Gp, we have that Lu = ‖FGq‖. Since q ∈ I , the specification FGq is not realizable.
Thus, u is a system bad prefix and L is green safe.

On the other hand, L is not safe. Consider for example the word w = ∅ω . While
w is not in L, for every finite computation u of w, the suffix s = {q}ω is such that
u · s |= FGq, implying that u · s ∈ L. Thus, w has no bad prefix, implying that L is not
safe.

Example 2. Let I = {q}, O = {p}, ψ = G(p → Fq), and L = ‖ψ‖. Note that ψ
is realizable using the system strategy “never output p”. Also, ψ is clearly not a safety
property, as every prefix can be extended to one that satisfies it. On the other hand, L is
green safe. Indeed, every word not in L must have a prefix u that ends with {p}. Since
Lu = ‖Fq‖ and q ∈ I , so the specification Fq is not realizable, we have that u is a
system bad prefix and L is green safe.

Note that when I = ∅, which corresponds to the case of closed systems, we have
that Lu is not realizable iff Lu is empty. Thus, when I = ∅, safety coincides with green
safety.

Explaining the intuition behind green safety, we are going to use the following ter-
minology. We say that the system errs when it generates a system bad prefix. The envi-
ronment, however, may forgive these errors and not follow a winning strategy after it.
In Example 1, the system errs whenever it outputs ¬p. In Example 2, the system errs
whenever it outputs p. In both cases, when this happens, the environment may follow
a strategy with which the generated computations do not satisfy ψ, say by always in-
putting ∅, but it may also forgive the errors by following a strategy with which ψ still
holds, say by always inputting {q}.

Remark 1. While presented differently, our definition of green safety is equivalent to
the definition of reactive safety in [2]. The definition there is by means of sets of trees
with directions in 2I and labels in 2O. The use of trees naturally locate reactive safety
between linear and branching safety. On the other hand, we find the explicit use of
realizability in our definition much simpler and easier to work with, as it naturally
conveys the intuition of safety in the open setting.

3.1 Properties of green safety

We start by checking some theoretical properties of green safety.



Proposition 1. Every non-realizable language is green safe, with ε being a system bad
prefix.

Proof: Since Lε = L, we have that L is not realizable iff Lε is not realizable, which
holds iff ε is a system bad prefix. Therefore, if L is not realizable, every word not in L
has ε as a system bad prefix, and so L is green safe.

As pointed out in [2], green safety is strictly weaker than safety. We present here
the proof using our alternative definition of green safety.

Proposition 2. Every safe language is green safe, but the other direction is not neces-
sarily true.

Proof: LetL be a safe language. Consider a wordw /∈ L and a bad prefix u ∈ (2I∪O)∗

of w. Since u is a bad prefix, the set Lu is empty, and is therefore unrealizable, so u is
also a system bad prefix. Thus, every word not in L has a system bad prefix, implying
that L is green safe. Strictness is demonstrated in Example 1.

In the closed settings, the set bp(L) is closed under finite extensions for all lan-
guages L ⊆ Σω . That is, for every finite word u ∈ bp(L) and finite extension v ∈ Σ∗,
we have that u · v ∈ bp(L). As we shall see now, the set of system bad prefixes is not
closed under finite extensions. The reason is that the environment need not take advan-
tage of errors made by the system, possibly giving the system another chance to win.
Below we give two such examples.

Example 3. Let I = {fix}, O = {err}, and ψ = G(err → X fix ) ∧ FG¬err . Thus,
ψ states that every error the system makes is fixed by the environment in the following
step, and that there is a finite number of errors. Let L = ‖ψ‖. Clearly, L is realizable,
as the strategy “make no errors” is a winning strategy for the system.

We first show that L is green safe. Consider a word w /∈ L. Since w 6|= ψ, there
must be a prefix u of w such that u ends in a position satisfying err . We claim that u
is a system bad prefix. Indeed, an environment strategy starting with ¬fix guarantees
that the condition G(err → X fix ) is not satisfied, and hence is a winning strategy for
the environment after u was generated. Hence, Lu is not realizable, implying that L is
green safe.

We now show that sbp(L) is not closed under finite extensions. Consider the word
w = ({err ,fix} · {fix})ω . That is, the system makes an error on every odd position,
and the environment always fixes errors. Since there are infinitely many errors in w, it
does not satisfy ψ. The prefix u = {err ,fix} of w is a system bad prefix. Indeed, an
environment strategy that starts with ¬fix is a winning strategy. On the other hand, u’s
extension v = {err ,fix} · {fix} is not a system bad prefix. Indeed, Lv is realizable
using the winning system strategy “make no errors”.

Note that w has infinitely many system bad prefixes and infinitely many undeter-
mined prefixes. For the same language, we can also point to a word with only one
system bad prefix. Consider the word w′ = {err ,fix} · {fix}ω . Note that w′ is in L.
Here, the system makes only one error, which is fixed, and then makes no more errors.
While {err ,fix} is a system bad prefix, every longer prefix of w′ contains the fix for



the first error, and does not contain further errors by the system, Therefore, it is not a
system bad prefix.

Example 4. In the previous example, we saw a word w′ with only one system bad
prefix, but w′ was in L. Let I = {fix}, O = {err , ack}, and ψ = G(err → X (fix ∧
F ack)). Thus, ψ states that after the system makes an error, the environment must fix
it, and the system must also eventually acknowledge the error. Let L = ‖ψ‖. In the full
version we show that L is green safe and not safe and that here is a word not in L that
has only one system bad prefix.

We can conclude with the following:

Proposition 3. The set of system bad prefixes is not closed under extension.

3.2 From green to black safety

As studied in [8], reasoning about safety properties is easier than reasoning about gen-
eral properties. In particular, rather than working with automata on infinite words, one
can model check safety properties using automata (on finite words) for bad prefixes.
In the open setting, when the specification we reason about is safe, we can use algo-
rithms developed for safety languages. The question is whether and how we can take
advantage of green safety when the specification is not safe (but is green safe). In this
section we answer this question positively and lift the algorithmic advantages of safety
properties to green safety properties. We do so by mapping green safety properties to
open-equivalent black safety properties.

For a language L ⊆ (2I∪O)ω , we define black(L) = L ∩ {w : w has no system
bad prefix for L}. Equivalently, black(L) = L\{w : w has a system bad prefix for L}.
Intuitively, we obtain black(L) by defining all the finite extensions of sbp(L) as bad
prefixes. Accordingly, it is easy to see that sbp(L) ⊆ bp(black(L)). We sometimes
apply black on LTL formulas, mapping formulas to formulas.

Example 5. Consider the specification ψ = G(err → X fix ) ∧ FG¬err , with I =
{fix}, O = {err}. In Example 3 we saw that ψ is green safe. Moreover, an infinite
word contains a system bad prefix for ψ iff it has a position that satisfies err . Ac-
cordingly, black(ψ) = G¬err . The specification ψ is a basis to similar specifications.
For example, in a thread-management context, if we replace err by Zero x and fix
by Interrupt , where interrupt stands for the operating system interrupting the system
thread, then the formula ψ = G(Zero x → X Interrupt)∧FG¬Zero x states that the
value of x, which the system controls, can be 0 only finitely often and that whenever
it is 0, the environment must not interrupt the system in the next transition. For this
formula, we get that black(ψ) = G¬Zero x. This matches our intuition: If an interrupt
can occur at any time, and we want to avoid an interrupt when x is 0, we must never set
x to 0.

Example 6. Consider the specification ψ = G(err → X (fix∧F ack)), with I = {fix},
O = {err , ack}. In Example 4 we saw that ψ is green safe. Moreover, an infinite word
contains a system bad prefix for ψ iff it has a position that satisfies err . Accordingly,
black(ψ) = G¬err . Here too, the structure of ψ is a basis to similar specifications. For



example, in a network with packet loss, replacing err with¬legal (for sending an illegal
packet), fix with drop (for packet dropped by the network), and ack with resend, we
get the specification “illegal packets are eventually resent, and no illegal packet reaches
its destination”. For this formula, we get that black(ψ) = Glegal. This matches our
intuition: the only way to avoid an arrival of an illegal packet to its destination is to
never send one.

Remark 2. A similar transition from green to black safety is described in [2], by means
of nodes in the tree in which a violation starts, which are analogous to our system bad
prefixes. In addition to the fact that our definition uses realizability explicitly, which we
find simpler, our definition and results apply to general languages, and not only to green
or black safety languages.

Theorem 1. Consider a language L ⊆ (2I∪O)ω . The following are equivalent:

1. L is green safe.
2. {w : w has no system bad prefix} ⊆ L; that is, black(L) = {w : w has no

system bad prefix}.
3. black(L) is black safe.

Proof: We first prove if L is green safe then {w : w has no system bad prefix} ⊆ L.
Assume that L is green safe. Consider a word w ∈ {w : w has no system bad prefix},
and assume by way of contradiction that w /∈ L. Since L is green safe and w /∈ L, we
have that w has a system bad prefix for L, contradicting the fact that w ∈ {w : w has
no system bad prefix}.

We now prove that if {w : w has no system bad prefix} ⊆ L then black(L) is
black safe. Consider a word w /∈ black(L). By definition, black(L) = L ∩ {w : w
has no system bad prefix}, and since {w : w has no system bad prefix} ⊆ L, we have
that black(L) = {w : w has no system bad prefix}. Therefore, w has a system bad
prefix u. For every suffix s ∈ (2I∪O)ω , the word w′ = u · s contains the system bad
prefix u and therefore w′ /∈ black(L). Thus, u is a bad prefix in black(L), implying
that black(L) is black safe.

Finally, we prove that if black(L) is black safe then L is green safe. Assume that
black(L) is black safe, and consider a word w /∈ L. Since black(L) ⊆ L, we have that
w /∈ black(L). Therefore, w has a bad prefix u in black(L). If u ∈ sbp(L), we are done
since w indeed has a system bad prefix. Otherwise, we claim that u has a prefix v such
that v ∈ sbp(L). Since u is not a system bad prefix, the system has a winning strategy
from u, and that strategy generates a suffix s ∈ (2I∪O)ω such that w′ = u ·s ∈ L. Since
u ∈ bp(black(L)), we have that w′ /∈ black(L), so w′ has a prefix v ∈ sbp(L). We
claim that |v| ≤ |u|. Indeed, every prefix of w′ that is not a prefix of u was generated
by a winning strategy for the system. Therefore, it cannot be a system bad prefix. Now,
if |v| ≤ |u| then v is also a prefix of w, so w has a system bad prefix. Therefore, L is
green safe.

While L and black(L) are not equivalent, they are open equivalent, in the sense of
[5]. Formally, we have the following.



Theorem 2. For every language L ⊆ (2I∪O)ω and I/O-transducer T , we have that
T realizes L iff T realizes black(L).

Proof: Since black(L) ⊆ L, then clearly every transducer that realizes black(L)
also realizes L. For the other direction, let L be some language and consider an I/O-
transducer T that realizes L. Assume by contradiction that T does not realize black(L).
Then, there is a computation w of T such that w ∈ L \ black(L). Since black(L) =
L ∩ {w : w has a system bad prefix for L} and w ∈ L \ black(L), it must be that
w /∈ {w : w has a system bad prefix for L}. Thus, w has a system bad prefix u. Since u
is a system bad prefix, we have that Lu is not realizable, which means that after u was
generated, the environment has a winning strategy. Since L is ω-regular, there is also
an O/I-transducer that implements such a winning strategy. Let T ′ be such an O/I-
transducer. Consider the word w′ = u ·(x⊕y), where x ∈ (2I)ω and y ∈ (2O)ω are the
input and output sequences generated when the environment follows T ′, and the sys-
tem follows T u (that is, T after u has been generated). So, x = T ′(y) and y = T u(x).
Since y = T u(x), we have that w′ = u · (x⊕ Tu(x)) is a computation of T . Since T ′
is a winning strategy for the environment, we have that w′ = u · (T ′(y)⊕ y) /∈ L. On
the one hand, since T realizes L, all the traces of T are in L. On the other hand, w′ is a
trace of T , so we have reached a contradiction. Therefore, T also realizes black(L).

Note that Theorem 2 applies to arbitrary languages and not only for green safe ones.
Theorem 2 suggests that we can reason about ψ, and in particular solve its model-

checking (with respect to transducers) and synthesis problems by reasoning about black(ψ).
Consider for example the green safety property ψ = G(p → Fq), where black(ψ) =
G¬p (recall that p is an output signal, see Example 2). Our ability to replace ψ by
the much simpler formula black(ψ) is similar to our ability to simplify specifications
with inherent vacuity [3]. Indeed, green-but-not-black safety typically indicates that the
specifier is not fully aware of the many aspects of the specification. Thus, green safety
is useful not only for reasoning about simpler specifications but also in order to assess
the quality of specifications, which is very important in the context of property-based
design [13], especially in the setting of open systems. The setting of open systems is
indeed particularly challenging for property assurance: solving the synthesis problem,
decomposing of specifications is not always possible, making the detection of depen-
dencies among different components of the specification much more difficult.

It is shown in [2], that given an LTL formula ψ, it is possible to construct a de-
terministic looping word automaton for black(ψ) with doubly-exponential number of
states.2 In fact, as suggested in [8], it is then possible to generate also a deterministic
automaton for the bad prefixes of black(ψ). Note that when L is not realizable, we
have that ε ∈ sbp(L), implying that black(L) = ∅. It follows that we cannot expect to
construct small automata for black(L), even nondeterministic ones, as the realizability
problem for LTL can be reduced to easy questions about them.

Theorem 2 implies that a green safety language L is open equivalent to a safe lan-
guage, namely black(L). We complete the picture by showing that open equivalence to
a safe language implies green safety.

2 A looping automaton is a Büchi automaton in which all states are accepting. It is known [8,
14] that safety properties can be translated to looping automata.



Theorem 3. A language L is green safe iff L is open equivalent to a safe language.

Proof: First, if L is green safe, then, by Theorem 1, we have that black(L), which is
open equivalent to L, is safe.

For the other direction, assume that L is open equivalent to a safe language L′. We
show that L is green safe. Assume by way of contradiction that L is not green safe.
Then, there is a word w /∈ L with no system bad prefix. In the full version we show that
the above implies that the word w also has no system bad prefix in L′, which implies,
as L′ is a safe language, that w ∈ L′. Consider the following (infinite) transducer T :
As long as T gets inputs that agree with w, it generates outputs that agree with w and
continues. Once the input does not agree with w, the prefix generated so far is a prefix
of w. Since w has no system bad prefix in L′, there is a system winning strategy in L′

from this prefix, and T plays that strategy. Since T either generates w ∈ L′, or reaches
a position from which it plays a system winning strategy in L′, it follows that T realizes
L′. Since, however, T generatesw, which is not in L, it does not realize L, contradicting
the fact that L and L′ are open equivalent. We note that, by [5], the existence of an
infinite transducer that distinguishes between L and L′ implies the existence of such a
finite transducer.

4 Green Co-Safety
For a languageL ⊆ Σω , we use comp(L) to denote the complement ofL; i.e., comp(L) =
Σω \ L. In the closed setting, we say that a language L ⊆ Σω is a co-safety language
if comp(L) is a safety language. (The term used in [10] is guarantee language.) Equiv-
alently, L is co-safety iff every w ∈ L has a good prefix x ∈ Σ∗ such that for all
y ∈ Σω , we have x · y ∈ L. For a co-safety language L, we denote by gp(L) the set of
good prefixes for L. Note that gp(L) = bp(comp(L)) [8]. Finally, an LTL formula ψ
is a co-safety formula iff ‖ψ‖ is a co-safety language or, equivalently, ‖¬ψ‖ is a safety
language.

In the setting of open systems, dualization of specifications is more involved, as one
has not only to complement the language but to also dualizes the roles of the system
and the environment. Accordingly, we actually have four fragments of languages that
are induced by dualization of the green safety definition. We define them by means of
bad and good prefixes.

Consider a language L ⊆ (2I∪O)ω and a prefix u ∈ (2I∪O)∗. We say that

– u is a system bad prefix if Lu is not I/O-realizable.
– u is a system good prefix if Lu is I/O-realizable.
– u is an environment bad prefix if Lu is not O/I-realizable.
– u is an environment good prefix if Lu is O/I-realizable.

Now, a language L ⊆ (2I∪O)ω is a system (environment) safety language if every
word not in L has a system (environment, respectively) bad prefix. The language L is a
system (environment) co-safety language if every word in L has a system (environment,
respectively) good prefix. Note that system safety coincides with green safety. Here,
that we parametrize safety with either a system or an environment, we simplify the
notation and omit “green”.



Since each language Lu is either I/O-realizable or not I/O-realizable, and the
same for O/I-realizability, all finite words are determined, in the following sense.

Proposition 4. Consider a language L ⊆ (2I∪O)ω . All finite words in (2I∪O)∗ are
determined with respect to L. That is, every prefix is either system good or system bad,
and either environment good or environment bad, with respect to L.

Note that while every prefix is determined, a word may have both system bad
and system good prefixes, and similarly for the environment, which is not the case
in the setting of closed systems. For example, recall the language L = ‖G(err →
X fix ) ∧ FG¬err‖, for I = {fix} and O = {err}. In Example 3 we saw that the word
({err, fix}·{fix})ω has both a system bad prefix {err, fix}, and a system good prefix
{err, fix} · {fix}.

In a dual manner to Proposition 1, every realizable language is system co-safe with
ε being a system good prefix for every word in L. Accordingly, our goal in studying co-
safety is two fold. First, since a system good prefix u is such that Lu is I/O-realizable,
then the set of system good prefixes describe the “hopeful scenarios” for the system –
ones after which it would be able to realize a non-realizable specification. Second, the
story of safety and co-safety is told about both the system and the environment. As we
shall now see, system safety and environment co-safety dualize each other.

Proposition 5. For every language L ⊆ (2I∪O)ω , we have that L is system safe iff
comp(L) is environment co-safe.

By switching the roles of the system and the environment, we get that L is system
co-safe iff comp(L) is environment safe.

It is interesting to consider the special case when I = ∅. There, O/I-realizability
coincides with validity. Therefore, given a language L ⊆ (2O)ω , a prefix u is an envi-
ronment good prefix iff Lu = Σω , which coincides with the definition of a good prefix
in the closed settings. Therefore, when I = ∅, environment co-safety coincides with
co-safety.

4.1 Boundness

We say a property ψ is bounded if there is an integer k ≥ 0 such that every word of
length k is either a good or a bad prefix for ψ. In the closed settings, a language that is
both safe and co-safe is bounded [9]. In the open setting, we can talk about two relevant
intersections. The first is languages that are both system safe and system co-safe (or
dually, both environment safe and environment co-safe). The second is languages that
are both system safe and environment co-safe (or dually, both environment safe and
system co-safe). In this section we consider the fragments corresponding to both types
of intersection.

We start with the first fragment. We denote by JP K the set of languages that have the
property P . As we have previously seen, every unrealizable language is system safe, and
every realizable language is system co-safe. Therefore, Jsystem safeK∩Jsystem co-safeK =
(JrealizableK∩Jsystem safeK)∪(JunrealizableK∩Jsystem co-safeK). As we have seen in
Section 3, system safety is of interest in the case of realizable languages, and the realiz-
able languages that are system safe are not bounded. Likewise, unrelizability does not



impose boundedness on specifications that are system co-safe. Thus, there is no reason
to expect a language that is both system safe and system co-safe to be bounded. We are
going to confirm this intuition in Example 7 below. Thus, interestingly, the intersection
system safe and system co-safe properties is not related to boundedness and instead
suggests a characterization of realizable and non-realizable specifications.

We continue to the second fragment. Let L be a language that is both system safe
and environment co-safe. Consider a word w ∈ (2I∪O)ω . If w ∈ L, then, as L is
environment co-safe, w has a good environment prefix. If w 6∈ L, then, as L is system
safe, w has a bad system prefix. As in the closed setting, it follows that w must have a
“special” – either environment co-safe or system safe prefix. In the closed setting, it was
possible to use this information in order to bound the length of the shortest such prefix.
As we shall see now, this strongly depends on the fact the bad and good prefixes in the
closed setting are closed under extensions, and is no longer valid in the open setting.

Example 7. Consider the formula ψ = G(err → Gfix ), for I = {fix} and O =
{err}. Let L = ‖ψ‖. It is easy to see that L is I/O-realizable with the system strategy
“make no errors”. Thus, L is system co-safe. For every word w /∈ L, we have that
w |= F (err ∧ F¬fix ). Therefore, every word w /∈ L has a prefix that contains a
position satisfying err, and ends in a position satisfying ¬fix. Such a prefix is a black
bad prefix, and is thus both a system bad and an environment bad prefix. Therefore, L
is both environment safe and system safe. Finally, L is also O/I-realizable, with the
environment environment strategy “always fix”. It follows that L is also co-safe.

Hence, L belongs to the four green safety and co-safety fragments. On the other
hand, L is not bounded. To see this, consider the word w = ∅ω . For every prefix u of
w, the suffix s = {err}ω is such that u · s /∈ L, and the suffix s′ = ∅ω is such that
u · s′ ∈ L. Thus, w has undetermined prefixes of unbounded length, and so L is not
bounded.

Since in this example we show a language that has all four green safety properties,
but is not bounded, we can conclude with the following.

Proposition 6. A language in an intersection of system safety, system co-safety, envi-
ronment safety, and environment co-safety, need not be bounded.

In the full version, we consider a dualization of black(L), namely the set white(L)
obtained by adding all the infinite extensions of environment good prefixes to L. An
environment good prefix in L is thus a good prefix in white(L).

We show that for every language L ⊆ (2I∪O)ω , we have comp(white(L)) =
black(comp(L)). By dualizing our results on green and black safety, we thus have
that L is environment co-safe iff white(L) is co-safe, and that L and white(L) are
co-open-equivalent.

5 Green Informative Prefixes
In the closed setting, detection of special (bad or good) prefixes has the flavor of va-
lidity checking. Accordingly, the problem of deciding whether an LTL specification is
safe or co-safe is PSPACE-complete [14], and the size of an automaton for the spe-
cial prefixes is doubly-exponential in the LTL formula that describes the specification



[8]. The doubly-exponential blow up is present even when the automaton is nondeter-
ministic. Intuitively, the need to accept all the special prefixes requires the construction
to have the flavor of determinization, as one has to relate different components of the
specification. In the setting of open systems, detection of special prefixes has the flavor
of realizability. Thus, reasoning about special prefixes is more complicated. In particu-
lar, it is shown in [2] that the problem of deciding whether an LTL formula is reactive
safe is 2EXPTIME-complete. In fact, as we show in the full version, the problem is
2EXPTIME-hard even for specifications that are known to be realizable. Similarly, as
showed in [2], automata that recognize the system bad prefixes of a reactive safety
property are of size doubly-exponential in the LTL formula.

In [8], the authors introduced the notion of informative prefixes in the context of
closed systems. Given an LTL formula ψ, the set of informative prefixes for ψ is a subset
of bp(ψ) that is easier to detect. Essentially, a prefix is informative for ψ if the syntax
of ψ explains why it is a bad prefix. In this section we lift the notation of informative
prefixes and their applications to the open setting. We first need the following definition
and notations. We assume that LTL formulas are written in a positive normal form,
where negation is pushed inward and is applied only to atomic propositions. For this,
we have to introduce the dual R (“release”) of U (“until”). We use cl(ψ) to denote the
set of subformulas of ψ (after transferring ψ to a positive normal form).

For an LTL formula ψ overAP = I∪O and a finite computation π = σ1 ·σ2 · · ·σn,
with σi ∈ 2I∪O, we say that π is green informative for ψ if there exists a mapping
L : {1, . . . , n+ 1} → 2cl(¬ψ) such that the following hold.

1. ¬ψ ∈ L(1).
2. L(n+1) contains only formulas over I , and the formula

∧
ϕ∈L(n+1) ϕ is satisfiable.

3. For all 1 ≤ j ≤ n and ϕ ∈ L(j), the following hold:
– If ϕ is a propositional assertion, it is satisfied by σj .
– If ϕ = ϕ1 ∨ ϕ2 then ϕ1 ∈ L(j) or ϕ2 ∈ L(j).
– If ϕ = ϕ1 ∧ ϕ2 then ϕ1 ∈ L(j) and ϕ2 ∈ L(j).
– If ϕ = Xϕ1, then ϕ1 ∈ L(i+ 1).
– If ϕ = ϕ1Uϕ2, then ϕ2 ∈ L(j) or [ϕ1 ∈ L(i) and ϕ1Uϕ2 ∈ L(j + 1)].
– If ϕ = ϕ1Rϕ2, then ϕ2 ∈ L(j) and [ϕ1 ∈ L(i) or ϕ1V ϕ2 ∈ L(j + 1)].

If π is informative for ψ, then the mapping L is called the green witness for ¬ψ in π.
Intuitively,L(j), for j ≥ 0, is the set of subformulas in cl(¬ψ) that are yet to be satisfied
in order for ¬ψ to be satisfied in a computation that has σ1 · σ2 · · ·σj−1 as a prefix. In
the closed setting, the requirement on L(n + 1) is to be empty, corresponding to the
requirement that no more obligations have to be satisfied in order for ¬ψ to hold in all
possible suffixes. In the open setting, the corresponding requirement would have been
that L(n + 1) is such that the conjunction of the formulas in it is O/I-realizable. We
refer to prefixes that satisfy the above as strong green informative prefixes. As we shall
see below, while such prefixes are more precise, they are harder to detect. In the other
extreme, we could have require the formulas in L(n+ 1) to only refer to I and give up
the satisfiability checking. We call such prefixes weak informative green prefixes. While
checking for weak prefixes is easier, they do not guarantee that the prefix is system bad.

In the definition above, the requirements left to be checked in L(n+1) are on I and
their conjunction has to be satisfiable. Since all the requirements are on I , satisfiability



and realizability coincide, which guarantees that a green informative prefix is indeed a
system bad prefix.

Note that when I = ∅, the requirement above for L(n + 1) is equivalent to the
requirement L(n + 1) = ∅, thus the definition of a green informative prefix coincides
with the definition of informative prefix.

Example 8. Let I = {q}, O = {p} and let ψ1 = G(p → Fq). Using the positive
normal form, we have that ¬ψ1 = F (p ∧ G¬q), where we use Fϕ as an abbreviation
for trueUϕ, andGϕ as an abbreviation for falseRϕ. The finite computation π = ∅·{p}
is a green informative prefix for ψ1, as witnessed by the mappingLwithL(1) = {F (p∧
G¬q)}, L(2) = {F (p∧G¬q), p∧G¬q, p,G¬q,¬q}, L(3) = {G¬q}. Indeed, |π| = 2
and L(2 + 1) contains a satisfiable formula over I .

We now consider two variants of the previous example. The first is ψ2 = G(p →
(Fq ∨ (Xr ∧ X¬r)), where I = {q}, O = {p, r}. Note that since Xr ∧ X¬r is
not satisfiable, the specifications ψ1 and ψ2 are equivalent. Still, informative prefixes
consider the syntax of the formula. To see that the syntax may be crucial, let us examine
π again, now with respect to ¬ψ2 = F (p ∧ (G¬q ∧ ((X¬r) ∨ Xr))). We can see π
is not a green informative prefix for ψ2, as such a prefix must contain at least one state
after the first state in which p holds, to syntactically verify that (X¬r)∨Xr holds. Note
that if r had been an input, then π would have been a green informative prefix.

The second variant is ψ3 = G(p→ ((X¬q) ∧Xq)), where I = {q} and O = {p}.
Now, ¬ψ3 = F (p ∧ (Xq ∨X¬q)). We can see that π is a green informative prefix, as
((X¬q)∨Xq) is over I and is satisfiable. Formally, the mappingLwithL(1) = {¬ψ3},
L(2) = {¬ψ3, p∧(Xq∨X¬q), p,Xq∨X¬q,Xq}, and L(3) = {q} is a green witness
for ¬ψ3. On the other hand, in the closed setting π is not an informative prefix for ψ3,
as such a prefix must contain at least one state after the first state in which p holds, to
syntactically verify that ((X¬q) ∨Xq) holds.

The fact that the requirement about L(n + 1) is easier to satisfy in the open rather
than in the closed setting, together with the example of ψ3 above, imply the following.

Theorem 4. Green information is weaker than black information. That is, every infor-
mative prefix is also a green informative prefix, but the other direction is not necessarily
true.

The syntax-based definition leads to an easier detection of bad prefixes:

Theorem 5. Given an LTL formula ψ and a finite computation π, the problem of de-
ciding whether π is green informative for ψ is PSPACE-complete.

Proof: We start with the upper bound. Consider a prefix π = σ1, . . . , σn and an LTL
formula ψ. As shown in [8], it is possible to construct in time O(n · |ψ|) a mapping
Lmax : {1, . . . , n+ 1} → 2cl(¬ψ) such that Lmax(j) contains exactly all the formulas
¬ϕ such that the suffix σj , . . . , σn is informative for ϕ. Extending this construction to
the open setting requires a guess of the formulas in L(n+1), making the guess and the
check that the conjunction of the formulas is satisfiable the computational bottleneck.
Since satisfiability, as well as going over all possible guesses, can be done in PSPACE,
we are done.



For the lower bound, we show a reduction from LTL satisfiability problem, which
is PSPACE-complete. Given an LTL formula ψ over AP , we consider the specification
θ = ¬ψ, with I = AP and O = ∅. It is easy to see ε is a green informative prefix for θ
iff ψ is satisfiable.

Remark 3. Since the generation of L(n + 1) is the computational bottleneck, work-
ing with the strong and weak green informative prefix definition results in detection
problems that are 2EXPTIME-complete and linear-time, respectively.

Finally, as in the closed setting, it is possible to define an automaton that recognizes
exactly all the informative green prefixes of a given safety formula. It is also possible
to use the notion of informative green prefixes in order to classify green safety formu-
las according to the level in which informative prefixes approximate the set of all bad
prefixes. The technical details are similar to these in [8], with the different conditions
on L(n+1) imposing the expected changes, in both the algorithms and the complexity.
We describe the full details in the full version.
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