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Abstract. A switched system is composed of components. The components do
not interact with one another. Rather, they all interact with the same environment,
which switches one of them on at each moment in time. In standard concurrency, a
component restricts the environment of the other components, thus the concurrent
system has fewer behaviors than its components. On the other hand, in a switched
system, a component suggests an alternative to the other components, thus the
switched system has richer behaviors than its components.
We study finite-state switched systems, where each of the underlying components
is a finite-state transducer. While the main challenge, namely compositionality, is
similar in standard concurrent systems and in switched systems, the problems and
solutions are different. In the verification front, we suggest and study an assume-
guarantee paradigm for switched systems, and study formalisms in which satis-
faction of a specification in all components imply its satisfaction in the switched
system. In the synthesis front, we show that while compositional synthesis and
design are undecidable, the problem of synthesizing a switching rule with which
a given switched system satisfies an LTL specification is decidable.

1 Introduction
Concurrent systems are composed of components. Traditional concurrency theory con-
siders two types of concurrent composition operators: synchronous parallel compo-
sition and asynchronous parallel composition (a.k.a. interleaving). In the former the
components proceed simultaneously and in the latter their behaviors are interleaved. In
both, the components not only interact with the environment but also with one another.
There are, however, many natural settings in which components do not interact with one
another. Rather, at each moment in time one of the components determines the behavior
of the system, while the other components are ignored. Such a “switching semantics”
has been well-studied in the engineering community [12, 13]. In this paper, we study it
for finite-state systems.

Given finite-state transducers T1, T2, . . . , Tn, all interacting with the same environ-
ment, we define the switched system T1 ⊕ T2 ⊕ · · · ⊕ Tn as a transducer that proceeds,
in each moment in time, according to one of the underlying transducers.3 There are two
natural definitions for the ⊕ operator. In a dormant composition, components that are
suspended are not active. That is, when a component is switched on again, it proceeds

? The work of this author was done as part of the Valazzi-Pikovsky Fellowship Fund.
3 A transducer is an input/output finite state machine, formally defined in Section 2. We use

transducers to model concurrent systems.



from the state it has reached before its suspension. In an active setting, components that
are suspended continue their dynamics and have full observability of the environment,
but their output is ignored. 4

As an example to a dormant composition, consider a window system; at each mo-
ment in time, several windows are open and the location of the mouse determines which
window is active. The other windows are inactive. We would like the window system to
have the property that if a keyboard input occurs while the active window is in an “in-
sert password” subroutine, then the char * is displayed; and if the pressed key is “enter”,
then the last typed chars are matched against the correct password. Note that this prop-
erty should hold even if the window system switches among different window while the
user types. This example shows that, even in the dormant setting, the configuration of
components that are switched off should be maintained.

As an example for a switched system with an active composition, consider a net-
work of security cameras. The cameras are located in several locations, and each camera
is equipped with a software analyzing the picture. If a suspicious behavior is detected
by the software, the picture is frozen until another suspicious behavior is detected. At
each moment in time the output of one of the cameras is displayed at the guard’s con-
trol screen. We would like to reason about the switched system and the various possible
switching rules for it. For example, under an arbitrary switching rule, the system does
not satisfy the property “all suspicious behaviors are detected,” and it does satisfy the
property “if suspicious behaviors are detected simultaneously in all locations, then at
least one of them is displayed on the control screen”. Also, under certain assumptions,
like the configuration of the building and the location of the cameras, it is possible to
synthesize a switching rule with which at least one frozen picture of a sequence of
suspicious behaviors is displayed. As another example to the active composition, con-
sider a channel TV. Obviously, broadcasting continues (but is ignored) for channels that
are switched off. Using the setting of switched systems, we can reason about proper-
ties of the entire system. For example, if we are an advertising agency, we would like
to synthesize an advertisement scheduling so that a viewer may not be able to avoid
advertisement no matter what his switching rule is.

Finite-state switched systems, as defined above, may also serve as an abstraction
of other, not necessarily finite-state, switched systems. Examples to switched systems
include software systems (c.f., internet communication protocols [7, 22]), mechanical
systems (engines with gear transmission [8]), electrical circuits (power converters [6]),
biological systems (gene regulating networks [3]), and embedded systems combining
the above [2]. There has been extensive research in the control engineering community
on analysis of continuous switched systems whose evolution is described by means of
differential equations [12, 13]. The study there focuses on properties such as stability.

4 Dormant switched systems may seem similar to co-routines. A co-routine specifies several
points in the code, referred to as yield points. When the scheduler is invoked, it passes control
to one of the co-routines that are at their yield point. Thus, as in dormant switched systems,
when a component is reinvoked it continues from the state it has reached when last invoked
(rather than from the initial state as in ordinary routines). Unlike switched systems, however,
the components do have control on when the scheduler is invoked. Anyway, the theoretical
aspects of co-routers have not been investigated.



The theory of verification considers other type of properties, those expressible in tempo-
ral logic. Thus, considering abstraction of continuous systems enables reasoning about
other aspects of systems. For example, consider a cell phone that may move among dif-
ferent receiving zones. This is a popular example for continuous switched systems [14],
yet many properties of the system can be specified in temporal logic. For example, we
would like to check that whenever a network available signal appears, it stays valid as
long as the cell phone does not change its location, and that if a call was issued, then
eventually either the network is no longer available or the call gets to the target phone.
These properties should hold even if the cell phone changes its location. Such a setting
corresponds to the dormant composition – the operation of the cell phone in a particular
zone is a component (note that the cell phone operates differently in different zones),
and transiting among the zones correspond to switching.

The above examples highlight the Gestalt principle, which is accepted in the study
of continuous switched systems. According to this principle “the sum of the whole is
greater than its parts”. For example, a continuous switched system may be stable even
though its underlying components are not stable, and vice versa, a continuous switched
system may be unstable even though its underlying components are stable [13]. This is
in contrast with standard concurrency, where the concurrent system has fewer behaviors
than its components. The fact that the composed system has fewer behavior than its
components has played a central role in compositional reasoning. As shown in [1],
both synchronous and asynchronous parallel compositions can be seen as intersection
of the enhanced language of its components. Further classes of parallel compositions
have been studied in [1]. They all, however, convey a notion of intersection between
languages. As we shall show, our dormant and active compositions convey a notion of
union rather than intersection. Thus, general ideas and patterns that are applicable in the
study of standard concurrency cannot be applied in the setting of switched systems.5

As in standard concurrency, composing finite-state transducers via active or dormant
compositions involves an exponential blowup. Thus, the main challenge in reasoning
about finite-state switched systems is compositional reasoning, i.e., reducing reason-
ing about a concurrent system to reasoning about its individual components. While the
main challenge, namely compositionality, is similar in switched systems and standard
concurrent systems, the problems and solutions are different. We start by studying the
compositional model-checking problem for switched systems. As noted above, an algo-
rithm that constructs the switched system explicitly is possible. We show that the space
complexity of LTL model checking is polynomial in the size of the underlying compo-
nents, thus the exponential blow-up that the construction of an explicit switched system
involves cannot in general be avoided.

5 By letting the variables of the different components be disjoint, it is possible to model the
dormant and active compositions using known synchronous and asynchronous composition
operators. Such a modeling, however, is less clean, and hides the switching mechanism. In [15],
Mayer and Stockmeyer studied regular expressions extended with a shuffle operator on words,
which interleaves its operands. As we show later, the shuffle operator corresponds to a dormant
composition between closed systems. Our setting here is richer, as it considers open systems.
We also study different problems than those studied in [15].



Note that since a component may be switched on forever, a required condition for
a switched system to satisfy a property is that all the underlying components satisfy it.
For some properties, this is also a sufficient condition, giving rise to a simple compo-
sitional model-checking procedure for them that avoids this blow-up. We characterize
such properties for the dormant composition by means of regular counting properties,
and conclude that, unfortunately, most interesting properties cannot enjoy this simple
procedure. We then describe an assume-guarantee paradigm for switched systems [16],
which enables us to reason about a switched system (with respect to all LTL specifi-
cations) by reasoning about its components, and often avoid this blow up. Formally, a
transducer T satisfies the assume-guarantee specification 〈ϕ, ψ〉, for LTL specifications
ϕ and ψ, and a composition operator ⊕, if for all transducers T ′, if T ⊕ T ′ satisfies
ϕ, then T ⊕ T ′ also satisfies ψ. We study the problem of checking assume-guarantee
specifications and show that it is PSPACE-complete. Unlike traditional concurrency,
the problem cannot be reduced to checking whether T satisfies ϕ → ψ [16]. Indeed,
the latter reduction depends on the fact that compositions that have T as a component
have fewer behaviors than T , which does not hold for switched systems. We show that
for switched systems checking whether T satisfies the assume-guarantee specification
〈ϕ, ψ〉 has the flavor of checking validity of ϕ → ψ. This is due to monotonicity that
does hold for switched systems as well.

The model-checking problem checks whether a given switched system satisfies a
specification under arbitrary switching. A more ambitious goal is synthesis – the auto-
matic construction of systems from specifications. In the switched setting, given LTL
specifications ϕ1, ϕ2, . . . , ϕn, and ψ, and a composition operator⊕, the compositional-
realizability problem is to decide whether there are transducers T1, T2, . . . , Tn such that
Ti satisfies ϕi for all 1 ≤ i ≤ n, and T1 ⊕ T2 ⊕ · · · ⊕ Tn satisfies ψ. On the nega-
tive side, we show that, as with standard concurrency [18] compositional-realizability
is undecidable. Sometimes, the details of the switching mechanism are known and may
be controlled. On the positive side, we study the problem of synthesizing a switching
rule according to which the switching system satisfies a specification. We show that the
problem has the same flavor as the standard LTL control problem, and is 2EXPTIME-
complete [17]. The solution to the problem, however, is different, as the synthesized
switched rule does not disable transitions, as is the case in usual control. Rather, it
chooses the component that is switched on.

2 Transducers and Switched Systems
Let I and O be finite sets of input and output signals. Let ΣI and ΣO denote the sets
2I and 2O, respectively. Let ΣIO denote the set ΣI ×ΣO. A transducer is an automaton
on finite words over the alphabet ΣI in which each state is associated with a letter in
the alphabet ΣO. A transducer does not have an acceptance condition. The intuition is
that the transducer models an open system that interacts with its environment. In each
moment in time the system reads a set i ∈ ΣI of input signals that are valid in this
moment, changes its state according to i, and outputs a set o ∈ ΣO of output signals
that are valid in the new state.

Formally, a transducer is a tuple T = 〈ΣI, ΣO, S, θ, η, L〉, where S is a set of states,
θ : ΣI → S is an initialization function mapping the first input letter to an initial state,
η : S×ΣI → S is a transition function, andL : S → ΣO is a labeling function. The run



of T on an input sequence i0 · i1 · i2 · · · ∈ ΣI
ω is the sequence s0, s1, s2, . . . of states

for which s0 = θ(i0) and sj+1 = η(sj , ij+1) for all j ≥ 0. A computationw ∈ ΣIO
ω is

generated by T if w = (i0, o0) ·(i1, o1) ·(i2, o2) · · · is such that the run s0, s1, s2, . . . of
T on i0 · i1 · i2 · · · satisfies oj = L(sj) for all j ≥ 0. We refer to the set of computations
generated by T as the language of T and denote it L(T ). Note that T is responsive and
deterministic (that is, it suggests exactly one successor state for each input letter), and
thus T has a single run, generating a single computation, on each input sequence.

A switched system is composed of several components. Each component is an open
system that interacts with the environment. The components do not interact with each
other. Rather, they all interact with the environment, but only one component, cho-
sen by the environment, is switched on at a given moment. The other components are
suspended. We define two types of compositions between transducers. In a dormant
composition, components that are suspended are not active. That is, when a compo-
nent is switched on again, it proceeds from the state it has reached in the last time it
was switched on. In an active setting, components that are suspended continue their
dynamics and have full observability of the environment, but their output is ignored.

We formalize the two types of compositions below. For simplicity we assume sys-
tems with two components. The generalization to any finite number of components is
straightforward. Let T1 = 〈ΣI , ΣO, S1, θ1, η1, L1〉 and T2 = 〈ΣI, ΣO, S2, θ2, η2, L2〉 be
two transducers. We define the dormant and active switched systems with components
T1 and T2, denoted T1IJ T2, and T1GH T2, respectively, as the transducer 〈ΣI’ , ΣO, S, θ,
η, L〉, defined as follows.

– ΣI’ = ΣI × {1, 2}. The {1, 2} component of an input letter indicates which com-
ponent will be switched on in the next cycle. We use 〈i,who〉 to refer to a letter in
ΣI’ where i ∈ ΣI and who ∈ {1, 2}. We can think of who as a fresh input signal
defined over the domain {1, 2}.

– S = S1 × S2 × {1, 2}. That is, a state in the switched system is composed of the
states of T1 and T2, and a flag indicating the component that is currently switched
on. This component generates the current output.
In the dormant composition, it is technically convenient to add to S1 and S2 a
special state sinit, for components that have never been activated.

– The initialization function θ is defined as follows.
IJ In the dormant composition, the component that has never been switched on

waits in the special state sinit until it is switched on for the first time. Accord-
ingly, θ(〈i, 1〉) = 〈θ1(i), sinit, 1〉 and θ(〈i, 2〉) = 〈sinit, θ2(i), 2〉.

GH In an active composition, the component that is not switched on proceeds as if
it was active. Thus, θ(〈i,who〉) = 〈θ1(i), θ2(i),who〉.

– The transition function η is defined according to the type of composition as follows.
Consider a state 〈s1, s2, k〉 ∈ S and an input letter 〈i,who〉 ∈ ΣI’ .
IJ In a dormant composition, the component that is suspended stays in its current

state until it is switched on again. Thus,

η(〈s1, s2, k〉, 〈i,who〉) =

[

〈η1(s1, i), s2,who〉 if who = 1
〈s1, η2(s2, i),who〉 if who = 2

In addition, for who ∈ {1, 2}, we have ηwho(sinit, i) = θwho(i).



GH In an active composition, the component that is suspended proceeds as if it was
active. Thus,

η(〈s1, s2, k〉, 〈i,who〉) = 〈η1(s1, i), η2(s2, i),who〉.

– For all states 〈s1, s2, k〉 ∈ S, we have L(〈s1, s2, k〉) = Lk(sk). That is, the output
of the current state is determined by the component that is switched on.

Note that the underlying transducers T1 and T2 do not have who in their set of input
signals. Thus, a component does not know whether it is switched on or not, and its
behavior does not depend on this information.

A specification to the switched-system is over the set I ∪ O of signals. By allow-
ing specifications to refer also to the signal who, we can easily restrict attention to
compositions in which assumptions on the switching can be made. Formally, since our
specification formalism is linear, we can replace a specification ψ over I ∪ O by the
specification ψfair → ψ, where ψfair is a formula over who describing assumptions
on the switching. We will elaborate on the extended setting for problems studied in the
following sections.

2.1 The input-output language of a switched system

Recall that the language L(T ) of a transducer T is defined over the alphabet ΣIO . Ac-
cordingly, L(T1 ⊕ T2) refers also to the input signal who, which we often want to
abstract. For a switched system, we also define the IO-language of T1 ⊕ T2, denoted
LIO(T1 ⊕ T2), which is obtained by projecting L(T1 ⊕ T2) on ΣIO (that is, ignoring the
{1, 2} component).

In Lemma 1 below we show that natural properties of the interleaving operator used
in standard concurrent composition apply also to switched systems. On the other hand,
it is not hard to see that unlike the case of interleaving, it is not necessarily the case that
LIO(T1 ⊕ T2) ⊆ L(T1) or LIO(T1 ⊕ T2) ⊆ L(T2).

Lemma 1. Let ⊕ ∈ {IJ ,GH } be a composition operator. For all transducers T1, T2,
and T3, the following hold.

– Commutativity: L(T1 ⊕ T2) = L(T2 ⊕ T1).
– Associativity: LIO((T1 ⊕ T2) ⊕ T3) = LIO(T1 ⊕ (T2 ⊕ T3)).
– Monotonicity: If L(T1)⊆L(T2) then LIO(T1 ⊕ T3)⊆LIO(T2 ⊕ T3) for all T3.

It is not hard to see that, when restricted to their IO-languages, the dormant and
active compositions corresponds to the shuffle and merge of languages. For two words
u, v ∈ Σω, let

– uIJ v = {u1v1u2v2u3v3 · · · |ui, vi ∈ Σ∗, u = u1u2u3 · · · and v = v1v2v3 · · ·}
– uGH v = {u1v2u3v4 · · · |ui, vi ∈ Σ∗, |ui| = |vi|, u = u1u2u3 · · · and v = v1v2v3 · · ·}

Thus, uIJ v shuffles the letters of u and v by interleaving subwords of u and v, whereas
uGH v merges u and v by locating in each position i the i-th letter of either u or v. Note
that since the subwords vi and ui may be empty, we have that u and v are members of
uIJ v, and similarly for uGH v. The standard concurrency operator, a.k.a interleaving, is



often confused with shuffle, though its operation is different. Indeed, as shown in [1],
since interleaving is applied to components that own variables, it corresponds to con-
junction of the enhanced language of its components [1]. This is not valid for the shuffle
operation. The shuffle and merge operators naturally extends to languages. In Figure 1,
we demonstrate the application of the shuffle and merge operators on some languages.

L1 L2 L1IJL2 L1GHL2

0ω 1ω (0 + 1)ω (0 + 1)ω

0ω + 1ω 0ω + 1ω (0 + 1)ω (0 + 1)ω

(01)ω (10)ω ((01) + (10))ω (0 + 1)ω

(01)ω (01)ω 0((01) + (10))ω (01)ω

0ω 0∗10ω 0ω + 0∗10ω 0ω + 0∗10ω

0∗10ω 0∗10ω 0∗10ω + 0∗10∗10ω 0ω + 0∗10ω + 0∗10∗10ω

0∗1(0 + 1)ω 0∗1(0 + 1)ω 0∗1(0 + 1)ω (0 + 1)ω

0+1(0 + 1)ω 0+1(0 + 1)ω 0+1(0 + 1)ω 0(0 + 1)ω

(0 + 1)∗0ω (0 + 1)∗0ω (0 + 1)∗0ω (0 + 1)∗0ω

(0∗1)ω (0∗1)ω (0∗1)ω (0 + 1)ω

Fig. 1. Shuffle and merge of languages.

The definition of the dormant and active composition immediately implies their
correspondence to the shuffle and merge operators. Formally, we have the following.

Lemma 2. Let T1 and T2 be two transducers. Then, LIO(T1IJT2) = LIO(T1)IJLIO(T2)
and LIO(T1GHT2) = LIO(T1)GHLIO(T2).

In [15] it was shown that the shuffle operator provides succinctness in the sense
that there exist languages that can be described exponentially more succinctly by using
shuffle.6 We show that the results extends for dormant composition and holds for active
composition as well.

Theorem 1. Let n ∈ N. There are transducers T1, . . . , Tn such that the size of Ti
is O(1), and there is no transducer T with less than 2n−1 states such that L(T ) =
LIO(T1 ⊕ T2 ⊕ · · · ⊕ Tn).

The idea of the proof is to show that for any n ∈ N the set of all words over the
alphabet Γn = {1, . . . , n,#} in which each letter from {1, 2, . . . , n} appears at most
once can be expressed as an active or dormant compositions of n transducers. By [15],
this language cannot be generated by a transducer with less than 2n−1 states. The full
proof is given in the full version of the paper.

3 Compositional Model Checking
The model-checking problem for a switched system is to decide, given transducers
T1, . . . , Tn, a composition operator ⊕ ∈ {IJ ,GH }, and an LTL formula ψ, whether

6 [15] refers to shuffle also as interleaving. Their definition, however, corresponds to shuffle as
defined above.



the switched system T1 ⊕ · · · ⊕ Tn satisfies ψ. Note that the formulation of the prob-
lem has an implicit universal quantification and the switched system has to satisfy the
specification under arbitrary switching. As with the interleaving operator, it is possi-
ble to construct T1 ⊕ · · · ⊕ Tn and model check it. As shown in Theorem 1, however,
such a construction may involve an exponential blow up. Assume-guarantee reasoning
avoids the blowup by inferring satisfaction of specifications in the composed system
from satisfaction of specifications in the underlying components [16].

Note that since a component may be switched on forever, a required condition for a
switched system to satisfy a property is that all the underlying components satisfy it. For
some properties, this is also a sufficient condition, giving rise to a simple compositional
model-checking procedure for them. In Section 5, we characterize such properties for
the active composition. Since most interesting properties do not satisfy the characteriza-
tion, we describe, in this section, an assume-guarantee paradigm for switched systems
for arbitrary properties. We first show that, as with interleaving, the blow-up that the
construction of T1 ⊕ · · · ⊕ Tn involves cannot be avoided. We do so by analyzing the
system-complexity of the model-checking problem, namely the complexity of the sys-
tem in terms of the size of the underlying components, assuming the specification is
fixed.

Theorem 2. The system complexity of the LTL model-checking problem of switched
systems is PSPACE-complete.

Remark 1. The key to the PSPACE-hardness result is the fact that even though the
components interact with the environment one at a time, they resume their interaction
from a state that has to be maintained (either the state they have reached in the last time
they were switched on, in a dormant composition, or the state they have reached in their
silent interaction, in an active composition). A substantially different type of composi-
tion is one in which interaction is resumed from a fixed state. Then, it is possible to de-
fine the state space of the switched systems as a union of the underlying state spaces, and
the system complexity of the LTL model-checking problem is NLOGSPACE complete.
Fixing a state from which dynamics is resumed is even more crucial in the infinite-state
setting. For example, reachability in o-minimal hybrid systems is decidable only when
each discrete control state has a single initial value for the continues elements [11].
Obviously, however, resuming the interaction from a fixed state is a much weaker com-
position mechanism.

Remark 2. In [15], Mayer and Stockmeyer studied the complexity of membership and
inequality for regular expressions extended with the shuffle operator, which as we dis-
cussed previously provides the dormant composition operator in the setting of closed
system. They showed that membership is NP-complete and inequality is EXPSPACE-
complete. Since equivalence is two-sided inclusion and since model checking amounts
to inclusion (the language of the system should be contained in the language of the
formula), their results imply that model checking of closed system restricted to finite
words can be done in EXPSPACE. As Theorem 2 shows, the special case of the A ⊆ B
problem in which only B uses shuffle is easier, and is in PSPACE, even for the case of
open systems and infinite words. Indeed, the lower bound proof in [15] uses shuffle in
both sides.



We are now ready to describe an assume-guarantee paradigm for switched systems.

Definition 1. Let T be a transducer. Let ϕ1 and ϕ2 be temporal logic formulas. Let
⊕ ∈ {IJ ,GH } be a composition operator. We say that 〈ϕ1〉T ⊕〈ϕ2〉 if for every T ′, we
have that T ⊕ T ′ |= ϕ1 implies T ⊕ T ′ |= ϕ2. When ⊕ is clear from the context, we
simply write 〈ϕ1〉T 〈ϕ2〉.

Let T1 and T2 be two transducers, and let ϕ1, ϕ2, and ϕ3 be LTL formulas. Below
are two typical assume-guarantee rules, for a composition operator ⊕ ∈ {IJ ,GH } (as
with the known composition semantics, many more rules exist [16]).

〈ϕ1〉T1〈ϕ2〉
〈ϕ2〉T2〈ϕ3〉

〈ϕ1〉T1 ⊕ T2〈ϕ3〉

〈true〉T1〈ϕ1〉
〈true〉T2〈ϕ2〉

〈true〉T1 ⊕ T2〈ϕ1 ∧ ϕ2〉

Consider for example the left rule. To see that this rule is sound, note that, by definition,
for every T ′ we have (1) if T1 ⊕T ′ |= ϕ1 then T1 ⊕T ′ |= ϕ2 and (2) if T2 ⊕T ′ |= ϕ2

then T2 ⊕ T ′ |= ϕ3. In particular, for every T ′′ we have that (1) holds when T ′ is
T2⊕T ′′ and (2) holds when T ′ is T1⊕T ′′. Hence, for every T ′′, if T1⊕T2⊕T ′′ |= ϕ1

then T1 ⊕T2 ⊕T ′′ |= ϕ2 and if T1 ⊕T2 ⊕T ′′ |= ϕ2 then T1 ⊕T2 ⊕T ′′ |= ϕ3. Hence,
〈ϕ1〉T1 ⊕ T2〈ϕ3〉. Thus, the rule is sound. Similar reasoning applies for the right rule.

For the standard concurrent composition operator, interleaving, we have that
〈ϕ1〉T 〈ϕ2〉 iff T |= ϕ1 → ϕ2. Thus, it is possible to reduce checking of an assume-
guarantee specification to LTL model checking. This simple reduction relies on the fact
that the language of a concurrent system is contained in the languages of its underlying
components. This fact is not valid for switched systems. Instead, we should check the
ϕ1 → ϕ2 implication in a richer context:

Lemma 3. Let ϕ and ψ be LTL formulas, ⊕ ∈ {IJ ,GH }, and T a transducer. Then,
〈ϕ1〉T ⊕〈ϕ2〉 iff for every transducer T ′, we have T ⊕ T ′ |= ϕ1 → ϕ2.

In Lemma 1, we have shown that the operators IJ and GH are monotone. Thus,
checking T ⊕ T ′ |= ϕ1 → ϕ2 for every T ′, can be reduced to checking ϕ1 → ϕ2

in the composition of T with the most challenging T ′, namely one whose language
is ΣIO

ω. Note that the monotonicity property also implies that if L(T ′
1 ) = L(T ′

2 ),
then LIO(T ′

1 ⊕ T ) = LIO(T ′
2 ⊕ T ). Thus, any transducer whose language is ΣIO

ω

will do. Since a deterministic transducer generates a single computation for each input
sequence, a transducer whose language isΣIO

ω has to be nondeterministic. Let U be the
nondeterministic transducer that has |ΣO| states, all of them are initial, and for which
each state has transitions, on all input letter in ΣI, to all other states. It is easy to see
that L(U) = ΣIO

ω, and that the definitions of the composition operators in Section 2
extends to a composition with a nondeterministic transducer in a straightforward way.

Lemma 4. Let ϕ be an LTL formula, ⊕ ∈ {IJ ,GH }, T be a transducer, and U a trans-
ducer such that L(U) = ΣIO

ω. Then T ⊕ U |= ϕ iff for every T ′ we have T ⊕ T ′ |= ϕ.

Corollary 1. Let ϕ, ψ be LTL formulas, ⊕ ∈ {IJ ,GH }, T be a transducer, and U a
transducer such that L(U) = ΣIO

ω. Then 〈ϕ〉T ⊕〈ψ〉 iff T ⊕ U |= ϕ → ψ.



Theorem 3. Model checking assume-guarantee specifications of switched systems is
PSPACE-complete.

Proof. As discussed above, for every transducer T , LTL formulas ϕ1 and ϕ2, and a
composition operator ⊕, we have that 〈ϕ1〉T 〈ϕ2〉 iff T ⊕U |= ϕ1 → ϕ2. Membership
in PSPACE then follows from the fact that checking the latter requires space that is
polynomial in ϕ1 and ϕ2 and logarithmic in |T | · |ΣO|. The lower bound follows from
the PSPACE hardness of the validity problem for LTL. Indeed,ϕ is valid iff 〈true〉U〈ϕ〉.
Note that validity of LTL is PSPACE-hard already for a fixed number of propositions,
thus we can consider U to be of a fixed size, and by classifying all the propositions as
input signals, U is also deterministic. Thus, PSPACE-hardness holds already for deter-
ministic transducers. ut

For an arbitrary switching rule, the IO-language of the composition T ⊕ U is ΣIO ,
thus T ⊕ U |= ϕ1 → ϕ2 iff the implication ϕ1 → ϕ2 is valid. Things become
more interesting when assumptions on the switching are made. If, for example, T |=
GFgrant1 → GFgrant2, then 〈GFgrant1〉T 〈GFgrant2〉 in a fair switching in which
all components are switched on infinitely often even though GFgrant1 → GFgrant2

may not be valid. As discussed in Section 2, such assumptions are easy to make by
augmenting the specification by a precondition over who.

4 Synthesis of a Switching Rule
In this section we show how to synthesize a switching rule with which the composi-
tion of a given transducers satisfies a desired LTL property. Before we do so, we show
that the harder problems of compositional realizability and compositional design are
undecidable.

4.1 Undecidable Problems

Given LTL specifications ϕ1, ϕ2, . . . , ϕn, and ψ, and a composition operator ⊕, the
compositional-realizability problem is to decide whether there are transducers T1, T2,
. . . , Tn such that Ti satisfies ϕi for all 1 ≤ i ≤ n, and T1 ⊕ T2 ⊕ · · · ⊕ Tn satisfies
ψ. In [18] it was shown that compositional realizability is undecidable where ⊕ is the
synchronous parallel composition. It was further shown that if, however, the processes
admit a piplelined architecture the problem is decidable. In this section we show that
for switched systems, though the architecture is extremely simple, compositional real-
izability is undecidable for both dormant and active compositions.

The compositional-design problem is to decide whether every switched system T1⊕
T2 ⊕ · · · ⊕ Tn such that Ti satisfies ϕi for all 1 ≤ i ≤ n, also satisfies ψ. The problems
of compositional-realizability and compositional design are strongly connected. Indeed,
in a setting in which the formulas ϕi are realizable, the answer to the compositional-
realizability problem with input ϕ1, . . . , ϕn, ψ is ‘yes’ iff there exist transducers T1, T2,
. . . , Tn such that Ti satisfies ϕi for all 1 ≤ i ≤ n, and T1 ⊕ T2 ⊕ · · · ⊕ Tn satis-
fies ψ. The latter holds iff the answer to the compositional-design problem with input
ϕ1, . . . , ϕn,¬ψ is ‘no’.

Theorem 4. The compositional realizability and design problems are undecidable.



By the above, it suffices to show that compositional-realizability problem is un-
decidable. The problem of compositional-realizability for standard concurrency was
shown to be undecidable by Pnueli and Rosner in [18]. The key to their undecidability
proof is an architecture of two processes that do not communicate with one another.
Such lack of communication exists also in our setting, and enables an adoption of their
proof with some minor adjustments.

4.2 Synthesis of a Switching Rule
Recall that the model-checking problem checks whether a switched system satisfies a
specification under arbitrary switching or a switching that satisfies some assumption.
Sometimes the details of the switching mechanism are known and may be controlled.
In this section we study the problem of deciding, given transducers T1, . . . , Tn and
a specification ϕ, whether there is a switching rule according to which the switched
system T1 ⊕ · · · ⊕ Tn satisfies ϕ, and the problem of synthesizing such a rule in case
the answer is positive.7

We model a switching rule by a transducer S with input alphabet ΣI and out-
put alphabet {1, 2}. Consider transducers T1, T2, . . . , Tn, a composition operator ⊕ ∈
{GH ,IJ }, and a switching rule S. The switched system T1 ⊕ T2 ⊕ · · · ⊕ Tn with
switching rule S has input in ΣI (rather than in ΣI × {1, 2}) and the component that
is switched on after reading an input sequence w ∈ ΣI

∗ is determined by the output
of the state of S after reading w. Formally, let T1 = 〈ΣI, ΣO, S1, θ1, η1, L1〉, T2 =
〈ΣI , ΣO, S2, θ2, η2, L2〉, and S = 〈ΣI , {1, 2}, S, θ, η, L〉. Then, the switched system
with componentsT1 and T2, and switching ruleS, is the transducer 〈ΣI , ΣO, S

′, θ′, η′, L′〉,
defined as follows:

– S′ = S1 × S2 × {1, 2} × S. Intuitively, the switched system is identical to the
one without the switching rule, only that the who element is determined by the
switching rule rather than by the environment.

– θ′(i) = 〈θ1(i), θ2(i), L(θ(i)), θ(i)〉. That is, the initialization function maps each
state component according to the respective initialization function, and determines
the next state to be the output of the switching rule on the first input.

– The transition function η is defined according to the type of composition as follows.
Consider a state 〈s1, s2, k, s〉 ∈ S′ and a letter i ∈ ΣI.

IJ η(〈s1, s2, k, s〉, i) =

[

〈η1(s1, i), s2, L(s), η(s, i)〉 if L(s) = 1
〈s1, η2(s2, i), L(s), η(s, i)〉 if L(s) = 2.

GH η(〈s1, s2, k, s〉, i) = 〈η1(s1, i), η2(s2, i), L(s), η(s, i)〉.

– For all 〈s1, s2, k, s〉 ∈ S′, we have L(〈s1, s2, k, s〉) = Lk(sk).

The solution to the switching-rule synthesis problem involves automata on infinite
trees (see [17] or the full version of the paper).

When we synthesize a switching rule, we are given the transducers T1 and T2, and
the transducer we are after only has to generate an infinite sequence over {1, 2}. The

7 A recent work [24] advocates the use of ω-regular languages over the alphabet of subcompo-
nents identifiers for describing switching constraints even for continuous switched systems.



setting is then similar to the control problem for LTL [17]. Unlike the solution there,
however, here the controller does not disable transitions. Rather, it determines which
component should be active at each moment in time.

Theorem 5. The switching-rule synthesis problem for LTL is 2EXPTIME-complete.

Proof. Consider an LTL formula ψ. Let Aψ = 〈ΣO, Q, q0, δ, α〉 be a deterministic par-
ity word automaton (DPW) recognizingψ. We define a deterministic parity tree automa-
ton (DPT) AT1,T2

∀ψ that accepts switching rules with which T1⊕T2 satisfies ψ. Formally,
AT1,T2

∀ψ = 〈{1, 2}, ΣI , S1 × S2 × {1, 2}×Q, s0, δ
′, S1 × S2 × {1, 2} × α〉, where s0

is a new state and for who ∈ {1, 2}we have δ(s0,who) = 〈θ1(who), θ2(who),who, q0〉
and for all 〈s1, s2, k, q〉 ∈ S1 × S2 × {1, 2} ×Q we have

IJ δ′(〈s1, s2, k, q〉,who) =

[∧

i∈ΣI
(i, 〈η1(s1, i), s2,who, δ(q, 〈i, Lk(sk)〉)〉) if L(q) = 1

∧

i∈ΣI
(i, 〈s1, η2(s2, i),who, δ(q, 〈i, Lk(sk)〉)〉) if L(q) = 2

GH δ′(〈s1, s2, k, q〉,who) =
∧

i∈ΣI
(i, 〈η1(s1, i), η2(s2, i),who, δ(q, 〈i, Lk(sk)〉)〉).

Intuitively, a state 〈s1, s2, k, q〉 stands for the transducer T1 being in s1, the transducer
T2 being in s2, the transducer that is switched on is Tk, and the automaton Aψ is in
state q. In the dormant composition, only Tk changes its state. In both compositions, the
O-element of the letter that Aψ reads in q is the output of Tk. It is not hard to prove that
AT1,T2

∀ψ accepts a full tree with directions from ΣI generated by a transducer S iff the
composition of T1 and T2 according to S satisfies ψ.

We reduced the switching-rule synthesis problem to the nonemptiness problem for
AT1,T2

∀ψ . The number of states of the DPW Aψ is doubly-exponential in |ψ|, and its
index is exponential in |ψ| [20, 23]. Therefore, the number of states of the DPT AT1,T2

∀ψ

is linear in |T1| and |T2| and doubly-exponential in |ψ|, and its index is exponential in
|ψ|. Since the nonemptiness problem for DPT can be solved in time polynomial in the
state space and exponential in the index [5], the upper bound follows. Note that the
doubly-exponential complexity is only in terms of |ψ|, and the algorithm is polynomial
in |T1| and |T2|.

For the lower bound, note that the synthesis problem for LTL is 2EXPTIME-hard
already for a formula ψ with O = {p}. Let T1 and T2 be single-state transducers
that satisfy p and ¬p, respectively. A switching rule for T1 and T2 then corresponds
to a transducer with O = {p}, and the synthesis problem for ψ can be reduced to the
switching-rule synthesis problem for T1, T2, and ψ. ut

Note that since the switching rule S reads the inputs to all components, nothing prevents
it from naively recomputing the output of the components. The essence of a switching
rule, however, is to avoid this computation. For example, in the security-camera network
discussed in Section 1, a scheduler that implements the software that detects suspicious
behaviors is not of much interest. One way to prevent the switching rule from recomput-
ing the output of the components is to restrict its input. In practice, however, optimizing
the switching rule obtained in the construction in Theorem 5 would project out the parts
that are not essential for the switching rule.



Assumptions on the switching, and hence restrictions on the synthesized switching
rule, can be made by replacing ψ by ψfair → ψ. The automaton AT1,T2

∀ψ then contin-
ues to read the I-component of the alphabet from the directions of the tree, the O-
component from the active transducer, and reads who from the input tree.

5 Language Characterization

Recall that a component may be switched on forever. Thus, a required condition for a
switched system to satisfy a property is that all the underlying components satisfy it. For
some properties, this is also a sufficient condition, giving rise to a simple compositional
model-checking procedure for them. In this section we seek a characterization of such
properties. We solve the problem for the active composition and leave it open for the
dormant composition.

In Section 2.1 we showed that the dormant and active compositions correspond to
shuffle and merge of languages. Let ⊕ ∈ {GH ,IJ } be a composition operator. We say
that a languageL is closed under ⊕ iff L⊕L ⊆ L. That is, for every u, v ∈ L, we have
that u⊕ v ∈ L. For example (recall the table in Figure 1), the language (0 + 1)∗0ω is
closed under both GH and IJ , the language (01)ω is closed under GH but not under IJ ,
the language (0∗1)ω is closed under IJ but not under GH , and the language 0∗10ω is
closed under neither GH nor IJ .

As the examples above demonstrate, a language that is closed under shuffle or merge
need not be a safety or a co-safety language. It turns out that an exact characterization
of the languages that are closed under shuffle or merge is a challenging combinatorial
problem. As described below, we have succeeded to obtain an exact characterization for
merge. The problem of an exact characterization for shuffle remains open.

Recall that a language L is closed under merge if for every two words u, v ∈ L, all
words obtained by locating in position i the i-th letter in either u or v are in L. This
means that each of the requirements imposed by L refers to a precise location (e.g., the
4-th letter is 0), or is an eventuality, in which case the requirement in the scope of the
eventuality is a safety property (e.g., eventually always 0). Formally, we characterize
closure under merge by means of regular counting, defined below.

Definition 2. A language L is regular counting if there are n, k ∈ N and functions f0 :
{0, . . . , n−1} 7→ 2Σ and f1, f2 : {0, . . . , k−1} 7→ 2Σ such that for all 0 ≤ j ≤ k−1,
we have f2(j) ⊆ f1(j) and w ∈ L iff for all 0 ≤ j ≤ n− 1 we have w[j] ∈ f0(j) and
there is i ≥ n such that for all j ≥ n, if j < i, then w[j] ∈ f1(j mod k), and if j ≥ i,
then w[j] ∈ f2(j mod k).

Intuitively, the function f0 describes how the prefix of length n of all the words in L
behaves – each location j in this prefix can take letters from the subset f0(j) of Σ.
After the prefix of length n the words in L behaves in some cyclic manner, for a cycle
of length k. For some bounded number of locations, this cyclic behavior is described
by f1 – each location j in this infix can take letters from the subset f1(j mod k) of Σ.
Eventually, however, the cyclic behavior is described by f2, which is more restricted
than f1. It is not hard to see that a language L is safety iff it is regular counting with
f1 = f2.



To understand the notion of regular counting better, we now describe an automata-
theoretic characterization of it.

Definition 3. An automaton A = 〈Σ,Q, q0, δ, α〉 is a
counting automaton if A is a deterministic co-Büchi au-
tomaton (DCW) and Q can be partitioned into three dis-
joints sets P = {p0, . . . , pn−1}, S = {s0, . . . , sk−1}, and
S′ = {s′0, . . . , s

′
k−1

} such that:

1. For every 0 ≤ i ≤ n− 1, there is ∅ 6= Ωi ⊆ Σ such
that for all σ ∈ Ωi, we have δ(pi, σ) = pi+1 (with
pn standing for s0) and for all σ /∈ Ωi, we have
δ(pi, σ) = ∅.

2. For every 0 ≤ i < k − 1, there are Ωi, Ω′
i ⊆ Σ such

that Ωi ∩Ω′
i = ∅ and Ω′

i 6= ∅, such that
− for all σ ∈ Ωi, we have δ(si, σ) = δ(s′i, σ) = si+1,
− for all σ ∈ Ω′

i, we have δ(si, σ) = δ(s′i, σ) = s′i+1,
− and for all σ ∈ Σ \ (Ωi ∪ Ω′

i), we have δ(si, σ) =
δ(s′i, σ) = ∅.

3. α = S.
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Example 1. The automaton described in the above figure is a counting automaton ac-
cepting the language a0a1((b0 ∨ c0)(b1 ∨ c1)(b2 ∨ c2)(b3 ∨ c3))∗(c0c1c2c3)ω .

Proposition 1. LetL ⊆ Σω. There exists a counting automatonA such that L(A) = L
if and only if L is regular counting.

We are now ready to state our main theorem for this section.

Theorem 6. L ⊆ Σω is regular and preserved under merge iff L is regular counting.

The difficult direction is proving that if L is regular and preserved under merge,
then L is regular counting. As detailed in the full version, we do this by first proving
that if L ⊆ Σω is preserved under merge and is regular, then L is accepted by a deter-
ministic co-Büchi automaton. Essentially, in [10], Landweber proves that a determinis-
tic Rabin automaton has an equivalent deterministic Büchi automaton iff its accepting
strongly connected components are upward closed (that is, if S is accepting, so are all
components S′ ⊇ S). We prove that the rejecting strongly connected components of
a deterministic Streett automaton for a language L that is preserved under merge are
downward closed, and conclude that L can be accepted by a deterministic co-Büchi
automaton. We then prove that the states of the deterministic co-Büchi automaton can
be partitioned as required in the definition of a counting automaton.
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