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Abstract In the classical synthesis problem, we are given a specification ψ over sets of
input and output signals, and we synthesize a finite-state transducer that realizes ψ : with
every sequence of input signals, the transducer associates a sequence of output signals so
that the generated computation satisfies ψ . In recent years, researchers consider extensions
of the classical Boolean setting to a multi-valued one. We study a multi-valued setting in
which the truth values of the input and output signals are taken from a finite lattice, and
so is the satisfaction value of specifications. We consider specifications in latticed linear
temporal logic (LLTL). In LLTL, conjunctions and disjunctions correspond to the meet
and join operators of the lattice, respectively, and the satisfaction values of formulas are
taken from the lattice too. The lattice setting arises in practice, for example in specifica-
tions involving priorities or in systems with inconsistent viewpoints. We solve the LLTL
synthesis problem, where the goal is to synthesize a transducer that realizes the given speci-
fication in a desired satisfaction value. For the classical synthesis problem, researchers have
studied a setting with incomplete information, where the truth values of some of the input
signals are hidden and the transducer should nevertheless realize ψ . For the multi-valued
setting, we introduce and study a new type of incomplete information, where the truth val-
ues of some of the input signals may be noisy, and the transducer should still realize ψ in
the desired satisfaction value. We study the problem of noisy LLTL synthesis, as well as
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the theoretical aspects of the setting, like the amount of noise a transducer may tolerate, or
the effect of perturbing input signals on the satisfaction value of a specification. We prove
that the noisy-synthesis problem for LLTL is 2EXPTIME-complete, as is traditional LTL
synthesis.

Keywords Synthesis · Lattice · Quantitative formal methods · Automata · Noise

1 Introduction

Synthesis is the automated construction of a system from its specification. The basic idea
is simple and appealing: instead of developing a system and verifying that it adheres to its
specification, we would like to have an automated procedure that, given a specification,
constructs a system that is correct by construction. The first formulation of synthesis goes
back to Church (1963). The modern approach to synthesis was initiated by Pnueli and Ros-
ner, who introduced LTL (linear temporal logic) synthesis (Pnueli and Rosner 1989a): We
are given an LTL formula ψ over sets I and O of input and output signals, and we syn-
thesize a finite-state system that realizes ψ . At each moment in time, the system reads a
truth assignment, generated by the environment, to the signals in I , and it generates a truth
assignment to the signals in O. Thus, with every sequence of inputs, the transducer asso-
ciates a sequence of outputs, and it realizes ψ if all the computations that are generated by
the interaction satisfy ψ . Synthesis has attracted a lot of research and interest (Vardi 2008).

In recent years, researchers have considered extensions of the classical Boolean set-
ting to a multi-valued one, where the atomic propositions are multi-valued, and so is the
satisfaction value of specifications. The multi-valued setting arises directly in systems in
which the designer can give to the atomic propositions rich values, expressing, for example,
energy consumption, waiting time, or different levels of confidence (Chatterjee et al. 2008;
Almagor et al. 2013), and arises indirectly in probabilistic settings, systems with multiple
and inconsistent view-points, specifications with priorities, and more (Kwiatkowska 2007;
Huth and Pradhan 2004; Alur et al. 2008). Adjusting the synthesis problem to this setting,
one works with multi-valued specification formalisms. In such formalisms, a specification
ψ maps computations in which the atomic propositions take values from a domain D to a
satisfaction value in D. For example, ψ may map a computation in ({0, 1, 2, 3}{p})ω to the
maximal value assigned to the (multi-valued) atomic proposition p during the computation.
Accordingly, the synthesis problem in the multi-valued setting gets as input a specification
ψ and a predicate P ⊆ D of desired values, and seeks a system that reads assignments in
DI , responds with assignments in DO , and generates only computations whose satisfac-
tion value is in P . The synthesis problem has been solved for several multi-valued settings
(Bloem et al. 2009; Cerný and Henzinger 2011; Almagor et al. 2013).

A different extension of the classical synthesis framework considers settings in which
the system has incomplete information about its environment. In early work on incom-
plete information, the system can read only a subset of the signals in I and should still
generate only computations that satisfy the specification, which refers to all the signals
in I ∪ O (Kumar and Shayman 1995; Pnueli and Rosner 1989b; Kupferman and Vardi
1999; Chatterjee et al. 2006; Chatterjee and Majumdar 2011). The setting is equivalent to
a game with incomplete information, extensively studied in Reif (1984). As shown there,
the common practice in handling incomplete information is to move to an exponentially-
larger game of complete information, where each state corresponds to a set of states that are
indistinguishable by a player with incomplete information in the original game.
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More recent work on synthesis with incomplete information studies richer types of
incomplete information. In Chatterjee et al. (2008), the authors study a case in which the
transducer can read some of the input signals some of the time. In more detail, sensing the
truth value of an input signal has a cost, the system has a budget for sensing, and it tries to
realize the specification while minimizing the required sensing budget. In Velner and Rabi-
novich (2011), the authors study games with errors. Such games correspond to a synthesis
scenario in which there are positions during the interaction in which input signals are read
by the system with an error. The games are characterized by the number or rate of errors
that the system has to cope with, and by the ability of the system to detect whether a current
input is erred.

In this work we introduce and study a different model of incomplete information in the
multi-valued setting. In our model, the system always reads all input signals, but their value
may be perturbed according to a known noise function. This setting naturally models incom-
plete information in real-life multi-valued settings. For example, when the input is read by
sensors that are not accurate (e.g., due to bounded precision, or to probabilistic measuring)
or when the input is received over a noisy channel and may come with some distortion.
The multi-valued setting we consider is that of finite lattices. A lattice is a partially-ordered
set L = 〈A,≤〉 in which every two elements � and �′ have a least upper bound (� join �′,
denoted �∨�′) and a greatest lower bound (� meet �′, denoted �∧�′). Of special interest are
two classes of lattices: (1) Fully ordered, where L = 〈{1, . . . , n}, ≤〉, for an integer n ≥ 1
and the usual “less than or equal” order. In this lattice, the operators ∨ and ∧ correspond
to max and min, respectively. (2) Power-set lattices, where L = 〈2X,⊆〉, for a finite set X,
and the containment (partial) order. In this lattice, the operators ∨ and ∧ correspond to ∪
and ∩, respectively.

The lattice setting is a good starting point to the multi-valued setting. While their finite-
ness circumvents the infinite-state space of dense multi-values, lattices are sufficiently rich
to capture many quantitative settings. Fully-ordered lattices are sometimes useful as is (for
example, when modeling priorities (Alur et al. 2008)), and sometimes thanks to the fact that
real values can often be abstracted to finitely many linearly ordered classes. The power-set
lattice models a wide range of partially-ordered values. For example, in a setting with incon-
sistent viewpoints, we have a set X of agents, each with a different viewpoint of the system,
and the truth value of a signal or a formula indicates the set of agents according to whose
viewpoint the signal or the formula are true. As another example, in a peer-to-peer network,
one can refer to the different attributes of the communication channels by assigning with
them subsets of attributes. From a technical point of view, the fact that lattices are partially
ordered poses challenges that do not exist in (finite and infinite) full orders. For example,
as we are going to see, the fact that a specification is realizable with value � and with value
�′ does not imply it is realizable with value � ∨ �′, which trivially holds for full orders.

We start by defining lattices and the logic Latticed LTL (LLTL, for short). We then study
theoretical properties of LLTL: We study cases where the set of attainable truth values of
an LLTL formula are closed under ∨, thus a maximal attainable value exists, even when
the lattice elements are partially ordered. We also study stability properties, namely the
affect of perturbing the values of the atomic propositions on the satisfaction value of for-
mulas. We continue to the synthesis and the noisy-synthesis problems for LLTL, which we
solve via a translation of LLTL formulas to Boolean automata. We show that by working
with universal automata, we can handle the exponential blow-up that incomplete infor-
mation involves together with the exponential blow-up that determination (or alternation
removal, if we take a Safraless approach) involves, thus the noisy-synthesis problem stays
2EXPTIME-complete, as it is for LTL. In addition, we consider a probabilistic setting,



550 Discrete Event Dyn Syst (2017) 27:547–572

where the noise is given by some distribution, rather than by an adversary. Then, the goal is
to synthesize a transducer that maximizes the probability of satisfying the specification. By
utilizing the results of Chatterjee et al. (2004), we show that this problem can be solved in
2NEXPTIME∩co-2NEXPTIME.

1.1 Related work

As described above, researchers have extensively studied synthesis with incomplete infor-
mation, as well as quantitative extensions to Boolean synthesis. Here, we describe work on
synthesis in the presence of noisy input.

A variant of noisy synthesis was considered in Majumdar et al. (2011) for metric
automata – deterministic automata equipped with a metric on the state space. There, the
authors consider controller synthesis, where the automaton tries to generate a word in its
language, namely one on which the run of the automaton is accepting, and an adversary is
allowed to disturb the run of the automaton (i.e., to change the current state). The goal is to
find a strategy for the automaton such that if the disturbance is bounded with respect to the
metric, then the run of the automaton is close (with respect to the metric) to being accepting.
The authors describe polynomial-time algorithms for robust synthesis for Büchi automata
as well as, under certain conditions, for parity automata.

There are two main differences between our work and Majumdar et al. (2011). First, the
measure of correctness in Majumdar et al. (2011) is Boolean, in the sense that the set of
accepting runs has a Boolean characterization function, and the source of quantitativeness
is the distance of the generated run from the set of accepting runs. In contrast, our defini-
tion of correctness is inherently multi-valued, as lattice automata are multi-valued. Second,
in Majumdar et al. (2011), the only input from the environment is the disturbance, whereas
our case is similar to conventional synthesis, in which the environment controls the input,
and the noise is either adversarial or random.

Another approach for modeling noise was taken in Topcu et al. (2012), where systems
with unmodeled transitions are considered. These systems are equipped with a set � of
transitions that may or may not actually exist. Then, a controller is robust for a system S

and a specification ϕ if it realizes ϕ in all systems that are obtained from S by adding to it
a subset of the transitions in �. Since such robustness conditions are extremely strong, the
authors define “levels” of robustness, which are assigned by giving a rank to every subset of
�, and assigning to a transducer the maximal rank it realizes. The authors show that when
the ranking function is induced by simple-enough partial orders (e.g. set inclusion), then
finding an optimal transducer can be done in 2EXPTIME for LTL specifications.

Conceptually, our work differs from Topcu et al. (2012) in that the noise is given in an
online manner by an adversary, as part of the input, and does not involve a structural change
in the system. In addition, the ranking in Topcu et al. (2012) is again based on a Boolean
notion of correctness, whereas in our case correctness is quantitative.

2 Preliminaries

2.1 Lattices

Consider a set A, a partial order ≤ on A, and a subset P of A. An element � ∈ A is an
upper bound on P if � ≥ �′ for all �′ ∈ P . Dually, � is a lower bound on P if � ≤ �′ for
all �′ ∈ P . The pair 〈A, ≤〉 is a lattice if for every two elements �, �′ ∈ A, both the least
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upper bound and the greatest lower bound of {�, �′} exist, in which case they are denoted
� ∨ �′ (� join �′) and � ∧ �′ (� meet �′), respectively. We use � < �′ to indicate that � ≤ �′
and � 
= �′. We say that � is a child of �′, denoted � ≺ �′, if � < �′ and there is no �′′ such
that � < �′′ < �′.

A lattice L = 〈A, ≤〉 is finite if A is finite. Note that finite lattices are complete: every
subset of A has a least-upper and a greatest-lower bound. We use � (top) and ⊥ (bottom) to
denote the least-upper and greatest-lower bounds of A, respectively. A lattice is distributive
if for every �1, �2, �3 ∈ A, we have �1 ∧ (�2 ∨ �3) = (�1 ∧ �2) ∨ (�1 ∧ �3) and �1 ∨ (�2 ∧
�3) = (�1 ∨ �2) ∧ (�1 ∨ �3). The traditional disjunction and conjunction logic operators
correspond to the join and meet lattice operators. In a general lattice, however, there is no
natural counterpart to negation. A De-Morgan (or quasi-Boolean) lattice is a lattice in which
every element a has a unique complement element ¬� such that ¬¬� = �, De-Morgan
rules hold, and � ≤ �′ implies ¬�′ ≤ ¬�. In the rest of this paper we consider only finite
distributive De-Morgan lattices. We focus on two classes of such lattices: (1) Fully ordered,
where L = 〈{1, . . . , n}, ≤〉, for an integer n ≥ 1 and the usual “less than or equal” order.
Note that in this lattice, the operators ∨ and ∧ correspond to max and min, respectively,
and ¬i = n − i + 1. (2) Power-set lattices, where L = 〈2X,⊆〉, for a finite set X, and the
containment (partial) order. Note that in this lattice, the operators ∨ and ∧ correspond to ∪
and ∩, respectively, and negation corresponds to complementation.

Consider a lattice L = 〈A,≤〉. A join irreducible element in L is l ∈ A such that
l 
= ⊥ and for all elements l1, l2 ∈ A, if l1 ∨ l2 ≥ l, then l1 ≥ l or l2 ≥ l. For example,
the join irreducible elements in 〈2X,⊆〉 are all singletons {x}, for x ∈ X. By Birkhoff’s
representation theorem for finite distributive lattices, in order to prove that l1 = l2, it is
sufficient to prove that for every join irreducible element l it holds that l1 ≥ l iff l2 ≥ l. We
denote the set of join irreducible elements of L by JI(L). For convenience, we often talk
about a lattice L without specifying A and ≤. We then abuse notations and refer to L as a
set of elements and talk about l ∈ L or about assignments in LAP (rather than l ∈ A or
assignments in AAP ).

2.2 The logic LLTL

The logic LLTL is a natural generalization of LTL to a multi-valued setting, where the
atomic propositions take values from a lattice L (Chechik et al. 2001; Kupferman and Lustig
2007). Given a (finite distributive De-Morgan) lattice L, the syntax of LLTL is given by
the following grammar, where p ranges over a set AP of atomic propositions, and � ranges
over L.

ϕ := � | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ.

The semantics of LLTL is defined with respect to a computation π = π0, π1, . . . ∈
(LAP )ω. Thus, in each moment in time the atomic propositions get values from L. Note that
classical LTL coincides with LLTL defined with respect to the two-element fully-ordered
lattice. For a position i ≥ 0, we use πi to denote the suffix πi, πi+1, . . . of π . Given a
computation π and an LLTL formula ϕ, the satisfaction value of ϕ in π , denoted [[π, ϕ]], is
defined by induction on the structure of ϕ as follows (the operators on the right-hand side
are the join, meet, and complementation operators of L).

−[[π, �]] = �. − [[π, ϕ ∨ ψ]] = [[π, ϕ]] ∨ [[π, ψ]].
−[[π, p]] = π0(p). − [[π,Xϕ]] = [[π1, ϕ]].
−[[π, ¬ϕ]] = ¬[[π, ϕ]]. − [[π, ϕUψ]] = ∨

i≥0([[πi, ψ]] ∧ ∧
0≤j<i[[πj , ϕ]]).
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Example 1 Consider a setting in which three agents a, b, and c have different view-points on
a system S . A truth assignment for the atomic propositions is then a function in (2{a,b,c})AP

assigning to each p ∈ AP the set of agents according to whose view-point p is true. We
reason about S using the lattice L = 〈2{a,b,c},⊆〉. For example, the truth value of the
formula ψ = G(req → Fgrant) in a computation is the set of agents according to whose
view-point, whenever a request is sent, it is eventually granted.

Remark 1 [Constants in LLTL] Recall that the constants True and False in LTL do
not add to its expressive power. Indeed, True can be replaced by p ∨ (¬p), for a Boolean
atomic proposition p, and similarly for False. This is not the case for the constants � ∈ L
in LLTL. For example, consider the linear lattice 〈{1, ..., 5},≤〉. It is easy to show that for
every formula ϕ (without constants) over the atomic propositions AP , the computation π

for which πi(p) = 3 for every i ≥ 0 and p ∈ AP , satisfies [[π, ϕ]] = 3. It follows that there
is no LLTL formula ϕ that is equivalent to the constant 1.

Constants can be used to upper or lower bound the satisfaction value of an LLTL formula.
For example, the truth value of the LLTL formula {a, b} ∧ ψ , defined with respect to the
lattice 〈2{a,b,c},⊆〉, is the set of agents that is both a subset of {a, b} and according to whose
viewpoint, the specification ψ is satisfied.

2.3 LLTL synthesis

Consider a lattice L and finite disjoint sets I and O of input and output signals that take
values in L. An (I/O)-transducer over L models an interaction between an environment
that generates in each moment in time an input in LI and a system that responds with
outputs in LO . Formally, an (I/O)-transducer over L (transducer, when I , O, and L are
clear from the context) is a tuple T = 〈L, I, O, S, s0, η, τ 〉 where S is a finite set of states,
s0 ∈ S is an initial state, η : S × LI → S is a deterministic transition function, and
τ : S → LO is a labeling function. We extend η to words in (LI )∗ in the straightforward
way. Thus, η : (LI )∗ → S is such that η(ε) = s0, and for x ∈ (LI )∗ and i ∈ LI , we
have η(x · i) = η(η(x), i). Each transducer T induces a strategy fT : (LI )∗ → LO where
for all w ∈ (LI )∗, we have fT (w) = τ(η(w)). Thus, fT (w) is the letter that T outputs
after reading the sequence w of input letters. Given a sequence i0, i1, i2, . . . ∈ (LI )ω of
input assignments, the transducer generates the computation ρ = (i0 ∪ o0), (i1 ∪ o1), (i2 ∪
o2), . . . ∈ (LI∪O)ω, where for all j ≥ 1, we have oj = fT (i0 · · · ij−1).

Consider a lattice L, an LLTL formula ϕ over the atomic propositions I ∪ O, and a
predicate P ⊆ L. We say that a transducer T realizes 〈ϕ, P 〉 if for every computation ρ of
T , it holds that [[ρ, ϕ]] ∈ P . The realizability problem for LLTL is to determine, given ϕ

and P , whether there exists a transducer that realizes 〈ϕ, P 〉. We then say that ϕ is (I/O)-
realizable with values in P . The synthesis problem is then to generate such a transducer. Of
special interest are predicates P that are upward closed. Thus, P is such that for all � ∈ L,
if � ∈ P then �′ ∈ P for all �′ ≥ �.

Example 2 Consider a system that grants requests to a server. Requests (r) have an impor-
tance ranking, and grants (g) have a quality ranking. Both rankings are in {1, ..., 10}.
Consider a specification to the system such that the satisfaction value of the specification in
a computation depends on the following three parameters: (1) the importance of the requests
and the quality of the grants: the more important the requests is, the higher the quality of the
response should be (2) Ideally, each request is immediately given a grant that holds for two
time steps. We are willing, however, to compromise for a grant that only holds for one time
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step, but this reduces the satisfaction value. Specifically, if the grant is given only in the sin-
gle time step after the request, the satisfaction value is at most 8, and if it is given only in the
single next time step, then the satisfaction value is at most 6. Finally, (3) high-quality grants
are expensive. Specifically, for every window of three times steps, the satisfaction value is
bounded by 10 − v, where v is the lowest quality of a grant given in the window. We can
specify the system by a conjunction ϕ∧ψ of LLTL formulas over the lattice 〈{1, ..., 10},≤〉,
where ϕ = G(r → ((Xg ∧ XXg) ∨ (Xg ∧ 8) ∨ (XXg ∧ 6))) expresses the granting policy,
and ψ = G(¬(g ∧ Xg ∧ XXg)) expresses the need to have at least one low-quality grant in
every window of three time steps.

It is not hard to see that the specification cannot be realizable with a satisfaction value
above 6, as an input sequence in which requests of a high importance are received always,
causes ϕ and ψ to conflict. We thus add an assumption about the demand to the server
and require that consecutive request cannot be both important. Formally, we define θ =
G(¬(r ∧ Xr)), and the full specification to the system is θ → (ϕ ∧ ψ).

2.4 Noisy synthesis

Consider an LLTL formula ϕ over atomic proposition I ∪ O and a predicate P . In noisy
synthesis, we consider the synthesis problem in a setting in which the inputs are read
with some perturbation and the goal is to synthesize a transducer that nevertheless realizes
〈ϕ, P 〉.

In order to formalize the above intuition, we first formalize the notion of noise. Consider
a lattice L = 〈A, ≤〉 and two elements �1, �2 ∈ L. We define the distance between �1 and
�2, denoted d(�1, �2), as the shortest path from �1 to �2 in the undirected graph 〈A, E≺〉 in
which E≺(v, v′) iff v ≺ v′ or v′ ≺ v. For example, in the fully-ordered lattice L, we have
d(i, j) = |i − j |, and in the power-set lattice, the distance coincides with the Hamming
distance, thus d(X1, X2) = |(X1 \ X2) ∪ (X2 \ X1)|. For two assignments f, f ′ ∈ LAP , we
define d(f, f ′) = maxp∈AP d(f (p), f ′(p)).

We assume we are given a noise function ν : LI → 2L
I
, describing the possible pertur-

bations of each input. That is, for every i ∈ LI the set ν(i) consists of the inputs that may
have been actually generated by the environment, when the system reads i. A natural noise
function is ν(i) = {j : d(i, j) ≤ γ }, for some constant γ , which is the γ -units ball around
i. Given a noise function ν and two computations π, π ′ ∈ (LI∪O)ω, we say that π ′ is ν-
indistinguishable from π if for every i ≥ 0, we have that π ′

i |I ∈ ν(πi |I ) and π ′
i |O = πi |O ,

where σ |I is the restriction of σ ∈ LI∪O to inputs in I , and similarly for σ |O and O. Thus,
π ′ is obtained from π by changing only the assignment to input signals, within ν. Note that
ν need not be a symmetric function, nor is the definition of ν-indistinguishablity. We say
that a transducer T realizes 〈ϕ, P 〉 with noise ν if for every computation π of T , we have
that [[π ′, ϕ]] ∈ P for all computations π ′ that are ν-indistinguishable from π . Thus, the
reaction of T on every input sequence satisfies ϕ in a desired satisfaction value even if the
input sequence is read with noise ν.

Remark 2 [Incomplete information as noise] As discussed in Section 1, synthesis with
incomplete information has been extensively studied in the Boolean setting (Kupferman and
Vardi 2000). Synthesis with incomplete information, in both the Boolean and the multi-
valued settings, can be viewed as a special case of our noisy synthesis. To see this, let
I ∪ H ∪ O be a partition of the signals to input (that is, visible), hidden, and output sig-
nals, respectively. Consider the noise function ν in which for i ⊆ I and h ⊆ H , we have
ν(i ∪ h) = {i ∪ h′ : h′ ⊆ H }. The function ν makes letters that agree on the assignment
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to the input signals and differ only in the hidden signal indistinguishable, and thus models
incomplete information.

The synthesis procedure described in Theorem 10 thus enables us to solve also syn-
thesis with incomplete information. The obtained complexity coincides with the one given
in (Kupferman and Vardi 2000).

Example 3 Recall our request-granting specification from Example 2. As described there,
requests get values in {1, . . . , 10}, reflecting their importance. Assume that the channel over
which requests are sent is noisy and can perturb the value by 2. Thus, the noise function is
ν(i) = {i − 2, i − 1, i, i + 1, i + 2} ∩ {1, . . . , 10}. The effect of such a noise is an increase
in the importance of all requests. Indeed, since the synthesized system has to satisfy the
specification regardless of the noise, and requests appear negatively (that is, in the left-hand
side of an implication) in the specification, then noise that increases their value may reduce
the satisfaction value of the specification. Thus, in the presence of noise ν, the synthesized
systems has to respond with grants of higher quality.

2.5 Automata and games

As described in Section 1, our solution to the LLTL noisy-synthesis problem is based on
automata and games.

An automaton over infinite words is A = 〈�, Q,Q0, δ, α〉, where � is the input alpha-
bet, Q is a finite set of states, Q0 ⊆ Q is a set of initial states, δ : Q × � → 2Q is a
transition function, and α is an acceptance condition. When A is a generalized Büchi or a
generalized co-Büchi automaton, then α ⊆ 2Q is a set of sets of accepting states. When A is
a parity automaton, then α = 〈F1, . . . , Fd〉, where the sets in α form a partition of Q. The
number of sets in α is the index of A. An automaton is deterministic if |Q0| = 1 and for
every q ∈ Q and σ ∈ �, we have that |δ(q, σ )| = 1. A run r = r0, r1, . . . of A on a word
w = w1 · w2 · · · ∈ �ω is an infinite sequence of states such that r0 ∈ Q0, and for every
i ≥ 0, we have that ri+1 ∈ δ(ri , wi+1). We denote by inf(r) the set of states that r visits
infinitely often, that is inf(r) = {q : ri = q for infinitely many i ∈ N}. The run r is accept-
ing if it satisfies α. For generalized Büchi automata, a run is accepting if it visits all the sets
in α infinitely often. Formally, for every set F ∈ α, we have that inf(r) ∩ F 
= ∅. Dually, in
generalized co-Büchi automata, there should exist a set F ∈ α for which inf(r) ∩ F = ∅.
For parity automata, a run r is accepting if the minimal index i for which inf(r) ∩ Fi 
= ∅ is
even.

When A is a nondeterministic automaton, it accepts a word w if it has an accepting
run on w. When A is a universal automaton, it accepts a word w if all its runs on w are
accepting. The language of A, denoted L(A), is the set of words that A accepts.

A parity game is G = 〈�1, �2, S, s0, δ, α〉, where �1 and �2 are alphabets for Players 1
and 2, respectively, S is a finite set of states, s0 ∈ S is an initial state, δ : S × �1 × �2 → S

is a transition function, and α = 〈F1, . . . , Fd〉 is a parity acceptance condition, as described
above. A play of the game starts in s0. In each turn Player 1 chooses a letter σ ∈ �1 and
Player 2 chooses a letter τ ∈ �2. The play then moves from the current state s to the state
δ(s, σ, τ ). Formally, a play of G is an infinite sequence ρ = 〈s0, σ0, τ0〉, 〈s1, σ1, τ1〉, . . .
such that for every i ≥ 0, we have that si+1 = δ(si , σi, τi). We define inf(ρ) = {s ∈ S : s =
si for infinitely many i ∈ N}. A play ρ is winning for Player 1 if the minimal index i for
which inf(ρ)∩Fi 
= ∅ is even. A strategy for Player 1 is a function f : (S×�1×�2)

∗×S →
�1 that assigns, for every finite prefix of a play, the next move for Player 1. Similarly, a
strategy for Player 2 is a function g : (S × �1 × �2)

∗ × S × �1 → �2. A strategy is
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memoryless if it does not depend on the history of the play. Thus, a memoryless strategy for
Player 1 is a function f : S → �1 and for Player 2 it is a function g : S × �1 → �2.

A pair of strategies f, g for Players 1 and 2, respectively, induces a single play that
conforms with the strategies. We say that Player 1 wins G if there exists a strategy f for
Player 1 such that for every strategy g for Player 2, the play induced by f and g is winning
for Player 1. Otherwise, Player 2 wins. By determinancy of Parity games (Martin 1975),
Player 2 wins G if there exists a strategy g for Player 2 such that for every strategy f of
Player 1, the play induced by f and g is not winning for Player 1.

2.6 Solving the Boolean synthesis problem

The classical solution for the synthesis problem for LTL goes via games (Pnueli and Rosner
1989a).1 It involves a translation of the specification into a deterministic parity automaton
(DPW) over the alphabet 2I∪O , which is then transformed into a game in which the players
alphabets are 2I and 2O . More recent solutions avoids the determination and the solution of
parity games and use instead alternating tree automata (Kupferman and Vardi 2005; Filiot
et al. 2009). The complexity of both approaches coincide. Below we describe the classi-
cal solution for the synthesis problem, along with its complexity, when the starting point
is a specification given by a DPW.2 In Remark 3, we describe an alternative, Safraless,
approach, where the starting point is a universal co-Büchi automaton.

Theorem 1 Consider a specification ϕ over I and O given by means of a DPW Dϕ of size
t over the alphabet 2I∪O , with index k. The synthesis problem for ϕ can be solved in time
O(tk).

Proof Let Dϕ = 〈2I∪O, Q, q0, δ, α〉. We define a game Gϕ that models an interaction that
simulates Dϕ between a system (Player 1) that generates assignments in 2O and an envi-
ronment (Player 2) that generates assignments in 2I . Formally, Gϕ = 〈2O, 2I ,Q, q0, η, α〉,
where η : Q×2I ×2O → Q is such that for every q ∈ Q, i ∈ 2I , and o ∈ 2O , we have that
η(q, i, o) = δ(q, i∪o). By Emerson and Jutla (1991), the game is determined and one of the
players has a memoryless winning strategy. Such a strategy for Player 1 in Gϕ can then be
viewed as a transducer that realizes ϕ, as follows: the states of the transducer are the states
of the game, and at each state, the output corresponds to that prescribed by the strategy. The
inputs then move the state of the transducer according to the transitions of the game.

Finally, the game Gϕ is of size O(t) and index k. Hence, by Jurdzinski et al. (2008) and
Schewe (2007), we can find a memoryless strategy for the winner in time O(tk).

3 Properties of LLTL

In this section we study properties of the logic LLTL that are relevant in the context of noisy
synthesis. We focus on the set of attainable satisfaction values of an LLTL formula and on

1In Pnueli and Rosner (1989a) and other early works the games are formulated by means of tree automata.
2State-of-the-art algorithms for solving parity games achieve a better complexity (Jurdzinski et al. 2008;
Schewe 2007). The bound, however, remains polynomial in the size of the game and exponential in its index.
Since the challenge of solving parity games is orthogonal to our contribution here, we keep this component
of our contribution simple.
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stability properties, namely the affect of perturbing the values of the atomic propositions on
the satisfaction value of formulas.

3.1 Attainable values

Consider a lattice L. We say that L is pointed if for all LLTL formulas ϕ, partitions I ∪ O

of AP , and values �1, �2 ∈ L, if ϕ is (I/O)-realizable with value �1 and with value �2, then
ϕ is also (I/O)-realizable with value �1 ∨�2. Observe that if L is pointed, then every LLTL
formula over L has a transducer that realizes it with a maximal value.

In particular, as will follow from Section 5, synthesis on pointed lattices can be optimized
by reducing the number of lattice subsets that one needs to check in order to establish the
values with which a formula is satisfiable. For example, in the subset lattice 2{a,b} (which is
pointed by Theorem 3 below), if a formula is realizable both with value b and with value b,
then it is realizable with value {a, b}.

We start by showing that in general, not all lattices are pointed. In fact, our example
has O = ∅, where (I/O)-realizability coincides with satisfiability. We then show that the
lattices we focus on, are, however, pointed.

Theorem 2 Not all distributive De-Morgan lattices are pointed.

Proof Consider the lattice L = 〈2{a,b} × {0, 1}, ≤〉 where 〈S1, v1〉 ≤ 〈S2, v2〉 iff v1 ≤ v2
or (v1 = v2 and S1 ⊆ S2). (See Fig. 1). We define ¬〈S, v〉 = 〈{a, b} \ S, 1 − v〉. That is,
negation negates both components. It is easy to verify that L is a distributive De-Morgan
lattice.

Let I = {p} and consider the formula ϕ = (p∧〈{a}, 1〉)∨ (¬p∧〈{b}, 1〉). Both 〈{a}, 1〉
and 〈{b}, 1〉 are attainable satisfaction values of ϕ. For example, by setting p to 〈{a}, 1〉 or
to 〈{a}, 0〉. On the other hand, for every assignment � to p, the second component of either
� or ¬� is 0. Consequently, 〈{a, b}, 1〉 is not attainable, thus L is not pointed.

Theorem 3 Fully-ordered lattices and power-set lattices are pointed.

Fig. 1 The lattice
〈2{a,b} × {0, 1},≤〉
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Proof For fully-ordered lattices, we have �1 ∨ �2 ∈ {�1, �2}, so pointed-ness is obvious. We
prove the claim for power-set lattices. Consider a lattice L = 〈2X, ⊆〉 for some finite set X,
and consider an LLTL formula ϕ over the atomic propositions I ∪ O. For every set � ∈ L
and element x ∈ X, we define the projection �|x of � on x to be True if x ∈ � and False
otherwise. We extend the definition of projection to a letter σ ∈ LI∪O by letting p ∈ σ|x
iff L(p)|x = True. Thus, σ|x ⊆ I ∪ O. Finally, we extend the definition to a computation
π ∈ (LI∪O)ω by setting (π|x)i = (πi)|x . Observe that π|x ∈ (2I∪O)ω.

For an element x ∈ X, let ϕ|x be the LTL formula obtained from ϕ by replacing every
element � ∈ L that appears in ϕ by �|x . Since the syntax of LLTL differs from that of LTL
only by allowing elements from the lattice, it follows that ϕ|x is indeed an LTL formula.

We prove that for every computation π ∈ (LI∪O)ω and for every � ∈ L, it holds that
[[π, ϕ]] ≥ � iff π|x |= ϕx for all x ∈ �. Observe that [[π, ϕ]] ≥ � iff x ∈ [[π, ϕ]] for all x ∈ �.
From here the claim easily follows by induction on the structure of ϕ.

Now, assume that ϕ is (I/O)-realizable with value at least �1 and with value at least
�2. We claim that ϕ is realizable with value �1 ∨ �2. W.l.o.g we can assume �1 ∩ �2 = ∅
(otherwise we replace �2 by �2 \ �1). Let T1 = 〈L, I, O, S1, s1

0 , η1, τ 1〉 and T2 =
〈L, I, O, S2, s2

0 , η2, τ 2〉 be transducers that realize ϕ with values �1 and �2, respectively. We
obtain from T1 and T2 a new transducer T = 〈L, I, O, S1 × S2, 〈s1

0 , s2
0 〉, η, τ 〉 as follows.

For every state 〈s, t〉 ∈ S1×S2 and σ ∈ LI , we have η(〈s, t〉, σ ) = 〈η1(s, σ ), η2(t, σ )〉. For
every state 〈s, t〉 ∈ S1 × S2 and for every o ∈ O, we have τ(〈s, t〉)(o) = (�1 ∩ τ 1(s)(o)) ∪
(�2 ∩ τ 2(s)(o)). We claim that T realizes ϕ with value �1 ∨ �2.

Consider an environment-computation π ∈ (LI )ω, and consider the corresponding
computations ρ, ρ′ ∈ LI∪O of T1 and T2, respectively. It holds that [[ρ, ϕ]] ≥ �1 and
[[ρ′, ϕ]] ≥ �2.

Consider the output computation θ ∈ (LO)ω of T on the input π . By the construction of
T , it is easy to prove that θi(o) = (�1 ∩ ρi(o)) ∪ (�2 ∩ ρ′

i (o)).
Consider the computation π ′ of T obtained by combining π and θ . For every x ∈ �1, we

have that π ′|x = ρ|x . Thus, π ′|x |= ϕx for every x ∈ �1. Similarly, for every x ∈ �2, we have
that π ′|x = ρ′|x , so π ′|x |= ϕx for every x ∈ �2. We conclude that for every x ∈ �1 ∪ �2 it
holds that π ′|x |= ϕ, and so [[π ′, ϕ]] ≥ �1 ∨ �2. Thus, T realizes ϕ with value �1 ∨ �2.

3.2 Stability

For two computations π = π0, π1, . . . and π ′ = π ′
0, π

′
1, . . ., both in (LAP )ω, we define

the global distance between π and π ′, denoted gd(π, π ′), as
∑

i≥0 d(πi, π
′
i ). Note that

gd(π, π ′) may be infinite. We define the local distance between π and π ′, denoted
ld(π, π ′), as maxi≥0 d(πi, π

′
i ). Note that ld(π, π ′) ≤ |L|.

Consider an LLTL formula ϕ over AP and L. We say that ϕ is globally stable if for every
pair π and π ′ of computations, we have d([[π, ϕ]], [[π ′, ϕ]]) ≤ gd(π, π ′). Thus, the differ-
ence between the satisfaction value of ϕ in π and π ′ is bounded by the sum of differences
between matching locations in π and π ′. Also, ϕ is locally stable if for every pair π and π ′
of computations, we have d([[π, ϕ]], [[π ′, ϕ]]) ≤ ld(π, π ′). Thus, the difference between the
satisfaction value of ϕ in π and π ′ is bounded by the maximal difference between match-
ing locations in π and π ′. Here, we study stability of all LLTL formulas. In Section 6, we
study the problem of deciding whether a given LLTL formula is locally stable, and discuss
the relevancy of local stability to synthesis with noise.
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Consider an LLTL formula ϕ over the atomic propositions AP , and consider computa-
tions π, π ′ ∈ (LAP )ω. Assume that gd(π, π ′) ≤ 1. That is, π and π ′ differ only in one
location, where they differ in the value of a single atomic proposition, whose value in π is a
child of its value in π ′ or vice versa. It is tempting to think that then, d([[π, ϕ]], [[π ′, ϕ]]) ≤ 1,
which would imply that ϕ should be globally stable.

We start by breaking this intuition, showing that for non-distributive lattices, this is false.
The proof makes use of an N5 structure, depicted in Fig. 2. Formally, an N5 structure in a
lattice L is a tuple 〈x, y, z,w, s〉 such that the following relations hold: s < x < y < w,
s < z < w, y 
≤ z, z 
≤ y, x 
≤ z, and z 
≤ x. Note that x ∨ (z ∧ y) = x ∨ s = x, whereas
(x ∨ z) ∧ (x ∨ y) = w ∧ y = y. Hence, the structure of N5 is never a sub-lattice in a
distributive lattice.

Theorem 4 LLTL formulas may not be globally stable with respect to non-distributive
lattices.

Proof Consider the lattice N5, the formula ϕ = p ∨ q, and a computation π such that
π0(p) = s and π0(q) = x. Clearly [[π, ϕ]] = x. Now, let π ′ be the computation obtained
from π by setting π ′

0(p) = z. It holds that gd(π, π ′) = 1. However, [[π ′, ϕ]] = z ∨ x = w,
and d(x, w) = 2. Thus, ϕ is not globally stable over the lattice N5.

We now proceed to show that when defined with respect to a distributive lattice, all LLTL
formulas are globally stable.

Fig. 2 An N5 structure
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Theorem 5 LLTL formulas are globally stable with respect to De-Morgan distributive
lattices.

Proof We prove that for every LLTL formula ϕ and computations π, π ′ ∈ (LAP )ω, if
gd(π, π ′) = 1, then d([[π, ϕ]], [[π ′, ϕ]]) ≤ 1. The result then follows by induction on
gd(π, π ′).

Consider an LLTL formula ϕ and computations π, π ′ such that gd(π, π ′) = 1. That is,
there exists a single index i ≥ 0 such that d(πi, π

′
i ) = 1 and πj = π ′

j for all j 
= i.
W.l.o.g, there is p ∈ AP such that πi(p) � π ′

i (p). By Birkhoff’s representation theorem,
there exists a unique element u ∈ JI(L) such that π ′

i (p) = πi(p) ∨ u. We prove, by induc-
tion over the structure of ϕ, that [[π ′, ϕ]] ∈ {[[π, ϕ]] ∧ ¬u, [[π, ϕ]], [[π, ϕ]] ∨ u} and that
d([[π ′, ϕ]], [[π, ϕ]]) ≤ 1.

To simplify the proof, we observe that since π and π ′ differ only in a single index, and
in particular only in a finite prefix, we can avoid treating the case of U subformulas. Indeed,
we can expand subformulas of the form ψUθ using propositional conjunctives and the X
operator so that all the suffixes before πi are not evaluated on subformulas that contain U.
Clearly, the value of the remaining evaluation of U subformulas does not change, as π and
π ′ agree on suffixes that start after the i-th position.

– If ϕ = � ∈ L the claim is trivial.
– If ϕ = p ∈ AP , then d([[π, ϕ]], [[π ′, ϕ]]) = d([[π0, p]], [[π ′

0, p]]), which, by the
assumption, is at most 1. Moreover, [[π ′, p]] ∈ {[[π, p]], [[π, p]] ∨ u}.

– If ϕ = ¬ψ , then by the induction hypothesis it holds that [[π ′, ψ]] ∈ {[[π, ψ]] ∧
¬u, [[π, ψ]], [[π, ψ]] ∨ u} and d([[π, ψ]], [[π ′, ψ]]) ≤ 1. Hence, by the properties of
negation, d(¬[[π, ψ]], ¬[[π ′, ψ]]) ≤ 1 and [[π ′, ϕ]] ∈ {[[π, ϕ]]∧¬u, [[π, ϕ]], [[π, ϕ]]∨u},
and we are done.

– If ϕ = ψ ∨ θ , then, by the induction hypothesis, it holds in particular that [[π, ψ]] ∧
¬u ≤ [[π ′, ψ]] ≤ [[π, ψ]] ∨ u and [[π, θ ]] ∧ ¬u ≤ [[π ′, θ]] ≤ [[π, θ ]] ∨ u. Therefore,
[[π, ϕ]] ∧ ¬u ≤ [[π ′, ϕ]] ≤ [[π, ϕ]] ∨ u. Figure 3 demonstrates the above relations.
Intuitively, adding a lattice element between ψ ∨ θ ∨ u and (ψ ∨ θ) ∧ u induces an

Fig. 3 The relations described in
the disjunction case in the proof
of Theorem 5
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N5-structure. Thus, [[π ′, ϕ]] must be within distance 1 of [[π, ϕ]]. This is the key point
in the proof.

Formally, in order to prove that the distance is preserved, we distinguish between
cases. First, if [[π ′, ϕ]] = [[π, ϕ]], then we are done. If [[π ′, ϕ]] = [[π, ϕ]]∨ v, then since
[[π ′, ϕ]] = [[π ′, ψ]] ∨ [[π ′, θ]], it must be that w.l.o.g [[π ′, ψ]] = [[π, ψ]] ∨ u. That is,
at least one of ψ and θ gets joined with u. Assume by way of contradiction that there
exists t ∈ L such that [[π ′, ϕ]] < t < [[π, ϕ]] ∨ v. We then have the N5 structure3

〈ψ ∨ θ, t, ψ ∨ u,ψ,ψ ∨ θ ∨ u〉. Since, however, L is distributive, it cannot have an N5
structure, and we have reached a contradiction.

The case [[π, ϕ]] ∧ ¬u ≤ [[π ′, ϕ]] is handled similarly.
– If ϕ = Xψ , the claim follows immediately from the induction hypothesis.

Consider an LLTL formula ϕ over a distributive de-Morgan lattice, and assume we have
a transducer T that realizes ϕ with some value v. Intuitively, Theorem 5 assures us that if
very little and few perturbations occur (either in the inputs or outputs), then T still realizes
ϕ with a value that is “close” to v. While this is a very weak notion of stability, it still offers
some ability to handle noise.

We now turn to study local stability. Since local stability refers to the maximal change
along a computation, it is a very permissive notion. In particular, it is not hard to see that in
a fully-ordered lattice, a local change of 1 entails a change of at most 1 in the satisfaction
value. Thus, we have the following.

Theorem 6 LLTL formulas are locally stable with respect to fully-ordered lattices.

In partially-ordered lattices, however, things are more involved, as local changes may be
in different “directions”. Formally, we have the following.

Theorem 7 LLTL formulas may not be locally stable.

Proof Consider the power-set lattice 〈2{a,b},⊆〉 and the LLTL formula ϕ = p ∨ Xp. Con-
sider computations π and π ′ with π0(p) = π1(p) = ∅, π ′

0(p) = {a}, and π ′
1(p) = {b}.

It holds that ld(π, π ′) = 1, whereas d([[π, ϕ]], [[π ′, ϕ]]) = d(∅, {a, b}) = 2. We conclude
that ϕ is not locally stable.

In Section 6 we study local stability further and prove that the problem of deciding
whether a given LLTL formula is locally stable is PSPACE-complete.

4 Translating LLTL to automata

In this section we describe an automata-theoretic approach for reasoning about LLTL
specifications. One approach is to develop a framework that is based on lattice automata
(Kupferman and Lustig 2007). Like LLTL formulas, lattice automata map words to values
in a lattice. Lattice automata have proven to be useful in solving the satisfiability and the

3It may be the case that some of the nodes coincide, and this is not a proper N5. However, these cases are
easy to handle.
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model-checking problems for LLTL (Kupferman and Lustig 2007). However, the solution
of the synthesis problem involves automata-theoretic constructions for which the latticed
counterpart is either not known or is very complicated. In particular, Safra’s determiniza-
tion construction has not yet been studied for lattice automata, and a latticed counterpart of
it is not going to be of much fun. Likewise, the solution of two-player games (even reach-
ability, and moreover parity) in the latticed setting is much more complicated than in the
Boolean setting. In particular, obtaining a value �1 ∨ �2 in a latticed game may require one
strategy for obtaining �1 and a different strategy for obtaining �2 (Kupferman and Lustig
2010). When the game is induced by a realizability problem, it is not clear how to com-
bine such strategies into a single transducer that realizes the underlying specification with
value �1 ∨ �2.

Accordingly, a second approach, which is the one we follow, is to use Boolean automata.
The fact that LLTL formulas have finitely many possible satisfaction values suggests that
this is possible. For fully-ordered lattices, a similar approach has been taken in Faella et al.
(2008) and Almagor et al. (2013). Beyond the challenge in these works of maintaining the
simplicity of the automata-theoretic framework of LTL, an extra challenge in the latticed
setting is caused by the fact values may be only partially ordered. We will elaborate on this
point below.

In order to explain our framework, let us recall first the translation of LTL formulas to
nondeterministic generalized Büchi word automata (NGBW), as introduced in Vardi and
Wolper (1994). There, each state of the automaton is associated with a set of formulas, and
the NGBW accepts a computation from a state q iff the computation satisfies exactly all the
formulas associated with q. The state space of the NGBW contains only states associated
with maximal and consistent sets of formulas, the transitions are defined so that require-
ments imposed by temporal formulas are satisfied, and the acceptance condition is used in
order to guarantee that requirements that involve the satisfaction of eventualities are not
delayed forever.

In the construction here, each state of the NGBW assigns a satisfaction value to every
subformula. While it is not difficult to extend the local consistency rules to the latticed
settings, handling of eventualities is more complicated. To see why, consider for example
the formula Fp, for p ∈ AP , and the computation π in which the satisfaction value of
p is ({a}, {b}, {c})ω. While [[π, Fp]] = {a, b, c}, the computation never reaches a position
in which the satisfaction value of the eventuality p is {a, b, c}. This poses a problem on
translations of LTL formulas to automata, where eventualities are handed by making sure
that each state in which the satisfaction of ψ1Uψ2 is guaranteed, is followed by a state in
which the satisfaction of ψ2 is guaranteed. For a multi-valued setting with fully-ordered
values, as is the case in Faella et al. (2008) and Almagor et al. (2013), the latter can be
replaced by a requirement to visit a state in which the guaranteed satisfaction value of ψ

exceeds that of ψ1Uψ2. As the example above demonstrates, such a position need not exist
when the values are partially ordered. In order to address the above problem, every state in
the NGBW associates with every subformula of the form ψ1Uψ2 a value in L that ψ2 still
needs “accumulate” in order for ψ1Uψ2 to have its assigned satisfaction value. Thus, as in
other break-point constructions (Vardi and Wolper 1994; Miyano and Hayashi 1984), we
decompose the requirement to obtain a value � to requirements to obtain join-irreducible
values whose join is �, and we check these requirements together.

Theorem 8 Let ϕ be an LLTL formula over L and P ⊆ L be a predicate. There exists an
NGBW Aϕ,P such that for every computation π ∈ (2AP )ω, it holds that [[π, ϕ]] ∈ P iff
Aϕ,P accepts π . The state space and transitions ofAϕ,P are independent of P , which only
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influences the set of initial states. The NGBW Aϕ,P has at most |L|O(|ϕ|) states and index
at most |ϕ|.
Proof We define Aϕ,P = 〈LAP , Q, δ, Q0, α〉 as follows. Let cl(ϕ) be the set of ϕ’s sub-
formulas, and let ucl(ϕ) be the set of ϕ’s subformulas of the form ψ1Uψ2. Let Gϕ and Fϕ

be the collection of functions g : cl(ϕ) → L and f : ucl(ϕ) → L, respectively. For an
element v ∈ L, let JI(v) be the minimal set S ⊆ JI(L) such that v = ∨

s∈S s. By Birkhoff’s
theorem, this set is well defined, and the JI mapping is a bijection.

For a pair of functions 〈g, f 〉 ∈ Gϕ × Fϕ , we say that 〈g, f 〉 is consistent if for every
ψ ∈ cl(ϕ), the following holds.

– If ψ = v ∈ L, then g(ψ) = v.
– If ψ = ¬ψ1, then g(ψ) = ¬g(ψ1).
– If ψ = ψ1 ∨ ψ2, then g(ψ) = g(ψ1) ∨ g(ψ2).
– If ψ = ψ1Uψ2, then JI(f (ψ)) ∩ JI(g(ψ2)) = ∅.

The state space Q of Aϕ,� is the set of all consistent pairs of functions in Gϕ × Fϕ . Intu-
itively, while the function g describes the satisfaction value of the formulas in the closure,
the function f describes, for each subformula of the form ψ1Uψ2, the values in which
ψ2 still has to be satisfied in order for the satisfaction value g(ψ1Uψ2) to be fulfilled.
Accordingly, if a value is in JI(g(ψ2)), it can be removed from f (ψ1Uψ2), explaining why
JI(f (ψ1Uψ2)) ∩ JI(g(ψ2)) = ∅.

Then, Q0 = {g ∈ Q : g(ϕ) ∈ P } contains all states in which the value assigned to ϕ is in P .
We now define the transition function δ. For two states 〈g, f 〉 and 〈g′, f ′〉 in Q and a

letter σ ∈ LAP , we have that 〈g′, f ′〉 ∈ δ(〈g, f 〉, σ ) iff the following hold.

– For all p ∈ AP , we have that σ(p) = g(p).
– For all Xψ1 ∈ cl(ϕ), we have g(Xψ1) = g′(ψ1).
– For all ψ1Uψ2 ∈ cl(ϕ), we have g(ψ1Uψ2) = g(ψ2) ∨ (g(ψ1) ∧ g′(ψ1Uψ2)) and

f ′(ψ1Uψ2) =
{

JI(f (ψ1Uψ2)) \ JI(g′(ψ2)) If JI(f (ψ1Uψ2)) 
= ∅,

JI(g′(ψ1Uψ2)) \ JI(g′(ψ2)) Otherwise.

Finally, every formula of the form ψ1Uψ2 contributes to the acceptance condition α the set
Fψ1Uψ2 = {〈g, f 〉 : JI(f (ψ1Uψ2)) = ∅}.

Observe that while δ is nondeterministic, it is only nondeterministic in the first compo-
nent. That is, once the function g′ is chosen, there is a single function f ′ that can match the
transition.

We now proceed to prove the correctness of the construction and analyze the blow-up it
involves. In the proof, we identify a set S ⊆ JI(L) with the element

∨
s∈S s ∈ L. Observe

that it suffices to prove that for every � ∈ L, the NGBW Aϕ,{�} accepts a computation π iff
[[π, ϕ]] = �. We first prove that if π ∈ (LAP )ω is such that [[π, ϕ]] = � for some � ∈ L, then
Aϕ,{�} accepts π . For every i ∈ N, let gi ∈ Gϕ be such that for all ψ ∈ cl(ϕ), we have that
gi(ψ) = [[πi, ψ]]. Also, let f0 : ucl(ϕ) → L be such that for every subformula of the form
ψ1Uψ2, we have f0(ψ1Uψ2) = JI(g0(ψ1Uψ2)) \ JI(g0(ψ2)). Finally, for i ∈ N, let fi+1 be
induced from fi and gi+1 in the single way that satisfies the conditions in the definition of δ.

We claim that r = 〈g0, f0〉, 〈g1, f1〉, . . . is an accepting run of Aϕ,{l} on π . First, the
semantics of LLTL implies that the consistency conditions, both the local ones and these
imposed by δ are satisfied. In particular, for the conditions imposed by δ, this follows
from the fact that for all positions i ∈ N, we have that [[πi,Xψ1]] = [[πi+1, ψ1]]
and [[πi, ψ1Uψ2]] = [[ψ2]] ∨ ([[πi, ψ1]] ∧ [[πi, ψ1Uψ2]]). Also, since g0(ϕ) = �, then
〈g0, f0〉 ∈ Q0
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It is left to prove that r is accepting. Consider a sub-formula of the form ψ1Uψ2. We
prove that r visits Fψ1Uψ2 infinitely often. Consider a position i ∈ N and let [[πi, ψ1Uψ2]] =
y. We prove that there is a position n ≥ i such that fn = ∅, thus 〈gn, fn〉 ∈ Fψ1Uψ2 .
By the semantics of U and the finiteness of L, there is a (minimal) index n ≥ i such that
y = ∨

i≤j≤n([[πj , ψ2]] ∧ ∧
i≤k<j [[πk, ψ1]]). It is easy to prove by induction on n − i that

there exists some i ≤ k ≤ n such that JI(fk(ψ1Uψ2)) = ∅, using the fact that fj (ψ1Uψ2) ≤
gj (ψ1Uψ2) for all j ≥ 0.

The other direction is more complicated. Let π ∈ (LAP )ω be such that π is accepted by
Aϕ,{�}. We prove that [[π, ϕ]] = �. Let ρ = 〈g1, f1〉, 〈g2, f2〉, . . . be an accepting run of
Aϕ,{�} on π , and let h1, h2, . . . ∈ (Gϕ)ω be such that for all i ∈ N and ψ ∈ cl(ϕ), we have
that hi(ψ) = [[πi, ψ]]. We claim that hi = gi for all i ∈ N. The proof is by induction on
the structure of the formulas in cl(ϕ). Consider a formula ψ ∈ cl(ϕ). If ψ = p ∈ AP , then
since ρ is a legal run, a transition from state 〈gi, fi〉 is possible with letter σ iff σ(p) =
[[πi, p]] = ρ(p), and we are done. If ψ = v ∈ L, ψ = ψ1∨ψ2, or ψ = Xψ1, then the claim
follows from the consistency rules and the induction hypothesis. Finally, if ψ = ψ1Uψ2,
then, as we prove in Lemma 1 below, the fact that ρ is an accepting run implies the first
equality in the chain below. The second equality follows from the induction hypothesis, and
the third equality is from the semantics of LLTL.

gi(ψ) =
∨

i≤j

( gj (ψ2) ∧
∧

i≤k<j

gk(ψ1) ) =
∨

i≤j

( [[πj , ψ2]] ∧
∧

i≤k<j

[[πk, ψ1]] ) = [[πi, ψ]].

We conclude that h0 = g0. Since g0 ∈ Q0, it follows that [[π, ϕ]] = � and we are
done.

Lemma 1 Under the notations of the proof of Theorem 8, we have that gi(ψ1Uψ2) =∨
i≤j (gj (ψ2) ∧ ∧

i≤k<j gk(ψ1)).

Proof Since ρ is a legal run, then for every i ∈ N, it holds that

gi(ψ1Uψ2) = gi(ψ2) ∨ (gi(ψ1) ∧ gi+1(ψ1Uψ2)). (∗)

We prove the lemma by proving that for every v ∈ JI(L) it holds that gi(ψ1Uψ2) ≥ v iff∨
i≤j (gj (ψ2) ∧ ∧

i≤k<j gk(ψ1) ≥ v. The equality then follows from Birkhoff’s theorem.
Using (∗), it is easy to prove by induction that for every index i and for every n ∈ N it

holds that

g(ψ1Uψ2) =
∨

i≤j≤n

⎛

⎝gj (ψ2) ∧
∧

i≤k<j

gk(ψ1)

⎞

⎠ ∨
⎛

⎝gn+1(ψ1Uψ2) ∧
∧

i≤k≤n

gk(ψ1)

⎞

⎠ .

We denote the above equation by (∗∗).
Let v ∈ JI(L) and assume that

∨

i≤j

(gj (ψ2) ∧
∧

i≤k<j

gk(ψ1)) ≥ v.

Since v is join-irreducible, it follows that there exist some n ∈ N such that

gn(ψ2) ∧
∧

i≤k<n

gk(ψ1) ≥ v.
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Since (∗∗) is true for every n, then in particular, we have that g(ψ1Uψ2) ≥ v, which
concludes the first direction of the proof.

For the second direction, assume that g(ψ1Uψ2) ≥ v. If there exists n ≥ i such that
∨

i≤j≤n

(
gj (ψ2) ∧ ∧

i≤k<j gk(ψ1)
)

≥ v, then we are done. Assume by way of contradic-

tion that there is no such n. Thus, by (∗∗), for every n ≥ i it holds that gn+1(ψ1Uψ2) ∧∧
i≤k≤n gk(ψ1) ≥ v, which means that gn+1(ψ1Uψ2) ≥ v and

∧
i≤k≤n gk(ψ1) ≥ v. In par-

ticular, there cannot exist n ≥ i such that gn(ψ2) ≥ v, otherwise it would contradict our
assumption.

Since the run is accepting, there exists n1 > i such that fn1(ψ1Uψ2) = ∅. Consider the
suffix of the run starting from n1 + 1. For every t ≥ n1, We have that gt (ψ1Uψ2) ≥ v

but gt (ψ2) 
≥ v. Thus, v ∈ JI(fn+1(ψ1Uψ2)), and v will never be removed from the f

component, this is in contradiction to the fact that the run is accepting, and we are done.

Example 4 We demonstrate the construction presented in Theorem 8 with a partial example.
Consider the formula ϕ = Fp = {a, b, c}Up over the subset lattice {2{a,b,c},⊆} and the
predicate P = {{a, b}}. An example of an initial state of Aϕ,P is a state in which g(ϕ) =
{a, b}, f (ϕ) = {a} and g(p) = {b}. That is, we expect that in the next step, the value of
p will be {b, c}, which means that in order for ϕ to get value {a, b} it remains for p to
get value {a}. Then, upon reading value {b} for p, a possible transition is to a state where
g(ϕ) = {a, b}, f (ϕ) = ∅ and g(p) = {a}, which is an accepting state.

5 LLTL synthesis

Recall that in the synthesis problem we are given an LLTL formula ϕ over sets I and O of
input and output variables, taking truth values from a lattice L, and we want to generate an
(I/O)-transducer over L all whose computations satisfy ϕ in a value from some desired set
P of satisfaction values. In the noisy setting, the transducer may read a perturbed value of
the input signals, and still all its computations need to satisfy ϕ as required. In this section we
use the construction in Theorem 8 in order to solve both variants of the synthesis problem.
In addition, we describe an extension to a probabilistic setting in which both the noise the
realizability criteria are probabilistic.

5.1 Solving the LLTL synthesis problem

We start with the non-noisy case. Here, the algorithm is similar to the one developed for the
Boolean setting, except that the parity game is obtained from LLTL formulas:

Theorem 9 The synthesis problem for LLTL is 2EXPTIME-complete. Given an LLTL for-
mula ϕ over a lattice L and a predicate P ⊆ L, we can solve the synthesis problem for
〈ϕ, P 〉 in time 2|L|O(|ϕ|)

.

Proof Let m denote the size of L, and let n denote the length of ϕ. The construction in
Theorem 8 yields an NGBW with mO(n) states and index n. By determinizing the NGBW
we obtain an equivalent DPW Dϕ,P of size 2mO(n) log mO(n) = 2O(n)mO(n) = 2mO(n)

and index
mO(n) (Safra 1992; Piterman 2006). Following the same lines as the proof of Theorem 1,
we see that in order to solve the LLTL synthesis problem, it suffices to solve the parity
game that is obtained from Dϕ,P , except that here the alphabets of Players 1 and 2 are
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LO and LI , respectively. Accordingly, a winning memoryless strategy for Player 1 is an
(I/O)-transducer over L that realizes 〈ϕ, P 〉.

As stated in Theorem 1, the parity game that is obtained from Dϕ,P can be solved in time

(2mO(n)
)m

O(n) = 2mO(n)
. We conclude that the LLTL-synthesis problem is in 2EXPTIME.

Hardness in 2EXPTIME follow from the hardness of the synthesis problem in the Boolean
setting, which corresponds to a fully-ordered lattice with two values.

5.2 Solving the noisy LLTL synthesis problem

We now turn to the noisy case. Consider an LLTL formula ϕ over the atomic propositions
I ∪ O, a predicate P ⊆ L, and a noise function ν : LI → 2L

I
. Recall that the goal in noisy

synthesis is to find a transducer T that realizes 〈ϕ, P 〉 with noise ν. Our goal is to construct
a DPW on which we can apply the algorithm described in Theorem 1. For this, we proceed
in three steps. First, we translate ϕ to a universal generalized co-Büchi word automaton
(UGCW). Then, we incorporate the noise in the constructed UGCW. Finally, we determinize
the UGCW to obtain a DPW, from which we proceed as described in Theorem 1. We start
by showing how to incorporate noise in universal automata.

Lemma 2 Consider a UGCWD and a noise function ν. There exists a UGCWD′ such that
D′ accepts a computation ρ iff D accepts every computation ρ′ that is ν-indistinguishable
from ρ. Moreover, D′ has the same state space and acceptance condition as D.

Proof Let D = 〈I ∪ O, Q,Q0, δ, α〉. We obtain D′ = 〈I ∪ O,Q,Q0, δ
′, α〉 from D by

modifying δ as follows. For every σ ∈ I ∪ O, let �σ = {γ : γ |O = σ |O and γ |I ∈
ν(σ |I )}. Thus, �σ contains all letters that are ν-indistinguishable from σ . Then, for every
state q ∈ Q, we have that δ′(q, σ ) = ⋃

γ∈�σ
δ(q, γ ). Thus, reading the letter σ , the UGCW

D′ simulates all the runs of D on all the letters that D may read when the actual letter in the
input is σ .

It is not hard to show that the set of runs of D′ on a computation ρ is exactly the set of
all the runs of D on all the computations that are ν-indistinguishable from ρ. From this, the
correctness of the construction follows.

Theorem 10 The noisy synthesis problem for LLTL is 2EXPTIME-complete. Given an
LLTL formula ϕ over a lattice L, a predicate P ⊆ L, and a noise function ν, we can solve
the synthesis problem for 〈ϕ, P 〉 with noise ν in time 2mO(n)

.

Proof Let P = L \ P , and let Aϕ,P be the NGBW constructed for ϕ and P in The-
orem 8. Observe that Aϕ,P accepts a computation ρ iff [[ρ, ϕ]] /∈ P . Next, we dualize
Aϕ,P and obtain a UGCW Dϕ,P for the complement language, namely all computations
ρ such that [[ρ, ϕ]] ∈ P . We now apply the procedure in Lemma 2 to Dϕ,P and obtain a
UGCW D′

ϕ,P that accepts a computation ρ iff Dϕ,P accepts every computation ρ′ that is
ν-indistinguishable from ρ. Next, we determinize D′

ϕ,P to an equivalent DPW D′′
ϕ,P .

We claim that the algorithm described in the proof of Theorem 1 can be applied to D′′
ϕ,P .

To see this, let D′′
ϕ,P = 〈I ∪ O, S, s0, η, β〉 and consider the game G that is obtained from

D′′
ϕ,P . That is, G = 〈LO,LI , S, s0, η, β〉, where for every q ∈ S, i ∈ LI , and o ∈ LO , we

have that η(q, i, o) = μ(q, i ∪ o).
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A (memoryless) winning strategy f for Player 1 in G is then an (I/O)-transducer over
L with the following property: for every strategy g of the environment, consider the play ρ

that is induced by f and g. The play ρ induces a computation w ∈ LI∪O that is accepted
by D′′

ϕ,P . By the construction of D′′
ϕ,P , this means that for every computation w′ that is ν-

indistinguishable from w, the run of Dϕ,P on w′ is accepting. Hence, [[w′, ϕ]] ∈ P , which
in turn implies that f realizes 〈ϕ, P 〉 with noise ν.

We now analyze the complexity of the algorithm. Let m denote the size of L, and let
n denote the length of ϕ. By Theorem 8, the size of Aϕ,P is mO(n) and it has index at
most n. Dualizing results in a UGCW of the same size and acceptance condition, and so is
the transition to D′

ϕ,P . Determinization involves an exponential blowup, such that D′′
ϕ,P is

of size 2mO(n) log mO(n) = 2mO(n)
and index mO(n). Finally, solving the parity game can be

done in time (2mO(n)
)m

O(n) = 2mO(n)
. We conclude that the LLTL-noisy-synthesis problem

is in 2EXPTIME. Hardness in 2EXPTIME again follows from the hardness of the synthesis
problem in the Boolean setting.

Remark 3 [A Safraless approach] The approach described in the proofs of Theorems 1, 9,
and 10 is Safraful, in the sense it involves a construction of a DPW. As has been the case
with Boolean synthesis (Kupferman and Vardi 2005), it is possible to proceed Safralessly
also in LLTL synthesis with noise. To see this, note that the starting point in Theorem 1
can also be a UGCW, and that Lemma 2 works with UGCWs. In more details, once we
construct a UGCW U for the specification, possibly with noise incorporated, the Safraless
approach expands U to a universal co-Büchi tree automaton that accepts winning strategies
for the system in the corresponding synthesis game, and checks its emptiness. In terms of
complexity, rather than paying an additional exponent in the translation of the specification
to a deterministic automaton, we pay it in the non-emptiness check of the tree automaton.

Remark 4 [Noisy output signals] Noisy input signals are often considered in settings where
the output can also be perturbed. Indeed, assuming the system and the environment interact
along noisy channels, there is no reason to assume that the output signals are immunized
against noise. In our setting, we can consider the case where there is also a noise function
on the outputs, and the goal is to synthesize a transducer whose output, after perturbation,
realizes the specification. More formally, no matter how the output is perturbed (assuming
a known noise function), the generated computation should satisfy the specification.

Going over the proof of Lemma 2, it is not hard to see that a similar construction can be
applied to the outputs, which would enable us to use the construction in Theorem 10 and
solve the noisy-synthesis problem in the presence of noisy outputs.

5.3 Probabilistic noise

Our definition of noisy synthesis takes a worst-case approach. Indeed, a transducer does not
realize a specification even if there is a single input sequence for which the resulting noisy
computation does not satisfy the specification. In practice, however, noise typically occurs
according to some probability, for which the worst-case approach may not be appropriate.
Consider, for example, a noisy channel that may flip a bit with some positive probability p.
A corresponding noise function should allow the input 1 (that is, an input signal that takes
values in {0, 1} and whose actual value is 1) to be read as 0 with some positive probability.
Then, no non-trivial specification is realizable, as all computations are indistinguishable.
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In practice, however, the event where a computation differs significantly from its noisy
version has low probability. Thus, we can relax the worst-case approach, and require that
given a noise function with the respective noise probabilities, we synthesize a transducer
that realizes the specification with maximal probability.

Formally, a probabilistic noise function is ν : LI → �(LI ) where �(LI ) =
{f : LI → [0, 1] : ∑

i∈LI f (i) = 1} is the set of probability functions over LI . Intuitively,
for inputs i, j ∈ LI , we have that ν(i)(j) is the probability that input j is read by the system
when the environment generates input i. Given an input sequence π ∈ (LI )ω, we obtain
from ν a probability distribution Prν,π over (LI )ω in the standard manner, by considering
cylinder sets (see e.g., (Baier et al. 2014)).

Consider an LLTL formula ϕ over I ∪ O, a predicate P ⊆ L, a probabilistic noise
function ν, a transducer T , and a threshold t ∈ [0, 1]. We say that T realizes 〈ϕ, P 〉 with
probability t under noise ν if for every computation π ∈ LI , we have that the probability
that T realizes ϕ with a value in P , given a computation π ′ distributed according to Prν,π ,
is at least t .

The Probabilistic noisy-synthesis problem for LLTL is then to synthesize, given ϕ, P ,
and ν as above, a transducer T that maximizes the value t for which T realizes 〈ϕ, P 〉 with
probability t under noise ν.

Theorem 11 The probabilistic noisy-synthesis problem for LLTL is in 2NEXPTIME ∩ co-
2NEXPTIME. Given an LLTL formula ϕ over a lattice L, a predicate P ⊆ L, and a
probabilistic noise function ν, we can solve the probabilistic noisy-synthesis problem for
〈ϕ, P 〉 and ν in time 2mO(n)

.

Proof Similarly to Theorem 9, we start by obtaining from ϕ and P a DPW Dϕ,P of size

2mO(n)
and index mO(n), where m is the size of L, and n is the length of ϕ. We then obtain

from Dϕ,P a parity game Gϕ,P = 〈2O, 2I , Q, q0, η, α〉 as per the proof of Theorem 1. We
now incorporate the noise function ν into Gϕ,P as follows. Recall that η : Q×2I ×2O → Q

is such that η(q, i, o) = δ(q, i ∪ o), where Q and δ are the states and transition function of
Dϕ,P , respectively. We define a 2 1

2 player parity game (Chatterjee et al. 2004) D′
ϕ,P,ν =

〈2O, 2I , Q, q0, η
′, α〉, where η′ : Q × 2O × 2I → �(Q) is the probabilistic transition

function given by setting η′(q, o, i) to be the distribution that assigns to the state δ(q, i′ ∪o)

the probability ν(i)(i′) that input i′ is read when the environment generates input i.
It is not hard to see that a strategy for the system that wins with probability t corresponds

to a transducer that realizes 〈ϕ, P 〉 with probability t under noise ν. In Chatterjee et al.
(2004), the authors prove that the system player in a 2 1

2 -game has a deterministic and mem-
oryless strategy that maximizes the probability of winning, and that finding it can be done
in NP∩coNP. Such a strategy corresponds to a transducer that maximizes the probability of
realizing ϕ with a value in P . Since the size of the game is doubly exponential, we conclude
that the probabilistic-noise synthesis problem is in 2NEXPTIME∩co-2NEXPTIME.

6 Local stability revisited

In Section 3.2 we studied stability and proved that not all LLTL formulas are locally stable
(see Theorem 7). This gives rise to the question of deciding whether a given LLTL formula
is locally stable. In the context of synthesis, if ϕ is known to be locally stable and we have
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a transducer T that realizes 〈ϕ, P 〉 with no noise, we know that T realizes 〈ϕ, P ⊕ γ 〉 with
noise νγ , where νγ (σ ) = {τ : d(σ, τ ) ≤ γ }, and P ⊕ γ is the extension of P to noise νγ .
Thus, � ∈ P ⊕ γ iff there is �′ ∈ P such that d(�, �′) ≤ γ .

Theorem 12 Given an LLTL formula ϕ over a lattice L, deciding whether ϕ is locally
stable is PSPACE-complete.

Proof In order to show that the problem is in PSPACE, we consider the following, more
general, problem: given an LLTL formula ϕ and a noise-threshold γ , we want to compute
the maximal distraction, denoted �ϕ,γ , that noise γ may cause to ϕ. Formally,

�ϕ,γ = max {d([[π, ϕ]], [[π ′, ϕ]]) : π, π ′ ∈ (LAP )ω and ld(π, π ′) ≤ γ }.
Observe that finding �ϕ,γ allows us to decide local stability by iterating over all elements
γ ∈ {1, . . . , |L|} and verifying that �ϕ,γ ≤ γ . Furthermore, in order to compute �ϕ,γ , it
is enough to decide whether �ϕ,γ ≤ μ for a threshold μ ∈ {1, ..., |L|}, since we can then
iterate over thresholds.

We solve the dual problem, namely deciding whether there exist π, π ′ ∈ (LAP )ω such
that ld(π, π ′) ≤ γ and d([[π, ϕ]], [[π ′, ϕ]]) > μ. In order to solve this problem, we proceed
as follows. In Theorem 8 we showed how to construct an NGBW Aϕ,� such that Aϕ,�

accepts a computation π iff [[π, ϕ]] = �. In Section 5.2, we showed how to construct a
UGCW D′

ϕ,�⊕μ such that D′
ϕ,�⊕μ accepts π iff [[π ′, ϕ]] ∈ � ⊕ μ for every computation π ′

that is νγ -indistinguishable from π . Now, there exist π, π ′ ∈ (LAP )ω such that ld(π, π ′) ≤
γ and d([[π, ϕ]], [[π ′, ϕ]]) > μ iff there exists � ∈ L such that [[π, ϕ]] = � and the latter
conditions hold. Observe that these conditions hold iff there exists a computation π that
is accepted by Aϕ,� but not by D′

ϕ,�⊕μ. Thus, it suffices to decide whether L(Aϕ,�) ∩
L(D′

ϕ,�⊕μ) = ∅ for every � ∈ L.
Finally, we analyze the complexity of this procedure. Let |L| = m and |ϕ| = n. Comple-

mentation of D′
ϕ,�⊕μ can be done by constructing D′

ϕ,�⊕μ
. Hence, both Aϕ,� and D′

ϕ,�⊕μ

have mO(n) states. Checking the emptiness of their intersection can be done on-the-fly in
PSPACE.

As discussed above, this suggest a PSPACE algorithm for deciding local stability. We
now complete the picture by presenting a matching lower bound.

We prove hardness by describing a polynomial time reduction from the satisfiability
problem for LTL to the complement of the local-stability problem.

Consider an LTL formula ϕ over AP . We assume that ϕ is not valid, thus there is a
computation that does not satisfy it (clearly LTL satisfiability is PSPACE-hard also with
this promise). We construct an LLTL formula ψ over the lattice L = 〈2{a,b},⊆〉 as follows.
Let AP ′ = {p′ : p ∈ AP } be a tagged copy of AP . We define ψ = ϕ ∨ ϕ′ over AP ∪ AP ′,
where ϕ′ is obtained form ϕ by replacing each atomic proposition by its tagged copy. Clearly
this reduction is polynomial. We now show that ϕ is satisfiable iff ψ is not locally stable.

Consider ϕ as an LLTL formula over L. We observe that if there exists a computation π

such that [[π, ϕ]] = {a}, then there exists a computation τ such that [[τ, ϕ]] = {b}. Indeed,
the lattice L is symmetric and ϕ does not contain elements of the form {a} or {b} to break the
symmetry. Thus, we can obtain τ by swapping the roles of a and b in π . From Theorem 3 we
know thatL is pointed, so in this case there also exists a computation ρ such that [[ρ, ϕ]] = {a, b}.

We first prove that if ϕ is not satisfiable, then ψ is locally stable. Observe that if we view
ϕ as an LLTL formula and there exists a computation π such that [[π, ϕ]] = {a}, then ϕ is
satisfiable as an LTL formula. Indeed, a satisfying computation π ′ for ϕ can be obtained
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from π by defining p ∈ π ′
i iff a ∈ πi(p) for all p ∈ AP and i ≥ 0. Thus, if ϕ is not

satisfiable, then [[π, ϕ]] = ∅ for every computation π ∈ (LAP )ω, and similarly [[π ′, ψ]] = ∅
for every π ′ ∈ (LAP∪AP ′

)ω. Hence, ψ is locally stable.
For the second direction, assume that ϕ is satisfiable. Thus, there exists a computation

π ∈ (2AP )ω such that π |= ϕ. By our assumption, there also exists a computation π ′ such
that π ′ 
|= ϕ. It is easy to see that by identifying True with {a, b} and False with ∅, we get
[[π, ϕ]] = {a, b} and [[π ′, ϕ]] = ∅. For a computation w ∈ (LAP )ω, let ŵ ∈ (LAP∪AP ′

)ω

be the computation obtained from w by copying the behavior of the atoms in AP to their
tagged atoms. Thus, for all i ≥ 0, we have p, p′ ∈ ŵi iff p ∈ wi .

Since the maximal distance between elements in L is 2, there exists a computation τ

such that ld(π ′, τ ) ≤ 1 and ld(τ, π) ≤ 1. That is, we can “get” from π ′ to π by two local
changes of 1. From this follows that ld(π̂ ′, τ̂ ) ≤ 1 and ld(̂τ , π̂) ≤ 1. Consider [[τ, ϕ]]. If
[[τ, ϕ]] = {a, b}, then ψ is not locally stable, since ld(π̂ ′, τ̂ ) ≤ 1 but d([[̂τ , ψ]], [[π̂ ′, ψ]]) =
2. Similarly, if [[τ, ϕ]] = ∅, then ψ is not locally stable. Otherwise, w.l.o.g [[τ, ϕ]] = {a}.
Then, there exists a computation τ ′ such that [[τ ′, ϕ]] = {b}. The computation τ ′ is obtained
by swapping a and b in τ . Observe that since π ′ contains only symmetric elements from
L (i.e. ∅ and {a, b}), then ld(π ′, τ ) = ld(π ′, τ ′) ≤ 1. Finally, since AP and AP ′ are
disjoint, then by assigning τ over AP and τ ′ over AP ′, we obtain a computation ρ such that
ld(π̂ ′, ρ) ≤ 1 but [[ρ, ψ]] = {a} ∨ {b} = {a, b}, and ψ is not locally stable.

7 Discussion

We introduced and studied the noisy-synthesis problem, where we seek a transducer that
realizes a multi-valued specification in LLTL in the highest possible satisfaction value, in
the presence of noisy input signals. Our study includes relevant properties of multi-valued
specification formalisms, like their global and local stability, which essentially measure the
sensitivity of the satisfaction value of specifications to perturbations on the input signals. We
prove that the noisy-synthesis problem for LLTL is 2EXPTIME-complete, as is traditional
LTL synthesis.

Our future research includes the following directions. (1) The logic LLTL is a multi-
valued logic in which values are taken from and manipulated according to a lattice. While
many scenarios can be captured by the two lattices on which we focus, there is grow-
ing interest in weighted formalisms and multi-valued temporal logics that can express rich
behaviors over a wide range of domains. For example, the multi-valued logics LTL[F ] and
LTLdisc[D] (Almagor et al. 2016) can express the quantitative propositional and temporal
aspects of computations, and can, for example, prioritize different satisfaction possibilities
or refer to the waiting time to the satisfaction of eventualities. The logics can be interpreted
with respect to both Boolean and multi-valued computations. From a technical point of
view, our solution to the noisy-synthesis problem is based on a translation of LLTL formu-
las to automata. For other multi-valued logics, and in particular for LTLdisc[D], where the
set of possible satisfaction values is not bounded, such a translation is not always possible.
We plan to investigate the extension of the noisy-synthesis problem to richer multi-valued
logics, and in particular to LTL[F ] and LTLdisc[D]. (2) In some settings, the designer can
control the noise. Such a control requires resources, say sensors of high quality. In the
budgeted noisy-synthesis problem, we are given, together with the noise function ν, also a
budget and information on the cost of reducing noise. The goal is to use the budget in a
way that would generate a transducer with the highest possible satisfaction value. Note that
the information about the cost can be of different types. For example, it may refer to the



570 Discrete Event Dyn Syst (2017) 27:547–572

cost of reducing the noise of a particular input signal in a single state of the transducer, in
specific time points, or throughout the computation, and the same for sets of input signals.
This is related to the different ways in which the cost of sensing may be defined (Almagor
et al. 2015), and also to a formalization of the trade-offs among the noise that the system
experiences, its size, and the best satisfaction value that it can guarantee. We plan to relate
noisy-synthesis and sensing-cost-aware synthesis, and to study these trade-offs.
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