
Parameterized Weighted Containment

Guy Avni and Orna Kupferman

School of Computer Science and Engineering, Hebrew University, Israel

Abstract. Partially-specified systems and specifications are used in formal meth-
ods such as stepwise design and query checking. The goal of these methods is to
explore the design or refine it by examining possible completions of the missing in-
formation. Existing methods consider a setting in which the systems and their cor-
rectness are Boolean. In recent years there has been growing interest and need for
quantitative formal methods, where systems may be weighted and specifications
may be multi valued. Weighted automata, which map input words to a numerical
value, play a key role in quantitative reasoning. Technically, every transition in a
weighted automatonA has a cost, and the valueA assigns to a finite word w is the
sum of the costs on the transitions participating in the most expensive accepting run
of A on w. We study parameterized weighted containment: given three weighted
automataA, B, and C, with B being partial, the goal is to find an assignment to the
missing costs in B so that we end up with B′ for which A ≤ B′ ≤ C, where ≤
is the weighted counterpart of containment. We also consider a one-sided version
of the problem, where only A or only C are given in addition to B, and the goal is
to find a minimal assignment with which A ≤ B′ or, respectively, a maximal one
with which B′ ≤ C. We argue that both problems are useful in stepwise design of
weighted systems as well as approximated minimization of weighted automata.
We show that when the automata are deterministic, we can solve the problems
in polynomial time. Our solution is based on the observation that the set of le-
gal assignments to k missing costs forms a k-dimensional polytope. The technical
challenge is to find an assignment in polynomial time even though the polytope is
defined by means of exponentially many inequalities. We do so by using a powerful
mathematical tool that enables us to develop a divide-and-conquer algorithm based
on a separation oracle for polytopes. For nondeterministic automata, the weighted
setting is much more complex, and in fact even non-parameterized containment is
undecidable. We are still able to study variants of the problems, where containment
is replaced by simulation.

1 Introduction

The automata-theoretic approach uses the theory of automata as a unifying paradigm for
system specification and verification [23,25]. By viewing computations as words (over
the alphabet of possible assignments to variables of the system), we can view both the
system and its specification as languages. Questions like satisfiability of specifications or
their satisfaction can then be reduced to questions about automata and their languages.

The automata-theoretic approach has proven useful also in reasoning about partially-
specified systems and specifications, where some components are not known or hidden.
Partially-specified systems are used mainly in stepwise design: One starts with a system
with “holes” and iteratively completes them in a way that satisfies some specification

[9,10]. Reasoning about partially-specified systems is useful also in automatic partial
synthesis [22] and program repair [14]. From the other direction, partially-specified spec-
ifications are used for system exploration. In particular, in query checking [5], the spec-
ification contains variables, and the goal is to find an assignment to the variables with
which the explored system satisfies the specification. For example, solutions to the query
ALWAYS(X1 → EVENTUALLYgrant) assign to X1 events that trigger a generation of a
grant in the system. Missing information in the system or the specification can be easily
encoded in an automaton that models it, and indeed algorithms for the above problems
are based on partially specified automata (c.f., [4]).

Traditional automata accept or reject their input, and are therefore Boolean. In recent
years, there is growing need and interest in quantitative reasoning. Weighted finite au-
tomaton (WFA, for short) map words to numerical values. Technically, every transition
in a weighted automaton A has a cost, and the value that A assigns to a finite word w,
denoted val(A, w), is the sum of the costs of the transitions participating in the most
expensive accepting run of A on w. 1 Applications of weighted automata include formal
verification, where they are used for the verification of quantitative properties [6], as well
as text, speech, and image processing, where the weights of the automaton are used in
order to account for the variability of the data and to rank alternative hypotheses [8,19].

In the Boolean setting, formal verification amounts to checking containment of the
language of the system by the language of the specification. This makes the language-
containment problem of great theoretical and practical interest. In the weighted set-
ting, the analogous problem gets as input two weighted automata A and B, and decides
whether all the words w that are accepted by A are also accepted by B and val(A, w) ≤
val(B, w). We denote this by A ⊆ B. Weighted automata are much more complicated
than Boolean ones. The source of the difficulty is the infinite domain of values that the
automata may assign to words. In particular, the problem of weighted containment is
in general undecidable [1,17]. Given the importance of the problem, researchers have
studied decidable fragments and approximations of weighted containment. We know, for
example, that weighted containment is decidable, in fact polynomial, for deterministic
WFAs (DWFAs, for short). For general WFA, researchers have suggested a weighted
variant of the simulation relation, which approximates weighted containment and is de-
cidable [3,7].

In this paper, we introduce and study parameterized weighted containment: given
three weighted automata A, B, and C, with B being partial, the goal is to find an assign-
ment to the missing costs in B so that we end up with B′ for which A ⊆ B′ ⊆ C. We
also consider a one-bounded version of the problem, where only A or only C are given
in addition to B, and the goal is to find a minimal assignment with which A ⊆ B′ or,
respectively, a maximal one with which B′ ⊆ C.2

Before we describe the technical details of the problems and their solutions, let us
argue for their usefulness with two applications.

1 In general, weighted automata may be defined with respect to all semirings. For our application
here, we consider WFAs over Q, with the sum of the semi-ring being + and its product being
max.

2 An orthogonal research direction is that of parametric real-time reasoning [2]. There, the quan-
titative nature of the automata origins from real-time constraints, the semantics is very different,
and the goal is to find restrictions on the behavior of the clocks such that the automata satisfy
certain properties.

2

Example 1. Stepwise design Assume we have a weighted specification C. Refining the
specification to an implementation involves a refinement of its Boolean behavior, pos-
sibly extending its alphabet, and an assignment of values to the refined computations.
When the values in C exhibit upper bounds on costs, we want the implementation B to
satisfy B ⊆ C. It is relatively easy to refine the Boolean behavior of C and get an automa-
ton whose language, when restricted to the joint alphabet, is contained in the language of
C. It is much harder to design the weighted behavior of B. For this, we apply one-bound
parameterized weighted containment: C is the specification, B is its Boolean refinement,
we label its costs by variables, and we are looking for a maximal assignment for the
variables with which B is contained in C.

For a specific example, consider the problem of ranking contributors to user-generated
sites (e.g., Wikipedia). A big challenge for these sites is to develop trust in users. We seek
a WFA that distinguishes between good and bad edits. After a user performs an edit on
the site, the WFA gives it a score, and decisions on blocking and promotion of users are
based on these scores.

We assume that an edit is a sequence of words – these added by the user. We also
assume we have a tool, which we refer to as the mapper, that, intuitively, performs a
pre-processing that abstracts the edit the user performed. More formally, the mapper
maps words to some fixed alphabet, which is the alphabet of the WFA. For example, a
mapper might map the sentence “The dog bent uver.” to the word “the · noun · verb ·
misspelledword.”

The WFA combines heuristics, each of which either identifies a positive linguistic
feature of a sentence or a negative one. An example of a positive heuristic is: “a sentence
in which the multiplicity of the subject matches that of the verb should get a score greater
than 1/4”. An example of a negative heuristic is: “a sentence in which the appears before
a verb should not get a score above 1/2”.

Devising a WFA that takes care of a single heuristic is simple. However, since the
automata are weighted, combining them is complicated. Some variants of parameterized
weighted containment are useful here: when we want to combine two positive heuristics,
modeled by WFAs A1 and A2, we seek a minimal WFA B such that both A1 ⊆ B and
A2 ⊆ B. This variant of the one-bound problem is useful also when both heuristics are
negative. Combining a negative heuristic A and a positive one C then corresponds to the
problem of finding a WFA B such that A ⊆ B ⊆ C.

Example 2. DWFA approximated minimization Minimization of Boolean deterministic
automata is a well-studied problem. For DWFAs, Mohri described a (complicated yet
polynomial) minimization algorithm [18]. We argue that two-bound parameterized weighted
containment can be used in order to simplify Mohri’s algorithm and, which we find more
exciting, enables also approximated minimization. There, given a DWFA A and a factor
t ∈ Q, we would like to construct a minimal automaton B that has the same language as
A and assigns values within a factor of t fromA. GivenA, we first construct the DWFAs
reduce(A, t) and increase(A, t), for whatever definitions of reduce and increase we are
after; for example, we can take −t and +t as additive factors to the value, or we can take
1
t and t as multiplicative ones. We then use parameterized weighted containment in order
to find B such that reduce(A, t) ⊆ B ⊆ increase(A, t).

In both examples above, we left all the components of the generated WFA B unspec-
ified. When the user has an idea about B’s Boolean behavior, as is typically the case in

3

step-wise refinement, this Boolean behavior is a natural starting point. In Section 3.2, we
study the case only A and C are given, and we seek a minimal B such that A ⊆ B ⊆ C.
We show that the problem is NP-complete for DWFAs, and suggest a heuristic for finding
B that is based on an “on-demand” generation of the Boolean product of A and C (yak
yak).

Let us now return to parameterized weighted containment where a partial WFA B
is given. Our solution to the problem is based of strong mathematical tools. We explain
here briefly the general idea for the two-bound problem for DWFAs. Consider an input
A, B, and C to the problem. Assume that transitions in B are parameterized by variables
from a set X of size k. Recall that we are looking for a legal assignment f : X → Q;
that is, one with whichA ⊆ Bf ⊆ C, where Bf is the DWFA obtained by replacing each
variable X ∈ X by f(X). We first show that the products A×B and B × C can be used
in order to generate a set of inequalities that the variables have to satisfy. For that, we
characterize critical paths in the products – it is necessary and sufficient to restrict the
assignment of the variables in transitions along these paths in order to guarantee that f
is legal. Each critical path induces an inequality and together the inequalities induces a
convex polytope P ⊆ IRk that includes exactly all the legal assignments. Khachiyan’s
Ellipsoid’s method [16] then enables us to find a point in this polytope or conclude that
no legal assignment exists.

This is, however, not the end of the story. Unfortunately, the number of critical paths
we have to consider is exponential, making a naive search for the solution exponential
too. Examining Khachiyan’s method one can see that it is not necessary to have an im-
plicit list of inequalities that define the polytope P . Indeed, it was shown in [11,15,20]
that it is sufficient to have a separation oracle for the polytope. That is, instead of a list of
inequalities that define P , the input to the problem is an oracle that, given a point p ∈ Qk,
either says that p ∈ P or returns a half-space H ⊆ Qk such that p /∈ H and P ⊆ H . We
show that we can use the products A× B and B × C in order to define such a separation
oracle, leading to polynomial-time a solution to the problem.

For the one-bound variant, we show that the induced polytope is pointed, and that
the solution we are after is a vertex of it, leading to an actually simpler algorithm. For
the case the automata are nondeterministic, we argue that the one-bound problem is not
interesting, as a minimal/maximal solution need not exist. For the two bound problem,
we approximate containment by simulation, and show that the problem is NP-hard. Also,
a polynomial algorithm for deciding weighted simulation would imply that it is NP-
complete. 3 Given the computational difficulty of handling nondeterministic WFAs in
general, we view these results as good news: parameterized language containment can be
solved in polynomial time for the deterministic setting, and its approximation by simula-
tion is decidable in the nondeterministic one.

2 Preliminaries

2.1 Weighted Automata

A nondeterministic finite weighted automaton on finite words (WFA, for short) is a tuple
A = 〈Σ,Q,∆,Q0, F, τ〉, whereΣ is an alphabet,Q is a set of states,∆ ⊆ Q×Σ×Q is

3 The best algorithm currently known for weighted simulation is in NP ∩ co-NP [3].

4

a transition relation, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of accepting states,
and τ : ∆ → Q is a function that maps each transition to a rational value, which is the
cost of traversing this transition. We assume that there are no redundant states inA. That
is, all states are not empty (an accepting state is reachable from them) and accessible
(reachable from an initial state).

A run ofA on a word u = u1, . . . , un ∈ Σ∗ is a sequence of states r = r0, r1, . . . , rn
such that r0 ∈ Q0 and for every 0 ≤ i < n we have ∆(ri, ui+1, ri+1). The run r is
accepting iff rn ∈ F . The value of the run, denoted val(r, u), is the sum of costs of
transitions it traverses. That is, val(r, u) =

∑
0≤i<n τ(〈ri, ui+1, ri+1〉). Similarly, for a

path π, which is a sequence of transitions, we define val(π) =
∑
e∈π τ(e). Since A is

non-deterministic, there can be more than one run on a word. We define the value that A
assigns to u ∈ Σ∗, denoted val(A, u), as the value of the maximal-valued accepting run
of A on u. That is, val(A, u) = max{val(r, u) : r is an accepting run of A on u}. As
in NFAs, the language of A, denoted L(A), is the set of words in Σ∗ that A accepts.

We say that A is deterministic if |Q0| = 1 and for every q ∈ Q and σ ∈ Σ, there is
at most one state q′ ∈ Q such that ∆(q, σ, q′). Note that a deterministic WFA (DWFA,
for short) has at most one run on every word in Σ∗.

Weighted containment For two WFAsA and B, we say thatA is contained in B, denoted
A ⊆ B, iff L(A) ⊆ L(B) and for every word w ∈ L(A) we have that val(A, w) ≤
val(B, w). It is shown in [1,17] that deciding containment for WFAs is undecidable.

Negativeness We say that a WFA A is negative if val(A, w) ≤ 0 for every word w ∈
L(A). We say that a path π in A is a critical path iff it is either a simple path from an
initial state to an accepting state or a simple cycle. Keeping in mind that all states in A
are not empty and reachable from an initial state, it is not hard to prove the following
characterization of negative DWFAs.

Proposition 1. A DWFA A is negative iff val(v) ≤ 0 for every critical path v in A.

Let A = 〈Σ,QA, ∆A, q0A , FA〉 and B = 〈Σ,QB, ∆B, q0B , FB〉 be two DWFAs.
Consider the product SA,B = 〈Σ,QB ×QA, ∆A,B, 〈q0A , q0B〉, FA × FB, τA,B〉, where
∆A,B is such that t = 〈〈u, v〉, σ, 〈u′, v′〉〉 ∈ ∆A,B iff tA = 〈u, σ, u′〉 ∈ ∆A and tB =
〈v, σ, v′〉 ∈ ∆B. We refer to the transitions tA and tB as the transitions that are mapped
to t. Then, for every t ∈ ∆A,B, we define τA,B(t) = τB(tB)− τA(tA), where tA and tB
are mapped to t.

Assume thatL(A) ⊆ L(B) and consider a wordw ∈ Σ∗. Let r = 〈rA0 , rB0 〉, . . . , 〈rA|w|, rB|w|〉
be the run of SA,B on w. It is easy to see that rA0 , . . . , r

A
|w| is the run of A on w and

rB0 , . . . , r
B
|w| is the run of B on w. Thus, by the definition of the weight function of SA,B,

it follows that val(SA,B, w) = val(A, w) − val(B, w). Hence, we have the following
proposition:

Proposition 2. Let A and B be two DWFAs such that L(A) ⊆ L(B). Then, A ⊆ B iff
SA,B is not negative.

2.2 Parameterized Weighted Containment

Consider a set of variables X = {X1, . . . , Xk}. An X -parameterized WFA is a WFA in
which some of the costs are replaced by variables from X . Thus, the weight function is

5

of the form τ : ∆ → Q ∪ X . Given an X -parameterized WFA A and an assignment
f : X → Q to the variables in X , we obtain the WFA Af by replacing every variable
X ∈ X with the value f(X). Formally, the components of the WFAAf agree with these
ofA except for the weight function τf , which agrees with τ on all transitions t ∈ ∆ with
τ(t) ∈ Q, and is such that τf (t) = f(X) for all t ∈ ∆ with τ(t) = X , for some X ∈ X .
Note that a variable X ∈ X may appear in more than one transition of A.

Definition 1. We consider the following three variants of parameterized weighted con-
tainment (PWC, for short).

– Two bound PWC: Given WFAs A and C, and an X -parameterized WFA B, find an
assignment f : X → Q such that A ⊆ Bf ⊆ C.

– Least upper bound PWC: Given a WFAA and an X -parameterized WFA B, find a
minimal assignment f : X → Q such that A ⊆ Bf .

– Greatest lower bound PWC: Given a WFA C and an X -parameterized WFA B, find
a maximal assignment f : X → Q such that Bf ⊆ C.

The least-upper and greatest-lower bound variants are dual and we refer to them as one-
bound PWC. Their definition uses the terms minimal and maximal, with the expected
interpretation: an assignment f is minimal if decreasing the value it assigns to a variable
results in a violation of the requirement thatA ⊆ Bf . Formally, f is minimal if for every
variable X ∈ X and every ε > 0, the assignment f ′ that agrees with f on all variables
X 6= X ′ ∈ X and f ′(X) = f(X) − ε is such that A 6⊆ Bf ′

. Note that without the
minimality requirement, the upper-bound variant is trivial: for every variable X ∈ X we
set f(X) to be a very high value, for example, the maximal cost appearing in A times
the size of |A| · |B|. The definition of a maximal assignment is dual.

Solving parameterized weighted containment is clearly harder than solving weighted
containment, and is therefore undecidable in general. We study two restrictions of the
problem. In Section 3, we study the PWC problem where the automata are deterministic.
As hinted in Proposition 2, containment is decidable for DWFAs. In Section 4 we study
the PWC problem where the automata are nondeterministic, but we replace the contain-
ment relation with its approximating relation of simulation [3], which is decidable.

2.3 Geometry in IRk

We briefly review some definitions on polytopes. For more details and intuition, see [21].

Polytopes A convex polytope is a set in IRk that is the intersection of a finite number
of half-spaces. Thus, it can be defined as the set of points p ∈ IRk that are solutions
to a system of linear inequalities Ax ≤ b, where A ∈ Qm,k is an m × k matrix of
rationals, b ∈ Qm, and m ∈ IN is the number of inequalities. For example, the system
of inequalities 2x1 + 3x2 ≤ 7, 5x1 ≤ 3, and 4x2 ≤ 0 corresponds to the following
representation: 2 3

5 0
0 4

(x1
x2

)
≤

7
3
0

6

Dimension We say that the points p1, . . . , pm ∈ IRn are affinely independent iff the
vectors p2−p1, p3−p1, . . . , pm−p1 are independent. The dimension of a convex polytope
P ⊆ IRk, denoted dim(P), is defined to be l ≤ k iff the maximal number of affinely
independent points in P is l + 1.

For example, consider the line in Figure 1, which is a convex polytope in IR2. We
claim that the dimension of the polytope is 1. Indeed, points a and b in the polytope are
affinely independent, as the single vector b−a is linearly independent. On the other hand,
points a, b, and c are not affinely independent, as b− a and c− a are linearly dependent.

We say that a polytope P ⊆ IRk is full-dimensional if its dimension is k. When P is
not full-dimensional, it is contained in a hyper-plane of dimension less than k.

Vertices In 2-dimensions, a vertex is the meeting point of two edges. In k-dimensions,
a vertex is the meeting point of k faces, which are the k-dimensional generalization of
edges. We say that a polytope P is pointed if it has a vertex. In Appendix A.1 we define
these notions formally.

Geometrical objects A k-dimensional ball is a generalization of the 2-dimensional circle.
For c ∈ IRk (the center) and r ∈ IR (the radius) we define the ball B(c, r) = {p ∈ IRk :∑

1≤i≤k(pi − ci)2 ≤ r2}. Consider a polytope P = {x ∈ IRk : Ax ≤ b}. We say that P
is bounded iff there is a ball with a finite radius that contains it.

Consider an invertible linear transformation L : IRk → IRk. For example, rotation
is invertible but the transformation L(p) = 0, for every p ∈ IRk, is not. An ellipsoid
with center 0 ∈ IRk, is the implication of L on the unit ball B(0, 1). That is, it is the
set L(B(0, 1)) = {L(p) ∈ IRk : p ∈ B(0, 1)}. An ellipsoid centered at c ∈ IRk, is the
translation of the set L(B(0, 1)) by c. That is, Ell(c, L) = c+ L(B(0, 1))4.

Volume Consider a set S ⊆ IRk. We define the volume of S, denoted vol(S), using
the Lebesgue measure. The volume of a k-dimensional box B = {p ∈ IRk : a1 ≤ p1 ≤
b1, . . . , ak ≤ pk ≤ bk} is vol(B) =

∏
1≤i≤k(bi−ai). Consider a collection of countably

many boxes C such that S ⊆ ⋃B∈C B. We define vol(S) = infC{
∑
B∈C vol(B)}. An

important observation is that the volume of a polytope that is not full-dimensional is 0.
Generally, there are sets that are not Lebesque measurable. In this work, however, we
only use convex sets, which are measurable.

Size of representation Consider a number p/q ∈ Q. The size of p/q is, intuitively, the
number of bits that are needed to represent it. Thus, we define the size of p/q, denoted
size(p/q), to be 1 + dlog(|p|+ 1)e+ dlog(|q|+ 1)e. We define the size of an inequality∑

1≤i≤k ai ·Xi ≤ b to be 1 +
∑

1≤i≤k size(ai) + size(b).

The ellipsoid method In 1979, Khachiyan [16] introduced the first polynomial time al-
gorithm for feasibility of linear programming. In this problem we get as input a polytope
P = {x ∈ IRk : Ax ≤ b}, where A ∈ Qm×k and b ∈ Qm. Our goal is to find a point
p ∈ P or determine that P is empty. Let ϕ be the size of the maximal inequality that
defines P , and let ν = 4k2ϕ. Also, let R = 2ν . We sketch the algorithm referred to

4 In [21], an ellipsoid is defined as follows: Ell(z,D) = {p ∈ IRk : (p−z)T ·D−1·(p−z) ≤ 1},
where D is a positive definite matrix and z ∈ IRk. The definition we use is equivalent to this
definition.

7

as the ellipsoid method for bounded full-dimensional polytopes. We find a sequence of
ellipsoids E0, E1, . . . , EN of decreasing volumes, such that for every 1 ≤ i ≤ N the
ellipsoid E i satisfies P ⊆ E i.

The initial ellipsoid E0 is the ball with center 0 ∈ IRk and radius R ∈ IN. Using
the radius R ensures that indeed P ⊆ E0. Assume that we found the ellipsoid E i =
Ell(zi, Li). We describe the (i+ 1)-th iteration of the algorithm. We test if zi ∈ P . If it
is, we are done. Otherwise, we find an inequality that zi violates. LetH ⊆ IRk be the half-
space that corresponds to the inequality we find. Next, using the half-space H , and the
ellipsoid E i, we generate the ellipsoid E i+1 with the following properties: E i∩H ⊆ E i+1

and E i+1 has a minimal volume. Moreover, we have that vol(E i+1)/vol(E i) ≤ 1/e.
For a 2-dimensional example, consider Figure 2. Finally, it is guaranteed that if all the
equations generated by the separation oracle are over Q, so are all the points generated
by the algorithm.

a
b

c

Fig. 1. A 1-dimensional
polytope in IR2.

P

E0

E1

z0

Fig. 2. An illustration of generating the ellipsoid E1, given that
the center z0 of the ellipsoid E0 violates an inequality. Note
that the polytope P is contained in E0 and in E1. Also note
that E1 contains the intersection between E0 and the half-space
corresponding to the inequality.

The termination criterion also depends on ϕ as above. If P is not empty, then since it
is full-dimensional, its volume is at least 2−ν , where ν is polynomial in the representation
size of ϕ. Since the volumes of the ellipsoids decrease exponentially, by selecting N =
poly(k, ν), we have that vol(EN) < 2−ν . Thus, if zN /∈ P , we can conclude that P is
empty, and we terminate.

In order to drop the assumption that the polytope is bounded, we use the following
property. If the polytope P is not empty, there is a point p ∈ P with size(p) ≤ 2ν . Thus,
we can use the polytope that is the intersection of P with the box {p ∈ IRk : ∀1 ≤ i ≤
k, 2ν ≤ pi ≤ 2ν}, which is clearly bounded.

Symbolic ellipsoid method Examining Khachiyan’s method one can see that it is not
necessary to have the implicit list of inequalities that define the given polytope P . Indeed,
it was shown in [11,15,20] that it is sufficient to have a separation oracle for P when P
is full-dimensional. That is, instead of a full list of inequalities that define P , the input
to the problem is an oracle that, given a point p ∈ IRk, either says that p ∈ P or returns
a half-space H ⊆ IRk such that p /∈ H and P ⊆ H . Assuming we found the ellipsoid
E i = Ell(zi, Li), we use the oracle to check if zi is in P . If it is, we are done, and

8

otherwise, we get a half-space with which we construct the ellipsoid E i+1. Since we
construct only polynomially many ellipsoids, we perform only polynomial many calls
to the oracle. The runtime is thus polynomial in the runtime of the separation oracle,
in k, and in the maximal representation size (aka ϕ) of the inequalities that define P .
In Appendix A.2 we explain how we can work with a separation oracle even when the
polytope is not full-dimensional. To conclude, we have the following.

Theorem 1. [21] Consider a polytope P ⊆ IRk, defined by linear inequalities over Q
of size at most ϕ. Given a separation oracle SEP for P , it is possible to find a point in
P ∩Qk in time that is polynomial in k, ϕ, and the running time of SEP.

3 The PWC Problem for Deterministic WFAs

In this section we show that both the two- and one-bound PWC problems can be solved
in polynomial time when the input WFAs are deterministic.

3.1 The Two-Bound PWC Problem for Deterministic Automata

Recall that the input to the two-bound PWC problem are DWFAs A and C and an X -
parametrized DWFA B. Our goal is to find a legal assignment for the variables in X .
That is, an assignment f such that A ⊆ Bf ⊆ C.

From parameterized containment to a convex polytope Consider an input A, B, and
C to the two-bound problem. When the automata are deterministic, checking whether
L(A) ⊆ L(B) ⊆ L(C) can be done in polynomial time. If Boolean containment does not
hold, there is clearly no assignment as required. Thus, we assume that L(A) ⊆ L(B) ⊆
L(C).

Consider an assignment f : X → Q. By Proposition 2, we have that f is legal iff
SA,Bf and SBf ,C are negative. Moreover, by Proposition 1, the latter holds iff all the
critical paths in SA,Bf and SBf ,C have a non-positive value. Thus, the set of critical paths
in SA,B and SB,C induce necessary and sufficient restrictions on the possible values the
variables can get in a legal assignment. Each critical path induces an inequality over the
variables in X , and together all critical paths induce a convex polytope that includes
exactly all the legal assignments.

The above observation is the key to our algorithm, and we describe its details below
for the product SA,B. The construction of inequalities induced by SB,C is similar. Con-
sider a critical path π in SA,B. We generate an inequality from π that corresponds to a
restriction on legal assignment to the variables. Inequalities for SB,C are generated in a
similar manner. Recall that the path π is a sequence of transitions in a DWFA that is
the product of two DWFAs. For every e = 〈eA, eB〉 ∈ π, let ce = τA(eA) − τB(eB).
Recall that τB(eB) can either be a number, in which case ce is a number too, or a vari-
able X ∈ X , in which case ce is of the form c − X with c = τA(eA) ∈ Q. We de-
fine the inequality (

∑
e∈π ce) ≤ 0. Clearly, it is possible to rewrite the inequality as∑

1≤i≤k −li ·Xi + c ≤ 0, where li ∈ IN is the number of times that Xi ∈ X appears in
π and c ∈ Q.

9

Remark 1. Let n = max{|QA| · |QB|, |QB| · |QC |} and M = max{|τA(eA)− τB(eB)|,
|τB(eB)|, |τB(eB) − τC(eC)| : eA ∈ ∆A, eB ∈ ∆B, eC ∈ ∆C , τ(eB) ∈ Q}. Since π is
either acyclic or a simple cycle, its length is at most n. Since for every 1 ≤ i ≤ k, we
have that li is the number of times Xi ∈ X appears in π, then 0 ≤ li ≤ n. Clearly, |c| ≤
Mn. Thus, the size of every inequality we generate is at most 1 +

∑
1≤i≤k size(n) +

size(Mn) = O(log(nM)).

Let |X | = k. By the above, we think of an assignment to the variables as a point in
IRk, think of the inequalities as half-spaces in IRk, and think of the set of legal assign-
ments as a convex polytope in IRk, namely the intersection of all the half-spaces that are
generated from the critical paths in SA,B and SB,C . We denote this polytope by P ⊆ IRk.

Efficient reasoning about the convex polytope A naive way to solve the two-bound
problem is to generate all the inequalities from SA,B and SB,C and solve the system
of inequalities. Since, however, there can be exponentially many critical paths, the run-
ning time of such an algorithm would be at least exponential. In order to overcome this
difficulty, we do not construct the induced polytope P implicitly. Instead, we devise a
separation oracle for P . By Theorem 1, this would enable us to find a point in P ∩ Qk
(or decide that P is empty) with only polynomial many calls to the oracle.

Recall that a separation oracle for P is an algorithm that, given a point p ∈ IRk, either
returns that p ∈ P or returns a half-space H ⊆ IRk, represented by an inequality, that
separates p from P . That is, P ⊆ H and p /∈ H .

We describe the separation oracle for P . Given a point p ∈ IRk, we check if A ⊆
Bp ⊆ C. If the latter holds, we conclude that p is a legal assignment, and we are done.
Otherwise, there is a word w ∈ Σ∗ such that w ∈ L(A) and val(A, w) > val(Bp, w), or
w ∈ L(B) and val(Bp, w) > val(C, w). Using w, we find a critical path that p violates
and we return the inequality induced by this path. Note that the run on w may not be
a critical path: we know it is a path form an initial state to an accepting state, but this
path may not be simple. We describe how to detect a critical path from w. Assume that
w is such that val(A, w) > val(Bp, w). The other case is similar. Since A and B are
deterministic there is a single accepting run r of SA,Bp on w. If r is acyclic, then it
is a critical path. Otherwise, we remove every non-positive cycle from r. Let r′ be the
obtained path in SA,Bp . Clearly, val(r′) ≥ val(r). If r′ is acyclic, we found a critical
path. Otherwise, since val(r′) ≥ val(r) > 0, there must be a positive valued cycle in r′.
This cycle is a critical path, and we are done.

We can now use Theorem 1 and conclude with the following.

Theorem 2. The two-bound PWC problem for DWFAs can be solved in polynomial time.

Remark 2 (Speeding up the Separation Oracle). Reasoning about critical paths involves
a calculation of distances in the graphs corresponding to the product automata and is
done by solving the All-Pairs Shortest Path problem. As we update the ellipsoids, we
also update costs in the product automata. There is much research in the field of dynamic
graph algorithms (specifically, [24] suggests a fully-dynamic data-structure to solve the
All-Pairs Shortest Path problem) that we can use here in order to speed up the running
time of the separation oracle so that the time required for solving a distance query is
proportional to the updates rather than to the automata.

10

3.2 When B is Not Given

An interesting variant of the two-bound PWC problem is one in which we are not given
B and we seek a DWFA of a minimal size such that A ⊆ B ⊆ C. One may start the
search for B with a non-weighted version of the problem. That is, seek a minimal DFA B
such that L(A) ⊆ L(B) ⊆ L(C). We can then turn B into a candidate DWFA by labeling
all its transitions by variables. The corresponding decision problem, which we refer to
as the Boolean sandwich problem, gets as input two DFAs A and C and index k ∈ IN
and decides whether there is a DFA B with k states such that L(A) ⊆ L(B) ⊆ L(C).
In the weighted sandwich problem, the language of B is given by means of a DFA. The
corresponding decision problem gets as input DWFAs A and C, a DFA B̂ and an index
k ∈ IN, and decides whether there is a DWFA B with L(B) = L(B̂) such that A ⊆ B ⊆
C. As we show now, however, both problems are difficult.

Theorem 3. The Boolean-sandwich and the weighted-sandwich problems are NP-complete.

Proof: Since the automata are deterministic, checking whether a given k-state automa-
ton satisfies the Boolean or weighted sandwich requirements can be done in polynomial
time. Thus, membership in NP in easy.

For the lower bound, we show a reduction from the vertex coloring problem (VC, for
short). Recall that the input to the VC problem is 〈G, k〉, where G is a graph and k ∈ IN
is an index. We say that 〈G, k〉 ∈ VC iff there is a coloring of G’s vertices in k colors
such that two adjacent vertices are not colored in the same color.

In the Boolean case, consider an input 〈G, k〉 to the VC problem. We construct an
input 〈A, C, k + 2〉 to the Boolean-sandwich problem. The idea is that A has a state rep-
resenting every vertex in G. In order to construct B one must, intuitively, merge different
states of A. The automaton C enforces that merging two states can only be done if the
corresponding vertices do not share a common edge, and thus the states of B correspond
to a legal coloring of the vertices of G. For the details of the proof, see Appendix A.3.

In the weighted sandwich problem, we go through the the t-approximation problem
for DWFAs, which is defined as follows: given a DWFA A, a factor t ∈ Q such that
t > 1, and an index k ∈ IN, we ask whether there is a DWFA A′ with k states such that
L(A) = L(A′) and for every word w ∈ L(A), we have 1/t · val(A, w) ≤ val(A′, w) ≤
t ·val(A, w). We say thatA′ t-approximatesA. Similar to the Boolean case above, given
an input 〈G, k〉 to the VC problem, we construct a DWFA A with a state corresponding
to every vertex inG. Constructing an approximating automaton forA is done by merging
states. We construct A so that by merging two states whose corresponding vertices share
an edge, there is a word in L(A) that violates the t-approximation requirement. Thus, an
approximating automaton for A corresponds to a legal coloring of G. For the details of
the proof, see Appendix A.4. ut

We suggest a heuristic to cope with the complexity of the sandwich problems. Con-
sider DWFAs A and C such that L(A) ⊆ L(C). Let QA and QC be the state spaces
of A and C, respectively. We start the search for B with a DFA D that has the state
space QA × QC . All the states in FA × QC are accepting in D, and we have a freedom
to chose which states in QA × FC are also accepting. With each such choice, we have
L(A) ⊆ L(D) ⊆ L(C). Thus, our goal is to decide which states should be defined as
accepting, and also decide whether and how D can be minimized. Suppose we choose

11

a set of accepting states. We iteratively search for states that can be merged in D. The
candidates for merging are the states that are merged in the regular DFA minimization
algorithm. Consider two candidate states q, q′ ∈ QD. We construct a DFA D′ by merg-
ing q and q′. Then, we check, using the algorithm of Theorem 2, if it is possible to find
a DWFA B on the structure of D′ that satisfies A ⊆ B ⊆ C. We do this by setting a
different variable for every transition in D′. If it is, we continue to find new candidates
for merging in D′. Otherwise, we un-merge the states, and look for new candidates in D.
We may also modify our choice of accepting states.

3.3 The One-Bound PWC Problem for Deterministic Automata

Recall that the input to the one-bound PWC problem is a DWFAA and anX -parameterized
automaton B, which we want to complete to a DWFW that either upper bounds A in a
minimal way or lower bounds A in a maximal way. We focus here on the case we seek a
least upper bound. The second case is similar. As in the two-bound case, we say that an
assignment f is legal if it satisfies A ⊆ Bf .

As detailed below, it is technically simpler to assume that all the states in the DWFAs
are accepting. Thus, in this model, the language of a DWFA is Σ∗. We can, however, use
weights and encode rejecting states. For example, we can add to the alphabet a letter #
that leaves all states to some state with either a bottom value, when we do not want the
origin state to be considered accepting, or with value 0 when we want it to be accepting.
We then restrict attention to prefixes of words that end after the first #.

As in the two-bound problem, we view assignments as points in IRk and use inequal-
ities induced by critical paths in order to define a polytope P ⊆ IRk of legal assignments.
We show that the polytope generated in this case is in full-dimensional. Intuitively, it
follows from the fact that increasing a point by ε results in a point that is still in P .

Lemma 1. If P 6= ∅, then P is full-dimensional.

Unlike the two-bound case, here we are not looking for an arbitrary point in P , but
one that is a minimal assignment. We show that a vertex of P is such an assignment.
Intuitively, it follows from the fact that points on a face F of P are minimal assignments
with respect to the variables participating in the inequality corresponding to F . A vertex
is the intersection of k faces, and thus, it corresponds to an assignment that is minimal
with respect to all faces and hence also with respect to all variables.

Lemma 2. A vertex in P is a minimal assignment.

Recall that some of the inequalities that define P are induced by critical paths that
are simple paths from the initial vertex to an accepting state. Since we assume that all
states are accepting, prefixes of such critical paths are also critical. From the geometrical
point of view, this implies the following.

Lemma 3. If P 6= ∅, then P is pointed.

For full-dimensional pointed polytopes, Schrijver shows a strengthening of Theo-
rem 1 that enables us to find vertices:

12

Theorem 4. [21] Consider a full-dimensional pointed polytope P ⊆ IRk, defined by
linear inequalities over Q of size at most ϕ. Given a separation oracle SEP for P , it is
possible to find a vertex of P in Qk, in time that is polynomial in k, ϕ, and the running
time of SEP.

By the lemmas above, Theorem 4 is applicable in the one-bound PWC problem and
we conclude with the following.

Theorem 5. The one-bounded problem can be solved in polynomial time.

4 The PWC Problem for WFAs

In this section we study the one- and two-bound problems for WFAs. Recall that con-
tainment for WFAs is undecidable, making the decidability of the PWC hopeless. Conse-
quently, we replace the containment order for WFAs by weighted simulation [3,7]. Simu-
lation has been extensively used in order to approximate containment in the Boolean set-
ting, and was recently used as a decidable approximation of containment in the weighted
setting.

Let us explain the idea behind weighted simulation. Given two WFAs A and B, de-
ciding whether A ⊆ B can be thought of as a two-player game of one round: Player 1,
the Player whose goal it is to show that there is no containment, chooses a word w and
a run r1 of A on w. Player 2 then replies by choosing a run r2 of B on w. Player 1 wins
if r1 is accepting and r2 is not or if val(r1, w) > val(r2, w). While this game clearly
captures containment, it does not lead to interesting insights or algorithmic ideas about
checking containment. A useful way to view simulation is as a “step-wise” version of the
above game in which in each round the players proceed according to a single transition
of the WFAs. More formally, B simulates A, denoted A ≤ B, if Player 2 has a strategy
that wins against all strategies of Player 1: no matter how Player 1 proceeds in the WFA
A, Player 2 can respond in a transition so that whenever the run generated so far in A by
Player 1 is accepting, so is the run generated by Player 2 in B. Moreover, the cost of the
run in A is smaller than the one in B. For full details, see [3].

So, in the nondeterministic setting, we replace containment with simulation and seek,
in the two-bound case, a valuation f such that A ≤ Bf ≤ C, and in the one bound cases
minimal and maximal assignments so that A ≤ Bf or Bf ≤ C, respectively.

4.1 The One-Bound PWC Problem for Nondeterministic Automata

We argue that this version of the PWC problem is not very interesting, in fact it is not well
defined as is, as there are cases in which we do not have even a minimal (or maximal)
assignment.

Consider for example the WFAs in Figure 4.1. The candidates for minimal assign-
ments for the variables in B are the ones that assign the value 0 toX1 orX2. However, an
assignment f with f(X1) = 0 can assign to X2 an arbitrarily low value, and, symmetri-
cally, an assignment with f(X2) = 0 can assign an arbitrarily low value to X1. Hence,
there is no minimal assignment for the variables in B.

13

Thus, the nondeterministic setting calls for a different definition of the one-bound
PWC problem – one that considers alternative sets of variables whose values should be
minimized. We do not find such definitions well motivated.5

A
a0 a1

a, 0 B
b1 b0 b2

a,X1 a,X2

Fig. 3. An example in which there is no minimal assignment.

4.2 The Two-Bound PWC Problem for Nondeterministic Automata

We now turn to study the two-bound problem. As we shall show, here the set of legal as-
signments corresponds to a vertex polytope, so it is either empty or not and the problem is
well defined. On the other hand, the complexity of the problem depends on the complex-
ity of deciding weighted simulation, and is NP-complete even if one finds a polynomial
algorithm for deciding weighted simulation (the best known algorithm for weighted sim-
ulation positions it in NP ∩ co-NP). We first show that the problem is NP-hard.

Theorem 6. The two-bound PWC problem for WFAs is NP-hard.

Proof: We prove that finding a satisfying assignment to a 3-SAT formula is easier than
solving the two-bound PWC problem for WFAs. Consider an input formula ψ to the
3-SAT problem. The intuition behind the construction is as follows. For every variable
in ψ there are two variables in X . We construct B and C, so that the simulation game
corresponding to them guarantees that only one of the two variables in X that correspond
to a variable in ψ can get a value greater than or equal to 1. Thus, an assignment to the
variables in X corresponds to an assignment to the variables in ψ. The idea of the game
that corresponds to A and B is to force the assignment to variables in ψ to be satisfying.
That is, Player 1 challenges Player 2 with a clause. Player 2 in his turn chooses a literal
that is satisfied in this clause. For the full proof see Appendix A.8. ut

It is shown by Schrijver in [21] that there is a connection between the size of the
inequalities that define a polytope P and its vertices.

Theorem 7. [21] Let P ⊆ IRk be a polytope that is defined by inequalities of size at
most ϕ. Then, the size of each of its vertices is at most 4k2ϕ.

We show that Theorem 7 implies the following upper bound:

Theorem 8. A polynomial algorithm for solving simulation games implies that solving
the two-bound nondeterministic PWC is in NP.

5 Having said that, the setting does suggest some very interesting theoretical problems, like de-
ciding when a solution exists, and the relation between the observation above and the fact WFAs
cannot always be determined.

14

Proof: Consider an assignment f : X → Q. Since we assume that solving simulation
games can be done in polynomial time, deciding whetherA ≤ Bf ≤ C, can also be done
in polynomial time. Thus, we need to show that if there is a legal assignment, there is
also one of polynomial size. Consider a legal assignment f . Thus, Player 2 wins both
the simulation game that corresponds to A and Bf , and the game that corresponds to Bf
and C. We show in [3] that this implies that Player 2 has a memoryless winning strategy
in the two games. We show that similar to Section 3, it is possible to represent the set
of assignments for which these strategies are winning, as a k-dimensional polytope that
is defined by inequalities of polynomial size. Thus, Theorem 7 implies that there is a
point with polynomial size in this polytope, which corresponds to a legal assignment
with polynomial size. For the full proof see Appendix A.9 ut

Acknowledgments We thank Nati Linial for the helpful discussions and pointers.

References

1. S. Almagor, U. Boker, and O. Kupferman. What’s decidable about weighted automata? In
Proc 9th ATVA, LNCS 6996, pages 482–491, 2011.

2. R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning. In Proc. 25th STOC,
pages 592–601, 1993.

3. G. Avni and O. Kupferman. Making weighted containment feasible: A heuristic based on
simulation and abstraction. In Proc. 23rd CONCUR, pages 84–99, 2012.

4. G. Bruns and P. Godefroid. Temporal logic query checking. In Proc. 16th LICS, pages 409–
420, 2001.

5. W. Chan. Temporal-logic queries. In Proc. 12th CAV, LNCS 1855 , pages 450–463, 2000.
6. K. Chatterjee, L. Doyen, and T. Henzinger. Quantative languages. In Proc. 17th CSL, pages

385–400, 2008.
7. K. Chatterjee, L. Doyen, and T. A. Henzinger. Expressiveness and closure properties for

quantitative languages. LMCS, 6(3), 2010.
8. K. Culik and J. Kari. Digital images and formal languages. Handbook of formal languages,

vol. 3: beyond words, pages 599–616, 1997.
9. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

10. L. Fix, N. Francez, and O. Grumberg. Program composition and modular verification. In Proc.
18th ICALP, pages 93–114, 1991.

11. M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

12. M. Grötschel, L. Lovász, and A. Schrijver. Corrigendum to our paper ”the ellipsoid method
and its consequences in combinatorial optimization”. Combinatorica, 4(4), 1984.

13. M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization. Springer-Verlag, New York, 1988.

14. B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In Proc. 17th CAV,
LNCS 3576, pages 226–238, 2005.

15. R. Karp and C. Papadimitriou. On linear characterizations of combinatorial optimization prob-
lems. In Proc. 21st FOCS, pages 1–9, 1980.

16. L. G. Khachiyan. A polynomial algorithm in linear programming. Doklady Akademii Nauk
SSSR, 244:1093–1096, 1979.

17. D. Krob. The equality problem for rational series with multiplicities in the tropical semiring
is undecidable. International Journal of Algebra and Computation, 4(3):405–425, 1994.

15

18. M. Mohri. Finite-state transducers in language and speech processing. Computational Lin-
guistics, 23(2):269–311, 1997.

19. M. Mohri, F.C.N. Pereira, and M. Riley. Weighted finite-state transducers in speech recogni-
tion. Computer Speech and Language, 16(1):69–88, 2002.

20. M.W. Padberg and M. R. Rao. The Russian Method and Integer Programming. Working paper
series. Salomon Brothers Center for the Study of Financial Institutions, 1980.

21. A. Schrijver. Theory of linear and integer programming. Wiley-Interscience series in discrete
mathematics and optimization. Wiley, 1999.

22. A. Solar-Lezama, R.M. Rabbah, R. Bodı́k, and K. Ebcioglu. Programming by sketching for
bit-streaming programs. In PLDI, pages 281–294, 2005.

23. W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science, pages
133–191, 1990.

24. M. Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In
SWAT, pages 384–396, 2004.

25. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. I& C, 115(1):1–37, 1994.

16

A Elaborations and Proofs

A.1 Geometry in IRk

Vertices Consider a polytope P = {x ∈ IRk : Ax ≤ b}. A face of P is a set ∅ 6= F ⊆ P
such that F = {x ∈ P : A′x = b′}, where A′x ≤ b′ is a subsystem of Ax ≤ b. A
minimal face of P is a face which does not contain any other face. Thus, it is minimal
with respect to inclusion. All the minimal faces of P have the same dimension, which is k
minus the rank of A. For example, consider again the polytope in Figure 1. The polytope
has only one face, which is also a minimal face. When the rank of A is k, a minimal face
contains only one point, which is referred to as a vertex.

A.2 Using Separation Oracle in Non-Full-Dimensional Polytopes

In order to drop the requirement that the polytope is full-dimensional, Khachiyan sug-
gested to work with the polytope P ε = {x ∈ IRk : Ax ≤ b + ε}. He shows that there
is an ε > 0 such that P is empty iff P ε is empty, and if P is non-empty, then P ε is
full-dimensional. Using this technique is not enough when the polytope is represented
with a separation oracle. The reason is that finding a point in P ε does not help us find a
point in P .

The solution to this problem in the non-full-dimensional case is due to [12,13,15]. We
sketch the algorithm, and its details can be found in Chapter 14 of [21] or Chapter 6 of
[13]. We start as in the ellipsoid method: we find a sequence of ellipsoids of diminishing
volume. If the polytope is full-dimensional, then, as in the ellipsoid method, there is a
lower bound on the volume of the polytope. Thus, there is a bound on the length of the
sequence. However, when the polytope is not full-dimensional, since the k-dimensional
volume of the polytope is 0, the sequence of ellipsoids may not terminate. To overcome
this difficulty, we take advantage of the fact that the ellipsoids get “flatter” in the direction
of the hyper-plane that P is contained in. We use a tool dubbed simultaneous diophan-
itine approximation to find the representation of the containing hyper-plane. Then, after
finding it, we construct a new separation oracle for a polytope in k − 1 dimensions, and
continue recursively.

A.3 Proof of the Lower Bound for Boolean-Sandwiches

In order to show that Boolean sandwich problem is NP-hard, we show a reduction from
VC. Recall that the input to the VC problem is 〈G, k〉, where G = 〈V,E〉 is a graph,
V = {v1, . . . , vn} is a set of vertices, E ⊆ V × V is a set of edges, and k ∈ IN is an
index. We say that 〈G, k〉 ∈ VC iff there is a coloring function χ : V → {1, . . . , k} such
that two adjacent vertices are not colored in the same color. That is, for every 〈v, v′〉 ∈ E,
we have χ(v) 6= χ(v′). We assume that there are no self-loops and at least two vertices
in G.

Consider an input 〈G, k〉 to the coloring problem. We construct two DFAs A and C
such that there is a DFA B with k+2 states that satisfiesA ⊆ B ⊆ C iff 〈G, k〉 ∈ VC. We
describe the intuition of the construction. The alphabet of the automata are the vertices
V . The languages of A and C consist of words with two letters. The language of A is vv
for every v ∈ V . For v, v′ ∈ V , the word vv′ is in the language of C iff 〈v, v′〉 /∈ E.

17

For ease of presentation, we assume that a word is accepted by a DFA iff the automa-
ton has an accepting run on it. Thus, a state might not have an outgoing transition for
every letter in the alphabet.

Formally, we define A = 〈Σ,QA, q0A , δA, FA〉, where the alphabet Σ is V , the
states QA are {q0A , qacc} ∪ V , the initial state is q0A , for every v ∈ V we define the
transition function δA : QA ×Σ → QA to be δA(q0A , v) = v and δA(v, v) = qacc, and
the set of accepting states FA is the singleton {qacc}. Clearly, a word w ∈ Σ∗ is in L(A)
iff w = vv for some v ∈ V .

We define C = 〈Σ,QC , q0C , δC , FC〉, where the states QC are {q0C , qacc} ∪ V , the
initial state is q0C , for every v, v′ ∈ V we define the transition function δC : QC ×Σ →
QC to be δC(q0C , v) = v and δC(v, v′) = qacc iff 〈v, v′〉 /∈ E, and the set of accepting
states FC is the singleton {qacc}. Clearly, a word w ∈ Σ∗ is in L(C) iff it is of the form
vv′ and 〈v, v′〉 /∈ E. Note that since there are no self loops, for every v ∈ V we have
vv ∈ L(C), and thus A ⊆ C. Clearly, the reduction is polynomial in the input.

We continue to prove the correctness of the reduction. If 〈G, k〉 ∈ VC, there is a col-
oring function χ : V → {1, . . . , k}. We construct the DFA B = 〈Σ, {q0B , qacc, 1 . . . , k},
q0B , δB, {qacc}〉, where for every v ∈ V we define δB(q0B , v) = χ(v) and δB(χ(v), v) =
qacc.

We claim that A ⊆ B ⊆ C. Consider a word vv ∈ L(A). It is easy to see that there
is an accepting run of B on vv, and thus vv ∈ L(B) and A ⊆ B. We continue to prove
that B ⊆ C. Clearly, B accepts only words with two letters. Consider a word vv′ ∈ L(B).
We claim that vv′ ∈ L(C). That is, we prove that 〈v, v′〉 /∈ E. Since there is a transition
from the state χ(v) to qacc labeled v′, we have χ(v) = χ(v′). Since χ is a legal coloring
function, if χ(v) = χ(v′), then 〈v, v′〉 /∈ E, and we are done.

For the other direction, assume that there is a DFA B with k + 2 states, such that
A ⊆ B ⊆ C. We construct a coloring function χ : V → {1, . . . , k} for G. Recall that the
alphabet of B is V . We name the states of B with the numbers 0, 1, . . . , k+1, where 0 is
the initial state and k+ 1 is accepting. Note that B must have at least one accepting state
since L(A) 6= ∅ implies that L(B) 6= ∅. For v ∈ V , we define χ(v) = δB(0, v).

We claim that this is a legal coloring function with k colors. We claim that there is
no v ∈ V with χ(v) = k + 1 or χ(v) = 0. Assume by way of contradiction that there is
such a v. We distinguish between two cases. If χ(v) = k + 1, then by the definition of χ
we have δB(0, v) = k+1. Since k+1 is an accepting state, we have v ∈ L(B). However,
since the word v has only one letter we have v /∈ L(C), and thus L(B) 6⊆ L(C), which is
a contradiction to our assumption. For the other case, we assume χ(v) = δB(0, v) = 0.
Consider a vertex v′ 6= v. Since v′v′ ∈ L(A), we have v′v′ ∈ L(B). Since δB(0, v) = 0,
we have vv′v′ ∈ L(B). Since the word vv′v′ has three letters, we have vv′v′ /∈ L(C),
and we reach a contradiction to the fact that B ⊆ C.

Next, we claim that for every v, v′ ∈ V , if 〈v, v′〉 ∈ E, then χ(v) 6= χ(v′). Assume
by way of contradiction that there is an edge 〈v, v′〉 ∈ E and χ(v) = χ(v′). Recall
that χ(v) = δB(0, v) = δB(0, v

′) = χ(v′). Since vv ∈ L(A) we have that δB(χ(v), v)
is accepting. In other words, δB(χ(v′), v) is accepting. Thus, the word vv′ ∈ L(B).
However, 〈v, v′〉 /∈ L(C), and thus we reach a contradiction to the fact that B ⊆ C, and
we are done.

18

A.4 Weighted Sandwich and t-approximation of DWFAs

For two DWFAs A and A′, and a factor number t ∈ Q such that t > 1, we say that A′
t-approximates A iff their language is the same, i.e., L(A) = L(A′), and the weight the
automata assign to every word in their language is within the factor t. That is, for every
word w ∈ L(A) it holds that 1/t · val(A, w) ≤ val(A′, w) ≤ t · val(A, w).

Formally, we define the t-approximation decision problem as follows:

Definition 2. 〈A, k〉 ∈ MIN-t-APPROX iff there exists a deterministic weighted automa-
ton A′ with k states such that A′ t-approximates A.

We show that the weighted-sandwich problem can be reduced to the t-approximation
problem. Consider an input 〈A, t, k〉 to the t-approximation problem. We construct an
input 〈A′, C′, B̂, k〉 to the weighted sandwich problem. The DWFA A′ is the same as A,
only that the weight function is multiplied by 1/t. Thus, we have L(A′) = L(A) and for
every word w ∈ Σ∗, we have val(A′, w) = 1/t · val(A, w). The DWFA C′ is the same
as A, only that the weight function is multiplied by t. Thus, we have L(C′) = L(A) and
for every word w ∈ Σ∗, we have val(C′, w) = t · val(A, w). Finally, B̂ = A. Clearly, a
t-approximating automaton for A meets the weighted sandwich condition.

We continue to prove the following theorem:

Theorem 9. MIN-t-APPROX is NP-complete.

Proof: The upper bound is easy: Consider the following two DWFAs 1/t · A and t · A.
For every word w ∈ Σ∗, the first has val(1/t · A, w) = 1/t · val(A, w), and the second
has val(t ·A, w) = t ·val(A, w). Given a DWFAA′ with k states, it is possible to check,
in polynomial time, whether 1/t · A ⊆ A ⊆ t · A.

For the lower bound, we show a reduction from VC. Assume that V = {v1, . . . , vn}
and E = {e1, . . . , em}. We assume that there is some relation < on the set of vertices.

Consider an input 〈G, k〉 to the VC problem, where G = 〈V,E〉. We construct an
input 〈A, k + 2〉 to the MIN-t-APPROX problem. The alphabet of A is V ∪ E. The
language of A has two types of words. One letter words, which consist of a vertex, and
two letter words, which consist of a vertex and an edge. That is, L(A) = V ∪ {v · e :
v ∈ V, e ∈ E}. For every word v ∈ V , the value A assigns to v is 0. Consider a word
v · e, where v ∈ V and e = 〈v1, v2〉 ∈ E, where v1 < v2. There are three possible
values for v · e. If v 6= v1 and v 6= v2, then val(A, v · e) = t. Otherwise, if v = v1, then
val(A, v · e) = 1 and otherwise v = v2 and val(A, v · e) = t2 + 1.

Intuitively, in A, there is a state that corresponds to every vertex. Coloring two ver-
tices in the same color corresponds to merging their states. Consider two vertices v, v′ ∈
V that share a common edge e = 〈v, v′〉 ∈ E and v < v′. Recall that val(A, v · e) = 1
and val(A, v′ · e) = t2 + 1. We show that in an approximating automaton A′ for A, the
states that correspond to v and v′ cannot be merged. Intuitively, this is because merging
them forces A′ to assign to the words v · e and v′ · e, the same value. Since there is no
value 1 ≤ x ≤ t2 + 1 such that 1/t · (t2 + 1) ≤ x ≤ 1 · t, we have a violation of the
t-approximation requirement. Thus, we show that A has a t-approximating automaton
with k + 2 states iff there is a coloring of G with k colors.

We continue to define the reduction formally. We construct a DWFA A = 〈ΣA, QA,
∆A, qin, FA, τA〉, where ΣA, QA, ∆A ⊆ QA ×ΣA ×QA, FA ⊆ QA, and τA : ∆A →
IN are defined as follows:

19

– ΣA = V ∪ E.
– QA = {qin, qacc} ∪ V .
– For v ∈ V and e ∈ E we define ∆A(qin, v, v) and ∆A(v, e, qacc).
– FA = {qacc} ∪ V .
– We define τA(〈qin, v, v〉) = 0. We assume that there is some order< on the vertices.

For every edge e = {v1, v2}, where v1 < v2 we define τA(〈v1, e, qacc〉) = 1,
τA(〈v2, e, qacc〉) = t2+1. For every vertex v 6= v1, v2 we define τA(〈v, e, qacc〉) = t.

The input to the MIN-t-APPROX problem is 〈A, k + 2〉.

Example 3. The graph on the left of Figure 4 is the input to the VC problem. We construct
the automaton on the right as the input to the MIN-t-APPROX problem, where we set t =
2. We do not draw all the labels and weights out of lack of space. Since e1 = 〈v1, v2〉 ∈ E
and v1 < v2, we have τA(〈v1, e1, qacc〉) = 1. Since e4 = 〈v3, v4〉 ∈ E and v3 < v4, we
have τA(〈v4, e4, qacc〉) = 5. Since v4 is not in e3 = 〈v1, v3〉, then τA(〈v4, e3, qacc〉) = 2.

v1

v2

v3

v4

e1 e2

e3

e4

qin

v1

v2

v3

v4

qacc

v1

v2

v3

v4

〈e1, 1〉, 〈e2, 2〉, 〈e3, 1〉, 〈e4, 2〉

〈e1, 2〉, 〈e2, 2〉, 〈e3, 2〉, 〈e4, 5〉

Fig. 4. On the left, we have the input graph. The reduction for a ratio of 2 outputs the
automaton A on the right.

We continue to prove the correctness of the reduction. That is, we prove that 〈G, k〉 ∈
VC iff 〈A, k + 2〉 ∈ MIN-t-APPROX. For the first direction assume that 〈G, k〉 ∈ VC.
Thus, there is a coloring function χ : V → C, where |C| = k. We construct an automaton
A′ that t-approximates A by, intuitively, merging states in A that correspond to vertices
that are colored in the same color. Formally, the states of A′ are {qin, qacc} ∪ C. The
structure of A′ is the same as A. That is, the edges are either of the form {qin} × V ×C
or C×E×{qacc}, where there is a transition 〈qin, v, c〉 iff v is colored in the color c, i.e.,
χ(v) = c. For every color c ∈ C and every e ∈ E, there is a transition 〈c, e, qacc〉 ∈ ∆A′ .
Clearly, the automaton is deterministic. The accepting states are C ∪ {qacc}.

We continue to define the weight function ofA′. The weight of the transitions {qin}×
E×C remains 0 inA′. We define the weight of the edges of the formC×E×{qacc}. For
every state c ∈ C and letter e ∈ E, we define the weight of every transition 〈c, e, qacc〉
as follows:

– If there exists a vertex v ∈ V with χ(v) = c such that τA(〈v, e, qacc〉) = 1, then
τA′(〈c, e, qacc〉) = t.

– Otherwise, we define τA′(〈c, e, qacc〉) = t+ 1.

20

We claim that A′ t-approximates A. First, we prove that L(A) = L(A′). Recall that
L(A) = V ∪ {v · e : v ∈ V, e ∈ E}. Consider a vertex v ∈ V . Since, there is a color
c ∈ C such that χ(v) = c, there is a run of A′ on v that ends in c, which is accepting.
Thus, v ∈ L(A′). Consider a vertex v ∈ V and an edge e ∈ E. Since for every c ∈ C
there is a transition 〈c, e, qacc〉 ∈ ∆A′ , specifically for χ(v) there is such a transition.
Thus, v · e ∈ L(A′). Clearly, no other words are accepted by A′. We conclude that
L(A) = L(A′).

We continue to prove that for every word w ∈ L(A) we have 1/t · val(A, w) ≤
val(A′, w) ≤ t·val(A, w). Since for every word v ∈ V , we have val(A, v) = val(A′, v) =
0, the words that are candidates to violate the approximation are of the form v · e. As-
sume towards contradiction that there is such a violating word w = v · e. That is, either
1/t · val(A, w) > val(A′, w) or val(A′, w) > t · val(A, w).

We prove that both cases are not possible. Note that A′ assigns, to two-letter words,
either the value t or t+1. Recall thatA assigns, to two-letter words, one of three values: 1,
t, or t2 + 1. Thus, if val(A′, w) > t · val(A, w), then val(A, w) = 1 and val(A′, w) =
t + 1. Let qin, c, qacc be the run of A′ on w. Recall that the weight of the transition
〈qin, v, c〉 is 0. Thus, the weight of the transition 〈c, e, qacc〉 is t + 1. Hence, by the
definition of the weight function, for every state u ∈ V with χ(u) = c, the weight
τA(〈u, e, qacc〉) is either t2 + 1 or t. Since we assume χ(v) = c, this holds also for v.
Thus, val(A, w) is either t2 + 1 or t and not 1, which contradicts the assumption that
val(A, w) = 1.

We continue to prove that the second option is also not possible because it leads to
a contradiction of the legality of the coloring χ. As in the above, if 1/t · val(A, w) >
val(A′, w), then val(A, w) = t2 + 1 and val(A′, w) = t. That is, we find a vertex
v′ ∈ V such that 〈v, v′〉 ∈ E and χ(v′) = χ(v) = c, where recall that w = v · e. Recall
that by the definition of the weight function of A′, since τA′(〈c, e, qacc〉 = t, there is
a vertex v′ ∈ V with τA(〈v, e, qacc〉) = 1. We claim that 〈v, v′〉 ∈ E. Indeed, since
val(A, w) = t2 + 1, we have τA(〈v, e, qacc〉) = t2 + 1, and by the definition of the
weight function in A, there is an edge 〈v, v′〉 ∈ E, and we are done.

We conclude that A′ t-approximates A, and that the number of states in A′ is k + 2.
Thus, 〈A, k〉 ∈ MIN-t-APPROX.

We continue to prove the other direction of the reduction. Assume that 〈A, k〉 ∈
MIN-t-APPROX. That is, there is a deterministic automaton A′ with k + 2 states that
t-approximates A. We show that 〈V,E, k〉 ∈ VC by computing a coloring function χ :
V → {1, . . . , k}.

Since A′ is deterministic, it has a single initial state qin. We claim that for every
v ∈ V , there is an outgoing transition from qin labeled with v into an accepting state.
This follows from the fact that L(A) = L(A′) and, V ⊆ L(A). Since every word that
starts with a letter e ∈ E is not in L(A), if there is an outgoing transition from qin that
is labeled with some e ∈ E, then it leads to an empty state. Thus, we can assume that
no such outgoing transitions exist. That is, every outgoing transition from qin is labeled
with a letter in V .

We continue to prove that there are at most k outgoing transitions from qin. Recall
that the size of A′ is at most k + 2. Thus, we prove that there is no self loop on qin and
that there is a state that does not have an incoming transition from qin.

We start by proving that there is no self loop on qin. Recall that since V ⊆ L(A′),
every outgoing transition from qin leads to an accepting state. If for some letter v ∈ V

21

there is a self loop∆A′(qin, v, qin), then qin is accepting inA′, and moreover,A′ accepts
the words of the form v∗. This is a contradiction to the fact that L(A) = L(A′).

We continue to prove that there is a state that does not have an incoming transition
from qin. Assume by way of contradiction that there are k + 1 outgoing transitions from
qin. We show that there is a three letter word that is accepted byA′, which contradicts the
fact that L(A) = L(A′). Consider two letters v ∈ V and e ∈ E. Since v ·e ∈ L(A), there
is a run of A′ on v · e. Let qin, q, q′ be that run. Since by the above there is no self-loop
on qin, by our assumption,A′ has k+2 states, and qin has k+1 outgoing transitions, by
the pigeon-hole principle, there is a letter v′ ∈ V such that 〈qin, v′, q′〉 ∈ ∆A′ . Since for
every e ∈ E, we have v′ · e ∈ L(A), there is an accepting run qin, q′, q′′ of A′ on v′ · e.
Thus, qin, q, q′, q′′ is an accepting run of A′ on v · e · e. We conclude that A′ accepts a
three-letter word, which contradicts the assumption that L(A) = L(A′).

We conclude that there are at most k outgoing transitions from qin, and they are
labeled with the letters V . Thus, we can define the following coloring function: for every
v ∈ V we define χ(v) = c such that ∆A′(qin, v, c).

We continue to prove that this is a legal coloring. Assume by way of contradiction
that there are two vertices that are connected by an edge and have the same color. That
is, there exist v, v′ ∈ V with χ(v) = χ(v′) = c and e = {v, v′} ∈ E. We assume v < v′.
Thus, by the definition of the weight function in A, we have τA(〈v, e, qacc〉) = 1 and
τA(〈v′, e, qacc〉) = t2 + 1. Thus, val(A, v · e) = 1 and val(A, v′ · e) = t2 + 1. Recall
that since χ(v) = χ(v′) = c, the run of A′ on the words v · e and v′ · e is qin, c, qacc.
It is easy to see that τA′(〈qin, v, c〉) = τA′(〈qin, v′, c〉) = 0. Let τA′(〈c, e, qacc〉) = x.
Thus, val(A′, v · e) = val(A′, v′ · e) = x. By the definition of t-approximation, we have
val(A′, v · e) ≤ t · val(A, v · e). By evaluating the equation we get: x ≤ t · 1. Also,
by the definition of t-approximation, we have 1/t · val(A, v′ · e) ≤ val(A′, v′ · e). By
evaluating the equation we get: 1/t · (t2 + 1) ≤ x. Combining the two equations we get
t2 + 1 ≤ t2, which is a contradiction.

We conclude that the coloring is a legal coloring with at most k colors, and thus
〈V,E, k〉 ∈ VC, and we are done.

ut

A.5 Proof of Lemma 1

Assume P is not empty. Thus, there is a point p ∈ P . Consider point p′ ∈ IRk for which
the values are at least that of p. That is, for every 1 ≤ i ≤ k, we have p′i ≥ pi. Since
there is only one bound in this problem, we claim that p′ ∈ P . Indeed, consider a critical
path π in SA,B. Since the values of p′ are at least these of p, the value of π in SA,Bp′ is
at least its value in SA,Bp , which is non-positive because p ∈ P .

We generate k + 1 affinely independent points in P . For every 1 ≤ i ≤ k, we
define the point pi ∈ IRk by increasing the value of pi by ε > 0. That is, for every
1 ≤ j ≤ k such that j 6= i we have pij = pj , and pi = pi + ε. By the above,
p ∈ P implies that pi ∈ P . The points p, p1, . . . , pk are affinely independent because
the vectors p1 − p, p2 − p, . . . , pk − p are linearly independent (recall that the vectors
〈1, 0, . . . , 0〉, 〈0, 1, 0, . . . , 0〉, . . . , 〈0, 0, . . . , 0, 1〉 are a base for the vector space IRk), and
we are done.

22

A.6 Proof of Lemma 2

Recall that it is possible to represent P implicitly as {x ∈ IRk : Ax ≤ b}, where k = |X |
and every row in the matrixA together with the corresponding value inB is an inequality
that is generated from some critical path in SA,B. Assume v = {x ∈ P : A′x = b′} ∈ P
is a vertex, where A′ and b′ are sub-systems of A and b. We prove that v is a minimal
assignment. Assume towards contradiction that it is not. That is, there is an index 1 ≤
i ≤ k and ε > 0, such that the assignment v′ that is constructed by reducing the value of
vi by ε results in a legal assignment. Recall that since v is a vertex, the rank of A′ is k.
Thus, there is a row a in A′ with ai 6= 0. Also recall that the inequalities that define P
are generated from paths in SA,B. For 1 ≤ i ≤ k, the entry ai represents the number of
times the variable Xi appears in the path from which the inequality that corresponds to a
was generated. Thus, the values in a are all positive. Combining the above we have that
a · v′ = a · v + ε · ai > a · v = b. Thus, v′ violates an inequality, which contradicts the
fact that v′ ∈ P .

A.7 Proof of Lemma 3

Before proving the lemma, we define vertices in a different manner. Consider a polytope
P . We define the set char.coneP = {y ∈ IRk : ∀x ∈ P, x + y ∈ P}. Intuitively,
the non-zero vectors in char.coneP are the infinite directions of P . Some properties of
char.coneP are that P +char.coneP = P , and P is bounded iff char.coneP = {0}. Also,
it is easy to see that y ∈ char.coneP iff there exists x ∈ P such that for all λ ≥ 0, we
have x+λy ∈ P . Recall that P is pointed if it has a vertex. We use the following property
of char.coneP : the dimension of char.coneP ∩ −char.coneP is 0 iff P is pointed.

We continue to prove the lemma. Assume by way of contradiction that P 6= ∅ is not
pointed. Thus, there is a point 0 6= p ∈ char.coneP ∩ −char.coneP . Consider an index
1 ≤ i ≤ k, such that pi 6= 0. Recall that we assume that the variableXi ∈ X is reachable
in B. Consider an acyclic path of transitions π = e1, . . . , el in SA,B such that π ends with
a transition with Xi ∈ X . That is, τB(el) = Xi, and note that for every 1 ≤ j < l, we
have τB(ej) 6= Xi. Thus, el is the first transition in π in which the variable Xi appears.
Let

∑
1≤j≤k −ljXj + c ≤ 0, be the inequality that corresponds to π. Assume WLog

that X1, . . . , Xi−1 ∈ X are the placeholders that appear in π before Xi in the order
in which they appear in π. That is, there are prefixes π1, π2, . . . , πi−1 of π. The length
of the subpath π1 is |π1| = l1 ≤ l, the subpath π1[1 : l1 − 1] of π1 (π1 without the
last transition) has no variables, and the value of the last transition in π1 is X1 ∈ X .
The length of the subpath π2 is |π2| = l2 > l1, the only variable that appears in the
subpath π2[1 : l2 − 1] of π2 (π2 without the last transition) is X1, and the value of the
last transition in π2 is X2. The subpaths π3, . . . , πi−1, are defined similarly.

A crucial point in the proof is the following. Since π is an acyclic path, so are the
subpaths π1, . . . , πi−1. Since we assume all the states in the automata are accepting, the
prefixes π1, . . . , πi−1 are critical paths, and thus, each prefix generates an inequality that
defines the polytope P .

We prove by induction on i that for the point p ∈ IRk, we have that p1, . . . , pi = 0,
and thus reach a contradiction to the assumption that pi 6= 0. For the base case, we prove
that p1 = 0. Assume towards contradiction that p1 6= 0. Consider the subpath π1 as
above, that ends in X1 and has no other variables. Let −X1 + c ≤ 0, be the inequality

23

that corresponds to this path. Since p ∈ char.coneP , there is a point q ∈ P such that for
every λ ≥ 0, we have q + λp ∈ P . Let λ = c−q1

p1
− 1, where recall that we assume

p1 6= 0. Since q ∈ P , we have −q1 + c ≤ 0. Since q + λp ∈ P , it follows that
0 ≥ −(q1 + λp1) + c = −(q1 + p1 · c−q1p1

− 1) + c = 1, which is a contradiction. Thus,
we conclude that p1 = 0.

For the induction step, assume that p1, . . . , pj = 0. We prove that pj+1 = 0. Assume
towards contradiction that pj+1 6= 0. Consider the subpath πj+1 of π as above, and let
−l1X1 − l2X2 − . . . − ljXj − Xj+1 + c ≤ 0 be the inequality that corresponds to
πj+1. As in the base case, since p ∈ char.coneP , there is a point q ∈ P such that for
every λ ≥ 0, we have q + λp ∈ P . Let λ =

−l1q1−...−ljqj−qj+1+c−1
pj+1

. Since q ∈ P ,
we have that −l1q1 − l2q2 − . . . − ljqj − qj+1 + c ≤ 0. Since q + λp ∈ P , we have
−l1(q1 + λp1) − . . . − lj(qj + λpj) − (qj+1 + λpj+1) + c ≤ 0. By the induction
hypothesis p1, . . . , pj = 0. Thus, 0 ≥ −l1q1 − . . . − ljqj − (qj+1 + λpj+1) + c =

−l1q1 − . . . − ljqj − (qj+1 +
−l1q1−...−ljqj−qj+1+c−1

pj+1
· pj+1) + c = 1, which is a

contradiction, and we are done.

A.8 Proof of Theorem 6

Consider an input to the 3-SAT problem, which is a formula ψ =
∧

1≤i≤m Ci, where
every clause Ci is of the form li1 ∨ li2 ∨ li3 and every literal is variable xj or its negation
¬xj . We assume that there are n variables in ψ. In X there are 2n variables, two for
every variable in ψ. We denote variables in ψ with lowercase x and variables in X with
uppercase X . We sometimes refer to literals as variables in X . That is, if we have that
lir = xj we refer to the corresponding variable Xj ∈ X as lir, and similarly, if lir = ¬xj
we refer to the corresponding variable Xj ∈ X as lir. The reduction is described in
Figure A.8. Clearly, it is polynomial in the size of ϕ. Note that all the states in A, B, and
C are accepting.

In the following, we prove that an assignment f : X → Q is legal iff it satisfies two
properties:

– for every clause 1 ≤ i ≤ m, there is a literal lir, where 1 ≤ r ≤ 3 for which
f(lir) ≥ 1 and

– for every 1 ≤ j ≤ n we have f(Xi) + f(Xi) ≤ 0.

We show that the claim implies the correctness of the reduction. For the first direction,
consider a legal assignment f : X → Q. We claim that there is a satisfying assignment g :
{x1, . . . , xn} → {0, 1} for the variables in ψ. We define g as follows. For every variable
x in ψ, if the corresponding variable X ∈ X has f(X) ≥ 1 then g(x) = 1. Otherwise,
by the second property we have f(X) ≥ 1 and we define g(x) = 0. By the first property,
g is a legal assignment. For the other direction, given a satisfying assignment g to the
variables in ψ, we construct an assignment f for the variables in X . For every variable
x in ψ, if g(x) = 1, we set f(X) = 1, and otherwise g(x) = 0 and we set f(X) = 1.
Clearly, the second property holds. Also, since the assignment is legal, the first property
holds. Thus, by the claim, f is a legal assignment.

We continue to prove the claim. Consider an assignment f : X → Q. We claim that
f satisfies A ≤ Bf iff it satisfies the first property, namely that for every clause, there is
a literal lir for which f(lir) ≥ 1. Recall that in the simulation game that corresponds to A

24

A

q0

q1

...

qm

qsink

a, 0
a1, 0

am, 0

a, 1

a, 1

B

p0

p1

...

pm

psink

a, 0a1, 0

am, 0

a, l11

a, l12

a, l13

a, lm1

a, lm2

a, lm3

p0 r0

r1

...

rn

rn+1 rsink

b, 0

b,−1

b1, X1 b1, X1

bn, Xn bn, Xn

b, 1

C b, b1, . . . , bn, 0

a, a1, . . . , an, 1

Fig. 5. The reduction from 3-SAT to weighted query checking for WFAs.

and B, Player 1 chooses the letters and controls the moves ofA, and Player 2 reacts with
moves in B. Consider a Player 1 strategy and the outcome of the game after the first round
of play. That is, Player 1 chooses a letter ai and proceeds to qi for some 1 ≤ i ≤ m.
Player 2, since he has no other option, reacts by choosing ai and proceeding to pi. At
this point Player 1 must choose a and proceed to qsink. Player 2 must react by choosing
an edge with value at least 1. Otherwise, after his move, the game reaches a winning
configuration for Player 1. Thus, Player 2 wins against this Player 1 strategy iff there is a
literal lir with f(lir) ≥ 1. We conclude that Player 2 wins the game, i.e., A ≤ Bf , iff for
every clause there is a literal lir with f(lir) ≥ 1, and we are done.

For the other part of the proof, we prove that a valuation f satisfies Bf ≤ C iff
for every 1 ≤ j ≤ n we have f(Xj) + f(Xj) ≤ 0. Note that the bottom part of
the parameterized automaton B and the automaton C are deterministic. Also note, that
in the simulation game corresponding to B and C, Player 1 has no hope of winning by
playing the letters a, a1, . . . , an. Also, if the game reaches rsink, clearly Player 2 will win
the game. Thus, we are interested in plays of length 4 where the Player 1 strategy uses
the letters b, b1, . . . , bn. Consider such a Player 1 strategy. That is, consider a Player 1
strategy in which he choses the letters b, bi, bi, b for some 1 ≤ i ≤ n. The outcome of the
game after 4 moves is τB(〈p0, r0〉)+τB(〈r0, ri〉)+τB(〈ri, rn+1〉)+τB(〈rn+1, rsink〉) =
−1 + f(Xi) + f(Xi) + 1. Recall that Player 1 wins this prefix iff its value is positive,
which is iff f(Xi)+f(Xi) > 0. Thus, Player 2 wins the game, i.e., Bf ≤ C, iff for every
1 ≤ i ≤ n we have that f(Xi) + f(Xi) ≤ 0, and we are done.

A.9 Proof of Theorem 8

Consider an input to the PWC problem, which is WFAs A and C and a parameterized
WFA B. Let n and M , as they are defined in Remark 1. We claim that if there is a
point p ∈ IRk for which A ≤ Bp ≤ C, then there is also a point p′ ∈ IRk with size

25

polynomial in n andM that satisfies the relation. Note that the claim implies the theorem
because we can guess a point q ∈ IRk with polynomial size, and, since we assume a
polynomial algorithm for solving simulation games, we can check, in polynomial time,
if A ≤ Bq ≤ C by solving two simulation games: the first corresponds to A and Bq and
the second to Bq and C.

Before proving the claim, we briefly recall some properties of simulation games.
Intuitively, a strategy is a recipe that, given the history of the play, tells the player how he
should continue playing. A memoryless strategy is a strategy that does not consider the
history of the play, but only the current position. We show in [3] that if Player 2 wins a
simulation game, he has a winning memoryless strategy in the game. Such a strategy is
a function ρ2 : V2 → V1. That is, given a Player 2 vertex v ∈ V2 a memoryless Player 2
strategy ρ2 tells Player 2 to move to ρ2(v).

Given a Player 2 memoryless strategy ρ2, we can trim the game arena. For every
vertex v ∈ V2, we remove every edge that does not coincide with ρ2. The outcome is a
one-player game, where the single player is Player 1, the antagonist. Note that Player 1
wins the game iff one of three conditions hold: (1) there is a an acyclic path from the
initial vertex to a good state, (2) there is a critical path with positive value, where a
critical path, similar to the deterministic case, is an acyclic path from the initial vertex to
a risky state, or a simple cycle that is both reachable from the initial state and has a risky
state that is reachable from it.

We continue to prove the claim. Consider a point p ∈ IRk for which A ≤ Bp ≤ C.
Thus, Player 2 wins the simulation game that corresponds to A and Bp and he also wins
the simulation game that corresponds to Bp and C. Consider two Player 2 memoryless
winning strategies ρ12 in the first game and ρ22 in the second game. We define two poly-
topes: P1 ⊆ IRk is the set of points for which the strategy ρ12 is winning, and P2 ⊆ IRk

is the set of points for which ρ22 is winning. That is, for every point p′ ∈ P1 we have
that A ≤ Bp′ , and, moreover, ρ12 is a winning Player 2 strategy in the corresponding
simulation game, and similarly for P2.

We continue to define the polytopes. We define the polytope P1 and the definition for
P2 is similar. We construct a parameterized simulation game that corresponds to A and
B, in the expected way. Then, we trim the arena according to the Player 2 strategy ρ12.
We claim that there are no acyclic paths that end in a good vertex for Player 1. Indeed,
otherwise, ρ12 would not be winning in the game corresponding to A and Bp. Similar to
Section 2, every critical path imposes a restriction on assignments. That is, consider a
point p′ ∈ P1 and such a path π in the parameterized game corresponding to A and B.
The value of π in the game corresponding toA and Bp′ is not positive, because otherwise
ρ12 is not a winning strategy for Player 2. We define the polytope P1 to be the intersection
of the inequalities that correspond to the restrictions.

Similarly to Section 2, the size of every inequality that defines P1 and P2 is polyno-
mial in M and n. Consider the polytope P1 ∩ P2. That is, the polytope that is defined
by the inequalities that define P1 combined with those that define P2. Clearly, every in-
equality that definesP1∩P2 is polynomial inM and n. Note that every point q ∈ P1∩P2

satisfies A ≤ Bq , because q ∈ P1, and also satisfies Bq ≤ C, because q ∈ P2. Since
A ≤ Bp ≤ C we have p ∈ P1 ∩ P2. Thus, P1 ∩ P2 6= ∅. By Theorem 7 there is a point
in P1 ∩ P2 with size polynomial in M and n, and we are done.

26

	Parameterized Weighted Containment

