
Tightening the Exchange Rates

Between Automata

Orna Kupferman

School of Computer Science and Engineering, Hebrew University,
Jerusalem 91904, Israel.

Abstract. Automata on infinite objects were the key to the solution
of several fundamental decision problems in mathematics and logic. To-
day, automata on infinite objects are used for formal specification and
verification of reactive systems. The practical importance of automata
in formal methods has motivated a re-examination of the blow up that
translations among different types of automata involve. For most trans-
lations, the situation is satisfying, in the sense that even if there is a
gap between the upper and the lower bound, it is small. For some highly
practical cases, however, the gap between the upper and the lower bound
is exponential or even larger. The article surveys several such frustrating
cases, studies features that they share, and describes recent efforts (with
partial success) to close the gaps.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were
the key to the solution of several fundamental decision problems in mathematics
and logic [3, 25, 31]. Today, automata on infinite objects are used for specifica-

tion and verification of reactive systems. The automata-theoretic approach to
verification reduces questions about systems and their specifications to ques-
tions about automata [19, 41]. Recent industrial-strength property-specification
languages such as Sugar, ForSpec, and the recent standard PSL 1.01 [7] include
regular expressions and/or automata, making specification and verification tools
that are based on automata even more essential and popular.

Early automata-based algorithms aimed at showing decidability. The com-
plexity of the algorithm was not of much interest. For example, the fundamental
automata-based algorithms of Büchi and Rabin, for the decidability of S1S and
SnS (the monadic second-order theories of infinite words and trees, respectively)
[3, 31] are of non-elementary complexity (i.e., the complexity can not be bounded
by a stack of exponentials of a fixed height [26]). Proving the decidability of a
given logic was then done by translating the logic to a monadic second-order
theory, ignoring the fact that a direct algorithm could have been more efficient.
Things have changed in the early 80’s, when decidability of highly expressive
logics became of practical importance in areas such as artificial intelligence and
formal reasoning about systems. The change was reflected in the development

of two research directions: (1) direct and efficient translations of logics to au-
tomata [43, 37, 40], and (2) improved algorithms and constructions for automata
on infinite objects [33, 10, 30].

Both research directions are relevant not only for solving the decidability
problem, but also for solving other basic problems in formal methods, such as
model checking [5] and synthesis [30]. Moreover, input from the industry continu-
ously brings to the field new problems and challenges, requiring the development
of new translations and algorithms.1 For many problems and constructions, our
community was able to come up with satisfactory solutions, in the sense that the
upper bound (the complexity of the best algorithm or the blow-up in the best
known construction) coincides with the lower bound (the complexity class in
which the problem is hard, or the blow-up that is known to be unavoidable). For
some problems and constructions, however, the gap between the upper bound
and the lower bound is significant. This situation is especially frustrating, as
it implies that not only we may be using algorithms that can be significantly
improved, but also that something is missing in our understanding of automata
on infinite objects.

Before turning to the frustrating cases, let us first describe one “success story”
— the complementation construction for nondeterministic Büchi automata on
infinite words (NBWs). Translating S1S into NBWs, Büchi had to prove the
closure of NBWs under complementation. For that, Büchi suggested in 1962 a
doubly-exponential construction. Thus, starting with an NBW with n states, the

complementary automaton had 22O(n)

states [3]. The lower bound known then
for NBW complementation was 2n, which followed from the complementation
of automata on finite words. Motivated by problems in formal methods, Sistla,
Vardi, and Wolper developed in 1985 a better complementation construction
with only a 2O(n2) blow-up [36]. Only in 1988, Safra introduced a determinization
construction for NBWs that enabled a 2O(n logn) complementation construction
[33], and Michel proved a matching lower bound [28]. The story, however, was not
over. A careful analysis of the lower and upper bounds reveals an exponential gap
hiding in the constants of the O() notations. While the upper bound of Safra is
n2n, the lower bound of Michel is only n!, which is roughly (n/e)n. Only recently,
a new complementation construction, which avoids determinization, has led to
an improved upper bound of (0.97n)n [11], and a new concept, of full automata,
has led to an improved lower bound of (0.76n)n [44]. Thus, a gap still exists,
but it is an acceptable one, and it probably does not point to a significant gap
in our understanding of nondeterministic Büchi automata.

In the article, we survey two representative problems for which the gap be-
tween the upper and the lower bound is still exponential. In Section 3, we con-
sider safety properties and the problem of translating safety properties to non-

1 In fact, the practical importance of automata has lead to a reality in which the
complexity of a solution or a construction is only one factor in measuring its quality.
Other measures, such as the feasibility of a symbolic implementation or the effec-
tiveness of optimizations and heuristics in the average case are taken into an account
too. In this article, however, we only consider worst-case complexity.

deterministic automata on finite words. In Section 4, we consider the problem of
translating nondeterministic Büchi word automata to nondeterministic co-Büchi
word automata. Both problems have strong practical motivation, and in both
progress has been recently achieved. We study the problems, their motivation,
and their current status. The study is based on joint work with Moshe Vardi
[16], Robby Lampert [14], and Benjamin Aminof [2].

2 Preliminaries

Word automata. An infinite word over an alphabet Σ is an infinite sequence
w = σ1 ·σ2 · · · of letters in Σ. A nondeterministic Büchi word automaton (NBW,
for short) is A = 〈Σ,Q, δ,Q0, F 〉, where Σ is the input alphabet, Q is a finite
set of states, δ : Q×Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial
states, and F ⊆ Q is a set of accepting states. If |Q0| = 1 and δ is such that for
every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| = 1, then A is a deterministic

Büchi word automaton (DBW).
Given an input word w = σ0 · σ1 · · · in Σω, a run of A on w is a sequence

r0, r1, . . . of states in Q such that r0 ∈ Q0 and for every i ≥ 0, we have ri+1 ∈
δ(ri, σi); i.e., the run starts in one of the initial states and obeys the transition
function. Note that a nondeterministic automaton can have many runs on w. In
contrast, a deterministic automaton has a single run on w. For a run r, let inf(r)
denote the set of states that r visits infinitely often. That is, inf(r) = {q ∈ Q :
ri = q for infinitely many i ≥ 0}. As Q is finite, it is guaranteed that inf(r) 6= ∅.
The run r is accepting iff inf(r) ∩ F 6= ∅. That is, a run r is accepting iff there
exists a state in F that r visits infinitely often. A run that is not accepting is
rejecting. An NBW A accepts an input word w iff there exists an accepting run
of A on w. The language of an NBW A, denoted L(A), is the set of words that
A accepts. We assume that a given NBW A has no empty states (that is, at
least one word is accepted from each state – otherwise we can remove the state).

Linear Temporal Logic. The logic LTL is a linear temporal logic. Formulas of LTL
are constructed from a set AP of atomic propositions using the usual Boolean
operators and the temporal operators G (“always”), F (“eventually”), X (“next
time”), and U (“until”). Formulas of LTL describe computations of systems over
AP . For example, the LTL formula G(req → Fack) describes computations in
which every position in which req holds is eventually followed by a position in
which ack holds. For the detailed syntax and semantics of LTL, see [29]. The
model-checking problem for LTL is to determine, given an LTL formula ψ and a
system M , whether all the computations of M satisfy ψ.

General methods for LTL model checking are based on translation of LTL
formulas to nondeterministic Büchi word automata:

Theorem 1. [41] Given an LTL formula ψ, one can construct an NBW Aψ that

accepts exactly all the computations that satisfy ψ. The size of Aψ is exponential

in the length of ψ.

Given a systemM and a property ψ, model checking ofM with respect to ψ is
reduced to checking the emptiness of the product of M and A¬ψ [41]. This check
can be performed on-the-fly and symbolically [6, 12, 38], and the complexity of
model checking that follows is PSPACE, with a matching lower bound [35].

3 Translating Safety Properties to Automata

Of special interest are properties asserting that the system always stays within
some allowed region, in which nothing “bad” happens. For example, we may
want to assert that two processes are never simultaneously in the critical section.
Such properties of systems are called safety properties. Intuitively, a property ψ
is a safety property if every violation of ψ occurs after a finite execution of the
system. In our example, if in a computation of the system two processes are in
the critical section simultaneously, this occurs after some finite execution of the
system.

In this section we study the translation of safety properties to nondeter-
ministic automata on finite words (NFWs). We first define safety and co-safety
languages, define bad and good prefixes, and motivate the above construction.
We then describe a recent result that describes a construction of an NFW for
bad and good prefixes for the case the safety or the co-safety property is given
by means on an LTL formula.

3.1 Safety properties and their verification

We refer to computations of a nonterminating system as infinite words over an
alphabet Σ. Typically, Σ = 2AP , where AP is the set of the system’s atomic
propositions. Consider a language L ⊆ Σω of infinite words over the alphabet
Σ. A finite word x ∈ Σ∗ is a bad prefix for L iff for all y ∈ Σω, we have x ·y 6∈ L.
Thus, a bad prefix is a finite word that cannot be extended to an infinite word
in L. Note that if x is a bad prefix, then all the finite extensions of x are also
bad prefixes. A language L is a safety language iff every infinite word w 6∈ L
has a finite bad prefix.2 For a safety language L, we denote by bad-pref (L) the
set of all bad prefixes for L. For example, if Σ = {0, 1}, then L = {0ω, 1ω} is a
safety language. To see this, note that every word not in L contains either the
sequence 01 or the sequence 10, and a prefix that ends in one of these sequences
cannot be extended to a word in L. Thus, bad-pref (L) is the language of the
regular expression (0∗ · 1 + 1∗ · 0) · (0 + 1)∗.

For a language L ⊆ Σω (Σ∗), we use comp(L) to denote the complement
of L; i.e., comp(L) = Σω \ L (Σ∗ \ L, respectively). We say that a language
L ⊆ Σω is a co-safety language iff comp(L) is a safety language. (The term used
in [23] is guarantee language.) Equivalently, L is co-safety iff every infinite word

2 The definition of safety we consider here is given in [1], it coincides with the definition
of limit closure defined in [9], and is different from the definition in [20], which also
refers to the property being closed under stuttering.

w ∈ L has a good prefix x ∈ Σ∗: for all y ∈ Σω, we have x · y ∈ L. For a co-
safety language L, we denote by good-pref (L) the set of good prefixes for L. Note
that for a safety language L, we have that good-pref (comp(L)) = bad-pref (L).
Thus, in order to construct the set of bad prefixes for a safety property, one can
construct the set of good prefixes for its complementary language.

We say that an NBW A is a safety (co-safety) automaton iff L(A) is a
safety (co-safety) language. We use bad-pref (A), good-pref (A), and comp(A) to
abbreviate bad-pref (L(A)), good-pref (L(A)), and comp(L(A)), respectively.

In addition to proof-based methods for the verification of safety properties
[23, 24], there is extensive work on model checking of safety properties. Recall
that general methods for model checking of linear properties are based on a
construction of an NBW A¬ψ that accepts exactly all the infinite computations
that violate the property ψ and is of size exponential in ψ [22, 41]. Verification
of a system M with respect to ψ is then reduced to checking the emptiness of
the product of M and A¬ψ [39].

When ψ is a safety property, the NBW A¬ψ can be replaced by bad-pref (Aψ)
– an NFW that accepts exactly all the bad prefixes of ψ [16]. This has several ad-
vantages, as reasoning about finite words is simpler than reasoning about infinite
words: symbolic reasoning (in particular, bounded model checking procedures)
need not look for loops and can, instead, apply backward or forward reachability
analysis [4]. In fact, the construction of bad-pref (Aψ) reduces the model-checking
problem to the problem of invariance checking [23], which is amenable to both
model-checking techniques and deductive verification techniques. In addition,
using bad-pref (Aψ), we can return to the user a finite error trace, which is a bad
prefix, and which is often more helpful than an infinite error trace.

Consider a safety NBW A. The construction of bad-pref (A) was studied in
[16]. If A is deterministic, we can construct a deterministic automaton on finite
words (DFW) for bad-pref (A) by defining the set of accepting states to be the
set of states s for which A with initial state s is empty. Likewise, if A is a co-
safety automaton, we can construct a DFW for good-pref (A) by defining the set
of accepting states to be the set of states s for which A with initial state s is
universal.

When A is nondeterministic, the story is more complicated. Even if we are
after a nondeterministic, rather than a deterministic, automaton for the bad
or good prefixes, the transition from infinite words to finite words involves an
exponential blow-up. Formally, we have the following.

Theorem 2. [16] Consider an NBW A of size n.

1. If A is a safety automaton, the size of an NFW for bad-pref (A) is 2Θ(n).

2. If A is a co-safety automaton, the size of an NFW for good-pref (A) is 2Θ(n).

The lower bound in Theorem 2 for the case A is a safety automaton is not
surprising. Essentially, it follows from the fact that bad-pref (A) refers to words
that are not accepted by A. Hence, it has the flavor of complementation, and
complementation of nondeterministic automata involves an exponential blow-up
[27]. The second blow up, however, in going from a co-safety automaton to a

nondeterministic automaton for its good prefixes is surprising. Its proof in [16]
highlights the motivation behind the definition of a fine automaton for safety
properties, and we describe it below.

For n ≥ 1, let Σn = {1, . . . , n,&}. We define Ln as the language of all words
w ∈ Σω

n such that w contains at least one & and the letter after the first & is
either & or it has already appeared somewhere before the first &. The language
Ln is a co-safety language. Indeed, each word in Ln has a good prefix (e.g.,
the one that contains the first & and its successor). We can recognize Ln with
an NBW with O(n) states (the NBW guesses the letter that appears after the
first &). Obvious good prefixes for Ln are 12&&, 123&2, etc. That is, prefixes
that end one letter after the first &, and their last letter is either & or has
already appeared somewhere before the &. We can recognize these prefixes with
an NFW with O(n) states. But Ln also has some less obvious good prefixes, like
1234 · · ·n& (a permutation of 1 . . . n followed by &). These prefixes are indeed
good, as every suffix we concatenate to them would start with & or with a letter
in {1, . . . , n}, which has appeared before the &. To recognize these prefixes, an
NFW needs to keep track of subsets of {1, . . . , n}, for which it needs 2n states.
Consequently, an NFW for good-pref (Ln) must have at least 2n states.

It is also shown in [16] that the language Ln can be encoded by an LTL
formula of length quadratic in n. This implies that the translation of safety
and co-safety LTL formulas to NFWs for their bad and good prefixes is doubly
exponential. Formally, we have the following.

Theorem 3. [16] Given a safety LTL formula ψ of size n, the size of an NFW

for bad-pref (ψ) is 22Ω(
√

n)

.

3.2 Fine automata and their construction

As described in the proof of Theorem 2, some good prefixes for Ln (the “obvious
prefixes”) can be recognized by a small NFW. What if we give up the non-obvious
prefixes and construct an NFW A′ that accepts only the “obvious subset” of Ln?
It is not hard to see that each word in Ln has an obvious prefix. Thus, while A′

does not accept all the good prefixes, it accepts at least one prefix of every word
in L. This useful property of A′ is formalized below.

Consider a safety language L. We say that a set X ⊆ bad-pref (L) is a trap

for L iff every word w 6∈ L has at least one bad prefix in X. Thus, while X need
not contain all the bad prefixes for L, it must contain sufficiently many prefixes
to “trap” all the words not in L. Dually, a trap for a co-safety language L is a
set X ⊆ good-pref (L) such that every word w ∈ L has at least one good prefix in
X. We denote the set of all the traps, for an either safety or co-safety language
L, by trap(L).

An NFW A is fine for a safety or a co-safety language L iff A accepts a trap
for L. For example, an NFW that accepts 0∗ · 1 · (0 + 1) does not accept all the
bad prefixes of the safety language {0ω}; in particular, it does not accept the
minimal bad prefixes in 0∗ · 1. Yet, such an NFW is fine for {0ω}. Indeed, every
infinite word that is different from 0ω has a prefix in 0∗ · 1 · (0 + 1). Likewise,

the NFW is fine for the co-safety language 0∗ · 1 · (0 + 1)ω. In practice, almost
all the benefit that one obtains from an NFW that accepts all the bad/good
prefixes can also be obtained from a fine automaton. It is shown in [16] that for
natural safety formulas ψ, the construction of an NFW fine for ψ is as easy as
the construction of A¬ψ. In more details, if we regard A¬ψ as an NFW, with
an appropriate definition of the set of accepting states, we get an automaton
fine for ψ. For general safety formulas, the problem of constructing small fine
automata was left open in [16] and its solution in [14] has led to new mysteries
in the context of safety properties. Let us first describe the result in [14].

Recall that the transition from a safety NBW to an NFW for its bad prefixes
is exponential, and that the exponential blow up follows from the fact that a
complementing NBW can be construction from a tight NFW. When we consider
fine automata, things are more complicated, as the fine NFW need not accept
all bad prefixes. As we show below, however, a construction of fine automata
still has the flavor of complementation, and must involve an exponential blow
up.

Theorem 4. [14] Given a safety NBW A of size n, the size of an NFW fine for

A is 2Θ(n).

We now move on to consider co-safety NBWs. Recall that, as with safety
properties and bad prefixes, the transition from a co-safety NBW to an NFW
for its good prefixes is exponential. We show that a fine NFW for a co-safety
property can be constructed from the NBWs for the property and its negation.
The idea is that it is possible to bound the number of times that a run of A
visits the set of accepting states when it runs on a word not in L(A). Formally,
we have the following:

Lemma 1. [14] Consider a co-safety NBW A. Let F be the set of accepting

states of A and let A be an NBW with n states such that L(A) = comp(L(A)).
If a run of A on a finite word h ∈ Σ∗ visits F more than |F | · n times, then h
is a good prefix for L(A).

Consider a co-safety NBW A with n states, m of them accepting. Let A be
an NBW with n states such that L(A) = comp(L(A)). Following Lemma 1, we
can construct an NFW fine for A by taking (m ·n)+ 1 copies of A, and defining
the transition function such that when a run of A′ visits F in the j-th copy of
A, it moves to the (j + 1)-th copy. The accepting states of A′ are the states of
F in the (m · n+ 1)-th copy. This implies the following theorem.

Theorem 5. [14] Consider a co-safety NBW A with n states, m of them ac-

cepting. Let A be an NBW with n states such that L(A) = comp(L(A)). There

exists an NFW A′ with n · (m · n+ 1) states such that A′ is fine for L(A).

Given a safety NBW, its complement NBW is co-safety. Thus, dualizing
Theorem 5, we get the following.

Theorem 6. [14] Consider a safety NBW with n states. Let A be an NBW with

n states, m̄ of them accepting, such that L(A) = comp(L(A)). There exists an

NFW A′ with n̄ · (m̄ · n+ 1) states such that A′ is fine for L(A).

By Theorem 1, given an LTL formula ψ, we can construct NBWs Aψ and
A¬ψ for ψ and ¬ψ, respectively. The number of states in each of the NBWs is
at most 2O(|ψ|). Hence, by Theorem 5, we can conclude:

Theorem 7. [14] Consider a safety LTL formula ϕ of length n. There exists an

NFW fine for ϕ with at most 2O(n) states.

It follows from Theorem 7 that the transition from a tight NFW (one that
accepts exactly all bad or good prefixes) to a fine NFW is significant, as it
circumvents the doubly exponential blow-up in Theorem 3.

3.3 Discussion

The work in [14] has answered positively the question about the existence of ex-
ponential fine automata for general safety LTL formulas, improving the doubly-
exponential construction in [16]. Essentially, the construction adds a counter on
top of the NBW for the formula. The counter is increased whenever the NBW
visits an accepting state, and a computation is accepted after the counter reaches
a bound that depends on the size of the formula. For a discussion on the ap-
plication of the result in the context of bounded model checking and run-time
verification see [14]. Here, we discuss the theoretical aspects of the result.

While [14] has solved the problem of constructing exponential fine automata
for LTL formulas, the problem of constructing polynomial fine automata for
co-safety NBW is still open. The challenge here is similar to other challenges
in automata-theoretic constructions in which one needs both the NBW and its
complementing NBW — something that is easy to have in the context of LTL,
but difficult in the context of NBW. More problems in this status are reported
in [18]. For example, the problem of deciding whether an LTL formula ψ can be
translated to a DBW can be solved by reasoning about the NBWs for ψ and
¬ψ. This involves an exponential blow up in the length of ψ, but, as in our case,
no additional blow-up for complementation. The problem of deciding whether
an NBW can be translated to a DBW cannot be solved using the same lines,
as here complementation does involve an exponential blow up. From a practical
point of view, however, the problem of going from a co-safety automaton to a
fine NFW is of less interest, as users that use automata as their specification
formalism are likely to start with an automaton for the bad or the good prefixes
anyway. Thus, the problem about the size of fine automata is interesting mainly
for the specification formalism of LTL, which [14] did solve.

4 From Büchi to co-Büchi Automata

The second open problem we describe is the problem of translating, when possi-
ble, a nondeterministic Büchi word automaton to an equivalent nondeterministic

co-Büchi word automaton (NCW). The co-Büchi acceptance condition is dual
to the Büchi acceptance condition. Thus, F ⊆ Q and a run r is accepting if
it visits F only finitely many times. Formally, inf(r) ∩ F = ∅. NCWs are less
expressive than NBWs. For example, the language {w : w has only finitely many
0s} ⊆ {0, 1}ω cannot be recognized by an NCW. In fact, NCWs are as expres-
sive as deterministic co-Büchi automata (DCWs). Hence, as DBWs are dual to
DCWs, a language can be recognized by an NCW iff its complement can be
recognized by a DBW.

The best translation of NBW to NCW (when possible) that is currently
known actually results in a deterministic co-Büchi automaton (DCW), and it
goes as follows. Consider an NBW A that has an equivalent NCW. First, co-
determinize A and obtain a deterministic Rabin automaton (DRW) Ã for the
complement language. By [13], DRWs are Büchi type. That is, if a DRW has an
equivalent DBW, then the DRW has an equivalent DBW on the same structure.
Let B̃ be the DBW equivalent to Ã (recall that since A can be recognized by an
NCW, its complement can be recognized by a DBW). By dualizing B̃ one gets
a DCW equivalent to A. The co-determinization step involves an exponential
blowup in the number of states [33]. Hence, starting with an NBW with n states,
we end up with an NCW with 2O(n logn) states. This is particularly annoying as
even a lower bound showing that an NCW needs one more state is not known. As
we discuss below, the translation of NBW to an equivalent NCW is of practical
importance because of its relation to the problem of translating LTL formulas
to equivalent alternation-free µ-calculus (AFMC) formulas (when possible).

It is shown in [17] that given an LTL formula ψ, there is an AFMC formula
equivalent to ∀ψ iff ψ can be recognized by a DBW. Evaluating specifications
in the alternation-free fragment of µ-calculus can be done with linearly many
symbolic steps. In contrast, direct LTL model checking reduces to a search for
bad-cycles and its symbolic implementation involves nested fixed-points, and is
typically quadratic [32]. Hence, identifying LTL formulas that can be translated
to AFMC, and coming up with an optimal translation, is a problem of great prac-
tical importance. The best known translations of LTL to AFMC first translates
the LTL formula ψ to a DBW, which is then linearly translated to an AFMC
formula for ∀ψ. The translation of LTL to DBW, however, is doubly exponen-
tial, thus the overall translation is doubly-exponential, with only an exponential
matching lower bound [17].

The reason that current translations go through an intermediate determin-
istic automaton is the need to run this automaton on all the computations of
the system in a way that computations with the same prefix follow the same
run. A similar situation exists when we expand a word automaton to a tree
automaton [8] — the word automaton cannot be nondeterministic, as different
branches of the tree that have the same prefix u may be accepted by runs of the
word automaton that do not agree on the way they proceed on u. A promising
direction for coping with this situation was suggested in [17]: Instead of trans-
lating the LTL formula ψ to a DBW, one can translate ¬ψ to an NCW. This
can be done either directly, or by translating the NBW for ¬ψ to an equivalent

NCW. Then, the NCW can be linearly translated to an AFMC formula for ∃¬ψ,
whose negation is equivalent to ∀ψ. The fact that the translation can go through
a nondeterministic rather than a deterministic automaton is very promising, as
nondeterministic automata are typically exponentially more succinct than deter-
ministic ones.3 Nevertheless, the problem of translating LTL formulas to NCWs
of exponential size is still open.4 The best translation that is known today in-
volves a doubly-exponential blow up, and it actually results in a DCW, giving
up the idea that the translation of LTL to AFMC can be exponentially more effi-
cient by using intermediate nondeterministic automata. Note that a polynomial
translation of NBW to NCW will imply a singly-exponential translation of LTL
to AFMC, as the only exponential step in the procedure will be the translation
of LTL to NBW.5

Recall that while the best upper bound for an NBW to NCW translation is
2O(n logn), we do not even have a single example to a language whose NBW is
smaller than its NCW. In fact, it was only recently shown that NBWs are not
co-Büchi-type. That is, there is an NBW A such that L(A) can be recognized
by an NCW, but an NCW for L(A) must have a different structure than A.
We describe such an NBW in the proof below (the original proof, in [15], has a
different example).

Lemma 2. [15] NBWs are not co-Büchi-type.

Proof: Consider the NBW described in Figure 1. Note that the NBW has two
initial states. The NBW recognizes the language L of all words with at least one
a and at least one b. This language can be recognized by an NCW, yet it is easy
to see that there is no way to define F on top of A such that the result is an
NCW that recognizes L.

a b

ab

ba,b a,b a

Fig. 1. An NBW for “at last one a and at least one b”

3 Dually, we can translate the LTL formula to a universal Büchi automaton and trans-
late this automaton to an AFMC formula. The universal Büchi automaton for ψ is
dual to the nondeterministic co-Büchi automaton for ¬ψ.

4 As mentioned above, not all LTL formulas can be translated to NCWs. When we
talk about the blow up in a translation, we refer to formulas for which a translation
exists.

5 Wilke [42] proved an exponential lower-bound for the translation of an NBW for
an LTL formula ψ to and AFMC formula equivalent to ∀ψ. This lower-bound does
not preclude a polynomial upper-bound for the translation of an NBW for ¬ψ to an
AFMC formula equivalent to ∃¬ψ, which is our goal.

During our efforts to solve the NBW to NCW problem, we have studied the
related problem of translating NBWs to NFWs. In the next section we describe
the problem, its relation to the NBW to NCW problem, and our partial success
in this front.

4.1 From Büchi to limit finite automata

Recall that DBWs are less expressive than NBWs. Landweber characterizes lan-
guages L ⊆ Σω that can be recognized by a DBW as those for which there is
a regular language R ⊆ Σ∗ such that L is the limit of R. Formally, w is in the
limit of R iff w has infinitely many prefixes in R [21]. It is not hard to see that a
DBW for L, when viewed as a DFW, recognizes a language whose limit is L, and
vice versa – a DFW for R, when viewed as a DBW, recognizes the language that
is the limit of R. What about the case R and L are given by nondeterministic
automata? It is not hard to see that the simple transformation between the two
formalisms no longer holds. For example, the NBW A in Figure 2 recognizes the
language L of all words with infinitely many bs, yet when viewed as an NFW, it
recognizes (a+ b)+, whose limit is (a+ b)ω. As another example, the language of
the NBW A′ is empty, yet when viewed as an NFW, it recognizes the language
(a + b)∗ · b, whose limit is L. As demonstrated by the examples, the difficulty
of the nondeterministic case originates from the fact that different prefixes of
the infinite word may follow different accepting runs of the NFW, and there
is no guarantee that these runs can be merged into a single run of the NBW.
Accordingly, the best translation that was known until recently for going from
an NFW to an NBW accepting its limit, or from an NBW to a limit NFW, is
to first determinize the given automaton. This involves a 2O(n logn) blow up and
gives up the potential succinctness of the nondeterministic model. On the other
hand, no lower bound above Ω(n log n) is known.

b

a,b a,b

a,b

b

A : A′ :

Fig. 2. Relating NBWs and limit NFWs.

In [2] we study this exponential gap and tried to close it. In addition to the
limit operator introduced by Landweber, we introduce and study two additional
ways to induce a language of infinite words from a language of finite words: the
co-limit of R is the set of all infinite words that have only finitely many prefixes
in R. Thus, co-limit is dual to Landweber’s limit. Also, the persistent limit of
R is the set of all infinite words that have only finitely many prefixes not in R.
Thus, eventually all the prefixes are in R. Formally, we have the following.

Definition 1. Consider a language R ⊆ Σ∗. We define three languages of infi-

nite words induced by R.

1. [limit] lim(R) ⊆ Σω is the set of all words that have infinitely many prefixes

in R. I.e., lim(R) = {w | w[1, i] ∈ R for infinitely many i’s} [21].
2. [co-limit] co-lim(R) ⊆ Σω is the set of all words that have only finitely

many prefixes in R. I.e., co-lim(R) = {w |w[1, i] ∈ R for finitely many i’s}.
3. [persistent limit] plim(R) ⊆ Σω is the set of all words that have only

finitely many prefixes not in R. I.e., plim(R) = {w|w[1, i] ∈ R for almost all i’s}.

For example, for R = (a+b)∗b, the language lim(R) consists of all words that
have infinitely many b’s, co-lim(R) is the language of words that have finitely
many b’s, and plim(R) is the language of words that have finitely many a’s.
For an NFW A, we use lim(A), co-lim(A), and plim(A), to denote lim(L(A)),
co-lim(L(A)), and plim(L(A)), respectively. The three limit operators are dual in
the sense that for allR ⊆ Σ∗, we have comp(lim(R)) = co-lim(R) = plim(comp(R)).

Below we describe the main results of [2], which studies the relative succinct-
ness of NBWs, NCWs, and NFWs whose limit, co-limit, and persistent limit
correspond to the NBW and NCW.

We first need some notations. Consider an NFW A = 〈Σ,Q, δ,Q0, F 〉. For
two sets of states P, S ⊆ Q, we denote by LP,S the language of A with initial set
P and accepting set S. Theorem 8 is a key theorem in beating the “determinize
first” approach. It implies that the transition from an NFW A to an NBW for
lim(A) need not involve a determinization of A. Indeed, we can specify lim(A) as
the union of languages that are generated by automata with a structure similar
to the structure of A. Formally, we have the following.

Theorem 8. [2] For every NFW A = 〈Σ,Q, δ,Q0, F 〉,

lim(A) =
⋃

p∈Q

LQ0,{p} · (L{p},{p} ∩ L{p},F)ω.

Given A with n states, Theorem 8 implies that an NBW accepting lim(A)
can be constructed by intersection, application of ω, concatenation, and union,
starting with NFWs with n states. Exploiting the the similarity in the structure
of the involved NFWs, the resulting NBW has O(n2) states.

Corollary 1. Given an NFW A with n states, there is an NBW A′ with O(n2)
states such that L(A′) = lim(L(A)).

Corollary 1 implies that going from an NFW to an NBW for its limit, it is
possible to do better than determinize the NFW. On the other hand, it is shown
in [2] that going from an NFW to an NCW for its co-limit or persistent limit,
an exponential blow-up cannot be avoided, and determinization is optimal.

Further results of [2] study succinctness among NFWs to which different
limit operators are applied. For example, in Theorem 9 below we prove that
going from a persistent limit NFW to a limit NFW involves an exponential blow
up. In other words, given an NFW A whose persistent limit is L, translating

A to an NFW whose limit is L may involve an exponential blow up. Note that
persistent limit and limit are very similar – both require the infinite word to
have infinitely many prefixes in L(A), only that the persistent limit requires, in
addition, that only finitely many prefixes are not in L(A). This difference, which
is similar to the difference between NBW and NCW, makes persistent limit
exponentially more succinct. Technically, it follows from the fact that persistent
limit NFWs inherit the power of alternating automata. In a similar, though less
surprising way, co-limit NFWs inherit the power of complementation, and are
also exponentially more succinct.

Theorem 9. [2] For every n ≥ 1, there is a language Ln ⊆ Σω such that there

are NFWs A with O(n) states, and A′ with O(n2) states, such that co-lim(A) =
plim(A′) = Ln but an NFW A′′ such that lim(A′′) = Ln must have at least 2n

states.

Proof: Consider the language Ln ⊆ {0, 1}ω of all words w such that w = uuz,
with |u| = n. We prove that an NFW A′′ such that lim(A′′) = Ln must remember
subsets of size n, and thus must have at least 2n states. In order to construct
small NFW for the co-limit and persistent limit operators, we observe that a
word w is in Ln iff

∧n

i=1(w[i] = w[n + i]). In the case of co-limit, we can check
that only finitely many (in fact, 0) prefixes h of an input word are such that
h[i] 6= h[i+n] for some 1 ≤ i ≤ n. The case of persistent limit is much harder, as
we cannot use the implicit complementation used in the co-limit case. Instead,
we use the universal nature of persistence. We define the NFW A′ as a union of n
NFWs A′

1, . . . ,A
′
n. The NFW A′

i is responsible for checking that w[i] = w[n+ i].
In order to make sure that the conjunction on all 1 ≤ i ≤ n is satisfied, we
further limit A′

i to accept only words of length i mod n. Hence, A′
i accepts a

word u ∈ Σ∗ iff u[i] = u[n+ i] ∧ |u| = i mod n. Thus, plim(A′) = Ln.

4.2 Discussion

The exponential gap between the known upper and lower bounds in the transla-
tion of NBW to NCW is particularly annoying: the upper bound is 2O(n logn) and
for the lower bound we do not even have an example of a language whose NCW
needs one more state than the NBW. The example in the proof of Lemma 2
shows an advantage of the Büchi condition. In a recent work with Benjamin
Aminof and Omer Lev, we hope to turn this advantage into a lower bound. The
idea is as follows. NCWs cannot recognize the language of all words that have
infinitely many occurrences of some letter. Indeed, DBWs cannot recognize the
complement language [21]. Thus, a possible way to obtain a lower bound for the
translation of NBW to NCW is to construct a language that is recognizable by
an NCW, but for which an NCW needs more states than an NBW due to its
inability to recognize infinitely many occurrences of a letter. One such candidate
is the family of languages L1, L2, . . . over the alphabet {a, b}, where Lk contains
exactly all words that have at least k occurrences of the letter a and at least k
occurrences of the letter b. An NBW can follow the idea of the NBW in Figure 1:

since every infinite word has infinitely many a’s or infinitely many b’s, the NBW
for L can guess which of the two letters occurs infinitely often, and count k oc-
currences of the second letter. Thus, the NBW is the union of two components,
one looking for k occurrences of a followed by infinitely many b’s and the other
looking for k occurrences of b followed by infinitely many a’s. This can be done
with 2k + 1 states. We conjecture that an NCW needs more than two counters.
The reason is that an NCW with less than k states accepting all words with
infinitely many a’s, inevitably also accepts a word with less than k a’s.

References

1. B. Alpern and F.B. Schneider. Defining liveness. IPL, 21:181–185, 1985.
2. B. Aminof and O. Kupferman. On the succinctness of nondeterminizm. In Proc.

4th ATVA, LNCS 4218, pages 125–140. 2006.
3. J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc.

Int. Congress on Logic, Method, and Philosophy of Science. 1960, pages 1–12.
Stanford University Press, 1962.

4. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 1020 states and beyond. I&C, 98(2):142–170, 1992.

5. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
6. C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient

algorithms for the verification of temporal properties. FMSD, 1:275–288, 1992.
7. C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer, 2006.
8. A.E. Emerson and A.P. Sistla. Deciding full branching time logics. I&C, 61(3):175–

201, 1984.
9. E.A. Emerson. Alternative semantics for temporal logics. TCS, 26:121–130, 1983.

10. E.A. Emerson and C. Jutla. The complexity of tree automata and logics of pro-
grams. In Proc. 29th FOCS, pages 328–337, 1988.

11. E. Friedgut, O. Kupferman, and M.Y. Vardi. Büchi complementation made tighter.
In Proc. 2nd ATVA, LNCS 3299, pages 64–78, 2004.

12. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Protocol Specification, Testing, and Verification,
pages 3–18. Chapman & Hall, 1995.

13. S.C. Krishnan, A. Puri, and R.K. Brayton. Deterministic ω-automata vis-a-vis
deterministic Büchi automata. In Algorithms and Computations, LNCS 834, pages
378–386, 1994.

14. O. Kupferman and R. Lampert. On the construction of fine automata for safety
properties. In Proc. 4th ATVA, LNCS 4218, pages 110–124, 2006.

15. O. Kupferman, G. Morgenstern, and A. Murano. Typeness for ω-regular automata.
In Proc. 2nd ATVA, LNCS 3299, pages 324–338, 2004.

16. O. Kupferman and M.Y. Vardi. Model checking of safety properties. FMSD,
19(3):291–314, 2001.

17. O. Kupferman and M.Y. Vardi. From linear time to branching time. ACM TOCL,
6(2):273–294, 2005.

18. O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th FOCS,
pages 531–540, 2005.

19. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton
Univ. Press, 1994.

20. L. Lamport. Logical foundation. In Distributed systems - methods and tools for

specification, LNCS 190, 1985.
21. L.H. Landweber. Decision problems for ω–automata. Mathematical Systems The-

ory, 3:376–384, 1969.
22. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs

satisfy their linear specification. In Proc. 12th POPL, pages 97–107, 1985.
23. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. Springer, 1992.
24. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Safety. Springer, 1995.
25. R. McNaughton. Testing and generating infinite sequences by a finite automaton.

I&C, 9:521–530, 1966.
26. A. R. Meyer. Weak monadic second order theory of successor is not elementary

recursive. In Proc. Logic Colloquium, LNM 453, pages 132–154. Springer, 1975.
27. A.R. Meyer and M.J. Fischer. Economy of description by automata, grammars,

and formal systems. In Proc. 12th SWAT, pages 188–191, 1971.
28. M. Michel. Complementation is more difficult with automata on infinite words.

CNET, Paris, 1988.
29. A. Pnueli. The temporal semantics of concurrent programs. TCS, 13:45–60, 1981.
30. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th

POPL, pages 179–190, 1989.
31. M.O. Rabin. Decidability of second order theories and automata on infinite trees.

Transaction of the AMS, 141:1–35, 1969.
32. K. Ravi, R. Bloem, and F. Somenzi. A comparative study of symbolic algorithms

for the computation of fair cycles. In Proc. 3rd FMCAD, LNCS 1954, pages 143–
160, 2000.

33. S. Safra. On the complexity of ω-automata. In Proc. 29th FOCS, pages 319–327,
1988.

34. A.P. Sistla. Safety, liveness and fairness in temporal logic. Formal Aspects of

Computing, 6:495–511, 1994.
35. A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.

JACM, 32:733–749, 1985.
36. A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi

automata with applications to temporal logic. In Proc. 12th ICALP, LNCS 194,
pages 465–474, 1985.

37. R.S. Street and E.A. Emerson. An elementary decision procedure for the µ-
calculus. In Proc. 11th ICALP, volume 172, pages 465–472. Springer, 1984.

38. H.J. Touati, R.K. Brayton, and R. Kurshan. Testing language containment for
ω-automata using BDD’s. I&C, 118(1):101–109, 1995.

39. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st LICS, pages 332–344, 1986.

40. M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. JCSS, 32(2):182–221, 1986.

41. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. I&C, 115(1):1–
37, 1994.

42. T. Wilke. CTL+ is exponentially more succinct than CTL. In Proc. 19th FST&

TCS, LNCS 1738, pages 110–121, 1999.
43. P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation

paths. In Proc. 24th FOCS, pages 185–194, 1983.
44. Q. Yan. Lower bounds for complementation of ω-automata via the full automata

technique. In Proc. 33rd ICALP, LNCS 4052, pages 589–600, 2006.

