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Synthesis is the automated construction of a system from its specification. In real life, 
hardware and software systems are rarely constructed from scratch. Rather, a system 
is typically constructed from a library of components. Lustig and Vardi formalized this 
intuition and studied LTL synthesis from component libraries. In real life, designers seek 
optimal systems. In this paper we add optimality considerations to the setting. We 
distinguish between quality considerations (for example, size – the smaller a system is, 
the better it is), and pricing (for example, the payment to the company who manufactured 
the component). We study the problem of designing systems with minimal quality-cost and 
price. A key point is that while the quality cost is individual – the choices of a designer 
are independent of choices made by other designers that use the same library, pricing 
gives rise to a resource-allocation game – designers that use the same component share 
its price, with the share being proportional to the number of uses (a component can be 
used several times in a design). We study both closed and open settings, and in both we 
solve the problem of finding an optimal design. In a setting with multiple designers, we 
also study the game-theoretic problems of the induced resource-allocation game.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Synthesis is the automated construction of a system from its specification. The classical approach to synthesis is to 
extract a system from a proof that the specification is satisfiable. In the late 1980s, researchers realized that the classical 
approach to synthesis is well suited to closed systems, but not to open (also called reactive) systems [1,32]. A reactive system 
interacts with its environment, and a correct system should have a strategy to satisfy the specification with respect to all 
environments. It turns out that the existence of such a strategy is stronger than satisfiability, and is termed reliability.

In spite of the rich theory developed for synthesis, in both the closed and open settings, little of this theory has been 
reduced to practice. This is in contrast with verification algorithms, which are extensively applied in practice. We distinguish 
between algorithmic and conceptual reasons for the little impact of synthesis in practice. The algorithmic reasons include 
the high complexity of the synthesis problem (PSPACE-complete in the closed setting [37] and 2EXPTIME-complete in the 
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open setting [32], for specifications in LTL) as well as the intricacy of the algorithms in the open setting – the traditional 
approach involves determinization of automata on infinite words [36] and a solution of parity games [24].

We find the argument about the algorithmic challenge less compelling. First, experience with verification shows that 
even nonelementary algorithms can be practical, since the worst-case complexity does not arise often. For example, while 
the model-checking problem for specifications in second-order logic has nonelementary complexity, the model-checking tool
Mona [17] successfully verifies many specifications given in second-order logic. Furthermore, in some sense, synthesis is not 
harder than verification: the complexity of synthesis is given with respect to the specification only, whereas the complexity 
of verification is given with respect to the specification and the system, which is typically much larger than the specification. 
About the intercity of the algorithms, in the last decade we have seen quite many alternatives to the traditional approach 
– Safraless algorithms that avoid determinization and parity games, and reduce synthesis to problems that are simpler and 
are amenable to optimizations and symbolic implementations [20,27,29].

The arguments about the conceptual and methodological reasons are more compelling. We see here three main chal-
lenges, relevant in both the closed and open settings. First, unlike verification, where a specification can be decomposed 
into sub-specifications, each can be checked independently, in synthesis the starting point is one comprehensive specifi-
cation. This inability to decompose or evolve the specification is related to the second challenge. In practice, we rarely 
construct systems from scratch or from one comprehensive specification. Rather, systems are constructed from existing 
components. This is true for both hardware systems, where we see IP cores or design libraries, and software systems, where 
web APIs and libraries of functions and objects are common. Third, while in verification we only automate the check of the 
system, automating its design is by far more risky and unpredictable – there are typically many ways to satisfy a satisfiable 
or realizable specification, and designers will be willing to give up manual design only if they can count on the automated 
synthesis tool to construct systems of comparable quality. Traditional synthesis algorithms do not attempt to address the 
quality issue.

In this paper we continue earlier efforts to cope with the above conceptual challenges. Our contribution extends both the 
setting and the results of earlier work. The realization that design of systems proceeds by composition of underlying com-
ponents is not new to the verification community. For example, [21] proposed a framework for component-based modeling
that uses an abstract layered model of components, and [14] initiated a series of works on interface theories for component-
based design, possibly with a reuse of components in a library [15]. The need to consider components is more evident in 
the context of software, where, for example, recursion is possible, so components have to be equipped with mechanisms for 
call and return [4]. The setting and technical details, however, are different from these in the synthesis problem we consider 
here. The closer to our work here is [30], which studied LTL synthesis from reusable component libraries. Lustig and Vardi 
studied two notions of component composition. In the first notion, termed data-flow composition, components are cascaded 
so that the outputs of one component are fed to other components. In the second notion, termed control-flow composition, 
the composition is flat and control flows among the different components. The second notion, which turns out to be the 
decidable one [30], is particularly suitable for modeling web-service orchestration, where users are typically offered services 
and interact with different parties [3].

Let us turn now to the quality issue. Traditional formal methods are based on a Boolean satisfaction notion: a system 
satisfies, or not, a given specification. The richness of today’s systems, however, calls for a multi-valued approach, where 
different systems are evaluated not just according to their correctness but also according to different quality measures. In 
order to capture a wide set of scenarios in practice, we associate with each component in the library two costs: a quality 
cost and a construction cost. The quality cost concerns the structural quality of the component and is paid each time the 
component is used. It refers to properties like the size of the component or its security level. The construction cost is the 
cost of adding the component to the library. Thus, a design that uses a component pays its construction cost once. When 
several designs use the same component, they share its construction cost. This corresponds to real-life scenarios, where 
users pay, for example, for web-services, and indeed their price is influenced by the market demand.

In [5], the authors study the problem of synthesizing a hierarchical system from a library of components that satisfies 
a specification while attempting to find a succinct system. They assume that rather than one specification, the input is a 
sequence of specifications φ1, . . . , φm that attempt to guide the synthesis. The construction is then incremental. At step i, 
a component that satisfies φi is added to the library. The component Cm is then output as the final system.

We study synthesis from component libraries with costs in the closed and open settings. In both settings, the speci-
fication is given by means of a deterministic automaton S on finite words (DFA).1 In the closed setting, the specification 
is a regular language over some alphabet � and the library consists of box-DFAs (that is, DFAs with exit states) over �. 
In the open setting, the specification S is over sets I and O of input and output signals, and the library consists of 
box-I/O -transducers. The boxes are black, in the sense that a design that uses components from the library does not 
see � (or I ∪ O ) nor it sees the behavior inside the components. Rather, the mode of operation is as in the control-flow 
composition of [30]: the design gives control to one of the components in the library. It then sees only the exit state 
through which the component completes its computation and relinquishes control. Based on this information, the design 
decides which component gets control next, and so on.

1 It is possible to extend our results to specifications in LTL. We prefer to work with deterministic automata, as this setting isolates the complexity and 
technical challenges of the design problem and avoids the domination of the doubly-exponential complexity of going from LTL to deterministic automata.
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In more technical details, the synthesis problem gets as input the specification S as well as a library L of components 
B1, . . . , Bn . The goal is to return a correct design – a transducer D that reads the exit states of the components and outputs 
the next component to gain control. In the closed setting, correctness means that the language over � that is generated by 
the composition defined by D is equal to the language of S . In the open setting, correctness means that the interaction of 
the composition defined by D with all input sequences generates a computation over I ∪ O that is in the language of S .

We first study the problem without cost and reduce it to the solution of a two-player safety game GS . In the closed 
setting, the game is of full information and the problem can be solved in polynomial time. In the open setting, the flexibility 
that the design have in responding to different input sequences introduces partial information to the game, and the problem 
is EXPTIME-complete. We note that in [30], where the open setting was studied and the specification is given by means of 
an LTL formula, the complexity is 2EXPTIME-complete, thus one could have expected our complexity to be only polynomial. 
We prove, however, hardness in EXPTIME, showing that it is not just the need to transfer the LTL formula to a deterministic 
formalism that leads to the high complexity.

We then turn to integrate cost to the story. As explained above, there are two types of costs associated with each 
component Bi in L. The first type, quality cost, can be studied for each design in isolation. We show that even there, 
the combinatorial setting is not simple. While for the closed setting an optimal design can be induced from a memoryless 
strategy of the designer in the game GS , making the problem of finding an optimal design NP-complete, seeking designs 
of optimal cost may require sophisticated compositions in the open setting. In particular, we show that optimal designs 
may be exponentially larger than other correct designs,2 and that an optimal design may not be induced by a memoryless 
strategy in GS . We are still able to bound the size of an optimal transducer by the size of GS , and show that the optimal 
synthesis problem is NEXPTIME-complete.

The second type of cost, namely construction cost, depends not only on choices made by the designer, but also on choices 
made by designers of other specifications that use the library. Indeed, recall that the construction cost of a component is 
shared by designers that use this component, with the share being proportional to the number of uses (a component can 
be used several times in a design). Hence, the setting gives rise to a resource-allocation game [34,35,18]. Unlike traditional 
resource-allocation games, where players’ strategies are sets of resources, here each strategy is a multiset – the components 
a designer needs. As has been the case in [8], the setting of multisets makes the game less stable. We show that the game 
is not guaranteed to have a Nash Equilibrium (NE), and that the problem of deciding whether an NE exists is �P

2 -complete. 
We then turn to the more algorithmic related problems and show that the problems of finding an optimal design given 
the choices of the other designers (a.k.a. the best-response problem, in algorithmic game theory) and of finding designs that 
minimize the total cost for all specifications (a.k.a. the social optimum) are both NP-complete.

Recently, in [9], the setting of synthesis from component libraries by multiple users has been considered also for a setting 
in which the costs of the components have congestion effects rather than cost-sharing as we study here. For example, com-
ponents might model processors and cost can model performance. When many users use the same component, congestion 
is increased and performance is decreased.

While the cost model we describe above is suited for capturing some aspects of quality of systems, e.g., when the 
goal is to minimize the number of states in the system, many other aspects are computation-based, and they refer to the 
performance of the system. For example, in a system that issues grants upon requests, a goal of the designer can be to 
design a system that minimizes the waiting time for a grant once a request is received. In recent years, we see many 
efforts to extend the Boolean setting of specification formalisms to a multi-valued one, allowing the user to associate rich 
satisfaction values with computations [13,19,12,2,11]. A standard model for reasoning about such costs of computations is 
weighted automata [16]. The rich semantics of weighted automata makes reasoning about them very difficult. For example, 
not all weighted automata can be determinized, and in fact the problem of deciding whether a given weighted automaton 
has an equivalent deterministic one is open [31]. Likewise, the weighted-containment problem for weighted automata is 
known to be undecidable [28].

We extend our study to lattice automata [26], which assign to each word a value that is an element of some finite lattice. 
Specifically, we study an extension of the closed synthesis problem from component libraries to a setting in which the 
specification is given by a deterministic lattice automaton (LDFA, for short) and the components are box LDFAs. Thus, our 
goal is to compose the components in the library to an LDFA that is equivalent to the specification LDFA, where equivalence 
amounts to agreement on the values assigned to each word. While the set of possible values that an LDFA assigns is finite, 
circumventing many of the technical difficulties in general weighted automata, handling box LDFAs involves other technical 
difficulties. In particular, there is no canonical minimal LDFA for a given language [22]. This is problematic, as minimal DFAs 
play a key role in our solution to the design problem in the closed setting. We introduce a new type of LDFAs, namely 
separable LDFAs, in which every two states have a word that separates between them. We show how the synthesis problem 
in the latticed setting can then be solved in polynomial time using a similar ideas to these used in the Boolean setting.

2 Recall that “optimal” here refers to the quality-cost function.
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2. Preliminaries

Automata, transducers, and boxes A deterministic finite automaton (DFA, for short) is a tuple A = 〈�, Q , δ, q0, F 〉, where � is 
an alphabet, Q is a set of states, δ : Q × � → Q is a partial transition function, q0 ∈ Q is an initial states, and F ⊆ Q is a 
set of accepting states. We extend δ to words in an expected way, thus δ∗ : Q × �∗ → Q is such that for q ∈ Q , we have 
δ∗(q, ε) = q and for w ∈ �∗ and σ ∈ �, we have δ∗(q, w · σ) = δ(δ∗(q, w), σ). When q = q0, we sometimes omit it, thus 
δ∗(w) is the state that A reaches after reading w . We assume that all states are reachable from q0, thus for every q ∈ Q
there exists a word w ∈ �∗ such that δ∗(w) = q. We refer to the size of A, denoted |A|, as the number of its states.

The run of A on a word w = w1, . . . wn ∈ �∗ is the sequence of states r = r0, r1, . . . , rn such that r0 = q0 and for every 
0 ≤ i ≤ n − 1 we have ri+1 = δ(ri, wi+1). The run r is accepting iff rn ∈ F . The language of A, denoted L(A), is the set of 
words w ∈ �∗ such that the run of A on w is accepting, or, equivalently, δ∗(w) ∈ F . For q ∈ Q , we denote by L(Aq) the 
language of the DFA that is the same as A only with initial state q. Note that since A is deterministic and δ is partial, there 
is at most one run of A on each word.

A transducer models an interaction between a system and its environment. It is similar to a DFA except that in addition 
to �, which is referred to as the input alphabet, denoted �I , there is an output alphabet, denoted �O , and rather than 
being classified to accepting or rejecting, each state is labeled by a letter from �O .3 Formally, a transducer is a tuple 
T = 〈�I , �O , Q , q0, δ, ν〉, where �I is an input alphabet, �O is an output alphabet, Q , q0, and δ : Q × �I → Q are as in a 
DFA, and ν : Q → �O is an output function. We require T to be receptive. That is, δ is complete, so for every input word 
w ∈ �∗

I , there is a run of T on w . Consider an input word w = w1, . . . , wn ∈ �∗
I . Let r = r0, . . . , rn be the run of T on 

w . The computation of T in w is then σ1, . . . , σn ∈ (�I × �O )∗ , where for 1 ≤ i ≤ n, we have σi = 〈wi, ν(ri−1)〉. We define 
the language of T , denoted L(T ), as the set of all its computations. For a specification L ⊆ (�I × �O )∗ , we say that T
realizes L iff L(T ) ⊆ L. Thus, no matter what the input sequence is, the interaction of T with the environment generates a 
computation that satisfies the specification. For two words u ∈ �∗

I and v ∈ �∗
O of length n we define the product of the two 

words, denoted u ⊕ v , as w = w1 . . . wn ∈ (�I × �O )∗ , where, for 1 ≤ i ≤ n, we have wi = 〈ui, vi〉.
By adding exit states to DFAs and transducers, we can view them as components from which we can compose systems. 

Formally, we consider two types of components. Closed components are modeled by box-DFAs and open components are 
modeled by box-transducers. A box-DFA augments a DFA by a set of exit states. Thus, a box-DFA is a tuple 〈�, Q , δ, q0, F , E〉, 
where E ⊆ Q is a nonempty set of exit states. There are no outgoing transitions from an exit state. Also, the initial state 
cannot be an exit state and exit states are not accepting. Thus, q0 /∈ E and F ∩ E = ∅. Box-transducers are defined similarly, 
and their exit states are not labeled, thus ν : Q \ E → �O .

Component libraries A component library is a collection of boxes L = {B1, . . . , Bn}. We say that L is a closed library if the 
boxes are box-DFAs, and is an open library if the boxes are box-transducers. Let [n] = {1, . . . , n}. In the first case, for i ∈ [n], let 
Bi = 〈�, Ci, δi, c0

i , Fi, Ei〉. In the second case, Bi = 〈�I , �O , Ci, δi, c0
i , νi, Ei〉. Note that all boxes in L share the same alphabet 

(input and output alphabet, in the case of transducers). We assume that the states of the components are disjoint, thus for 
every i = j ∈ [n], we have Ci ∩ C j = ∅. We use the following abbreviations C = ⋃

i∈[n] Ci , C0 = ⋃
i∈[n]{c0

i }, F = ⋃
i∈[n] Fi , and 

E = ⋃
i∈[n] Ei . We define the size of L as |C|.

We start by describing the intuition for composition of closed libraries. A design is a recipe to compose the components 
of a library L (allowing multiple uses) into a DFA. A run of the design on a word starts in an initial state of one of the 
components in L. We say that this component has the initial control. When a component is in control, the run uses its 
states, follows its transition function, and if the run ends, it is accepting iff it ends in one of the components’ accepting 
states. A component relinquishes control when the run reaches one of its exit states. It is then the design’s duty to assign 
control to the next component, which gains control through its initial state.

Formally, a design is a transducer D with input alphabet E and output alphabet [n]. We can think of D as running 
beside the components. When a component reaches an exit state e, then D reads the input letter e, proceeds to its next 
state, and outputs the index of the component to gain control next. Note that D does not read the alphabet � and has no 
information about the states that the component visits. It only sees which exit state has been reached.

Consider a design D = 〈E, [n], D, δ, d0, ν〉 and a closed library L. We formalize the behavior of D by means of the 
composition DFA AD that simulates the run of D along with the runs of the box-DFAs. Formally, AD = 〈�, QD, δD, q0

D, FD〉
is defined as follows. The set of states QD ⊆ (C \ E) × D consists of pairs of a component state from C and an design 
state from S . The component states are consistent with ν , thus QD = ⋃

i∈[n](Ci \ Ei) × {d : ν(d) = i}. In exit states, the 
composition immediately moves to the initial state of the next component, which is why the component states of AD do 
not include E . Consider a state 〈c, d〉 ∈ QD and a letter σ ∈ �. Let i ∈ [n] be such that c ∈ Ci . When a run of AD reaches 
the state 〈c, d〉, the component Bi is in control. Recall that c is not an exit state. Let c′ = δi(c, σ). If c′ /∈ Ei , then Bi does 
not relinquish control after reading σ and δD(〈c, d〉, σ) = 〈c′, d〉. If c′ ∈ Ei , then Bi relinquishes control through c′ , and it 
is the design’s task to choose the next component to gain control. Let d′ = δ(d, c′) and let j = ν(d′). Then, B j is the next 
component to gain control (possibly j = i). Accordingly, we advance D to d′ and continue to the initial state of B j . Formally, 
δD(〈c, d〉, σ) = 〈c0

j , d
′〉. (Recall that c0

j /∈ E j , so the new state is in QD .) Note also that a visit in c′ is skipped. The component 

3 These transducers are sometimes referred to as Moore machines.
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that gains initial control is chosen according to ν(d0). Thus, q0
D = 〈c0

j , d
0〉, where j = ν(d0). Finally, the accepting states of 

AD are these in which the component state is accepting, thus FD =F × D .
The definition of a composition for an open library is similar. There, the composition is a transducer TD =

〈�I , �O , QD, δD, q0
D, νD〉, where QD , q0

D , and δD are as in the closed setting, except that δD reads letters in �I , and 
νD(〈c, d〉) = νi(c), for i ∈ [n] such that c ∈ Ci .

Consider a closed-library L, a design D, and the run r of AD on w = w0 · · · wl . We partition w according to positions 
in which control is transferred among components. Equivalently, positions in which r skips visits in exit states. Thus, w =
y0 · · · yk is such that for all 0 ≤ i < k, we have that yi ∈ �+ and the composition AD takes a transfer transition exactly 
when it reads the last letter of yi . An exception is yk , which may be empty (this happens when r ends upon entering the 
last component to gain control). We then say that w is suffix-less. The definitions in the open setting are similar.

3. The design problem

The design problem gets as input a component library L and a specification that is given by means of a DFA S . The 
problem is to decide whether there exists a correct design for S using the components in L. In the closed setting, a design 
D is correct if L(AD) = L(S). In the open setting, D is correct if the transducer TD realizes S . Our solution to the design 
problem reduces it to the problem of finding the winner in a turn-based two-player game, defined below.

A turn-based two-player game is played on an arena 〈V , �, V 0, α〉, where V = V 1 ∪ V 2 is a set of vertices that are 
partitioned between Player 1 and Player 2, � ⊆ V × V is a set of directed edges, V 0 ⊆ V is a set of initial vertices, and α
is an objective for Player 1, specifying a subset of V ω . We consider here safety games, where α ⊆ V is a set of vertices that 
are safe for Player 1. The game is played as follows. Initially, Player 1 places a token on one of the vertices in V 0. Assume 
the token is placed on a vertex v ∈ V at the beginning of a round. The player that owns v is the player that moves the 
token to the next vertex, where the legal vertices to continue to are {v ′ ∈ V : 〈v, v ′〉 ∈ �}. The outcome of the game is a 
play π ∈ V ω . The play is winning for Player 1 if for every i ≥ 1, we have πi ∈ α. Otherwise, Player 2 wins.

A strategy for Player i, for i ∈ {1, 2}, is a recipe that, given a prefix of a play, tells the player what his next move should 
be. Thus, it is a function f i : V ∗ · V i → V such that for every play π · v ∈ V ∗ with v ∈ V i , we have 〈v, f i(π · v)〉 ∈ �. Since 
Player 1 moves first, we require that f1(ε) is defined and is in V 0. For strategies f1 and f2 for players 1 and 2 respectively, 
the play out( f1, f2) ∈ V ω is the unique play that is the outcome of the game when the players follow their strategies. 
A strategy f i for Player i is memoryless if it depends only in the current vertex, thus it is a function f i : V i → V .

A strategy is winning for a player if by using it he wins against every strategy of the other player. Formally, a strategy f1
is winning for Player 1 iff for every strategy f2 for Player 2, Player 1 wins the play out( f1, f2). The definition for Player 2
is dual. It is well known that safety games are determined, namely, exactly one player has a winning strategy, and admits 
memoryless strategies, namely, Player i has a winning strategy iff he has a memoryless winning strategy. Deciding the winner 
of a safety game can done in linear time.

Solving the design problem We describe the intuition of our solution for the design problems. Given a library L and a 
specification S we construct a safety game GS such that Player 1 wins GS iff there is a correct design for S using the 
components in L. Intuitively, Player 1’s goal is to construct a correct design, thus he chooses the components to gain 
control. Player 2 challenges the design that Player 1 chooses, thus he chooses a word (over � in the closed setting and over 
�I × �O in the open setting) and wins if his word is a witness for the incorrectness of Player 1’s design.

Closed designs The input to the closed-design problem is a closed-library L and a DFA S over the alphabet �. The goal is to 
find a correct design D. Recall that D is correct if the DFA AD that is constructed from L using D satisfies L(AD) = L(S). 
We assume that S is the minimal DFA for the language L(S) as if it is not minimal, we can minimize it in polynomial time.

Theorem 3.1. The closed-design problem can be solved in polynomial time.

Proof. Given a closed-library L and a DFA S = 〈�, S, δS , s0, FS 〉, we describe a safety game GS such that Player 1 wins GS
iff there is a design of S using components from L. Recall that L consists of box-DFAs Bi = 〈�, Ci, δi, c0

i , Fi, Ei〉, for i ∈ [n], 
and that we use C , C0, E , and F to denote the union of all states, initial states, exit states, and accepting states in all the 
components of L. The number of vertices in GS is |(C0 ∪E) × S| and it can be constructed in polynomial time. Since solving 
safety games can be done in linear time, the theorem follows.

We define GS = 〈V , E, V 0, α〉. First, V = (C0 ∪ E) × S and V 0 = C0 × {s0}. Recall that Player 1 moves when it is time to 
decide the next (or first) component to gain control. Accordingly, V 1 = E × S . Also, Player 2 challenges the design suggested 
by Player 1 and chooses the word that is processed in a component that gains control, so V 2 = C0 × S .

Consider a vertex 〈e, s〉 ∈ V 1. Player 1 selects the next component to gain control. This component gains control through 
its initial state. Accordingly, E contains edges 〈〈e, s〉, 〈c0

i , s〉〉, for every i ∈ [n]. Note that since no letter is read when control 
is passed, we do not advance the state in S . Consider a vertex v = 〈c0

i , s〉 ∈ V 2. Player 2 selects the word that is read in 
the component Bi , or equivalently, he selects the exit state from which Bi relinquishes control. Thus, E contains an edge 
〈〈c0, s〉, 〈e, s′〉〉 iff there exists a word u ∈ �∗ such that δ∗(u) = e and δ∗ (s, u) = s′ .
i i S
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We now turn to define the winning condition. All the vertices in V 1 are in α. A vertex v ∈ V 2 is not in α if it is possible 
to extend the word traversed for reaching v to a witness for the incorrectness of D. Accordingly, a vertex 〈c0

i , s〉 is not in α
if one of the following holds. First (“the suffix witness”), there is a finite word that is read inside the current component and 
witnesses the incorrectness. Formally, there is u ∈ �∗ such that δ∗

i (u) ∈ Fi and δ∗
S (s, u) /∈ FS , or δ∗

i (u) ∈ Ci \ (Fi ∪ Ei) and 
δ∗
S (s, u) ∈ FS . Second (“the infix witness”), there are two words that reach the same exit state of the current component 

yet the behavior of S along them is different. Formally, there exist words u, u′ ∈ �∗ such that δ∗
i (u) = δ∗

i (u′) ∈ Ei and 
δ∗
S (s, u) = δ∗

S (s, u′). Intuitively, the minimality of S enables us to extend either u or u′ to an incorrectness witness. Note 
that if there is no suffix witness from 〈c0

i , s〉, Player 2 cannot show that D is incorrect without Bi relinquishing control, 
thus his only hope is to choose a word u after which Bi relinquishes control. Moreover, if there is no infix witness, then 
Player 1 is able to track the run of S on u, which leads us to a Player 1 vertex of the form 〈e, s′〉. Given L and S , the game 
GS can be constructed in polynomial time.

We claim that there is a correct design D iff Player 1 wins GS . Assume first that there is a correct design D =
〈E, [n], D, δ, d0, ν〉, thus L(AD) = L(S). We construct a winning strategy fD for Player 1. The strategy fD proceeds like D. 
First, fD(ε) = 〈c0

i , s
0〉, with i = ν(d0). Then, for a finite play π , let 〈e0, s0〉, 〈e1, s1〉 . . . 〈em, sm〉 be its projection on V 1. Thus, 

e0, . . . , em ∈ E and s0, . . . , sm ∈ S . We define fD(π) = 〈c0
i , sm〉, for i = ν(δ∗

D(e0, . . . , em)).
We claim that fD is a winning strategy. Assume towards contradiction that there is a Player 2 strategy f2 that wins 

against fD . Let π = out( fD, f2), let 〈c0
i , s〉 be its first vertex that is not in α, and let w be the word in �∗ that Player 2

follows along the prefix of π that reaches 〈c0
i , s〉. Finally, let d ∈ D be such that 〈c0

i , d〉 is the state that AD reaches when it 
reads w . Since we define fD to agree with D, then the component state of this state in AD is indeed c0

i .
We distinguish between two cases. First, if 〈c0

i , s〉 exits α because of a suffix witness, let u ∈ �∗ be such that δ∗
i (u) ∈ Fi

and δ∗
S (s, u) /∈ FS . (The case where δ∗

i (u) /∈ (Fi ∪ Ei) and δ∗
S (s, u) ∈ FS is similar). Let c = δ∗

i (u). The run of AD on w · u
ends in the state 〈δ∗

i (u), s〉. Since δ∗
i (u) ∈ Fi , we have w · u ∈ L(AD). By the definition of E , we have that δ∗

S (w) = s. Since 
δ∗
S (s, u) /∈ FS , we have w · u /∈ L(S). Thus, L(AD) = L(S), and we reach a contradiction to the correctness of D.

In the second case, of an infix witness, there exist words u, u′ ∈ �∗ such that δ∗
i (u) = δ∗

i (u′) ∈ Ei and δ∗
S (s, u) = p =

p′ = δ∗
S (s, u′). Since S is a minimal DFA for L(S), we have L(S p) = L(S p′

). Thus, wlog, there is a word z ∈ L(S p) \ L(S p′
). 

Recall that δ∗
D(w) = 〈c0

i , d〉. Let d′ = δD(d, e) and j = ν(d′). Since δ∗
D(w · u) = δ∗

D(w · u′) = 〈c0
j , d

′〉, we have δ∗
D(w · u · z) =

δ∗
D(w · u′ · z). Thus, w · u · z ∈ L(AD) iff w · u′ · z ∈ L(AD). However, w · u · z ∈ L(S) and w · u′ · z /∈ L(S). Thus, we reach a 

contradiction to the correctness of D, and we are done.
Assume now that Player 1 wins the game GS . Let f be a memoryless winning strategy for Player 1. We construct 

a correct design D f from f . Note that all the successors of a vertex in V 1 are in V 2. Thus, f : V 1 → V 2. We define 
D f = 〈E, [n], D, δ, s0, ν〉 as follows. First, D = V 2 = C0 × S . Consider a state v = 〈c0

i , s〉 ∈ V 2 ∩ α. Recall that c0
i is the initial 

state of the component Bi . Since v ∈ α, the lack of an infix witness implies that for every exit state e ∈ Ei there is exactly 
one state s′ ∈ S such that 〈〈c0

i , s〉, 〈e, s′〉〉 ∈ E . We define δ(v, e) = f (〈e, s′〉). Note that if v /∈ α or e /∈ Ei , then we can define 
δ(v, e) arbitrarily. The labeling function ν is defined as expected, with ν(〈c0

i , s〉) = i.
We prove that D f is a correct design. Assume towards contradiction that there is a word w ∈ L(AD f ) \ L(S). The case 

where w ∈ L(S) \ L(AD f ) is similar. Consider the run r of AD f on w . Let Bi1 , . . . , Bim ∈ L∗ be sequence of components 
that r traverses and ei1 , . . . , eim−1 ∈ E∗ be the corresponding exit states. Let y1, . . . , ym be the partition of w according to D. 
Thus, for 1 ≤ j < m, we have yi ∈ �+ and δ∗

i j
(yi) = ei j ∈ Ei j , and ym ∈ �∗ . Since w ∈ L(AD f ), we have δ∗

im
(wm) ∈ Fim . Note 

that the word y1 · · · ym−1 ∈ �∗ is suffix-less, thus δ∗
D f

(y1 · . . . · ym−1) = 〈c0
im

, d〉 for some d ∈ D with ν(d) = im . Since we 
defined D f to agree with f on the components that gain control, the finite play π that is the outcome of the game when 
Player 1 plays f and Player 2 chooses the exit states ei1 , . . . , eim−1 reaches the Player 2 vertex v = 〈c0

im
, s〉 ∈ V 2, for s ∈ S

such that δ∗
S (y1 · · · ym−1) = s. We claim that v /∈ α. Indeed, δ∗

i (ym) ∈ Fi and since w /∈ L(S), we have ym /∈ L(S s). Thus, π
is a winning play for Player 2, contradicting our assumption that f is a winning strategy, and we are done. �

We show a tight lower bound.

Theorem 3.2. The closed-design problem is PTIME-hard.

Proof. We show a reduction from the problem of deciding the winner in a safety game, which is known to be PTIME-
complete [23]. Given a safety game G = 〈V , �, V 0, α〉, we construct a component library L and a specification S such that 
Player 1 wins G iff there is a correct design D; i.e., L(AD) = L(S). For simplicity, we assume that G has only one initial 
vertex, i.e., |V 0| = 1, that it belongs to Player 1, and that the players alternate turns, thus � ⊆ (V 1 × V 2) ∪ (V 2 × V 1). The 
problem of deciding the winner is PTIME-hard already for this fragment.

We define � = �. For each edge e = 〈v1, v2〉 ∈ (V 1 × V 2), we have a component Be . Intuitively, a design corresponds to 
a Player 1 strategy and assigning control to Be corresponds to a Player 1 move from v1 to v2. We describe the specification 
before showing how to simulate Player 2’s moves.

The language of S consists of the finite paths of G . This is achieved by constructing an automaton from G by labeling 
each edge e ∈ � with the letter e, setting the initial state to be the initial vertex of G , and setting all states to be accept-
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ing. Note that S is deterministic since edges have unique names. Further note that the run on a word w that does not 
correspond to a path in G gets stuck and thus w is rejected.

We construct a component Be so that it simulates a move of Player 2. The moves of Player 2 are modeled by a choice 
of word that a component processes, where we think of Player 2’s goal as trying to show that the design is incorrect. Let 
e = 〈v1, v2〉 ∈ (V 1 × V 2). There are two special vertices in Be , denoted ve

1 and ve
2, where ve

1 is the initial state of Be . Suppose 
Be gains control after reading a word w ∈ �∗ . The run of S on w reaches the state v1. If Player 2 chooses the letter e′ ∈ �

such that e′ is not an outgoing edge from v1, both the run in S and in Be get stuck and reject. If he chooses an outgoing 
edge e′ from v1 such that e′ = e, then Be proceeds to a state from which the words that are accepted are exactly the finite 
paths that start from v2 in G . In other words, by selecting e′ , Player 2 has no way of winning. This is achieved by placing, 
for every such e′, a copy Se′ of S in Be , where the initial state of Se′ is the target of e′ . Finally, if Player 2 chooses e, 
then Be moves to the state ve

2 that corresponds to the Player 2 vertex v2. From there, Player 2 can select any letter e′ ∈ �

such that e′ = 〈v2, v ′
1〉 ∈ (V 2 × V 1). Upon reading e′ , Be relinquishes control from the exit state v ′

1. In other words, Player 2
moves the token from v2 to the vertex v ′

1.
We show a correspondence between outcomes in G and runs of a compositional system constructed from L. Consider 

strategies f1 and f2 for Players 1 and 2, respectively, and let out( f1, f2) = v1, v2, . . . , vm for an even m. There is a clear 
one-to-one correspondence between designs and Player 1 strategies in G . Let D be the design that corresponds to f1. We 
construct a word w such that the run of AD on w visits the states ve1

1 , ve1
2 , . . . , vem/2

m−1, v
em/2
m , for some e1, . . . , em/2. We 

describe w inductively. Recall that Player 1 moves first. Suppose w is defined before Be gains control, where e = 〈v1, v2〉. 
Then, the next letter is e followed by 〈v2, f (v2)〉. Our definition of the components implies that the run of AD indeed has 
the form above. For the other direction, consider a design D. Every run of AD that has the form ve1

1 , ve1
2 , . . . , vem/2

m−1, v
em/2
m , 

for some e1, . . . , em/2, easily corresponds to a Player 2 strategy.
In order to conclude the construction, we need to take care of the safety objective of Player 1. Consider a vertex v in G

that is not safe. Let e ∈ � be such that ve is in the component Be . Then, the state ve in Be is rejecting. All other states in 
the components are accepting. The correspondence above implies that a run that visits ve corresponds to an outcome that 
visits v . The latter is losing for Player 1 and the former corresponds to a word that is rejected by AD and is accepted by S , 
and we are done. �
Open designs We continue to study the open setting. Recall that there, the input is a DFA S over the alphabet �I × �O

and an open library L. The goal is to find a correct design D or return that no such design exists, where D is correct if the 
composition transducer TD realizes L(S).

Lustig and Vardi [30] studied the design problem in a setting in which the specification is given by means of an LTL for-
mula. They showed that the problem is 2EXPTIME-complete. Given an LTL formula one can construct a deterministic parity 
automaton that recognizes the language of words that satisfy the formula. The size of the automaton is doubly-exponential 
in the size of the formula. Thus, one might guess that the design problem in a setting in which the specification is given by 
means of a DFA would be solvable in polynomial time. We show that this is not the case and that the problem is EXPTIME-
complete. As in [30], our upper bound is based on the ability to “summarize” the activity inside the components. Starting 
with an LTL formula, the solution in [30] has to combine the complexity involved in the translation of the LTL formula into 
an automaton with the complexity of finding a design, which is done by going throughout a universal word automaton that 
is expanded to a tree automaton. Starting with a deterministic automaton, our solution directly uses games. The interesting 
contribution, however, is the lower bound, showing that problem is EXPTIME-hard even when the specification is given by 
means of a deterministic automaton. We start with the upper bound.

Theorem 3.3. The open-design problem is in EXPTIME.

Proof. Given an open-library L and a DFA S = 〈�I × �O , S, δS , s0, FS 〉, we describe a safety game GS such that Player 1
wins GS iff there is a design for S using components from L. The number of vertices in GS is exponential in S . Since 
solving safety games can be done in linear time, membership in EXPTIME follows.

We define GS = 〈V , E, V 0, α〉 as follows.4 Recall that C , C0, E , and F are the union of all states, initial states, exit states, 
and accepting states in all the components of L. We define V = (C0 ∪ E) × 2S with V 1 = E × 2S and V 2 = C0 × 2S . Also, 
V 0 = C0 ×{{s0}}. As in the closed-setting, Player 1 selects the components that gain control, thus for a vertex 〈e, T 〉 ∈ V 1 we 
have 〈〈e, T 〉, 〈c0

i , T 〉〉 ∈ E , for every c0
i ∈ C0. Player 2 selects the word that is processed in the component, or equivalently, 

the exit state from which it relinquishes control, thus for a vertex v = 〈c0
i , T 〉 ∈ V 2 we have 〈〈c0

i , T 〉, 〈e, T ′〉〉 ∈ E iff for every 
s′ ∈ T ′ there is a state s ∈ T and a word u ∈ �∗

I such that δ∗
i (u) = e and, assuming w ∈ (�I × �O )∗ is the computation 

of Bi that corresponds to u, we have δ∗
S (s, w) = s′ . Intuitively, Player 1 tracks the computation that takes place in Bi as 

best as he can. Taking the edge 〈〈c0
i , T 〉, 〈e, T ′〉〉 models the fact that, assuming the run of S can be in any one of the 

4 A different way to construct GS would be to go through a partial-information game (see Theorem 3.4) with vertices in C × S , where Player 1 cannot 
distinguish between vertices 〈e, d〉 and 〈e, d′〉 for e ∈ E and d, d′ ∈ S . The game S is the corresponding game. We describe it directly, which also shows 
that the exponential dependency is only in S .
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states in T , then Player 2 can choose an input word such that Bi relinquishes control from e and the run of S is at any 
one of the states in T ′ . Note that for c0

i ∈ C0, T ∈ 2S , and e ∈ E , there is at most one, nonempty, subset T ′ ∈ 2S such that 
〈〈c0

i , T 〉, 〈e, T ′〉〉 ∈ E . The set of vertices that are losing for Player 1 consists of states 〈c0
i , T 〉 ∈ V 2 from which Player 2 can 

generate a suffix-witness to the incorrectness of the design. Formally, 〈c0
i , T 〉 ∈ α iff there exists u ∈ L(Bi) and s ∈ T such 

that u /∈ L(S s).
We claim that there is a correct design D iff Player 1 wins GS . For the first direction, consider a correct design D, thus 

L(TD) ⊆ L(S). We construct a winning Player 1 strategy fD . Recall that a design reads exit states and outputs components. 
Further recall that assuming the game does not end, a Player 2 move is a choice of an exit state. We define fD so that it 
responds to Player 2’s choice the same way D responds. We define fD(ε) = 〈c0

i , {{s0}}〉 for i = ν(d0), thus fD and D assign 
initial control to the same component. Consider a finite play π and let 〈e1, T1〉, . . . , 〈em, Tm〉 be the projection of π on V 2, 
thus e1, . . . , em ∈ E and T1, . . . , Tm ∈ 2S . We define fD(π) = 〈c0

i , Tm〉 where ν(δ∗
D(e1, . . . , em)) = i.

We claim that fD is a winning strategy. Assume towards contradiction that there is a Player 2 strategy f w that wins 
against fD . Let π = 〈c0

i1
, {s0}〉, 〈ei1 , T1〉, 〈c0

i2
, T1〉, 〈ei2 , T2〉, . . . , 〈eim−1 , Tm〉, 〈c0

im
, Tm〉 be the finite losing prefix of out( fD, f w), 

thus 〈c0
im

, Tm〉 /∈ α. Since 〈c0
im

, Tm〉 /∈ α there is a state sm ∈ Tm and a word wm ∈ L(Bi) such that wm /∈ L(S sm ). It is not hard 
to see that there are words w1, . . . , wm−1 ∈ (�I × �O )∗ and states s1, . . . , sm−1 ∈ S such that for 1 ≤ j ≤ m − 1 we have 
w j ∈ L(Bi j ), δ∗

i j
(c0

i j
, w j) = ei j , δ

∗
S (w1) = s1, and δ∗

S (s j, w j) = s j+1. It is not hard to see that since we defined fD to agree 
with D, the components that gain control in the run of TD on w = w1 · . . . wm are Bi1 , . . . , Bim , thus it is possible to 
prove by induction that w ∈ L(TD). Moreover, the run of S on w is not accepting, thus w ∈ L(TD) \ L(S), and we reach a 
contradiction to the correctness of D.

We continue to the second direction. Assume Player 1 wins the game GS . Thus, he has a memoryless winning strategy 
fD from which we construct a design D. Intuitively, in D, we skip exit states and proceed according to fD . Thus, the 
states of D are V 2 = C0 × 2S . Consider a state 〈c0

i , T 〉 ∈ V 2, where recall that c0
i is the initial state of the component 

Bi ∈ L, and an exit state e ∈ Ei of Bi . Recall that there is a unique subset T ′ ∈ 2S such that 〈〈c0
i , T 〉, 〈e, T ′〉〉 ∈ E . We define 

δD(〈c0
i , T 〉, e) = fD(〈e, T ′〉).

We claim that D is a correct design. Assume towards contradiction that there is a word w ∈ L(TD) \ L(S). Consider the 
run r of TD on w . Let Bi1 , . . . , Bim ∈ L∗ be sequence of components that r traverses. Let w1, . . . , wm be the partition of 
w according to D. That is, for 1 ≤ j ≤ m, the subword w j is induced while r is in component Bi j and δ∗

i j
(w j) ∈ Ei j . Let 

πw = ei1 , . . . , eim−1 ∈ E∗ be the exit states that r visits. Note that since Bim gains control last the word w1 · . . . · wm−1 is 
suffix-less, thus δ∗

D(w1 · . . . · wm−1) = 〈c0
im

, d〉 for some d ∈ D having ν(d) = im . Moreover, wm ∈ L(Bim ). Since we defined D
to agree with fD on the components that gain control, the finite play π that is the outcome of the game when Player 1
plays fD and Player 2 chooses the exit states ei1 , . . . , eim−1 reaches the Player 2 vertex v = 〈c0

im
, T 〉 ∈ V 2, for some T ∈ 2S . 

We claim that v /∈ α. Indeed, the definition of E implies that there is a vertex s ∈ T such that δ∗
S (w1 · . . . · wm−1) = s. Since 

w /∈ L(S), we have wm /∈ L(S s) and wm ∈ L(Bim ). Thus, π is a winning play for Player 2, contradicting our assumption that 
fD is a winning strategy, and we are done. �

We continue to study the lower bound.

Theorem 3.4. The open-design problem is EXPTIME-hard.

Proof. We describe a reduction from the problem of deciding whether Player 1 has a winning strategy in a partial-
information safety game, known to be EXPTIME-complete [10].

Partial-information games (PI games, for short) are a variant of the full-information games (FI games, for short) defined 
above in which Player 1 has imperfect information [33]. The vertices, which we refer to as locations, denoted L, are parti-
tioned into observations, denoted O. Player 1 is unaware of the location on which the token is placed and is only aware 
of the observation it is in. Accordingly, in his turn, Player 1 cannot select the next location to move the token to. Instead, 
the edges in the game are labeled with actions, denoted �. In each round, Player 1 selects an action and Player 2 resolves 
nondeterminism and chooses the next location the token moves to. Initially, the token is placed on l0 ∈ L. The set of labeled 
edges in the game is ϒ ⊆ L × � × L, and the safety objective α is given with respect to the observations, thus α ⊆O.

Formally, a PI game is played on an arena 〈�, L, O, l0, ϒ, α〉, where � is a set of actions, L is a set of locations, O ⊆ 2L is 
a set of observations that form a partition of L (that is, O = {L1, . . . , Lk} where for all i = j ∈ [k], we have that Li ∩ L j = ∅, 
and 

⋃
i∈[k] Li = L), l0 ∈ L is an initial location, ϒ ⊆ L × � × L are labeled edges, and α is a winning condition defined with 

respect to O. In particular, in safety games α ⊆O are safe observations for Player 1. We require that for every location l ∈ L
and action a ∈ �, there is a location l′ ∈ L such that 〈l, a, l′〉 ∈ ϒ.

The game proceeds similarly to FI games. At the beginning of the game, a token is placed on the initial location l0. 
Assume the token is on a location l ∈ L. Player 1 moves first and selects an action a ∈ �. Player 2 resolves non-determinism 
and selects a location l′ ∈ L such that 〈l, a, l′〉 ∈ ϒ. Since Player 1 only observes the member in O in which l is, a strategy 
for Player 1 is a function f1 : (O · �)∗ · O → �. Since Player 2 has complete information, a strategy for him is a function 
f2 : L+ · � → L such that for a play π = l0, . . . , lm and an action a ∈ �, we have 〈lm, a, f2(π, a)〉 ∈ ϒ. The definition of 
winning strategies are as in the full-information setting.
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Consider a PI safety game G = 〈�, L, O, l0, ϒ, α〉. We construct a library L and a DFA S such that there is a correct design 
for S using the components of L iff Player 1 wins G . Recall that a design reads an exit state and outputs the component 
that gets control next. Also, a Player 1 strategy in G reads observations and outputs actions. Accordingly, the library L
consists of box-transducers Ba , one for every action a ∈ �. The exit states of the components correspond to the observations 
in O. That is, when a component exits through an observation Li ∈ O, the design decides which component Ba ∈ L gains 
control, which corresponds to a Player 1 strategy that chooses the action a ∈ � from the observation Li .

Next, we define words to correspond to Player 2 strategies. Recall that Player 2 resolves nondeterminism in G . That 
is, when the token is in location l ∈ L and Player 1 selects an action a ∈ �, Player 2 selects an edge 〈l, a, l′〉 ∈ ϒ and 
the token moves to the location l′ . Accordingly, �I = ϒ, thus a word in �∗

I is a sequence of edges. We define the spec-
ification S so that a word witnesses the incorrectness of the design only if it corresponds to a losing path in G , where 
〈l0, a1, l′1〉, 〈l1, a2, l′2〉, 〈l2, a2, l′3〉, . . . , 〈lm−1, am−1, l′m〉 ∈ ϒ∗ is a losing path if for all 1 ≤ i ≤ m − 1 we have that l′i = li and 
l′m /∈ α.

Finally, we define the components so that a correct design corresponds to a winning Player 1 strategy. For a ∈ �, the 
component Ba ∈ L can process every edge that is labeled with a. When reading such an edge it relinquishes control, and 
when reading an edge that is labeled with b = a, the component enters a sink which is intuitively a rejecting sink. Thus, 
in order to avoid processing a word w = t1 . . . tm that corresponds to a losing path, a design must assign control to some 
component Ba with a = ai , after reading the input prefix t1 . . . ti−1, for 1 ≤ i ≤ m.

Formally, for a ∈ �, we define the box-transducer Ba = 〈ϒ, {�, ⊥}, {c0
a , crej

a } ∪O, c0
a , δa, νa, O〉, where νa(c0

a) = �, νa(crej
a ) =

⊥, and δa is defined as follows. Consider an edge 〈l, a, l′〉 ∈ ϒ. We define δa(c0
a , 〈l, a, l′〉) = P , for the observation P with 

l′ ∈ P . For an edge 〈l, b, l′〉 ∈ ϒ, with b = a, we define δa(c0
a , 〈l, b, l′〉) = crej

a . The state crej
a is a sink, thus δa(crej

a , σ) = crej
a for 

all σ ∈ �I . Note that the component Ba relinquishes control and outputs � when it reads a transition labeled a. Otherwise, 
it gets stuck in the rejecting sink.

The specification is given by the DFA S = 〈�I × �O , S, δS , l0, FS 〉, where S = L ∪ {sacc}, the accepting states FS are the 
states that do not belong to observations in α, thus FS = S \ ⋃

P∈α P , and we describe δS in the following. Consider a 
location l ∈ L. For every edge t = 〈l, a, l′〉 ∈ ϒ we define δS (l, 〈t, �〉) = l′ . For every other letter σ ∈ �I × �O , we define 
δS (l, σ) = sacc .

Note that a word w ∈ (�I ×�O )∗ is not in L(S) if it is of the form w = w1 ⊕ w2 ∈ (�I ×�O )∗ for w2 ∈ �∗ and w1 ∈ �∗
I

corresponds to a losing path in G . That is, w = t1 . . . tm , where t1, . . . , tm ∈ ϒ, t1 = 〈l0, a1, l1〉, for 1 ≤ i < m, the target location 
of the transition ti is the source location of ti+1, and assuming tm = 〈tm−1, am, tm〉, we have tm /∈ α. Recall that a component 
Ba ∈ L relinquishes control after reading an edge that the action a ∈ � participates in. When reading an edge that a does 
not participate in, Ba enters a sink and outputs ⊥. Thus, in order to avoid processing the word w as in the above, a design 
must assign control to some component Ba with a = ai , after reading the input prefix t1 . . . ti−1, for 1 ≤ i ≤ m.

We claim that Player 1 wins G iff there is a correct design D for S using the components in L. For the first direction, 
consider a Player 1 winning strategy f1. We construct a design D inductively. Let a1 = f1(P0), where P0 ∈ O is such that 
l0 ∈ P0. The first component to gain control is Ba1 . Consider a run on some word, and let Ba1 , P1, Ba2 , P2, . . .Bam Pm be the 
sequence of components and corresponding exit states that the run visits. Recall that P1, . . . , Pm are observations in O. Let 
π = P0, a1, P1, . . . , Pm , where l0 ∈ P0. Note that π might not correspond to a path in G , in which case D assigns control to 
an arbitrary component. Otherwise, assuming f1(π) = am+1, D assigns control to Bam+1 .

We claim that D is a correct design. Assume towards contradiction that there is a word w ∈ L(TD) \ L(S). Since w /∈ L(S), 
its projection on �O is in �∗ and the projection of w on �I is a losing path t1, . . . , tm . For 1 ≤ i ≤ m, let ti = 〈li−1, ai, li〉, 
where l0 = l0. Let r be the run of TD on w . Since the projection of w on �O is a sequence of �’s, the sequence of 
components and exit states that r passes is Ba1 , P1, . . . , Bam , Pm . Indeed, if for 1 ≤ i ≤ m and b = ai , the component Bb ∈ L
is in control when ai is read, the component outputs ⊥. Let π be the path that corresponds to t1, . . . , tm , thus π = l0, . . . , lm , 
where l0 = l0. Consider the Player 2 strategy f2 that selects the edges t1, . . . , tm . Since by our definition of the components 
in L, for 1 ≤ i ≤ m, we have li ∈ Pi , we can prove by induction that π is a prefix of out( f1, f2). Since lm /∈ α, the strategy 
f2 is winning against f1, which is a contradiction to the fact that it is a winning strategy, and we are done.

For the second direction, consider a correct design D. We define a Player 1 strategy fD inductively as follows. We 
abuse notation and refer to the labeling function ν of D as a function from its states D to L. Assume the first component 
that D assigns control to is Ba1 ∈ L. For the observation P0 such that l0 ∈ P0, we define f1(P0) = a1. Consider a play 
π = l0, l1, . . . , lm , where l0 = l0. Let τ = P0, a1, P1, . . . , am, Pm such that for 1 ≤ i ≤ m we have li ∈ Pi . Let a1, . . . , am ∈ �

such that, for 1 ≤ i ≤ m we have 〈li−1, ai, li〉 ∈ ϒ. Let δ∗
D(P1 . . . Pm) = d and let ν(d) = Bam ∈L. We define fD(τ ) = am .

We claim that fD is a winning strategy. Assume towards contradiction that there is a Player 2 strategy f2 and a finite 
prefix π of out( fD, f2) that is winning for Player 2. Let τ = t1, . . . , tm be the edges that π traverses. Consider the run of 
TD on τ . We can prove by induction that by our definition of fD , for 1 ≤ i ≤ m, when the letter ti = 〈li−1, ai, li〉 is read, 
the component Bai is in control. Thus, the output of TD when reading the word τ is a sequence w of |τ | �’s. Since τ
corresponds to a losing path, we have τ ⊕ w ∈ L(TD) \ L(S), which is a contradiction to the correctness of D, and we are 
done. �
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4. Libraries with costs

Given a library and a specification, there are possibly many, in fact infinitely many, designs that are solutions to the 
design problem. As a trivial example, assume that L(S) = a∗ and that the library contains a component B that traverses 
the letter a (that is, B consists of an accepting initial state that has an a-transition to an exit state). An optimal design for 
S uses B once: it has a single state with a self loop in which B is called. Other designs can use B arbitrarily many times. 
When we wrote “optimal” above, we assumed that the smaller the design is, the better it is. In this section we would like 
to formalize the notion of optimality and add to the composition picture different costs that components in the libraries 
may have.

In order to capture a wide set of scenarios in practice, we associate with each component in L two costs: a construction 
cost and a quality cost. The costs are given by the functions c-cost, q-cost :L →R+ ∪ {0}, respectively. The construction cost 
of a component is the cost of adding it to the library. Thus, a design that uses a component pays its construction cost 
once, and (as would be the case in Section 6), when several designs use a component, they share its construction cost. The 
quality cost measures the performance of the component, and involves, for example, its number of states. Accordingly, a 
design pays the quality cost of a component every time it uses it, and the fact the component is used by other designs is 
not important.

Formally, consider a library L = {B1, . . . , Bn} and a design D = 〈E, [n], D, d0, δ, ν〉. The number of times D uses a compo-
nent Bi is nused(D, Bi) = |{d ∈ D : ν(d) = i}|. The set of components that are used in D, is used(D) = {Bi : nused(D, Bi) ≥ 1}. 
The cost of a design is then cost(D) = ∑

B∈used(D) c-cost(B) + nused(D, B) · q-cost(B).
We state the problem of finding the cheapest design as a decision problem. For a specification DFA S , a library L, and a 

threshold μ, we say that an input 〈S, L, μ〉 is in BCD (standing for “bounded cost design”) iff there exists a correct design 
D such that cost(D) ≤ μ. In this section we study the BCD problem in a setting with a single user. Thus, decisions are 
independent of other users of the library, which, recall, may influence the construction cost.

In section 3, we reduced the design problem to the problem of the solution of a safety game. In particular, we showed 
how a winning strategy in the game induces a correct design. Note that while we know that safety games admit memoryless 
strategies, memoryless strategies are not guaranteed to lead to optimal designs. We first study this point and show that, 
surprisingly, while memoryless strategies are sufficient for obtaining an optimal design in the closed setting, this is not the 
case in the open setting. The source of the difference is the fact that the language of a design in the open setting may be 
strictly contained in the language of the specification. The approximation may enable the user to generate a design that is 
more complex and is still cheaper in terms of cost. This is related to the fact that over approximating the language of a DFA 
may result in exponentially bigger DFAs [6]. We are still able to bound the size of the cheapest design by the size of the 
game.

4.1. On the optimality and non-optimality of memoryless strategies

Consider a closed library L and a DFA S . Recall that a correct design for S from components in L is induced by a 
winning strategy of Player 1 in the game GS (see Theorem 3.1). If the winning strategy is not memoryless, we can trim it 
to a memoryless one and obtain a design whose state space is a subset of the design induced by the original strategy. Since 
the design has no flexibility with respect to the language of S , we cannot do better. Hence the following lemma.

Lemma 4.1. Consider a closed library L and a DFA S . For every μ ≥ 0, if there is a correct design D with cost(D) ≤ μ, then there is a 
correct design D′ induced by a memoryless strategy for Player 1 in GS such that cost(D′) ≤ μ.

Proof. Consider a correct design D with cost(D) ≤ μ. Let fD be a winning Player 1 strategy in the safety game GS
as constructed in the proof of Theorem 3.1. Note that while we know that safety games admit memoryless strategies, 
memoryless strategies are not guaranteed to lead to optimal designs. Thus, fD need not be a memoryless strategy. We 
construct a Player 1 memoryless strategy f ′

D by trimming fD in every memoryfull vertex. Then, we construct a design D′
from f ′

D and show that it costs no more than D.
In order to prove the claim formally, we need a few definitions. Consider a Player 1 vertex v = 〈e, s〉 ∈ V 1. We define 

adj( fD, v) ∈ V to be the vertices fD continues to from v . That is, u ∈ adj( fD, v) if there is a play πu that ends in v and 
is an outcome of the game when Player 1 plays fD and Player 2 plays some strategy, and fD(πu) = u. We refer to πu as 
a witness play for u ∈ adj( fD, v). Note that there can be many witness plays for a vertex in adj( fD, v). Further note that 
if adj( fD, v) is a singleton, then v is a memoryless vertex with respect to fD . Consider a vertex u = 〈c0

i , s〉 ∈ adj( fD, v). 
Intuitively, since we define fD to assign control as D, and since fD continues to u after πu , there must be a state du ∈ D
with ν(du) = i. Thus, du is a witness state for the fact that fD(πu) = u. Again, there can be several witness states for a 
vertex in adj( fD, v). Formally, let πu be a witness play for u and let wu ∈ �∗ be the word that is induced by the Player 2
choices in πu . That is, δ∗

S (wu) = s, where recall that v = 〈e, s〉. Moreover, let e1, . . . , em be the exit states that are traversed 
in πu , and let du = δ∗

D(e1 . . . em). Since fD assigns control to the same components as D, the run of AD on wu ends in the 
state 〈c0

i , du〉. We refer to wu and du as a witness word and state for u, respectively.
We define f ′

D as follows. For every v ∈ V 1, we choose a vertex u ∈ adj( fD, v) arbitrarily and define f ′
D(v) = u. It is not 

hard to prove that f ′ is a winning strategy. Let D′ be the design that corresponds to f ′ and is constructed as in the proof 
D D
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Fig. 1. A description of the i-th chain of the specification Sn .

of Theorem 3.1. Since f ′
D is winning, D′ is a correct design. We claim that cost(D′) ≤ cost(D). Recall that the states of D′

are the Player 2 vertices in GS . Further recall that in the construction of D′ we skip Player 1 vertices and proceed according 
to f ′

D . Consider a reachable Player 2 vertex 〈c0
i , s〉. We denote by ν ′ the labeling function of D′ . Recall that c0

i is the initial 
state of the component Bi ∈ L and ν ′(〈c0

i , s〉) = i. First, we claim that if a component is used in D′ then it is used in D, 
thus used(D′) ⊆ used(D). Indeed, if Bi ∈ used(D′), there is a state in D′ that corresponds to a reachable Player 2 vertex 
v = 〈c0

i , s〉, for some s ∈ S . Let sv be a witness state of v . Since the labeling of sv is ν(sv ) = i, we have Bi ∈ used(D). We 
conclude that the sum of construction costs that is incurred by D′ is at most that of D.

We prove that the sum of quality costs incurred by D′ is at most that of D. We prove that for every Bi ∈ used(D′) we 
have nused(D′, Bi) ≤ nused(D, Bi). For a reachable vertex v ∈ V 2 let dv ∈ D be an arbitrary choice of witness state of v . 
Let w v be the corresponding witness word. We show that the mapping from a reachable vertex v ∈ V 2 to dv ∈ D is a 
one-to-one mapping. Consider v, u ∈ V 2 with dv = du . Let d = dv = du . Let i = ν(d). Since the component-state of v and u
is the initial state of Bi , we have v = 〈c0

i , s〉 and u = 〈c0
i , s

′〉. To conclude the proof, we show that s = s′ , thus v = u. We 
claim that L(S s) = L(S s′ ) and since S is a minimal DFA, it would follow that s = s′ . Recall that w v and wu are the witness 
words for v and u, respectively, thus δ∗

S (w v) = s and δ∗
S (w v ′ ) = s′ . Moreover, since w v and wu are the witness words that 

correspond to the witness states dv = du = d, we have δ∗
D(w v) = δ∗

D(wu) = 〈c0
i , d〉. Consider a word x ∈ �∗ . If x ∈ L(S s), 

then since δ∗
S (w v) = s, we have w v · x ∈ L(S). Since D is a correct design, w v · x ∈ L(AD). Thus, δ∗

D(w v · x) is an accepting 
state. Since δ∗

D(w v) = δ∗
D(wu), we have wu · x ∈ L(AD) and in turn wu · x ∈ L(S). Since δ∗

S (wu) = s′ , we have u ∈ L(S s′ ). 
The other direction is symmetric, and we are done. �

While Lemma 4.1 seems intuitive, it does not hold in the setting of open systems. There, a design has the freedom to 
generate a language that is a subset of L(S), as long as it stays receptive. This flexibility allows the design to generate a 
language that need not be related to the structure of the game GS , which may significantly reduce its cost. Formally, we 
have the following.

Lemma 4.2. There is an open library L and a family of DFAs Sn such that Sn has a correct design Dn with cost 1 but every correct 
design for Sn that is induced by a memoryless strategy for Player 1 in GSn has cost n.

Proof. We define Sn = 〈�I × �O , Sn, δSn , s
0
0, FSn 〉, where �I = {0̃, ̃1, #}, �O = {0, 1, _}, and Sn , δSn and FSn are as follows. 

When describing δSn , for ease of presentation, we sometimes omit the letter in �I or �O and we mean that every letter in 
the respective alphabet is allowed. The words we focus on consist of an input sequence in #∗ followed by an input sequence 
in {0̃, ̃1}n , and end in an output sequence in {0, 1}n . Consider an input word #iu, for 1 ≤ i ≤ n and u1, . . . , un ∈ (0̃ + 1̃)n . The 
prefix of #’s constraints the i-th output letter following this input sequence. If ui = 0̃, then the i-th output letter should 
be 0, and if ui = 1̃, then it should be 1. The automaton Sn consists of n chains, sharing an accepting sink sacc and a rejecting 
sink srej . For 0 ≤ i ≤ n − 1, we depict the i-th chain in Fig. 1.

Intuitively, we construct Sn to count the number of #’s and then check the corresponding indices. Another method is to 
disregard the count of #’s. Then, since we do not know which input letter needs to match the corresponding output letter, 
we match all of them. That is, we remember all the input letters in (0̃ + 1̃)n and output a matching word in (0 + 1)n . In our 
component library, counting #’s has a cost whereas remembering input letters in {0̃, ̃1} is free, thus the size of the optimal 
design is going to be exponential in the input. A design that corresponds to a memoryless strategy counts #’s and is thus 
suboptimal.

We define Sn and the library L so that the structure of GSn supports the first method, but counting each # has a 
cost of 1. Consequently, a memoryless strategy of Player 1 in GSn induces a design that counts, and is therefore of cost n, 
whereas an optimal design follows the second method, and since it does not count the number of #’s, its cost is only 1.

We can now describe the DFA Sn in more detail. For 0 ≤ i < n − 1, we define δSn (si
0, #) = si+1

0 and δSn (sn
0, #) = sn

0. Note 
that words of the form #ia11̃a2b0 or #ia10̃a2b1 are not in L(Sn), where if 0 ≤ i ≤ n − 1, then a1 ∈ (0̃ + 1̃)i , a2 ∈ (0̃ + 1̃)n−i−1, 
and b ∈ (0 + 1)i , and if i > n − 1 then the lengths of a1, a2, and b are n − 1, 0, and n − 1, respectively. We require 
that after reading a word in #∗(0̃ + 1̃)n there is an output of n letters in {0, 1}. Thus, for n ≤ j ≤ n + i + 1, we define 
δSn (si,0

j , _) = δSn (si,1
j , _) = srej . Also, Sn accepts every word that has a # after the initial prefix of # letters. Thus, for 1 ≤ j ≤ i, 

we define δSn (si
j, #) = sacc , and for i + 1 ≤ j ≤ n + i + 1 and t ∈ {0, 1} we define δSn (si,t

j , #) = sacc .
The library L is depicted in Fig. 2. The quality and construction costs of all the components is 0, except for B1 which 

has q-cost(B1) = 1 and c-cost(B1) = 0.
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Fig. 2. The library L. Exit states are square nodes and the output of a state is written in the node.

We first claim that every correct design must cost at least 1. Indeed, such a design must use B1 at least once. Otherwise, 
the output sequence for the input word #0̃n+1 is a sequence in _∗ . Recall that we require that after reading a word in 
#∗(0̃ + 1̃)n there is an output of n letters in {0, 1}, thus such a design is incorrect.

We describe a correct design Dn with cost(Dn) = 1. Intuitively, as explained above, Dn does not track the number of #’s 
that are read and can thus use B1 only once. Instead, Dn keeps track of all of the n input letters in {0̃, ̃1} that follow the 
sequence in #∗ . Thus, after 0̃ or 1̃ is read, B2 gains control for n consecutive times. Then, assuming the word u ∈ {0̃, ̃1}n

is read in the first phase, control is alternated between B3 and B4 so that the word v ∈ {0, 1}n is output, where u and v
represent the same vector. Note that Dn uses the components B2, B3, and B4 exponentially many times in n.

Formally, we define Dn = 〈�I , �O , Dn, δDn , d0, ν〉. We define ν(d0) = 1 and δDn (d
0, e1

#) = d0. When B1 relinquishes 
control through e1

1 or e1
0 control is passed to B2 for n consecutive times. During this phase, Dn remembers the vector in 

{0̃, ̃1}n that is read, thus Dn has 2�(n) states. Next, the components B3 and B4 alternate control for n times as we describe 
in the following. Consider an input word w = #i ·a1 . . .anb, where a1, . . . , an ∈ {0̃, ̃1}n and b ∈ {0̃, ̃1}m for 0 ≤ m < n −1. After 
reading w either B3 or B4 relinquish control. If am+1 = 0, then the next component to gain control is B3 and otherwise it 
is B4. After n alternations of control B4 is assigned control indefinitely.

Since the initial state of Dn is the only state that is labeled with B1, we have nused(B1) = 1, thus cost(Dn) = 1. We 
claim that Dn is a correct design. Indeed, note that L(TDn ) consists of two types of words. The first type are prefixes of 
words in #∗ab0∗ , for a ∈ {0̃, ̃1}n and b ∈ {0, 1}n that represent the same vector, thus for 1 ≤ i ≤ n, if ai = 0̃, then bi = 0 and 
if ai = 1̃, then bi = 1. The second type are words that have a prefix in #∗(0̃ + 1̃)+#. Clearly, L(TDn ) ⊆ L(Sn), and we are 
done. �
4.2. Solving the BCD problem

Theorem 4.3. The BCD problem is NP-complete for closed designs.

Proof. Consider an input 〈S, L, μ〉 to the BCD problem. By Lemma 4.1, we can restrict the search for a correct design D
with cost(D) ≤ μ to these induced by a memoryless strategy for Player 1 in GS . By the definition of the game GS , such a 
design has at most |C0 × S| states. Since checking if a design is correct and calculating its cost can be done in polynomial 
time, membership in NP follows.

For the lower bound, we describe a reduction from SET-COVER. Consider an input 〈U , T , μ〉 to SET-COVER, where U =
{1, . . . , l} is a universe, T = {T1, . . . , Tm} is a set of subsets over U , i.e., Ti ⊆ U , for 1 ≤ i ≤ m, and μ ∈ N. We construct a 
closed-library L and a DFA S such that there is a design D that costs at most μ iff there is a set-cover of size at most μ.

We construct the DFA S over the alphabet U as a chain of l + 1 states that accepts only the word 12 . . . l. There are 
m + 2 components in L. For 1 ≤ i ≤ m, the component Bi corresponds to the set Ti . Its initial state is c0

i and it has an 
exit state ei

j for every element j ∈ Ti . For j ∈ Ti there is a transition δi(c0
i , j) = ei

j . The last two components are Bacc

and Brej . For consistency we also refer to these components as Bm+1 and Bm+2, respectively. They consist of a single 
initial non-exit state that is accepting in Bacc and rejecting in Brej . For Bi ∈ L, we define c-cost(Bi) = 1 and we define 
c-cost(Bacc) = c-cost(Brej) = 0. Finally, the quality cost of the components is 0, thus we define q-cost ≡ 0.

We claim that there is a set cover of size at most μ iff there is a design of cost at most μ. For the first direction, 
consider a set cover T ′ ⊆ T with |T ′| ≤ μ. For j ∈ U , let cover( j) be the index such that j ∈ Tcover( j) and Tcover( j) ∈ T ′ . We 
construct a design D with cost(D) ≤ μ. We define D so that when AD reads the word 1 . . . l, the component that gets j-th 
control, for 1 ≤ j ≤ l, is Bcover( j) . If the j-th input letter is j′ = j, then the next component to gain control is Brej . Finally, 
the component that gains l + 1-th control is Bacc .

Formally, D = 〈E, [m + 2], D, δD, d1, ν〉, where {d1, . . . , dl, dacc, drej} and we define ν and δD as follows. For 1 ≤ j ≤ l, 
we define ν(d j) = cover( j). For 1 ≤ i ≤ m, recall that the component Bi has an exit state ei

j for every j ∈ Ti . For j < l and 
1 ≤ i ≤ m, we define δD(d j, ei

j) = d j+1 and we define δD(dl, ei
l ) = dacc . For j = i, we define δD(d j, ei

j) = drej . It is not hard 
to see that L(AI ) = {12 . . . l}, and thus D is a correct design. The components that D uses are the ones that correspond to 
the sets in T ′ , thus D uses at most μ components with construction cost 1, and its cost is at most μ.

For the other direction, assume there is a correct design D with cost(D) ≤ μ. Consider the collection T ′ ⊆ T of sets that 
correspond to the components {ν(d) : d ∈ D and ν(d) /∈ {Bacc, Brej}}. We claim that T ′ is a set cover with at most μ sets. 
Since cost(D) ≤ μ, it uses at most μ components that correspond to sets in T , thus |T ′| ≤ μ. We are left to show that T ′
is a set cover. Consider the run r of AD on the word 1 . . . l. Since D is correct, r is accepting. Specifically it does not get 
stuck. Since the components we described above relinquish control after reading a single letter, the control is passed l + 1
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times during r. Let Bi1 , . . . , Bil , Bil+1 be the sequence of components that gain control. Consider j ∈ U . We claim that j is 
covered in T ′ . Since r does not get stuck, there is a transition labeled j in the component Bi j , the j-th component to gain 
control in r. Thus, j ∈ Ti j , the set in T that corresponds to Bi j . Since Ti j ∈ T ′ , j is covered, and we are done. �
Remark 4.4. Note that a different attempt to reduce SET-COVER to the BCD problem would be to define the components 
as in the proof of Theorem 4.3 and define S so that it accepts one-letter words for each element in U . However, this 
attempt fails since, intuitively, a design does not know which letter is going to be read. Even if there is a set cover T ′ ⊆ T
and control is assigned to the component Bi where Ti ∈ T ′ , a letter j ∈ U \ Ti can be read. Thus, the fact that we use a 
one-word specification allows a design to expect the next letter that should be read.

We turn to study the open setting, which is significantly harder than the closed one. For the upper bound, we first show 
that while we cannot restrict attention to designs induced by memoryless strategies, we can still bound the size of optimal 
designs:

Theorem 4.5. For an open library L with � components and a specification S with n states, a cheapest correct design D has at most ( n
�n/2�

) · � states.

Proof. Given S and L, assume towards contradiction that any cheapest smallest design D for S using the components in 
L has more than 

( n
�n/2�

) · � states.
Consider a word w ∈ L(TD). Let Bi1 , . . . , Bim ∈ L be the components that are traversed in the run r of TD that induces 

w . Let w = w1 · . . . · wm , where, for 1 ≤ j ≤ m, the word w j is induced in the component Bi j . We say that w is suffix-less 
if wm = ε , thus r ends in the initial state of the last component to gain control. We denote by πw (D) = ei1 , . . . , eim−1 ∈ E∗
the sequence of exit states that r visits.

For a state d ∈ D , we define the set Sd ⊆ S so that s ∈ Sd iff there exists a suffix-less word w ∈ (�I × �O )∗ such 
that δ∗

S (w) = s and δ∗
D(πw(D)) = d. Since D has more than 

( n
�n/2�

) · � states, there is a component Bi ∈ L such that 
the set D ′ ⊆ D of states that are labeled with Bi is larger than 

( n
�n/2�

)
. The set D ′ can be seen as a set of subsets of 

states of S . A pigeonhole-principle argument5 shows that there must be two states d, d′ ∈ D ′ that have Sd′ ⊆ Sd . Note that 
ν(d) = ν(d′) = i.

We construct a new design D′ by merging d′ into d. Formally, we define D ′ = D \ {d′}. If d′ is the initial state of D, then 
we define d′ 0 = d and otherwise we define d′ 0 = d0. For t ∈ D ′ and e ∈ E , if δD(t, e) = d′ , then we define δD′ (t, e) = d, and 
otherwise we define δD′ (t, e) = δD(t, e). Finally, for every t ∈ D ′ we define ν ′(t) = ν(t).

Clearly, for every component B ∈L we have nused(D, B) ≥ nused(D′, B), thus cost(D) ≥ cost(D′). Moreover, D′ has less 
states than D. Thus, in order complete the contradiction and conclude the proof of the theorem, we prove the following.

Claim 4.6. The design D′ is correct. That is, L(TD′) ⊆ L(S).

In order to prove the claim we prove the following.

Claim 4.7. For every suffix-less (w.r.t D′) word x ∈ L(TD′) there is a suffix-less (w.r.t D) word y ∈ L(TD) such that δ∗
S(x) = δ∗

S (y) and 
δ∗
D(πy(D)) = δ∗

D′ (πx(D′)).

Before proving the correctness of Claim 4.7 we show that it implies the correctness of Claim 4.6. Assume towards 
contradiction that there is a word w ∈ L(TD′) \ L(S). Let r be the run of TD′ that induces w and let Bi ∈ L be the last 
component to gain control in r. Let w0, . . . , wm be the partition of w with respect to D′ and let x = w0 · . . . · wm−1. That 
is, x is the longest suffix-less prefix of w (possibly x = ε). Note that πw (D′) = πx(D′). By Claim 4.7 there is a suffix-less 
(w.r.t D) word y ∈ L(TD) such that δ∗

S (x) = δ∗
S (y) and δ∗

D(πy(D)) = δ∗
D′(πx(D′)). Since δ∗

D(πy(D)) = δ∗
D′ (πx(D′)), the last 

component to gain control in the two runs is Bi . Since both x and y are suffix-less, the runs that induce them end in 
the initial state of Bi , thus δ∗

D(y) = δ∗
D′ (x). Recall that w = x · wn ∈ L(TD′). Thus, y · wn ∈ L(TD). Since δ∗

S (y) = δ∗
S (x) and 

w /∈ L(S), we have y · wn /∈ L(S). Thus, y · wn ∈ L(TD) \ L(S), and we reach a contradiction to the correctness of D, and we 
are done.

We continue to prove Claim 4.7. Consider a suffix-less (w.r.t D′) word x ∈ L(TD′) and let r be the run of D′ on πx(D′), 
which are the exit states that TD′ visits when inducing x. The proof is by induction on the number of visits of r to d ∈ D ′ . 
For the base case, r does not visit d. Thus, r is a run of D on πx(D′), and we define y = x.

Assume the claim is correct for runs with m visits to d and we prove for runs with m + 1 visits. Let πx(D′) = πx1 (D′) ·
e · πx3 (D′) such that δ∗

D′ (πx1 (D′) · e) = d is the last visit of r to d. Let x = x1 · x2 · x3, where x1 and x1 · x2 are suffix-less. 

5 Consider a set A having m elements and the power set lattice 〈2A, ⊆〉. Two elements P , Q ⊆ A are comparable if P ⊆ Q or Q ⊆ P . The argument 
follows from the fact that the maximal size of an incomparable set in such a lattice is ( m

�m/2�
)
.
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That is, assuming t = δ∗
D′ (πx1 (D′)) and ν ′(t) = i, then x2 is the sub word of x that is induced by the component Bi , 

thus δ∗
i (x2) = e ∈ E . We distinguish between two cases. In the first case x2 = ε , thus x1 = ε and d′ 0 = d, and we define 

y = x as in the base case. In the second case, x2 = ε . By the induction hypothesis, there is a suffix-less (w.r.t D) word 
y1 ∈ (�I × �O )∗ such that δ∗

D(πy1 (D)) = δ∗
D′(πx1 (D′)) = t ∈ D ′ and δ∗

S (y1) = δ∗
S (x1). If δD(t, e) = d, then δD′ (t, e) = d and 

y = y1 · x2 · x3 clearly meets the requirements of the claim. Assume δD(t, e) = d′ . Note that y1 · x2 is a suffix-less (w.r.t D) 
word with δ∗

D(πy1·x2 (D)) = d′ . Let δ∗
S (y1 · x2) = s. Since Sd′ ⊆ Sd , there is a suffix-less (w.r.t D) word z ∈ (�I × �O )∗ such 

that δD(πz(D)) = d and δ∗
S (z) = s. We define y = z · x3, which clearly meets the requirements of the claim, and we are 

done. �
Before we turn to the lower bound, we argue that the exponential blow-up proven in Theorem 4.5 cannot be avoided:

Theorem 4.8. For every n ≥ 1, there is an open library L and specification Sn such that the size of L is constant, the size of Sn is 
O (n2), and every cheapest correct design for Sn that uses components from L has at least 2n states.

Proof. Consider the specification Sn and library L that are described in Lemma 4.2. We claim that every correct design that 
costs 1 cannot count #’s and should thus remember vectors in {0̃, ̃1}n . Assume towards contradiction that there is a correct 
design D with cost(D) = 1 and D has less than 2n states. Thus, nused(D, B1) = 1. Since D must assign initial control to 
B1, its initial state d0 is labeled with 1. We claim that if B1 relinquishes control after reading #, it is assigned control again. 
Indeed, if one of the other components gains control, for the input word ##0̃n+1 the output sequence is a sequence in _∗ . 
Recall that we require that after reading a word in #∗(0̃ + 1̃)n there is an output of n letters in {0, 1}, thus we reach a 
contradiction to the correctness of D. We conclude that the initial state has a e1

#-labeled self loop, thus δD(d0, e1
#) = d0.

Since D has less that 2n states and the components B2, B3, and B4 relinquish control after reading a letter in {0̃, ̃1}, 
there are two words a, b ∈ {0̃, ̃1}n such that a = b and δ∗

D(a) = δ∗
D(b). Let 0 ≤ i ≤ n − 1 such that, w.l.o.g., 1 = ai = bi = 0. By 

the above, for the initial state q0
D of TD we have δD(q0

D, #) = q0
D . Thus, δ∗

D(#ia0̃i) = δ∗
D(#ib0̃i). Recall that Sn requires that 

either 0 or 1 is output after these words are read, thus either B3 or B4 gain control. In the first case, the output letter is 0
and the input word #ia0̃i+1 produces an output that violates the specification, and in the second case 1 is output and the 
input word #ib0̃i+1 produces an output that violates the specification, and we are done. �
Theorem 4.9. The BCD problem for open libraries is NEXPTIME-complete.

Proof. Membership in NEXPTIME follows from Theorem 4.5 and the fact we can check the correctness of a design and 
calculate its cost in polynomial time.

For the lower bound, we describe a reduction from EXP-TILING. Consider an input to EXP-TILING 〈T , V , H, n〉, where 
T = {t1, . . . , tm} is a set of tiles, V , H ⊆ T × T are vertical and horizontal relations, respectively, and n ∈ N is an index. 
We say that 〈T , V , H, n〉 ∈ EXP-TILING if it is possible to fill a 2n × 2n square with the tiles in T that respects the two 
relations. Formally, 〈T , V , H, n〉 ∈ EXP-TILING if there is a function f : 2n × 2n → T such that for a, b ∈ 2n , if a < 2n then 
V ( f (a, b), f (a + 1, b)), and if b < 2n , then H( f (a, b), f (a, b + 1)).

Given an input 〈T , V , H, n〉, we construct an input 〈S, k〉 to the open-BCD problem such that there is an exponential tiling 
iff there is a correct design D with cost(D) ≤ 22n+1 + 1. The idea behind the reduction is similar to that of Lemma 4.2. We 
define �I = {0̃, ̃1, #, c, v, h, −} and �O = {0, 1, _} ∪ T . For x ∈ {0, 1}n , we use x̃ to refer to the {0̃, ̃1} copy of x. The library 
L has the same components as in Lemma 4.2 with an additional tile component Bt for every t ∈ T . The component Bt
outputs t in its initial state, and when reading c, v , or h, it relinquishes control. When reading every other letter, it enters 
an accepting sink. The construction costs of the components in L is 0. We define q-cost(B1) = 22n + 1, and q-cost(Bt) = 1
for all t ∈ T . The other components’ quality cost is 0. Note that the costs are given in binary.

Consider a correct design D with cost(D) ≤ 22n+1 + 1. We define S so that a correct design must use B1 at least once, 
thus D uses it exactly once. Intuitively, a · b, for a, b ∈ {0, 1}n , can be thought of as two coordinates in a 2n × 2n square. We 
define S so that after reading the word ã · b̃ ∈ {0̃, ̃1}2n , a component is output, which can be thought of as the tile in the 
(a, b) coordinate in the square. The next letter that can be read is either c, v , or h. Then, S enforces that the output is a · b, 
(a + 1) · b, and a · (b + 1), respectively. Thus, we show that D uses exactly 22n tile components and the tiling that it induces 
is legal.

Recall that D uses B1 exactly once and uses at most 22n tile components. We describe the specification S as an inter-
section of the languages of three DFAs. The first DFA Sc is similar to the specification in Theorem 4.8. The differences are 
that there are 2n chains and after the sequence of 2n input letters, a letter 〈t, c〉, for t ∈ T , must be read. Thus, it guarantees 
that when D reads ãb̃c−2n , for ã, ̃b ∈ {0̃, ̃1}n , it outputs a word _2ntab, where t ∈ T and recall that a, b ∈ {0, 1}n represent 
the same vectors as ã and b̃, respectively.

Consider a, b ∈ {0, 1}n , and let da,b be the state of D that is reached after reading the word ãb̃. Then, control must be 
assigned to a tile component, thus t = ν(δ∗

D(ãb̃)) is a tile component. Consider the input word w = c−2n . If w is read when 
D is at state da,b , the word a · b must be output. Recall that D uses at most 22n tile components. A key observation is the 
following. Consider a state d of D that is labeled by a tile component. If D is in state d and ab is output when reading w , 
then d = da,b .
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Fig. 3. Some lattices.

The next DFA from which S is devised is Sv . It guarantees that when D reads the word ãb̃vc−2n it outputs _2ntit j(a +1)b
for ti, t j ∈ T with V (ti, t j). Finally, in order to deal with the tiles in the top row, S v accepts every word that starts with a 
prefix in #∗1̃n(0̃ + 1̃)n v . The DFA Sh is defined similarly to Sv .

We define a tiling f by f (a, b) = ν(da,b) for a, b ∈ {0, 1}n . We show that the above observation implies that f respects V , 
and the proof for H similar. Consider a, b ∈ {0, 1}n . If a = 1n , then f (a, b) is in the top row, and there is nothing to prove. 
Otherwise, we view a and b as numbers and claim that V ( f (a, b), f (a + 1, b)). Recall that after reading ab, D reaches 
the state da,b and the tile f (a, b) is output. By the above, Sv guarantees that if v is read, the next tile that is output 
respects V . We claim that f (a + 1, b) is output. Indeed, when reading c−2n , Sv guarantees that (a + 1)b must be output. 
By the observation above, d(a+1),b is the only state of D from which an input of c−2n produces an output of (a + 1)b.

The other direction, namely, if there is a tiling of 2n × 2n , then there is a design that costs 22n + 1, is dual to the 
above. �
5. Computation-based cost

As detailed in Section 1, while the cost model we use in Section 4 is suited for measuring structural properties of the 
components, like their sizes, one often wants to associate the computations of the components with a value. For example, in 
a system that issues grants upon requests, a goal of the designer can be to design a system that minimizes the waiting time 
for a grant once a request is received. A standard model for reasoning about such costs of computations is lattice automata
[26], which assign to each word a value that is an element of a finite lattice.

We study the synthesis problem from component libraries where the specification is given by a deterministic lattice 
automaton (LDFA, for short) and the components are box LDFAs. Thus, our goal is to compose the components in the 
library to construct an LDFA that is equivalent to the specification LDFA, where equivalence means agreement on the values 
assigned to all words.

The complexity of problems on lattice automata typically coincide with the complexity of the corresponding problem 
in the Boolean setting, possibly with a blow-up that depends on the size of the lattice (more precisely, on the number of 
its join-irreducible elements, as would be defined below). An exception is the problem of minimization of LDFAs, which is 
NP-complete [22]. It is shown in [22] that there is no canonical minimal LDFA for a latticed language. Recall that minimal 
DFAs play a key role in our upper bound for the design problem in the closed setting (Theorem 3.1) as we assumed the 
specification is given as such a DFA.

Even with no canonical minimal LDFA for the language of the specification, we show that the design problem can be 
solved in polynomial time. We assume the specification is given as a separable LDFA, which is a type of LDFAs we introduce 
here. In such an LDFA, every two states have a separating word (similar to minimal DFAs). That is, if there are words w1
and w2 whose runs reach two different states, then there is a word w such that w1 · w is assigned a value that is different 
from the one the automaton assigns to w2 · w . We show that every latticed language has a separable LDFA of polynomial 
size. This result might be of independent interest.

5.1. Lattice automata

Let 〈A, ≤〉 be a partially ordered set, and let P be a subset of A. An element a ∈ A is an upper bound on P if a ≥ b for all 
b ∈ P . Dually, a is a lower bound on P if a ≤ b for all b ∈ P . An element a ∈ A is the least element of P if a ∈ P and a is a lower 
bound on P . Dually, a ∈ A is the greatest element of P if a ∈ P and a is an upper bound on P . A partially ordered set 〈A, ≤〉 is 
a lattice if for every two elements a, b ∈ A both the least upper bound and the greatest lower bound of {a, b} exist, in which 
case they are denoted a ∨ b (a join b) and a ∧ b (a meet b), respectively. A lattice is complete if for every subset P ⊆ A both 
the least upper bound and the greatest lower bound of P exist, in which case they are denoted 

∨
P and 

∧
P , respectively. 

In particular, 
∨

A and 
∧

A are denoted � (top) and ⊥ (bottom), respectively. A lattice 〈A, ≤〉 is finite if A is finite. Note that 
every finite lattice is complete. A lattice 〈A, ≤〉 is distributive if for every a, b, c ∈ A, we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

In Fig. 3 we describe some finite lattices. The elements of the lattice ϒ2 are the usual truth values 1 (true) and 0 (false) 
with the order 0 ≤ 1. The lattice ϒn contains the values 0, 1, . . . , n − 1, with the order 0 ≤ 1 ≤ . . . ≤ n − 1. The lattice ϒ2,2 is 
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the Cartesian product of two ϒ2 lattices, thus (a, b) ≤ (a′, b′) if both a ≤ a′ and b ≤ b′ . Finally, the lattice 2{a,b,c} is the power 
set of {a, b, c} with the set-inclusion order. In this lattice, join and meet coincide with union and intersection, respectively, 
and we have, for example, {a} ∨ {b} = {a, b}, {a} ∧ {b} = ⊥, {a, c} ∨ {b} = �, and {a, c} ∧ {b} = ⊥.

Consider a lattice ϒ. We abuse notation and refer to ϒ also as the set of elements (rather than a pair of a set with an 
order on it). A join-irreducible element d ∈ ϒ is a value, other than ⊥, for which if d1 ∨ d2 ≥ d, then either d1 ≥ d or d2 ≥ d. 
For example, in the power set lattice, the join-irreducible elements are the singletons. Indeed, if d1 ∪ d2 ≥ {a}, then either 
a ∈ d1 or a ∈ d2, thus d1 ≥ {a} in the first case and d2 ≥ {a} in the second. On the other hand, {a, b} is not join-irreducible 
since {a} ∪ {b} ≥ {a, b} and {a} � {a, b} and {b} � {a, b}. By Birkhoff’s representation theorem for finite distributive lattices in 
order to prove that d1 = d2, it is sufficient to prove that for every join-irreducible element d it holds that d1 ≥ d iff d2 ≥ d. 
We denote the set of join-irreducible elements of ϒ by J I(ϒ).

For a set X of elements, an ϒ-set over X is a function S : X → ϒ assigning to each element of X a value in ϒ. Thus, 
S ∈ ϒX . It is convenient to think about S(x) as the truth value of the statement “x is in S”. We say that an ϒ-set S is 
Boolean if S(x) ∈ {�, ⊥} for all x ∈ X . Consider an alphabet �. An ϒ-language is an ϒ-set over �∗ . Thus, an ϒ-language 
L : �∗ → ϒ assigns a value in ϒ to each word over �.

A deterministic lattice automaton on finite words (LDFA, for short) is a tuple A = 〈ϒ, �, Q , Q 0, δ, F 〉, where ϒ is a fi-
nite lattice, � is a finite alphabet, Q is a finite set of states, Q 0 ∈ ϒQ is an ϒ-set of initial states, δ ∈ ϒQ ×�×Q is an 
ϒ-transition-relation, and F ∈ ϒQ is an ϒ-set of accepting states.

The fact that A is deterministic is reflected in two conditions on Q 0 and δ. First, there is at most one state q ∈ Q , called 
the initial state of A, such that Q 0(q) = ⊥. In addition, for every state q ∈ Q and letter σ ∈ �, there is at most one state 
q′ ∈ Q , called the σ -destination of q, such that δ(q, σ , q′) = ⊥. The run of an LDFA on a word w = σ1 ·σ2 · · ·σn is a sequence 
r = q0, . . . , qn of n + 1 states, where q0 is the initial state of A, and for all 1 ≤ i ≤ n, it holds that qi is the σi -destination of 
qi−1. We extend the notion of destination to words. For a word w ∈ �∗ and a state q ∈ Q , we use δ∗(q, w) to refer to the 
w-destination of q. When q ∈ Q 0, we omit it and use δ∗(w). The value of w is val(w) = Q 0(q0) ∧∧n

i=1 δ(qi−1, σi, qi) ∧ F (qn). 
Intuitively, Q 0(q0) is the value of q0 being initial, δ(qi−1, σi, qi) is the value of qi being a successor of qi−1 when σi is the 
input letter, F (qn) is the value of qn being accepting, and the value of w is the meet of all these values. The traversal value
of w is trav-val(w) = Q 0(q0) ∧ ∧n

i=1 δ(qi−1, σi, qi), and its acceptance value is F (qn). The ϒ-language of A, denoted L(A), 
maps each word w to the value of its run in A. In case such a run does not exist, the value of the word is ⊥. An example of 
an LDFA can be found in Fig. 4. We say that two LDFA A and B are equivalent iff they assign the same values to all words, 
thus for w ∈ �∗ , we have val(A, w) = val(B, w).

Note that traditional deterministic automata over finite words (DFA, for short) correspond to LDFA over the lattice ϒ2 . 
Indeed, over ϒ2, a word is mapped to the value � iff the run on it uses only transitions with value � and its final state 
has value �.

An LDFA is simple if Q 0 and δ are Boolean. Note that the traversal value of a run r of a simple LDFA is either ⊥ or �, 
thus the value of r is induced by F . For simplicity, in such LDFAs we assume δ : Q × � → Q .

The following lemma was proven in [26] and we give it here for completeness.

Lemma 5.1. [26] Every LDFA over a lattice ϒ with n states has an equivalent simple LDFA with n · |ϒ| states.

Proof. Consider an LDFA D = 〈ϒ, �, D, d0, δ, F 〉. Intuitively, in the simple LDFA D′ we “remember” the lattice value of a run 
of D. Formally, let D′ = 〈ϒ, �, D ×ϒ, 〈d0, �〉, δ′, F ′〉, where F ′(〈d, �〉) = � ∧ F (d) and we define δ′ below. Recall that for every 
d ∈ D and σ ∈ �, there is at most one state d′ ∈ D such that δ(d, σ , d′) = ⊥. We define δ′(〈d, �〉, σ) = 〈d′, � ∧ δ(d, σ , d′)〉). 
Clearly, the size of D′ is |D| · |ϒ|, and it is simple. Moreover, it is not hard to see that D and D′ are equivalent. �
5.2. Separable LDFAs

Recall that in the Boolean setting, our solution to the closed design problem relied on the fact that the specification was 
given as a minimal DFA. Specifically, we used the fact that states in such a DFA have separating words. It is known that there 
is no canonical minimal LDFA for a lattice language [22]. However, we show below that it is possible to assume that the 
specification is given by means of an LDFA whose states have separating words.

Formally, consider an LDFA D = 〈ϒ, �, D, d0, δ, F 〉. We say that two states d1, d2 ∈ D have a separating word, if there is 
a word w ∈ �∗ such that for every two words w1, w2 ∈ �∗ with δ∗

D(w1) = d1 and δ∗
D(w2) = d2, we have val(D, w1 · w) =

val(D, w2 · w). We say that D is separable if every two states have a separating word.
For example, consider the LDFA D that is depicted in Fig. 4. The alphabet of D is � = {1, 2, 3, 4} and it is defined 

over the lattice 〈2a,b,c, ⊆〉. The states’ names appear above them and their acceptance value inside. We show that D is not 
separable. For this, we show that the states d1 and d2 are not separable, as for the words w1 = 1 and w2 = 2, we have 
δ∗
D(w1) = d1 and δ∗

D(w2) = d2, but there is no word w such that val(D, w1 · w) = val(D, w2 · w). Indeed, words with a 
prefix w1 or w2 have either a value of {a} or a value of ⊥. If 1∗ is read after reading w1 or w2, then the value is {a}, and 
otherwise it is ⊥. Note that it is not possible to simply merge d1 and d2 as that would result in a change of the value of 
either the word 32 or the word 42.

We show that every simple LDFA D has an equivalent separable LDFA D′ . By Lemma 5.1, this would imply that every 
LDFA has an equivalent separable LDFA. Let D = 〈ϒ, �, D, d0, δ, F 〉. We define an equivalence relation on D and use it to 
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Fig. 4. An example of an LDFA in which the states d1 and d2 are not separable.

Fig. 5. A simple LDFA that is equivalent to the one in Fig. 4.

construct D′ . Consider a join-irreducible element a ∈ J I(ϒ). We construct a DFA Da with L(Da) = {w ∈ �∗ : val(D, w) ≥ a}
as follows. We define Da = 〈�, D, d0, δa, Fa〉, where for q ∈ Q and σ ∈ �, we have δa(q, σ) = q′ iff δ(q, σ , q′) = �, and 
d ∈ Fa iff a ≤ F (d). Since Da is a DFA, its language has a canonical minimal DFA D′

a . Moreover, the states of Da refine these 
of D′

a such that there is a mapping fa from the states of Da to these of D′
a such that for two states d1, d2 ∈ D , we have 

fa(d1) = fa(d2) iff for every word w ∈ �∗ , we have w ∈ L(Dd1
a ) iff w ∈ L(Dd2

a ).
We are ready to define the equivalence relation on D . For two states d1 and d2 in D , we say that d1 and d2 are equivalent, 

denoted d1 ∼ d2, iff F (d1) = F (d2) and for every a ∈ J I(ϒ), we have fa(d1) = fa(d2). Let D∼ be the partition of D according 
to ∼.

Consider two states d1, d2 ∈ D such that d1 ∼ d2 and a letter σ ∈ �. We claim that d′
1 = δ(d1, σ) ∼ δ(d2, σ) = d′

2. Assume 
otherwise, thus either F (d′

1) = F (d′
2) or there is a ∈ J I(ϒ) such that fa(d′

1) = fa(d′
2). Assume that the second case holds. 

Then, there is a word w ∈ �∗ , such that a ≤ val(Dd′
1 , w) and a � val(Dd′

2 , w), or the other way around. But then, the word 
σ · w is separating for d1 and d2, contradicting the fact that fa(d1) = fa(d2). The proof for the first case is similar.

Let D′ = 〈ϒ, �, D∼, d′
0, δ

′, F ′〉, where d′
0 ∈ D∼ is such that d0 ∈ d′

0, and δ′ and F ′ are defined as follows. For A ∈ D∼ , 
d ∈ A, and σ ∈ �, we define δ′(A, σ) = A′ iff δ(d, σ) ∈ A′ . Then, F ′(A) = F (d). By the above, δ′ is well defined. Note that D′
is a simple LDFA.

For example, consider the simple LDFA D that is equivalent to the one in Fig. 5. We do not state the values of the 
transitions as they are all �. Note that the states 〈d1, {a}〉 and 〈d2, {a}〉 are not separable and in D′ they are merged.

We claim that D′ is equivalent to D. Consider a word w = w1, . . . , wn ∈ �∗ and let r = r0, r1, . . . , rn and r′ = r′
0, r

′
1, . . . , r

′
n

be the runs of D and D′ on w , respectively. It is not hard to prove by induction on i that for every 0 ≤ i ≤ n, we have 
ri ∈ r′

i . Since D and D′ are simple, we have val(D, w) = F (rn) and val(D′, w) = F ′(r′
n). By the claim, rn ∈ r′

n , and by the 
definition of F ′ , we have F ′(r′

n) = F (rn), and we are done.
Finally, we claim that D′ is separable. Consider two words w1, w2 ∈ �∗ such that A1 = δ∗

D′ (w1) = δ∗
D′ (w2) = A2. If 

F (A1) = F (A2), then ε is a separating word. Assume F (A1) = F (A2), and we show that they have a separating word. Let 
d1 = δ∗

D(w1) and d2 = δ∗
D(w2). By the above, we have d1 ∈ A1 and d2 ∈ A2. Since A1 = A2, there is a ∈ J I(ϒ) such that 

fa(d1) = fa(d2). Thus, there is a word w ∈ �∗ such that a ≤ val(Dd1 , w) and a � val(Dd2 , w), or the other way around. 
Note that since D is simple, we have val(D, w1 · w) = val(Dd1 , w) and val(D, w2 · w) = val(Dd2 , w). Since D and D′
are equivalent, they assign the same values to the words w1 · w and w2 · w , thus we have a ≤ val(D′, w1 · w) and a �
val(D′, w1 · w). Recall that two lattice values x, y ∈ ϒ are equal iff for every a ∈ J I(ϒ), we have a ≤ x iff a ≤ y. Thus, we 
have that val(D′, w1 · w) = val(D′, w1 · w), and we are done.

Note that the size of D′ is at most the size of D. We conclude with the following.

Theorem 5.2. Every simple LDFA with n states has an equivalent separable simple LDFA with at most n states.

Recall that, by Lemma 5.1, the construction of a simple LDFA blows-up the state space in a |ϒ| multiplicative factor. Thus, 
we have the following.

Corollary 5.3. Every LDFA with n states over a lattice ϒ has an equivalent simple separable LDFA of size at most n · |ϒ|.

5.3. The closed-lattice synthesis problem

Consider a library L of box-LDFAs and a design D. Recall that a design in the Boolean setting is a recipe to construct 
an LDFA by glueing the components in L. Given a design D, we refer to AD as the compositional LDFA that is constructed 
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using D and the components from L. We can now define the latticed closed-design problem. Given a library of box-LDFAs L
and a specification LDFA S , decide whether there is a design D such that AD is equivalent to S . Recall that in the lattice 
setting this means that S and AD assign the same values to all words. We assume that the components in L as well as S
are all defined with respect to the same lattice.

Theorem 5.4. The latticed closed design problem can be solved in polynomial time.

Proof. The solution is similar to that of the closed design problem studied in Theorem 3.1. Given a library L of box-LDFAs 
and a specification LDFA S , we construct a full information safety game GS such that Player 1 wins iff there is a design 
for S using the components of L. Recall that a safety game is a turn-based two player game in which Player 1 wins iff 
the token that the players move stays within the “safe” vertices. Again, similar to the Boolean setting, Player 1’s strategies 
correspond to designs. He selects the first component to gain control, and once a component relinquishes control, he selects 
which component gains control next.

Player 2 challenges Player 1’s choice of design. In the Boolean setting, he selects the word that is read while a component 
is in control, which amounts to selecting an exit state from which the component relinquishes control. In the latticed setting, 
different runs that exit through the same exit state might have different traversal values. Player 1 should not know what 
the traversal value is. This has the sense of partial information, which caused the exponential blowup in the open setting. 
However, we are able to bypass this problem. Assume Player 1 assigns control to a components Bi , and Player 2 selects the 
exit state e. Then, we maintain both the join and the meet of all possible values of runs that exit through e.

Formally, assume L consists of components of the form Bi = 〈ϒ, �, Ci, c0
i , Fi, Ei〉, for i ∈ [n]. As in the Boolean setting, 

we denote by C , C0, and E , the union of the sets of states, initial states, and exit states, respectively, of the components. Let 
S = 〈ϒ, �, S, s0, FS 〉. By Corollary 5.3, we can assume that S is a simple separable LDFA.

We construct a game 〈V , E, V 0, α〉, where V 1 = E ×ϒ ×ϒ × S and V 2 = C0 ×ϒ ×ϒ × S , V 0 = C0 ×{�} ×{�} ×{s0}, and 
E and α are defined as follows. All the vertices in V 1 are safe, i.e., they are in α. We describe when a vertex 〈ci

0, �↓, �↑, s〉 in 
V 2 is not in α. We alter the definitions we had in the Boolean setting of “infix witness” and “suffix witness” to incorporate 
the lattice values. First, we have that 〈ci

0, �↓, �↑, s〉 is an infix witness if there exists words w1, w2 ∈ �∗ such that δ∗
i (w1) =

δ∗
i (w2) ∈ E and δ∗

S (s, w1) = δ∗
S (s, w2). Second, we have that 〈ci

0, �↓, �↑, s〉 is a suffix witness if there exists a word w ∈ �∗
such that either val(Bi, w) ∧ �↓ = val(S s, w) or val(Bi, w) ∧ �↑ = val(S s, w).

We describe the edges of the game. First, edges leaving Player 1 vertices are as in the Boolean setting and correspond to 
choosing the next component to gain control; we have 〈〈e, �↓, �↑, s〉, 〈ci

0, �↓, �↑, s〉〉 ∈ E , for every i ∈ [n]. Vertices in V 2 \ α

have no outgoing transitions. Consider a vertex v = 〈ci
0, �↓, �↑, s〉 ∈ V 2 ∩ α. Edges leaving v correspond to a choice of exit 

state e of Bi . Since v ∈ α, there is a state s′ ∈ S such that every word w ∈ �∗ that has δ∗
i (w) = e also has δ∗

S (s, w) = s′ . 
Finally, the traversal values of these words might be different. We update the meet and join of all these traversal values. 
Formally, there is an edge 〈〈ci

0, �↓, �↑, s〉, 〈e, �′↓, �′↑, s′〉〉 iff there exists a word w ∈ �∗ such that δ∗
i (w) = e and δ∗

S (s, w) = s′ , 
and �′↓ = �↓ ∧ ∧

w∈�∗:δ∗
i (w)=e trav-val(Bi, w) and �′↑ = �↑ ∧ ∨

w∈�∗:δ∗
i (w)=e trav-val(Bi, w).

We claim that Player 1 wins GS iff there is a correct design for S using the component of L. For the first direction, 
assume Player 1 has a winning strategy fD and let D be the corresponding design as in Theorem 3.1. We claim that 
D is a correct design. Assume towards contradiction that there is a word w ∈ �∗ such that val(AD, w) = val(S, w). Let 
w = w1 · w2 · . . . wm be the partition of w according to the components that process it in AD , and let �1, �2, . . . , �m be the 
traversal values of each of the sub-words in the corresponding component. Let B j be the component that processes wm . 
Note that val(AD, w) = ∧

1≤i≤m−1 �i ∧ val(B j, wm). Consider the Player 2 strategy f w that, intuitively, selects the word 
w1 · . . . · wm−1. The vertex in the game GS that the game reaches is of the form v = 〈c0

j , �↓, �↑, s〉 ∈ V 2. It is not hard to 
show that �↓ ≤ ∧

1≤i≤m−1 �i ≤ �↑ .
We claim that v /∈ α, which contradicts the fact that fD is winning. Recall that two lattice elements are equal iff 

they agree on their order with respect to all join-irreducible elements. We distinguish between two cases. First, there is 
an element a ∈ J I(ϒ) such that a ≤ val(AD, w) and a � val(S, w). We claim that a ≤ (�↓ ∧ val(B j, wm)). Indeed, since 
a ≤ val(AD, w), we have a ≤ val(B j, wm) as well as a ≤ �i , for 1 ≤ i ≤ m − 1. By the above, the latter implies that a ≤ �↑ . 
On the other hand, we claim that a � val(S s, wm). It is not hard to see that δ∗

S (w1 · . . . · wm−1) = s. Since S is simple, 
val(S, w) = val(S s, wm), thus the claim follows. We conclude that �↑ ∧ val(B j, wm) = val(S s, wm), implying that v /∈ α, 
and we are done. Showing that v /∈ α when a � val(AD, w) and a ≤ val(S, w), is done similarly using �↓ .

For the other direction, assume there is a correct design D, and we show that the corresponding Player 1 strategy fD
is a winning strategy in GS . Assume otherwise, and let f2 be a Player 2 strategy that is winning against fD . Let v =
〈c0

i , �↓, �↑, s〉 /∈ α that the game reaches. Assume v /∈ α because of an infix witness. The contradiction is attained similarly 
to Theorem 3.1. Recall that in this case there are words w1, w2 ∈ �∗ such that δ∗

i (w1) = δ∗
i (w2) ∈ E but s1 = δ∗

S (s, w1) =
δ∗
S (s, w2) = s2. Since S is separable, there is a separating word w for s1 and s2, thus val(S s1 , w) = val(S s2 , w). But, since 
Bi exists from the same exit state when reading w1 and w2, the LDFA AD assigns the same values to the words with suffix 
w1 · w and w2 · w , while they get different values in S .

Assume v /∈ α because of a suffix witness. Thus, there is a word w ∈ �∗ such that either �↓ ∧ val(B j, w) = val(S s, w) or 
�↑ ∧ val(B j, w) = val(S s, w). We prove for the first case and the second is similar. Assume the play out( fD, f2) traverses 
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Fig. 6. The library of the CLG with no NE, and the costs of the players in its profiles.

the components Bi1 , . . . , Bim and exit states e1, . . . , em . We choose words w1, . . . , wm that the components traverse. Thus, 
we need, for every 1 ≤ j ≤ m that δ∗

i j
(w j) = e j . Again, we distinguish between two cases. First, let a ∈ J I(ϒ) such that 

a ≤ (�↓ ∧ val(B j, w)) and a � val(S s, w). Since a ≤ �↓ , for every 1 ≤ j ≤ m, every word u ∈ �∗ such that δ∗
i j
(u) = e j , 

has a ≤ trav-val(Bi j , u). So we can choose any such word u as w j . Note that since the intermediate vertices in the play 
out( fD, f2) are in α, it is not hard to show that δ∗

S (w1 · . . . · wm) = s. So, we have a ≤ val(AD, w1 · . . . wm · w) while 
a � val(S, w1 · . . . wm · w), and we are done. For the second case, a � (�↓ ∧ val(B j, w)) and a ≤ val(S s, w). If a � val(B j, w), 
then we choose for each component some word as in the above. If a � �↓ , then there is 1 ≤ j ≤ m and a word w j ∈ �∗ such 
that δ∗

i j
(w j) = e j and a � trav-val(Bi j , w j). We choose the other words as in the above, so that we have a � val(AD, w1 ·

. . . · wm), and the proof is similar to the above. �
6. Libraries with costs and multiple users

In this section we study the setting in which several designers, each with his own specification, use the library. The 
construction cost of a component is now shared by the designers that use it, with the share being proportional to the 
number of times the component is used. For example, if c-cost(B) = 8 and there are two designers, one that uses B once 
and a second that uses B three times, then the construction costs of B of the two designers are 2 and 6, respectively. The 
quality cost of a component is not shared. Thus, the cost a designer pays for a design depends on the choices of the other 
users and he has an incentive to share the construction costs of components with other designers. We model this setting as 
a multi-player game, which we dub component library games (CLGs, for short). The game can be thought of as a one-round 
game in which each player (user) selects a design that is correct according to his specification. In this section we focus on 
closed designs.

Formally, a CLG is a tuple 〈S1, . . . , Sk〉, where L is a closed component library and, for 1 ≤ i ≤ k, the DFA Si is a 
specification for Player i. A strategy of Player i is a design that is correct with respect to Si . We refer to a choice of 
designs for all the players as a strategy profile. Consider a profile P = 〈D1, . . . , Dk〉 and a component B ∈L. The construction 
cost of B is split proportionally between the players that use it. Formally, for 1 ≤ i ≤ k, recall that we use nused(B, Di)

to denote the number of times Di uses B. For a profile P , let nused(B, P ) denote the number of times B is used by 
all the designs in P . Thus, nused(B, P ) = ∑

1≤i≤k nused(B, Di). Then, the construction cost that Player i pays in P for B is 
c-costi(P , B) = c-cost(B) · nused(B,Di)

nused(B,P )
. Since the quality costs of the components is not shared, it is calculated as in Section 4. 

Thus, the cost Player i pays in profile P , denoted costi(P ) is 
∑

B∈L c-costi(P , B) + nused(B, Di) · q-cost(Di). We define the 
cost of a profile P , denoted cost(P ), as 

∑
i∈[k] costi(P ).

For a profile P and a correct design D for Player i, let P [i ← D] denote the profile obtained from P by replacing the 
choice of design of Player i by D. A profile P is a Nash equilibrium (NE) if no Player i can benefit by unilaterally deviating 
from his choice in P to a different design; i.e., for every Player i and every correct design D with respect to Si , it holds 
that costi(P [i ←D]) ≥ costi(P ).

Theorem 6.1. There is a CLG with no NE.

Proof. We adapt the example for multiset cost-sharing games from [7] to CLGs. Consider the two-player CLG over the 
alphabet � = {a, b, c} in which Player 1 and 2’s specifications are (the single word) languages {ab} and {c}, respectively. The 
library is depicted in Fig. 6, where the quality costs of all components is 0, c-cost(B1) = 12, c-cost(B2) = 5, c-cost(B3) = 1, 
and c-cost(B4) = c-cost(B5) = 0. Both players have two correct designs. For Player 1, the first design uses B1 twice and the 
second design uses B1 once and B2 once. There are also uses of B4 and B5, but since they can be used for free, we do not 
include them in the calculations. For Player 2, the first design uses B3 once, and the second design uses B1 once. The table 
in Fig. 6 shows the players’ costs in the four possible CLG’s profiles, and indeed none of the profiles is a NE. �

We study computational problems for CLGs. The most basic problem is the best-response problem (BR problem, for short). 
Given a profile P and i ∈ [k], find the cheapest correct design for Player i with respect to the other players’ choices in P . 
Apart from its practical importance, it is an important ingredient in the solutions to the other problems we study. The next 
problem we study is finding the social optimum (SO, for short), namely the profile that minimizes the total cost of all players; 
thus the one obtained when the players obey some centralized authority. For both the BR and SO problems, we study the 
decision (rather than search) variants, where the input includes a threshold μ. Finally, since CLGs are not guaranteed to 
have a NE, we study the problem of deciding whether a given CLG has a NE. We term this problem ∃NE.
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Definition 6.1. We define the decision problems formally as follows. Let G be a CLG.

BR An input 〈G, P , i, μ〉 is in BR, where P is a profile, i ∈ [k], and μ ∈ R, iff there is a design Di that is correct with 
respect to Si such that costi(P [i ←Di]) ≤ μ.

SO An input 〈G, μ〉 is in SO, where μ ∈R, iff there is a profile P such that cost(P ) ≤ μ.
∃NE An input 〈G〉 is in ∃NE iff there is a NE profile in G .

Note that the BCD problem studied in Section 4 is a special case of BR problem when there is only one player. Also, 
in a setting with a single player, the SO and BR problems coincide, thus the lower bound of Theorem 4.3 applies to them. 
In Lemma 4.1 we showed that if there is a correct design D with cost(D) ≤ μ, then there is also a correct design D′ , 
based on a memoryless strategy and hence having polynomially many states, such that for every component B, we have 
nused(D′, B) ≤ nused(D, B). The arguments there apply in the more general case of CLGs. Thus, we have the following.

Theorem 6.2. The BR and SO problems are NP-complete.

We continue to study the ∃NE problem. We show that ∃NE is complete for �P
2 – the second level of the polynomial 

hierarchy. Namely, decision problems solvable in polynomial time by a nondeterministic Turing machine augmented by an 
oracle for an NP-complete problem. An oracle for a computational problem is a black box that is able to produce a solution 
for any instance of the problem in a single operation. Thus, for every problem P ∈ �P

2 there is a machine such that for every 
x ∈ P there is a polynomial-time accepting computation (with polynomially many queries to the oracle). As co-NP is the 
dual complexity class of NP, the dual complexity class of �P

2 is �P
2 . Thus, a problem P is �P

2 -complete iff its complement 
P is �P

2 -complete.

Theorem 6.3. The ∃NE problem is �P
2 -complete.

Proof. For the upper bound, we describe a nondeterministic Turing machine with an oracle for the SBR problem – the strict 
version of the BR problem, where we seek a design whose cost is strictly smaller than μ. Given a CLG G = 〈S1, . . . , Sk〉, 
the machine guesses a profile P = 〈D1, . . . , Dk〉, where for 1 ≤ i ≤ k, the design Di has at most |C0 × Si | states, where Si
are the states of Si . First, we check whether P is a profile of correct designs. That is, for i ∈ [k], we check whether Di is a 
correct design with respect to Si , which can be done in polynomial time. If there is an incorrect design we terminate and 
reject. Next, we check whether P is a NE profile by checking if there is a player that has a beneficial move from P . That is, 
for i ∈ [k], we feed the oracle the input 〈G, P , i, costi(P )〉. If the oracle answers YES, then Player i can benefit from deviating 
and P is not a NE in which case we reject. On the other hand, if for every i ∈ [k] the oracle answers NO, then P is a NE 
in which case we accept. Clearly the machine recognizes ∃NE. Note that if G ∈ ∃NE, one of the profiles P we guess is a NE, 
and the computation in which we guess P is a polynomial accepting computation.

For the lower bound, we show a reduction from the complement of the �P
2 -complete problem min-max vertex cover [25]

(MMVC, for short). The input to the MMVC problem is 〈G, I, J , N, μ〉, where G = 〈V , E〉 is an undirected graph, I and J
are sets of indices, N : V → {V i, j ⊆ V : i ∈ I and j ∈ J } partitions the vertices, and μ ∈ N is a value. Note that since G is 
undirected, its edges are sets with two vertices. We refer to the sets in the partition {V i, j}i∈I, j∈ J as neighborhoods and 
for v ∈ V we refer to N(v) as the neighborhood of v . Note that there is a coarser partition of V , namely {V i}i∈I , where 
V i = ⋃

j∈ J V i, j . We refer to the elements in this partition as districts and, for v ∈ V , use D(v) to denote the district v
belongs to. For a function t : I → J we define Vt = ⋃

i∈I V i,t(i) . Intuitively, t is a choice of neighborhood in each district. Let 
Gt = 〈Vt , Et〉 be the induced subgraph of G on the vertex set Vt . Formally, for e ∈ E , we have e ∈ Et iff e ⊆ Vt . For a graph G , 
we say that V ′ ⊆ V is a vertex cover of G if for every e = {u, v} ∈ E we have V ′ ∩ {u, v} = ∅. An input 〈G, I, J , N, μ〉 is in 
MMVC iff for any choice of neighborhoods in the districts given by a function t , the smallest vertex cover of the resulting 
graph is at most μ. Formally, maxt∈ J I min{|V ′| : V ′ ⊆ Vt is a vertex cover of Gt} ≤ μ. We assume without loss of generality 
that μ ≤ |V |.

Consider an input 〈G, I, J , N, μ〉 to MMVC. We construct a CLG G with library L and specifications S0, S1, . . . , S|I| such 
that G has a NE iff 〈G, I, J , N, μ〉 /∈ MMVC. The alphabet � consists of letters i, ̃i ∈ I , v, ̃v ∈ V , and e ∈ E . Let E = {e1, . . . , em}. 
The specification of Player 0 consists of words of length 3|E| of the form v1 ṽ1e1 . . . vm ṽmem , for some v1, . . . , vm ∈ V
(allowing duplicates). For i ∈ I , the specifications of Player i consist of the single word i · (ĩ)� , where � is a polynomial in 
|V |, which we define in the following.

We describe the components of L (see Fig. 7). When describing the components’ costs we only refer to the construction 
cost as their quality costs are 0. The simplest components are Bacc and Brej . They consist of a single initial state that 
is accepting in Bacc and rejecting in Brej . The cost of both these components is 0. The next component is B0, which is 
exactly S0, and its cost is μ + 1. The rest of the components have no accepting states. We describe these components by 
the words that they can process. For each word there is a unique disjoint path from the initial to a separate exit state. 
For every neighborhood V i, j there is a component Bi, j ∈ L that costs (3|E| + 2)(μ + 1). We refer to these components 
as neighborhood components. The single-lettered words it can process are i, ĩ, and v for v ∈ V i, j . Also, it can process the 
words v ṽe for v ∈ V \ V i, j and e ∈ E , and ṽe for v ∈ V i, j and e ∈ E such that e ∩ (V i \ V i, j) = ∅. For every v ∈ V there 
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Fig. 7. Some of the components in the library produced by the reduction from MMVC.

is a component Bv that costs 1. We refer to these components as vertex components. The words it can process are ũe for 
u ∈ N(v) and e ∈ E such that v ∈ e. For i ∈ I there is a component Bi that can process the word ĩ and costs a very small 
value ξ > 0. The construction is clearly polynomial in the input.

We claim that 〈G, I, J , N, μ〉 /∈ MMVC iff G = 〈S0, S1, . . . , S|I|〉 ∈ ∃NE. For the first direction, assume 〈G, I, J , N, μ〉 /∈
MMVC. Thus, there is a function t : I → J such that every vertex cover of Vt has more than μ vertices. We claim that the 
CLG G has a NE. Consider the profile P in which Player 0 uses only the component B0 and, for i ∈ I , Player i uses the design 
Di,t(i) , which we describe below, and uses only the neighborhood component Bi,t(i) and the components Bacc and Brej . For 
i ∈ I and j ∈ J , we describe the design Di, j . In Di, j , the component Bi, j gains initial control. If the component relinquishes 
control after reading the single-lettered word i, it regains control. If it relinquishes control after reading any other word, the 
design assigns control to Brej . Similarly, for � times, control is given to Bi, j assuming it reads the word ĩ, and otherwise 
control is given to Brej . After Bi, j gains control � + 1 times, control is assigned to Bacc . Clearly, L(Di, j) = L(Si), thus it is a 
correct design for Player i.

Assume towards contradiction that P is not a NE. Thus, there is a player that benefits from deviating. We start by 
showing that, for i ∈ I , Player i cannot benefit from deviating. Note that for j ∈ J , no other player uses a component Bi, j
in P . Thus, deviating to a design Di, j , for j = t(i), would result in the same cost for Player i, and deviating to any other 
correct design would increase his cost, and is clearly not beneficial.

We continue to show that Player 0 cannot benefit from a deviation. Assume towards contradiction that there is a correct 
design D such that cost0(P ) > cost0(P [0 ← D]). Consider the set V ′ ⊆ V of vertices that correspond to vertex components 
that are used in D, thus v ∈ V ′ iff Bv ∈ used(D). Recall that c-cost(B0) = μ +1, thus cost0(P ) = μ +1. Since the construction 
costs of the vertex components is 1 and Player 1 does not share them, we have |V ′| ≤ μ.

We claim that there is a vertex cover V ′′ ⊆ V ′ ∩ Vt for Gt . Since |V ′| ≤ μ, this would contradict our assumption that 
〈G, I, J , N, μ〉 /∈ MMVC. Recall that the cost of using a neighborhood component without sharing is more than μ + 1. Since 
we assume Player 0 benefits from deviating to D, he must share all his uses of these components. Since the neighborhood 
components that are used by the players 1, . . . , |I| are exactly these that are dictated by t , every neighborhood component 
Bi, j ∈ used(D) has j = t(i).

We claim that for every e ∈ Et there is a vertex v ∈ V ′ ∩ Vt such that v ∈ e. Let Et = {ei1 , . . . , eil } and j ∈ [l]. Consider 
the word w = v ṽe1 v ṽe2 . . . v ṽei j−1 for some v ∈ V . Since w is a prefix of a word in L(S0), the run of AD on w does not 
get stuck. Since the last letter in w is in E the component that gains control after reading w is a neighborhood component, 
thus it is Bi,t(i) for some i ∈ I .

Consider the word w ′ = w · uũei j for u ∈ V i,t(i) . Again, since w ′ is a prefix of a word in L(S0) the run of AD on w ′
does not get stuck. Since u ∈ V i , Bi,t(i) relinquishes control after reading u. We claim that a vertex component Bv must gain 
control next. Indeed, since u ∈ V i,t(i) , the only neighborhood component that is a candidate to process the word ũe is Bi,t(i) . 
However, since u ∈ Gt if it has an endpoint that belongs to the district V i , then the endpoint is in V i,t(i) . Thus, Bi,t(i) cannot 
process ũe and it is processed by a vertex component Bv . Note that since it can process the word ũe, we have u ∈ N(v), 
thus N(v) = V i,t(i) . Moreover, v ∈ e. Clearly v ∈ V ′ as D uses Bv , and we are done.

For the second direction, assume 〈G, I, J , N, μ〉 ∈ MMVC. Assume towards contradiction that there is a NE profile P in G . 
We distinguish between two cases. In the first case, Player 0 does not use B0. Recall that Player 0 has a correct design that 
uses only B0 and costs μ + 1. Moreover, every correct design that does use B0 must use a neighborhood component Bi, j , 
which costs (3|E| +2)(μ +1). Since P is a NE, Player i, the only player that can use Bi, j , uses Bi, j at least 3|E| +1 times. We 
claim that Player i has a beneficial deviation from P , contradicting the fact that P is a NE. First, we bound costi(P ). Clearly, 
Player 0 uses Bi, j at most 3|E| times, thus costi(P ) ≥ 3|E|+1

3|E|+3|E|+1 · cost(Bi, j). We describe a beneficial deviation for Player i. 
Consider the design D that assigns initial control to Bi, j . If it relinquishes control after reading anything different from i, D
assigns control to Brej . Otherwise, the component Bi , which can process only the word ĩ, gains control � consecutive times 
after which Bacc gains control. It is not hard to see that L(D) = L(Si). Since nused(D, Bi, j) = 1 and nused(D, Bi) = �, we 
have costi(P [i ←D]) ≤ 1

2 cost(Bi, j) + ξ . For sufficiently small ξ , we have costi(P ) > costi(P [i ←D]), and we are done.
In the second case, the design Player 0 chooses in P is the design that uses only the component B0. Thus, cost0(P ) =

μ + 1. Recall that for every i ∈ I and j ∈ J , the design Di, j is a correct design for Player i that uses only the neighborhood 
component Bi, j . It is not hard to see that since P is a NE, every Player i chooses some design Di, j . Let t : I → J be the 
function that corresponds to these players choices. Since 〈G, I, J , N, μ〉 ∈ MMVC, there is a vertex cover V ′ ⊆ Vt of Gt such 
that |V ′| ≤ μ.
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We construct a design D for Player 0 that is a beneficial deviation from P . Recall that Player 0’s specification is the set 
of words of length 3|E| of the form v1 ṽ1e1 . . . vm ṽmem , where E = {e1, . . . , em} and v1, . . . , vm ∈ V (allowing duplicates). 
The definition of D is inductive. Let 1 ≤ l ≤ |E|. Consider a word w ∈ �∗ of length 3(l − 1) that can be extended to a word 
in L(S0). That is, there is a word x ∈ �∗ such that w · x ∈ L(S0). For v ∈ V , let w v = w · v ṽel+1. Note that w v can also be 
extended to a word in L(S0) (possibly with ε). Assuming the run of AD on w does not get stuck and control is relinquished 
from some component after reading w , we describe how D assigns control next such that the run of AD on every w v does 
not get stuck and control is relinquished after reading w v .

We distinguish between two cases. In the first case, el /∈ Et . Thus, there is a vertex v ∈ el \ Vt . Let V i be v ’s district, 
thus V i = D(v). Let V i, j ⊆ V i be the neighborhood in V i that is selected by t , thus j = t(i). Note that this since v /∈ Vt , it 
does not belong to V i, j . The component to which D assigns control after reading w is the neighborhood component Bi, j . 
Consider a vertex u ∈ V . If u /∈ V i, j , then when reading uũe the run in Bi, j does not get stuck and control is relinquished 
at its end. If u ∈ V i, j , then Bi, j relinquishes control after reading u. In such a case we define D to reassign control to Bi, j . 
Note that the run of Bi, j on ũel does not get stuck. Indeed, the vertex v ∈ el is a witness to the fact that (V i \ V i, j) ∩ el = ∅. 
Clearly, control is relinquished after Bi, j reads ũel . If in one of the times Bi, j gains control it relinquishes it after reading 
any other word x ∈ �∗ , then there is no y ∈ �∗ such that w · x · y ∈ L(S0), and we assign control to Brej .

In the second case, el ∈ Et . Thus, there is a vertex v in the vertex cover V ′ such that v ∈ el . Let N(v) = V i, j . Note that 
since v ∈ Vt , we have t(i) = j. The component to which D assigns control after reading w is the neighborhood component 
Bi, j . Consider a vertex u ∈ V . The case where u /∈ V i, j is similar to the previous case. For u ∈ V i, j , when Bi, j reads u, it 
relinquishes control. In such a case, D assigns control to Bv . Since v ∈ V i, j and v ∈ el , the component Bv can process the 
word ũel , and it relinquishes control after its end. Similarly to the above, if Bi, j or Bv relinquish control after reading any 
other word x ∈ �∗ , then we assign control to Brej . Finally, if l = |E|, we assign control Bacc .

Correctness of the design D is immediate from the construction. We claim that cost0(P [0 ← D]) < μ + 1. Note that 
the D uses two types of components. The first type is neighborhood components. Consider Bi, j ∈ used(D). Note that we 
constructed D so that j = t(i). Thus, Player 0 shares the cost of Bi, j with Player i. Recall that Player i chooses the design Di, j
that uses Bi, j � times. We define � to be sufficiently large so that the proportion of the cost that Player 0 pays is less than 

1
2|E| . Thus, the total cost Player 0 endures for neighborhood components is less than 1. The second type of components D
uses is vertex components. Since D uses vertex components that correspond to vertices in the vertex cover V ′ , the number 
of such component that D uses is at most μ, which is the total cost for these components. Thus, cost0(P [0 ←D]) < μ + 1, 
and we are done. �
7. Discussion

Traditional synthesis algorithms assumed that the system is constructed from scratch. Previous work adjusted synthesis 
algorithms to a reality in which systems are constructed from component libraries. We adjust the algorithms further, for-
malize the notions of quality and cost and seek systems of high quality and low cost. We argue that one should distinguish 
between quality considerations, which are independent of uses of the library by other designs, and pricing considerations, 
which depend on uses of the library by other designs.

Once we add multiple library users to the story, synthesis is modeled by a resource-allocation game and involves ideas 
and techniques form algorithmic game theory. In particular, different models for sharing the price of components can be 
taken. Recall that in our model, users share the price of a component, with the share being proportional to the number of 
uses. In some settings, a uniform sharing rule may fit better, which also makes the game more stable. In other settings, a 
more appropriate sharing rule would be the one used in congestion games – the more a component is used, the higher is 
its price, reflecting, for example, a higher load. Somewhat surprising, games with congestion effects turn out to be more 
stable than cost-sharing games [9]. Still, the complexity of the decision problems we study here for CLGs match the ones for 
CLGs with congestion effects. Moreover, synthesis of different specifications in different times gives rise to dynamic allocation
of components, and synthesis of collections of specifications by different users gives rise to coalitions in the games. These 
notions are well studied in algorithmic game theory and enable an even better modeling of the rich settings in which 
traditional synthesis is applied.
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