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Abstract. Weighted automata map input words to real numbers and are useful in
reasoning about quantitative systems and specifications. The containment prob-
lem for weighted automata asks, given two weighted automataA and B, whether
for all words w, the value that A assigns to w is less than or equal to the value
B assigns to w. The problem is of great practical interest, yet is known to be
undecidable. Efforts to approximate weighted containment by weighted variants
of the simulation pre-order still have to cope with large state spaces. One of the
leading approaches for coping with large state spaces is abstraction. We intro-
duce an abstraction-refinement paradigm for weighted automata and show that it
nicely combines with weighted simulation, giving rise to a feasible approach for
the containment problem. The weighted-simulation pre-order we define is based
on a quantitative two-player game, and the technical challenge in the setting ori-
gins from the fact the values that the automata assign to words are unbounded.
The abstraction-refinement paradigm is based on under- and over-approximation
of the automata, where approximation, and hence also the refinement steps, refer
not only to the languages of the automata but also to the values they assign to
words.

1 Introduction

Traditional automata accept or reject their input, and are therefore Boolean. A weighted
finite automaton (WFA, for short) has real-valued weights on its transitions and it maps
each word to a real value. Applications of weighted automata include formal verifica-
tion, where they are used for the verification of quantitative properties [10,11,17,25,32],
as well as text, speech, and image processing, where the weights of the automaton are
used in order to account for the variability of the data and to rank alternative hypotheses
[15,30].

Technically, each transition in a WFA is associated with a weight, the value of a run
is the sum of the weights of the transitions traversed along the run, and the value of a
word is the value of the maximal run on it.1 The rich structure of weighted automata
makes them intriguing mathematical objects. Fundamental problems that have been
solved decades ago for Boolean automata are still open or known to be undecidable in
the weighted setting [29]. For example, while in the Boolean setting, nondeterminism
does not add to the expressive power of the automata, not all weighted automata can be

1 The above semantics, which we are going to follow in the paper, is a special case of the general
setting, were each weighted automaton is defined with respect to an algebraic semiring.



determinized, and the problem of deciding whether a given nondeterministic weighted
automaton can be determinized is still open, in the sense we do not even know whether
it is decidable.

A problem of great interest in the context of automata is the containment problem.
In the Boolean setting, the containment problem asks, given two automata A and B,
whether all the words in Σ∗ that are accepted by A are also accepted by B. In the
weighted setting, the “goal” of words is not just to get accepted, but also to do so
with a maximal value. Accordingly, the containment problem for WFAs asks, given
two WFAs A and B, whether every word accepted by A is also accepted by B, and
its value in A is less than or equal to its value in B. We then say that B contains A,
denoted A ⊆ B. In the Boolean setting, the containment problem is PSPACE-complete
[31]. In the weighted setting, the problem is in general undecidable [1,24]. The prob-
lem is indeed of great interest: In the automata-theoretic approach to reasoning about
systems and their specifications, containment amounts to correctness of systems with
respect to their specifications. The same motivation applies for weighted systems, with
the specifications being quantitative [10].

Even in the Boolean setting, where the containment problem is decidable, its PSPACE
complexity is an obstacle in practice and researchers have suggested two orthogonal
methods for coping with it. One is to replace containment by a pre-order that is easier
to check, with the leading such pre-order being the simulation preorder [28]. Simula-
tion can be checked in polynomial time and symbolically [20,28], and several heuristics
for checking containment by variants of simulation have been studied and used in prac-
tice [23,26]. A second method, useful also in other paradigms for reasoning about the
huge, and possibly infinite, state space of systems is abstraction [3,8]. Essentially, in
abstraction we hide some of the information about the system. This enables us to reason
about systems that are much smaller, yet it gives rise to a 3-valued solution: yes, no, and
unknown [5]. In the latter case, the common practice is to refine the abstraction, aim-
ing to add the minimal information that would lead to a definite solution. In particular,
in the context of model checking, the method of counterexample guided abstraction-
refinement (CEGAR) has proven to be very effective [13].

In this paper we study a combination of the above two methods in the setting of
weighted automata. Abstraction frameworks in the 3-valued Boolean semantics are typ-
ically based on modal transition systems (MTS) [27]. Such systems have two types of
transitions: may transitions, which over-approximate the transitions of the concrete sys-
tem, and must transitions, which under-approximate them. The over and under approxi-
mation refer to the ability of the automaton to take transitions, and hence to its language.
In our weighted setting, we combine this with the weights of the transitions: may tran-
sitions over-approximate the actual weight and must transitions under-approximate it.
This is achieved by defining the weight of may and must transitions according to the
maximal and minimal weight, respectively, of the transitions that induce them.

The simulation preorder in the Boolean setting has a game-theoretic characteriza-
tion. We extend this approach to the weighted setting and define weighted simulation
between two WFAs A and B by means of a game played between an antagonist, who
iteratively generates a word w and an accepting run r ofA on it, and a protagonist, who
replies with a run r′ of B on w. The goal of the antagonist is to generate w and r so that



either r′ is not accepting, or its value is smaller than the value of r. The goal of the pro-
tagonist is to continue the game forever without the antagonist reaching his goal. We say
thatA is simulated by B, denotedA ≤ B iff the protagonist has a winning strategy. The
above definition is similar to the definition of quantitative simulation in [12,14], and has
the flavor of the energy games in [4]. In these works, however, the winning condition
in the game refers only to the weight along the traversed edges. This corresponds to the
case the WFAs in question are such that all states are accepting. Even richer than our
setting are energy parity games [9]. Both energy games and parity energy games can be
decided in NP ∩ co-NP. Our main challenge then is to develop an algorithm that would
maintain the simplicity of the algorithm in [4] in the richer setting, which is simpler
than the one of parity games. We do this by performing a preprocessing on the arena
of the game, one after which we can perform only local changes in the algorithm of
[4]. This is not easy, as like in parity energy games a winning strategy in the simulation
game need not be memoryless. Our main contribution, however, is not the study of sim-
ulation games and their solution – the main ideas here are similar to these in [4,9], but
the ability to combine simulation with abstraction and refinement, which we see as our
main contribution.

Having defined over- and under-approximations of WFAs and the weighted simu-
lation relation, we suggest the following heuristic for checking whether A ⊆ B. For
a WFA U and an abstraction function α, let Uα↓ and Uα↑ be the weighted under and
over approximations of U according to α. Let α and β be approximation functions for
A and B, respectively. It is not hard to see that if Aα↑ ⊆ Bβ↓ , then A ⊆ B, and that
if Aα↓ 6⊆ Bβ↑ , then A 6⊆ B. We show that the above is valid not just of containment
but also for our weighted-simulation relation. This gives rise to the following heuris-
tics. We start by checking Aα↑ ≤ Bβ↓ and Aα↓ 6≤ Bβ↑ , for some (typically coarse) initial
abstraction functions α and β. As we prove in the paper, if we are lucky and one of
them holds, we are done. Otherwise, the winning strategies of the antagonist in the first
case and the protagonist in the second case suggest a way to refine α and β, and we
repeat the process with the refined abstractions. While refinement in the Boolean case
only splits abstract states in order to close the gap between may and must transitions,
here we also have refinement steps that tighten the weights along transitions. Note that
while repeated refinement can only get us to a solution to theA ≤ B problem, they also
make it more likely that one of our checks returns an answer that would imply a definite
solution to the undecidable A ⊆ B problem.

Note that our abstraction-refinement procedure combines two games. The first, which
corresponds to Aα↑ ≤ Bβ↓ , approximates the simulation question A ≤ B from below.
The second, which corresponds to Aα↓ ≤ Bβ↑ , approximates it from above. Such dual
approximations have proven useful also in the Boolean setting [6,16,18,21,22], where
games combine may and must transitions, and also in settings in which games that are
determined are approximated by means other than abstraction. For example, when LTL
realizability is done by checking the realizability of approximations of both the specifi-
cation and its negation [7].

Due to the lack of space, some proofs are only sketched. The full proofs can be
found in the full version in the authors’ homepages.



2 Weighted Automata and their Abstraction

A nondeterministic finite weighted automaton on finite words (WFA, for short) is a tuple
A = 〈Σ,Q,∆,Q0, τ, F 〉, where Σ is an alphabet, Q is a set of states, ∆ ⊆ Q×Σ×Q
is a transition relation, Q0 ⊆ Q is a set of initial states, τ : ∆ → IR is a function that
maps each transition to a real value in IR, and F ⊆ Q is a set of accepting states. We
assume that there are no dead-end states in A. That is, for every q ∈ Q there is a letter
σ ∈ Σ and state q′ ∈ Q such that ∆(q, σ, q′).

A run ofA on a word u = u1, . . . , un ∈ Σ∗ is a sequence of states r = r0, r1, . . . , rn
such that r0 ∈ Q0 and for every 0 ≤ i < n we have ∆(ri, ui+1, ri+1). The run r is
accepting iff rn ∈ F . The value of the run, denoted val(r, u), is the sum of transi-
tions it traverses. That is, val(r, u) =

∑
0≤i<n τ(〈ri, ui+1, ri+1〉). Since A is non-

deterministic, there can be more than one run on a single word. We define the value that
A assigns to u ∈ Σ∗, denoted val(A, u), as the value of the maximal-valued accepting
run of A on u. That is, val(A, u) = max{val(r, u) : r is an accepting run of A on u}.
As in NFAs, the language ofA, denoted L(A), is the set of words inΣ∗ thatA accepts.

We say that A is deterministic if |Q0| = 1 and for every q ∈ Q and σ ∈ Σ, there is
at most one state q′ ∈ Q such that ∆(q, σ, q′).

An abstraction function for a WFA A is a function α : Q → A, for a set A, which
we assume to be smaller than Q. We refer to the members of Q as the concrete states
and to these of A as the abstract states. The function α induces a partition of Q, and we
sometimes refer to abstract states as sets of concrete states. In particular, for a concrete
state c ∈ Q and an abstract state a ∈ A, we use the notation c ∈ a to indicate that
α(c) = a.

Consider a WFAA and an abstraction functionα. For parameters β ∈ {may,must}
and γ ∈ {max,min}, the abstraction of A according to α, β, and γ is the WFA
Aγβ [α] = 〈Σ,A,∆β , A0, τγ , Fβ〉, where A0 = {α(q0) : q0 ∈ Q0}, and ∆β , τγ , and Fβ
are defined as follows:

– Consider a, a′ ∈ A and σ ∈ Σ. We define∆must ⊆ A×Σ×A so that∆must(a, σ, a
′)

iff for every c ∈ a there is c′ ∈ a′ such that ∆(c, σ, c′). We define ∆may ⊆
A × Σ × A so that ∆may(a, σ, a

′) iff there exists c ∈ a and c′ ∈ a′ such that
∆(c, σ, c′).

– We define the minimum-value function, denoted τmin, of an abstract transition to
be the minimum over the values of concrete transitions that induce it. Formally,
for 〈a, σ, a′〉 ∈ ∆β , we define τmin(〈a, σ, a′〉) = min{τ(〈c, σ, c′〉) : c ∈ a, c′ ∈
a′, and ∆(c, σ, c′)}. Similarly, we define the maximal-value function as τmax, with
τmax((〈a, σ, a′〉) = max{τ(〈c, σ, c′〉) : c ∈ a, c′ ∈ a′, and ∆(c, σ, c′)}.

– We define Fmay = {a ∈ A : a ∩ F 6= ∅} and Fmust = {a ∈ A : a ⊆ F}.

Note that without weights, our definition coincides with the standard over- and under-
approximations studied in the Boolean case. In the weighted setting, the abstraction
approximates, in addition to the transitions, the value that the concrete WFA assigns
to words. The two interesting combinations are then the under-approximating WFA
Aα↓ = Aminmust[α] and the over-approximating WFA Aα↑ = Amaxmay [α]. When α is not
important or clear form the context, we omit it.



We refer to runs of A↓ as must-runs, runs of A↑ as may-runs, and runs of A as
concrete-runs. Note that for every must-run r = r0, . . . , rn of A↓ on some word u ∈
Σ∗, there is a matching run r′ = r′0, . . . , r

′
n of A on u such that, for every 0 ≤ i ≤ n,

we have r′i ∈ ri. Similarly, for every run r = r0, . . . , rn of A on some word u, the
sequence r′ = α(r0), . . . , α(rn) is a run of A↑ on u.

In the Boolean setting, language containment refers to words accepted by the au-
tomaton. That is, for two NFAs A and B, we say that A ⊆ B iff L(A) ⊆ L(B). In the
weighted setting, language containment is more involved, as we also have a require-
ment on the values the automata assign to words. For two WFAs, we say thatA ⊆ B iff
L(A) ⊆ L(B) and for every w ∈ L(A) we have val(A, w) ≤ val(B, w).

The containment problem gets as input two automataA and B, and decides whether
A ⊆ B. The problem is known to be PSPACE-complete in the Boolean setting [33] and
undecidable in the weighted setting [1,24].

Since, in practice, WFAs are typically very large, we would like to reason on their
abstractions. As Theorem 1 below shows,A↓ andA↑ under- and over-approximatesA,
making such a reasoning possible.

Theorem 1. Consider a WFA A and an abstraction function α. Then, Aα↓ ⊆ A ⊆ Aα↑ .

Proof: We start by proving that A↓ ⊆ A. Consider a word u = u1, . . . , un ∈ L(A↓).
We prove that u ∈ L(A) and val(A↓, u) ≤ val(A, u). Let r = a0, . . . , an ∈ A∗ be
an accepting run of A↓ on u. Since a0 ∈ A0, there is a concrete state c0 ∈ (a0 ∩ Q0).
Since r is a must-run, there is a concrete run r′ = c0, . . . , cn of A on u such that, for
1 ≤ i ≤ n, we have ci ∈ ai. Since r is accepting, rn ⊆ F , implying that cn ∈ F . Thus,
r′ is accepting and u ∈ L(A).

It is left to prove that val(A↓, u) ≤ val(A, u). We show that for every accepting run
r of A↓ on u and every concrete run r′ that corresponds to it, val(r, u) ≤ val(r′, u).
Indeed, by the definition of τmin, we have val(r, u) =

∑
0≤i≤n τmin(ri, ui+1, ri+1) ≤∑

0≤i≤n τ(ri, ui+1, ri+1) = val(r′, u), so we are done.
The proof of the second claim is similar and is presented in the full version. ut

3 Weighted Simulation

As discussed in Section 1, the pre-order of simulation [28] is used in the Boolean setting
as a heuristic for checking containment. In this section we define weighted simulation
and show that it enjoys the appealing properties of simulation in the Boolean setting.
In Section 4, we show that weighted simulation can be checked by reasoning about
abstractions of the WFAs in question.

3.1 Defining the Weighted Simulation Relation

Given two WFAs A and B, deciding whether A ⊆ B can be thought of as a two-
player game of one round: Player 1, the Player whose goal it is to show that there
is no containment, chooses a word w and a run r1 of A on w. Player 2 then replies
by choosing a run r2 of B on w. Player 1 wins if r1 is accepting and r2 is not or if
val(r1, w) > val(r2, w). While this game clearly captures containment, it does not



lead to interesting insights or algoritmic ideas about checking containment. A useful
way to view simulation is as a “step-wise” version of the above game in which in each
round the players proceed according to a single transition of the WFAs.

We continue to describe the simulation game formally. A game between Player 1
and Player 2 is a pair 〈G,Γ 〉, for an arena G and an objective Γ for Player 1. Consider
two WFAs A and B, where for γ ∈ {A,B}, let γ = 〈Σ,Qγ , ∆γ , q

γ
0 , Fγ , τγ〉. For

simplicity, we assume that the WFAs are full, in the sense that each state and letter have
at least one successor.

The arena of the game that corresponds to A ≤ B is G = 〈V,E, v0, τ〉. The set V
of vertices is partitioned into two disjoint sets: V1 = QA ×QB are vertices from which
Player 1 proceeds, and V2 = QA×Σ×QB are vertices from which Player 2 proceeds.
The players alternate moves, thus E ⊆ (V1 × V2) ∪ (V2 × V1). Each play starts in the
initial vertex v0 = 〈qA0 , qB0 〉 ∈ V1, and τ : E → IR is the weight function. We define
E = E1 ∪ E2 and τ as follows:

– E1 = {〈〈p, q〉, 〈p′, σ, q〉〉 : 〈p, σ, p′〉 ∈ ∆A and q ∈ QB}.
– E2 = {〈〈p, σ, q〉, 〈p, q′〉〉 : 〈q, σ, q′〉 ∈ ∆B and p ∈ QA}.
– For e1 = 〈〈p, q〉, 〈p′, σ, q〉〉 ∈ E1, we define τ(e1) = τA(〈p, σ, p′〉).
– For e2 = 〈〈p, σ, q〉, 〈p, q′〉〉 ∈ E2, we define τ(e2) = −τB(〈q, σ, q′〉).

Thus, edges in E1 leave vertices in V1 and correspond to Player 1 choosing a letter
and a transition in A. Edges in E2 leave vertices in V2 and correspond to Player 2
choosing a transition in B.

A play of the game is a (possibly infinite) sequence of vertices π = π0, π1, . . .,
where π0 = v0, and for every i ≥ 0 we have E(vi, vi+1). Every finite play has a
value, denoted val(π), which is the sum of the edges that are traversed along it: i.e.,
val(π) =

∑
0≤i<|π| τ(〈πi, πi+1〉). We use π[i : j], for i < j, to refer to the sub-play

πi, . . . , πj .
A strategy for player i ∈ {1, 2} is a function ρi : V ∗ · Vi → V . Let Si be the set

of all strategies for player i. Two strategies ρ1 ∈ S1 and ρ2 ∈ S2, induce a single play
obtained when both players follow their strategies. Formally, the outcome of ρ1 and ρ2,
denoted out(ρ1, ρ2), is the infinite play π = π1, π2, . . ., where for every i ≥ 0, we have
π2i+1 = ρ1(π[0 : 2i]) and π2i+2 = ρ2(π[0 : 2i + 1]). We say that a strategy ρi is
memoryless if it depends only on the current vertex. Formally, ρi(u1 · v) = ρi(u2 · v)
for all u1, u2 ∈ V ∗ and v ∈ Vi.

It is left to define the objective of the game. A finite play π is winning for Player 1
if the last vertex of π is in FA × (QB \ FB) or the last vertex of π is in FA × FB and
val(π) > 0. The objective Γ ⊆ V ω of Player 1, namely the set of plays that are winning
for Player 1 is defined so that an infinite play π is in Γ iff it has a finite prefix that is
winning according to the definition above. Note that for an infinite play π, if π /∈ Γ ,
then it is winning for Player 2. Thus, the objective of Player 2 is Γ = V ω \ Γ . Also
note that once the play has a prefix that is winning for Player 1, there is no actual need
for the play to continue. A winning strategy for Player 1 is a strategy ρ1 ∈ S1 such that
for every strategy ρ2 ∈ S2, the play out(ρ1, ρ2) is in Γ . A winning strategy for Player 2
is defined symmetrically. We define the simulation relation so that A ≤ B iff Player 2
has a winning strategy in G.



Theorem 2. Simulation is strictly stronger than containment: (1) for all WFAs A and
B, if A ≤ B, then A ⊆ B. (2) There are WFAs A and B such that A ⊆ B and A 6≤ B.

Proof: We start with the first claim. Recall thatA ⊆ B iff L(A) ⊆ L(B) and for every
u ∈ L(A) we have val(A, u) ≤ val(B, u). We prove that if A 6⊆ B then Player 1 has a
winning strategy. Thus, there is no winning strategy for Player 2 and A 6≤ B.

Assume thatA 6⊆ B. That is, there exists a word u ∈ Σ∗ such that u ∈ L(A)\L(B),
or u ∈ L(A) and val(A, u) > val(B, u). Consider the strategy ρ1 ∈ S1 in which
Player 1 selects the word u and chooses the run r1 that maximizes the value of u in
A. In the full version, we show that for every strategy ρ2 ∈ S2 of Player 2, the play
out(ρ1, ρ2) is winning for Player 1. Thus, ρ1 is a winning strategy of Player 1 and we
are done.

The proof of the send claim is described in the full version. While the claim easily
follows form the analogous claim in the Boolean setting, the example there is such that
A is simulated by B in the Boolean sense, and the weights of the WFAs are these that
wreck the simulation. ut

As in the Boolean setting, simulation and containment do coincide in case the sim-
ulating automaton is deterministic. Indeed, then, there is only one Player 2 strategy, so
the “step-wise nature” of simulation does not play a role.

Theorem 3. If B is a DWFA, then A ⊆ B iff A ≤ B.

Another property of simulation that stays valid in the weighted setting is its transi-
tivity.

Theorem 4. For WFAs A, B, and C, if A ≤ B and B ≤ C, then A ≤ C.

Unlike the Boolean case, here Player 1 need not have a memoryless strategy, as we
demonstrate below. The WFAs we use in the example are used also in [9] in order to
show that Player 2 has no memoryless winning strategy in energy parity games.

Example 1. We show a family of WFAs A1,A2, . . . and a WFA B such that for all
n ≥ 1, Player 1 wins the simulation game corresponding to An and B, but he has no
memoryless winning strategy. Moreover, a winning strategy for Player 1 needs memory
of size Ω(m ·W ), where m is the size of An × Bn and W is the maximal weight.

Consider the WFAsAn and B in Figure 1. Since L(B) = a∗, then clearly L(An) ⊆
L(B). However, An 6⊆ B, since for w = an · a2Wn+1an, we have cost(An, w) = 1 >
0 = cost(B, w).

We claim that in the simulation game (on bottom) that corresponds to the two WFAs,
there is a winning Player 1 strategy (i.e.,An 6≤ B) and that every such winning strategy
for Player 1 requires Ω(m · W ) memory. Indeed, a winning Player 1 strategy must
proceed to the state (qn, s0) and loop there for at least 2Wn+1 rounds before returning
to the initial state. Thus, a winning strategy must “count” to 2Wn+ 1.

Before we turn to study a solution to the simulation game, observe that the set of
winning plays for Player 1 is open since it is defined by prefixes. By the Gale-Stewart
theorem [19], every game that satisfies this property is determined, hence we have the
following.



An
q0 q1 q2 . . . qn

a, −W

a, −W

a, −W

a, −W

a, −W

a, −W

a, 1
B

s0 a, 0

An × B
q0, s0 q1, s0 q2, s0 . . . qn, s0 qn, a, s0

q1, a, s0 q2, a, s0

q0, a, s0 q1, a, s0

−W 0 −W 0

0 −W 0 −W

0

−W

0

1

Fig. 1. WFAs An and B such that An 6≤ B yet Player 1 does not have a memoryless strategy in
the corresponding simulation game.

Theorem 5. The simulation game is determined. That is, Player 1 or Player 2 has a
winning strategy.

3.2 Solving the Simulation Game

The simulation game stands between the energy games of [4], where the NFAs have no
acceptance conditions, and the energy parity games of [9], where the winning condition
is richer than the one of WFAs. Both these games are determined and can be decided
in NP ∩ co-NP. It is thus not surprising that we are going to show that the same holds
for our simulation game. Our main challenge is to develop an algorithm that would
maintain the simplicity of the algorithm in [4] in the richer setting of WFAs. The setting
is indeed richer, and in particular, as in energy parity games, Player 1 need not have a
memoryless winning strategy. We do this by performing a preprocessing on the arena
of the game, one after which we can perform only local changes in the algorithm of [4].
Our main contribution, however, is not the study of simulation games and their solution
– the main ideas here are similar to these in [4,9]. Rather, it is the combination of these
ideas in an abstraction-refinement paradigm, to be described in Section 4.

Reducing 〈G, Γ 〉 to a simpler game 〈G′, Γ ′〉 Consider an arena G = 〈V,E, v0, τ〉.

– Let W1 ⊆ V be the set of vertices from which Player 1 wins the reachability game
with objective FA × (QB \ FB). That is, v ∈ W1 iff Player 1 can force the game
that starts in v to a vertex in FA × (QB \ FB).

– Let W2 ⊆ V be the vertices from which Player 2 wins the safety game with objec-
tive ((QA \ FA)×QB) ∪ V2. That is, v ∈W2 iff Player 1 can force the game that
starts in v to stay in vertices in ((QA \ FA)×QB) ∪ V2.

It is not hard to see that W1 ∩W2 = ∅. We can therefore distinguish between three
cases: If v0 ∈ W1, then Player 1 wins the game. If v0 ∈ W2, Player 2 wins the game.
Otherwise, we define a new game, which excludes states from W1 ∪W2.

We define the new game 〈G′, Γ ′〉 on the arena G′ = 〈V ′, E′, v0, τ ′〉. The set V ′ of
vertices are {vsink} ∪ (V \ (W1 ∪W2)). The set V ′1 of vertices of Player 1 is V1 ∩ V ′,



and the set V ′2 of vertices of Player 2 is V2 ∩ V ′. We say that a vertex v ∈ V ′ is a
dead-end iff adj(v) ⊆ (W1 ∪W2), where adj(v) is defined with respect to E. That is,
adj(v) = {v′ ∈ V : E(v, v′)}. The set E′ of edges restricts the set E to vertices in
V ′ and includes, in addition, an edge from every dead-end vertex in V ′ to vsink and an
edge from vsink to itself. Recall that we assume that the WFAs on which the simulation
game are defined are total, and thus there are no dead-ends in G. Hence, a vertex is a
dead-end in G′ when all its successors in G are in W1 ∪ W2. Finally, τ ′ assigns the
same value as τ for the edges in E, and assigns 0 to the new edges.

A finite play π is winning for Player 1 in the new game iff the last vertex in π is in
FA × FB and val(π) > 0. As in the original game, Player 2 wins an infinite play iff
it does not have a finite prefix that is winning for Player 1. Note that an infinite play π
satisfies this condition, i.e., π ∈ Γ ′, if either one of two conditions: either π is contained
in V and π ∈ Γ , or π has a finite prefix π[0 : i] that ends in a dead-end vertex, i.e.,
for every k > i we have πk = vsink, and for every j ≤ i, we have that π[0 : j] is not
winning for Player 1.

As we prove in the full version, the characteristics of the vertices in W1 and W2, as
well as the dead-end states enable us to construct, given a winning strategy for Player 1
in G′, a winning strategy for him in G, and similarly for Player 2. Hence, we have the
following.

Lemma 1. Player 1 wins 〈G,Γ 〉 iff he wins 〈G′, Γ ′〉.

It is thus left to show how to solve the game 〈G′, Γ ′〉.

Solving the game 〈G′, Γ ′〉 We say that a strategy of Player 1 is an almost memo-
ryless strategy if, intuitively, in every play, when visiting a vertex, Player 1 plays in
the same manner except for, possibly, the last visit to the vertex. Formally, consider a
Player 1 strategy ρ1. Consider a vertex v ∈ V1. We say that ρ1 is almost memoryless
for v iff there are two vertices v1, v2 ∈ V2 such that for every Player 2 strategy ρ2, if
out(ρ1, ρ2)[0 : n] = v, then either out(ρ1, ρ2)[n+1] = v1, or out(ρ1, ρ2)[n+1] = v2
and for every index n′ > n + 1 we have out(ρ1, ρ2)[n′] 6= v. We say that ρ1 is almost
memoryless iff it is almost memoryless for every vertex in V1.

Lemma 2. If Player 1 has a winning strategy in 〈G′, Γ ′〉, then he also has an almost
memoryless winning strategy.

Proof: Assume ρ1 is a Player 1 winning strategy. Our goal is to construct an almost
memoryless winning strategy ρ′1 from ρ1. Intuitively, we divide the Player 1 strategy
into two “phases”: in the first phase, which we refer to as the “accumulation phase”,
Player 1’s goal is to force the game into accumulating a high value. In the second phase,
which we refer to as the “reachability phase”, his goal is to force the game to a winning
position, which is a vertex in FA × FB. Since all the vertices in V ′ are not in W2,
Player 1 can force the game to a winning position from every vertex in V ′. Also, since
reaching a winning position is done in a memoryless manner, it does not involve a play
with cycles, and thus, we bound the maximal value that Player 1 needs to accumulate
in the first phase. The technical details can be found in the full version. ut



For Player 2, our situation is even better as, intuitively, cycles in the game are either
good for Player 2, in which case a strategy for him would always proceed to these
cycles, or bad for Player 2, in which case a strategy for him would never enter them.
Formally, as proven in the full version, we have the following.

Lemma 3. If Player 2 has a winning strategy in 〈G′, Γ ′〉, then he also has a winning
memoryless strategy.

Before turning to prove the complexity results, we remind the reader of the Bellman-
Ford algorithm. The algorithm gets as input a weighted directed graph 〈V, E , θ〉, where
V is a set of vertices, E ⊆ V × V is a set of edges, and θ : E → IR is a weight function.
The algorithm also gets a distinguished source vertex s ∈ V . It outputs a function
C : V → IR, where for every v ∈ V , the value C(v) is the value of the shortest path
between s and v. If there is a negative cycle connected to s, the algorithm reports that
such a cycle exists but it cannot return a correct answer since no shortest path exists.

We continue to prove the complexity that follows.

Theorem 6. Solving simulation games is in NP ∩ co-NP.

Proof: We first show membership in co-NP. We show that we can check in PTIME,
given a memoryless Player 2 strategy, whether it is a winning strategy for Player 2.
Given a memoryless Player 2 strategy, we trim every edge that starts from vertices in
V ′2 and does not agree with the strategy. We run the longest path version of the Bellman-
Ford algorithm on the trimmed arena. Given a directed graph and a source vertex, the
algorithm returns a function C : V → IR that assigns to every vertex the longest path
from the source vertex, and reports if there is a positive valued cycle in the graph.

In the full version, we prove that the strategy is winning iff there is no positive cycle
in the trimmed arena, and if every vertex v ∈ FA × FB has C(v) ≤ 0.

We proceed to show membership in NP. For that, we show that we can check in
PTIME, given a memoryless Player 1 strategy ρ1, whether it can serve as the strategy
to be used in the “accumulation phase” of the game in a way that induces an almost
memoryless winning strategy for Player 1. Intuitively, we check if Player 2 can play
against ρ1 in a way that closes a cycle that is winning for Player 2, or if Player 2 can
reach the vertex vsink in a play that is not losing. If he cannot, we show that ρ1 either
forces the game into a vertex in FA × FB after a positive-valued play, or ρ1 forces the
game to close a positive valued cycle.

The algorithm, described in the full version, is similar to the algorithm in [4] with
a small adjustment, which in turn is an adjustment of the Bellman-Ford algorithm: we
restrict the vertices considered by the algorithm to ones in FA × FB, and we take into
an account the ability to reach vsink. ut

4 An Abstraction-Refinement-based Algorithm for Deciding
Simulation

In this section we solve the weighted-simulation problem A ≤ B by reasoning about
abstractions ofA and B. Recall that for every WFAA, we have thatA↓ ⊆ A ⊆ A↑. We
first argue that this order is maintained for the simulation relation. We then use this fact
in order to check simulation (and hence, also containment) with respect to abstractions.



Theorem 7. For every WFA A and abstraction function α, we have Aα↓ ≤ A ≤ Aα↑ .

Proof: We construct the required winning strategies for Player 2. We start with the
claim A↓ ≤ A and show that Player 2 has a winning strategy in the game that corre-
sponds toA↓ andA. Intuitively, whenever Player 1 selects a letter and a must-transition
to proceed with in A↓, the winning Player 2 strategy selects a matching concrete tran-
sition in A and proceeds with it. Thus, the winning Player 2 strategy maintains the
invariant that when the game reaches a vertex 〈a, c〉, then c ∈ a. Recall that A↓ under-
approximates A in three ways: the transition relation, the weight function, and the def-
inition of the accepting states. Consequently, as we formally prove in the full version
by induction on the length of the prefix, all the prefixes of the play are not winning for
Player 1. The proof of the second claim is similar. ut

We note that beyond the use of Theorem 7 in practice, it provides an additional
witness to the appropriateness of our definition of weighted simulation.

Recall that our algorithm solves the weighted-simulation problem A ≤ B by rea-
soning about abstractions ofA and B. We first show that indeed we can conclude about
the existence of simulation or its nonexistence by reasoning about the abstractions:

Theorem 8. Consider two WFAs A and B and abstraction functions α and β.

– If Aα↑ ≤ Bβ↓ , then A ≤ B.

– If Aα↓ 6≤ Bβ↑ , then A 6≤ B.

Our algorithm proceeds as follows. We start by checking whether Aα↑ ≤ Bβ↓ and
Aα↓ 6≤ Bβ↑ , for some (typically coarse) initial abstraction functions α and β. By Theo-
rem /refrefinement-thm, if we are lucky and one of them holds, we are done. Otherwise,
the winning strategies of the Player 2 in the first case and Player 1 in the second case
suggest a way to refine α and β, and we repeat the process with the refined abstractions.
While refinement in the Boolean case only splits abstract states in order to close the gap
between may and must transitions, here we also have refinement steps that tighten the
weights along transitions. Below is a formal description of the algorithm.

Input: Two WFAs A and B, with abstraction functions α and β
Output: yes if A ≤ B and no otherwise

while true do
if Player 2 wins the game that corresponds to Aα↑ and Bβ↓ then return yes
else let ρ1 be a winning Player 1 strategy in the game
if Player 1 wins the game that corresponds to Aα↓ and Bβ↑ then return no
else let ρ2 be a winning Player 2 strategy in the game
α′, β′ = refine(A,B, α, β, ρ1, ρ2)
set: α = α′ and β = β′

end while

By Theorem 8, if the algorithm returns yes, thenA simulates B, and if the algorithm
returns no, then A does not simulate B. If Aα↑ 6≤ Bβ↓ and Aα↓ ≤ Bβ↑ , then the answer is



indefinite and we refine the abstractions. This is done by the procedure refine , described
below.

Recall that we refine α and β in case bothAα↑ 6≤ Bβ↓ andAα↓ ≤ Bβ↑ . When this hap-
pens, the algorithm for checking simulation generates a winning strategy ρ1 of Player 1
in the game corresponding to Aα↑ 6≤ Bβ↓ and a winning strategy ρ2 of Player 2 in the
game corresponding to Aα↓ ≤ Bβ↑ . The procedure refine gets as input the WFAs A and
B, the abstraction functions α and β, and the winning strategies ρ1 and ρ2. It returns
two new abstraction functions α′ and β′.

In order to see the idea behind refine , assume that Player 1 wins in the concrete
game. Then, ρ2 is winning in a spurious manner in the game that corresponds to Aα↓ ≤
Bβ↑ . Our goal in the refinement process is to remove at least one of the reasons ρ2
is winning. Also, if Player 1 wins in the concrete game, then refinement in the game
corresponding to Aα↑ ≤ Bβ↓ should reveal the fact that ρ1 is winning. The situation is
dual if Player 2 wins the concrete game. Since during the refinement process we cannot
know which of the players wins the concrete game, we perform refinements to the two
games simultaneously until we reach a definite answer. Since we assume that the WFAs
are finite, we are guaranteed to eventually terminate. Thus, our procedure is complete
(it attempts, however, to solve only the simulation, rather than containment, problem).

Observe that the arenas on which the strategies are defined have the same vertices
but different edges. Edges that appear in one game but not the other correspond to
may transitions that are not must transitions. Our refinement procedure is based on
the algorithm for solving the simulation game as described in Section 3.2. Recall that
the algorithm first performs a pre-processing stage in which it removes two sets of
vertices: vertices from which Player 1 wins (namely the set W1), and vertices from
which Player 2 wins (namely the set W2). The first set of vertices are the winning
vertices in the un-weighted reachability game with objective FA × (QB \ FB). The
second set of vertices are the winning vertices in the un-weighted safety game with
objective ((QA \ FA)×QB) ∪ V2.

Since the two winning sets depend on the edges of the game, the sets we remove are
not the same in the two games. We refer to the vertices after their removal as V ′A↑,B↓

and V ′A↓,B↑
, and we refine them until the initial vertex is in both sets.

We describe the refinement according to the strategy ρ1. Refinement according to
ρ2 is dual.

Recall that, by Theorem 2, if Player 1 wins, then he has an almost-memoryless
winning strategy. Thus, we assume ρ1 is almost memoryless. Also recall that ρ1 is
winning in the game played on the vertices V ′A↑,B↓

, and since ρ2 is winning in the game
played on the vertices V ′A↓,B↑

, the strategy ρ1 is not winning in this game.
We proceed as in the algorithm for solving simulation games: we “guess” the strat-

egy ρ1 and check if (actually, how) Player 2 can win against this strategy. Since ρ1 is
not winning in the game played on the vertices V ′A↑,B↓

, we find at least one path π
that is winning for Player 2. As seen in the algorithm, π is either a path that reaches
vsink or is a lasso contained in the vertices V ′A↑,B↓

\ {vsink}. More formally, π is of
the form π1 · πω2 . The path π1 is a simple path that uses vertices from V ′A↑,B↓

\ {vsink}
and it (and every prefix of it) is not losing for Player 2. The path π2 is either the cy-
cle that is the single vertex vsink or it is a cycle contained in V ′A↑,B↓

\ {vsink}. In the



second case, val(π2) ≤ 0, and for every 0 ≤ i ≤ |π2|, if π2[i] ∈ FA × FB, then
val(π1) + val(π2[0 : i]) ≤ 0.

Since π is not a path in V ′A↓,B↑
, at least one of the following three cases hold:

– π uses a vertex in V ′A↑,B↓
\ V ′A↓,B↑

,
– π traverses an edge that corresponds to a may but not must transition, or
– the sum of the edges traversed in π is larger in the one game than in the other.

In the first case, we refine the vertices V ′A↑,B↓
and V ′A↓,B↑

, as described above. In
the second case, the refinement is similar to the one done in the Boolean setting, where
we close the gap between may and must transitions. Finally, in the third case, we split
states in order to tighten the weights on the transitions. Recall that these weights are
defined by taking the minimum or maximum of the corresponding set of transitions.
Therefore, splitting of states indeed tightens the weights.

Example 2. Consider the two simulation games G1 and G2 in Figure 2. The game G1
corresponds to A↑ and B↓, and G2 corresponds to A↓ and B↑, for some two WFAs
A and B with abstraction functions. In the figure, we use circle and boxes in order to
denote, respectively, the nodes in which Player 1 and Player 2 proceed. In G1, we define
FA × (QB \FB) = {s4}, FA ×FB = {s5, s6}, and (QA \FA)×QB = {s4}, and the
definition is similar in G2. Due to lack of space, we omit the letters from the arenas.

We show that Player 1 wins G1 in three different ways and Player 2 wins G2. In the
first strategy, in G1, Player 1 proceeds from s0 to s1. Player 2 is then forced to continue
to s4, which is losing for Player 2 since it is a vertex in FA × (QB \ FB). In the second
winning strategy, Player 1 proceeds from s0 to s2. The game continues by alternating
between s2 and s6. Since the cycle has a positive value and s6 ∈ FA×FB, Player 1 wins
the prefix s0s2s6s2s6s2s6. Finally, in the third strategy, Player 1 proceeds from s0 to
s3. Player 2 is then forced to proceed to s6. Since s6 ∈ FA ×FB and val(s0s2s6) > 0,
Player 1 wins the prefix. Clearly, in G2, the Player 2 strategy that proceeds from s1 to
s5 is winning.

We proceed to describe the refinement of the abstractions using these strategies.
First, note that in G1, by playing the first strategy described above, Player 1 can force
the game to a vertex in FA × (QB \ FB) from the initial vertex. Thus, s0 /∈ V ′A↑,B↓

.
We start by refining the set of Player 1 winning vertices in the reachability game with
objective FA × (QB \ FB). In this process we refine the vertex s1.

Next, we apply the third Player 1 winning strategy on G2 and see how Player 2 can
win against it. Player 2 wins because Player 1 uses the edge 〈s0, s3〉, which is not in
G2. We refine s0, and after the refinement the strategy is no longer valid for Player 1 in
G1. After these two refinements, Player 1 can still win in G1 using the second strategy,
and we apply it in G2. The outcome of the game against a winning Player 2 strategy is
s0(s2s6)

ω . In this path, we find the failure vertex s2 and refine it in order to tighten the
values of the edges.

The two resulting games after these three refinements are G′1 and G′2 (see the right
side of Figure 2). Player 1 wins in G′2 by proceding from s0 to s2, and thus we are done.

Note that since not all the values on the edges are the same in G′1 and G′2, the re-
finement is not exauhsted. That is, the arenas are not QA ×QB. Thus, the abstraction-
refinement algorithm successfully decides simulation on a smaller state space than the



concrete one. Since, however, we found that A 6≤ B, then by Theorem 2, it might still
be the case that A ⊆ B.
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Fig. 2. An example of applying the refinement algorithm on two simulation games.

5 Directions for Future Research

We introduced the notions of abstraction and simulation for weighted automata and ar-
gue that they form a useful heuristic for checking containment – a problem of practical
interest that is known to be undecidable. In the Boolean setting, researchers have sug-
gested ways for closing the gap between containment and simulation [23,26]. Some,
like these that extend the definition of simulation with a look ahead, are easy to ex-
tend to the weighted setting. Other ways require special treatment of the accumulated
weights and are subject to future research. Finally, the rich weighted setting allows one
to measure the differences between systems. For example, we can talk about one WFA
t-approximating another WFA, in the sense that the value of a word in the second is at
most t times its value in the first [2]. Our weighted simulation corresponds to the special
case t = 1 and we plan to study approximated weighted simulation.
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