
Sanity Checks in Formal Verification?

Orna Kupferman ??

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
Email:orna@cs.huji.ac.il, URL: http://www.cs.huji.ac.il/∼orna

Abstract. One of the advantages of temporal-logic model-checking tools is their
ability to accompany a negative answer to the correctness query by a counterex-
ample to the satisfaction of the specification in the system. On the other hand,
when the answer to the correctness query is positive, most model-checking tools
provide no additional information. In the last few years there has been growing
awareness to the importance of suspecting the system or the specification of con-
taining an error also in the case model checking succeeds. The main justification
of such suspects are possible errors in the modeling of the system or of the spec-
ification. The goal of sanity checks is to detect such errors by further automatic
reasoning. Two leading sanity checks are vacuity and coverage. In vacuity, the
goal is to detect cases where the system satisfies the specification in some un-
intended trivial way. In coverage, the goal is to increase the exhaustiveness of
the specification by detecting components of the system that do not play a role
in verification process. For both checks, the challenge is to define vacuity and
coverage formally, develop algorithms for detecting vacuous satisfaction and low
coverage, and suggest methods for returning to the user helpful information. We
survey existing work on vacuity and coverage and argue that, in many aspects,
the two checks are essentially the same: both are based on repeating the verifica-
tion process on some mutant input. In vacuity, mutations are in the specifications,
whereas in coverage, mutations are in the system. This observation enables us to
adopt work done in the context of vacuity to coverage, and vise versa.

1 Introduction

In temporal-logic model checking, we verify the correctness of a finite-state system
with respect to a desired behavior by checking whether a labeled state-transition graph
that models the system satisfies a temporal logic formula that specifies this behavior
[CGL93]). Beyond being fully-automatic, an additional attraction of model-checking
tools is their ability to accompany a negative answer to the correctness query by a
counterexample to the satisfaction of the specification in the system. Thus, together
with a negative answer, the model checker returns some erroneous execution of the sys-
tem. These counterexamples are very important and they can be essential in detecting
subtle errors in complex designs [CGMZ95]. On the other hand, when the answer to
the correctness query is positive, most model-checking tools provide no additional in-
formation. Since a positive answer means that the system is correct with respect to the
? The paper is based on joint work with Hana Chockler, Moshe Y. Vardi, and Robert Kurshan,

appearing in [CKV01,CKKV01,CKV03,Cho03].
?? Supported in part by BSF grant 9800096, and by a grant from Minerva.

specification, this at first seems like a reasonable policy. In the last few years, however,
there has been growing awareness to the importance of suspecting the system and the
specification of containing an error also in the case model checking succeeds. The main
justification of such suspects are possible errors in the modeling of the system or of the
behavior.

Early work on “suspecting a positive answer” concerns the fact that temporal logic
formulas can suffer from antecedent failure [BB94]. For example, verifying a system
with respect to the specification ϕ = AG(req → AF grant) (“every request is eventu-
ally followed by a grant”), one should distinguish between satisfaction of ϕ in systems
in which requests are never sent, and satisfaction in which ϕ’s precondition is some-
times satisfied. Evidently, the first type of satisfaction suggests some unexpected prop-
erties of the system, namely the absence of behaviors in which the precondition was
expected to be satisfied.

In [BBER01], Beer et al. suggested a first formal treatment of vacuity. As described
there, vacuity is a serious problem: “our experience has shown that typically 20% of
specifications pass vacuously during the first formal-verification runs of a new hardware
design, and that vacuous passes always point to a real problem in either the design
or its specification or environment” [BBER01]. The definition of vacuity according to
[BBER01] is based on the notion of subformulas that do not affect the satisfaction of the
specification. Consider a model M satisfying a specification ϕ. A subformula ψ of ϕ
does not affect (the satisfaction of) ϕ in M if M also satisfies all formulas obtained by
modifying ψ. In the example above, the subformula grant does not affect ϕ in a model
with no requests. Now, M satisfies ϕ vacuously if ϕ has a subformula that does not
affect ϕ in M . A general method for vacuity definition and detection was presented in
[KV03], and the problem was further studied in [AFF+03,CG04a,BFG+05]. It is shown
in these papers that for temporal logics such as LTL and CTL?, where an occurrence
of the subformula ψ can be replaced by a universally quantified proposition, vacuity
detection can be reduced to model checking specifications in the logic obtained by
adding universally quantified atomic propositions. This leaves vacuity detection for LTL
in PSPACE [AFF+03], but makes vacuity detection for CTL and CTL? EXPTIME and
2EXPTIME complete — as hard as their satisfiability [CG04a]. Moreover, adding to the
specification formalism a regular layer, such as the ability to use regular expressions in
the formula as in Sugar [BBE+01] and ForSpec [AFF+02], also adds a need to replace
some subformulas ψ by a university quantified interval, which makes vacuity detection
more complex than model checking.

When the system is proven to be correct, and vacuity has been checked too, there is
still a question of how complete the specification is, and whether it really covers all the
behaviors of the system. It is not clear how to check completeness of the specification.
Indeed, specifications are written manually, and their completeness depends entirely
on the competence of the person who writes them. The motivation for a completeness
check is clear: an erroneous behavior of the design can escape the verification efforts if
this behavior is not captured by the specification. In fact, it is likely that a behavior not
captured by the specification also escapes the attention of the designer, who is often the
one to provide the specification.

The challenge of making the verification process as exhaustive as possible is even
more crucial in simulation-based verification. Each input vector for the system induces
a different execution of it, and a system is correct if it behaves as required for all
possible input vectors. Checking all the executions of a system is an infeasible task.
Simulation-based verification is traditionally used in order to check the system with
respect to some input vectors [BF00]. The vectors are chosen so that the verification
would be as exhaustive as possible, and it is crucial to measure the exhaustiveness of
the input sequences that are checked. Indeed, there has been an extensive research in
the simulation-based verification community on coverage metrics, which provide such a
measure [TK01]. Coverage metrics are used in order to monitor progress of the verifica-
tion process, estimate whether more input sequences are needed, and direct simulation
towards unexplored areas of the system. Coverage metrics today play an important role
in the system validation effort [Ver03]. For a survey on the variety of metrics that are
used in simulation-based verification, see [ZHM97,Dil98,Pel01,TK01]

Measuring the exhaustiveness of a specification in formal verification (“are more
properties need to be checked?”) has a similar flavor as measuring the exhaustiveness
of the input sequences in simulation-based verification (“are more sequences need to
be checked?”). Nevertheless, while for simulation-based verification it is clear that cov-
erage corresponds to activation during the execution on the input sequence, it is less
clear what coverage should correspond to in formal verification, as in model checking
all reachable parts of the system are visited. Early work on coverage metrics in formal
verification [HKHZ99,KGG99] suggested two directions. Both directions reason about
a state-transition graph that models the system. The metric in [HKHZ99], later followed
by [CKV01,CKKV01,CK02], is based on mutations applied to the graph. Essentially,
a state s in the graph is covered by the specification if modifying the value of a vari-
able in the state renders the specification untrue. The metric in [KGG99] is based on a
comparison between the graph and a reduced tableau for the specification.

In [CKV03], we adapted the work done on coverage in simulation-based verification
to the formal-verification setting in order to obtain new coverage metrics. Interestingly,
the adoption of metrics from simulation-based verification has brought vacuity to the
front of the stage again, and this time, in the context of coverage. To see why, consider
for example code-based coverage, where we check, for example, whether both branches
of an if statement have been executed during the simulation. A straightforward adop-
tion would check the satisfaction of the specification in a mutant system, one for each
branch, in which the branch is disabled. Such a mutant system, however, has less behav-
iors than the original system, and would clearly satisfy all universal specifications (i.e.,
specifications that apply to all behaviors, as in linear temporal logic) that are satisfied
by the original system. In general, the problem we are facing is the need to assess the
role a behavior has played in the satisfaction of a universal specification – one that is
clearly satisfied in the system obtained by removing this behavior. The way we sug-
gested to do so is to check whether the specification is vacuously satisfied in a mutant
system in which this behavior is disabled: a vacuous satisfaction of the specification in
such a system (we assume that the specification is not vacuously satisfied in the orig-
inal system) indicates that the specification does refer to this behavior; on the other
hand, a non-vacuous satisfaction of the specification in the mutant system indicates that

the specification does not refer to the missing behavior. Accordingly, coverage metrics
adopted from the simulation-based word check both the satisfaction and the vacuous
satisfaction of the specification in mutant systems.

The definition of vacuity coverage in [CKV03] has related vacuity and coverage.
In this paper we strengthen the link between the two sanity checks further and argue
that, from the algorithmic point of view, the problems are essentially identical. In both
problems, we check whether all the components of the input to the model-checking
problem have played a role in the model-checking process. In the case of vacuity, the
components we check are subformulas of the specification. In the case of coverage, the
components are elements of the system. This suggests that the solutions to the vacuity
and coverage problems may be based on the same algorithm. We show that, indeed,
ideas developed for coverage can be adopted for vacuity, and vice versa.

2 Vacuity and Coverage

In this section we describe the basic definitions of vacuity and coverage. We consider
specifications in either linear or branching temporal logics. For a formula ϕ, a subfor-
mula ψ of ϕ, and a formula ξ, we use ϕ[ψ ← ξ] to denote the formula obtained from ϕ

by replacing all the occurrences of ψ in ϕ by ξ.
We define the semantics of temporal-logic formulas with respect to a Kripke struc-

ture K = 〈AP,W,R,win, L〉, where AP is a set of atomic propositions, W is a set
of states, R ⊆ W ×W is a total transition relation, win ∈ W is an initial state, and
L : W → 2AP maps each state to the set of atomic propositions that hold in this state.
A Kripke structureK can be unwound into an infinite computation tree in a straightfor-
ward way. Formally, the tree that is obtained by unwindingK is denoted byK and is the
2AP -labeled W -tree 〈TK , V K〉, in which a node x · w, for x ∈ W ∗ and w ∈W , is as-
sociated with state w. Formally, ε ∈ TK is associated with win and V K(ε) = L(win).
Now, for all w with R(win, w), we have that w ∈ TK , and for all x · w ∈ TK and
v ∈ W with R(w, v), we have x · w · v ∈ TK and V K(x · w) = L(w). That is, V K

maps a node that was reached by taking the direction w to L(w).
The definition of vacuity involves formulas with an atomic proposition that is uni-

versally quantified. Consider an atomic proposition x. A Kripke structure K satisfies
a temporal logic formula ∀xϕ(x) iff ϕ is satisfied in all computation trees 〈T, V 〉 that
differ from 〈TK , V K〉 only in the label of the atomic proposition x. Note that different
occurrences of the same state in K may have different x labels.

Let us start with the basic definition of vacuous satisfaction. Intuitively, a Kripke
structure K satisfies a formula ϕ vacuously if K satisfies ϕ yet it does so in a non-
interesting way, which is likely to point on some trouble with either K or ϕ. For ex-
ample, a system in which requests are never sent satisfies AG(req → AF grant) vacu-
ously. In order to formalize this intuition, it is suggested in [BBER01] to formalize first
the notion of a subformula of ϕ affecting its truth value in K. We use the following
definition for the latter:

Definition 1. [AFF+03] A subformula ψ of ϕ does not affect the truth value of ϕ in K
(ψ does not affect ϕ in K, for short) if K satisfies ∀xϕ[ψ ← x] iff K satisfies ϕ.

The definition in [AFF+03] is semantic. Earlier definitions, and in particular the one
in [BBER01], were syntactic, in the sense they consider a replacement of ψ by other
subformulas. Thus, according to [BBER01], ψ does not affect ϕ in K if K satisfies
ϕ[ψ ← ξ] for all formulas ξ. A good reason to switch to the semantic-based definition is
the fact that [BBER01]’s definition is not effective, as it requires evaluation ofϕ[ψ ← ξ]
for all formulas ξ. To deal with this difficulty, [BBER01] considers only a small class,
called w-ACTL, of branching temporal logic formulas. Once we have defined when a
subformula of ϕ affects its truth value in K, the definition of vacuity is as expected1:

Definition 2. A system K satisfies a formula ϕ vacuously iff K |= ϕ and there is some
subformula ψ of ϕ such that ψ does not affect ϕ in K.

In [KV03], we showed that when all the occurrences of a subformula ψ in ϕ are of
a pure polarity (that is, they are either all under an even number of negations (positive
polarity), or all are under an odd number of negations (negative polarity)), the syntac-
tic and semantic definitions coincide, and checking whether ψ affects ϕ in K is easy.
Formally, for a formula ϕ and a subformula ψ of ϕ, let ϕ[ψ ← ⊥] denote the formula
obtained from ϕ by replacing ψ by false, in case ψ is positive in ϕ, and replacing ψ by
true, in case ψ is negative in ϕ. Now, by [KV03], ψ does not affect ϕ iffK satisfies the
formula obtained from ϕ by the single extreme modification of ψ. Formally, we have
the following.

Theorem 1. [KV03] For every formula ϕ, a subformula ψ of a pure polarity of ϕ,
and a system K that satisfies ϕ, we have that ψ does not affect ϕ in K iff K satisfies
ϕ[ψ ← ⊥].

By Definition 2, vacuity detection can be reduced to checking whether K satisfied
∀xϕ[ψ ← x] for all subformulas ψ of ϕ. Also, by Theorem 1, when ψ is of a pure po-
larity 2, the latter can be done by checking whetherK satisfies ϕ[ψ ← ⊥]. In particular,
when ϕ is polar (that is, all its subformulas are of a pure polarity), vacuity detection can
be reduced to a sequence of model-checking executions, each for a single subformula
(this is a naive algorithm for this task, and we later mention some heuristics). When,
however, some subformula ψ is of a mixed polarity, the check is harder and requires
model checking of formulas with quantified atomic propositions. For the case of CTL
and CTL?, the problem of vacuity detection is then as hard as the satisfiability problem,
namely it is EXPTIME and 2EXPTIME complete, respectively [CG04a]. For LTL, it
can still be reduced to LTL model checking and stay PSPACE-complete, but is more
complicated than simple model checking [AFF+03].

Remark 2 The semantic approach turned out to be appropriate also when the specifica-
tion formalism has a regular layer [BFG+05]. There, the subformulaψ may be a regular

1 In [CG04b], the authors study an alternative definition of vacuity in which the mutual vacuity
of some subformulas is taken into a consideration.

2 Note that one can talk about a subformula ψ affecting ϕ in K or about an occurrence of ψ
affecting ϕ in K. Since a single occurrence is of a pure polarity, Theorem 1 always applies in
this setting.

event, and the universal quantification that is needed is over intervals. Consider for ex-
ample the formula ϕ = G ((req · (¬ack)∗ · ack) triggers Xgrant), which says that a
grant is given exactly one cycle after the cycle in which a request is acknowledged.
Note that if ack does not affect the satisfaction of ϕ in K, we can learn that acknowl-
edgments are actually ignored: grants are given, and stay on forever, immediately after
a request. Such a behavior is not referred to in the specification, but is detected by reg-
ular vacuity. Thus, while LTL vacuity involved only monadic quantification (over the
set of points in which x may hold), regular vacuity also involves dyadic quantification
(over intervals – sets of pairs of points, in which int may hold). This transition, from
monadic to dyadic quantification, is technically very challenging, yet, as was shown in
[BFG+05], the automata-theoretic approach to LTL [VW94] can be extended to handle
regular vacuity, but the problem is much harder than LTL vacuity (it is in EXPSPACE
and is EXPTIME-hard).

As with usual vacuity, when a subformulaψ has a pure polarity, checking whether it
affects the truth value of ϕ can be reduced to checking whether K satisfies ϕ[ψ ← ⊥],
with ⊥ being true

∗ in case ψ is of a negative polarity and is false in case ψ is of
a positive polarity. Thus, in the context of regular vacuity, pure polarity is even more
crucial. ut

We now turn to the basic definition of coverage in model checking. The idea, due
to [HKHZ99], is to define coverage by examining the effect of modifications in the
system on the satisfaction of the specification. Given a system modeled by a Kripke
structure K, a formula ϕ that is satisfied in K, and a signal (atomic proposition) q, let
us denote by K̃w,q the Kripke structure obtained from K by flipping the value of q in
w. Thus, K̃w,q = 〈AP,W,R,Win, L̃w,q〉, where L̃w,q(v) = L(v) for all v 6= w, and
L̃w,q(w) = L(w) \ {q} if q ∈ L(w) and L̃w,q(w) = L(w) ∪ {q} if q 6∈ L(w).

Definition 3. [HKHZ99] A state w of a Kripke structure K is q-covered by ϕ, for a
formula ϕ and an atomic proposition q, if K satisfies ϕ but K̃w,q does not satisfy ϕ.

Thus, w is q-covered by ϕ if the Kripke structure obtained from K by flipping the
value of q in w no longer satisfies ϕ. Indeed, this indicates that the value of q in w is
crucial for the satisfaction of ϕ in K. Definition 3 is very basic not only since it con-
siders only mutations of a very limited nature, but also, as pointed out in [CKV01], it
ignores the fact that often, replacing the value of an atomic proposition also causes a
change in the transitions of K, which are typically defined by means of the values of
the atomic propositions in the target and source of each transition. As shown, however,
in [CKV01], the latter weakness is technical and it is possible to extend coverage algo-
rithms that consider mutations that do not change the transitions to mutations that do
change them.

3 Adopting Ideas from Vacuity to Coverage

In this section we show how ideas that have been suggested in the context of coverage
are actually an adoption of ideas in vacuity. We also point to ideas in vacuity that have
not yet been adopted in coverage.

3.1 Single vs. multiple occurrences

We start with the definition of coverage. Recall that the basic definition of coverage
considered a very simple mutation: flip the value of one atomic proposition in one
state. Recall that the Kripke structure models a system, and that the execution of the
system corresponds to unwinding the Kripke structure into an infinite computation tree.
A state w of K may correspond to several nodes in the computation tree. The basic
definition of coverage flips the value of q in w in all these occurrences. In a similar
way, in the definition of vacuity, we have distinguished between a single occurrence of
a subformula ψ of ϕ and all its occurrence. In the first case, we have replaced only this
occurrence by a universally quantified proposition (in fact, in this case it is sufficient
to replace the single occurrence by ⊥), and in the second, we have replaced all the
occurrences. Each approach may return a different answer to the vacuity query.

This suggest that the definition of coverage should also be refined to reflect the fact
that the flipping of q in w can be performed in different ways. Such a refinement was
suggested in [CKKV01], which made a distinction between “flipping always”, “flipping
once”, and “flipping sometimes”, which are formalized in the definitions of structure
coverage, node coverage, and tree coverage below. We first need some notations.

For a domain Y , a function V : Y → 2AP , an observable signal q ∈ AP , and a
set X ⊆ Y , the dual function ṼX,q : Y → 2AP is such that ṼX,q(x) = V (x) for all
x 6∈ X , ṼX,q(x) = V (x) \ {q} if x ∈ X and q ∈ V (x), and ṼX,q(x) = V (x) ∪ {q}

if x ∈ X and q 6∈ V (x). When X = {x} is a singleton, we write Ṽx,q. Recall that
K̃w,q = 〈AP,W,R,Win, L̃w,q〉. For X ⊆ TK we denote by K̃X,q the tree that is
obtained by flipping the value of q in all the nodes in X . Thus, K̃X,q = 〈TK , Ṽ KX,q〉.
When X = {x} is a singleton, we write K̃x,q.

Definition 4. Consider a Kripke structure K, a formula ϕ satisfied in K, and an ob-
servable signal q ∈ AP .

– A state w of K is structure q-covered by ϕ iff the structure K̃w,q does not satisfy ϕ.
– A state w of K is node q-covered by ϕ iff there is a w-node x in TK such that K̃x,q

does not satisfy ϕ.
– A state w of K is tree q-covered by ϕ iff there is a set X of w-nodes in TK such

that K̃X,q does not satisfy ϕ.

Note that, structure coverage coincides with Definition 3. Also note that a state is
structure q-covered iff K̃X,q does not satisfy ϕ for the set X of all w-nodes in K. In
other words, a state w is structure q-covered if flipping the value of q in all the instances
of w in K falsifies ϕ, it is node q-covered if a single flip of the value of q falsifies ϕ,
and it is tree q-covered if some flips of the value of q falsifies ϕ.

3.2 A semantic approach to coverage

Recall that earlier definitions of vacuity were syntactic and considered replacements of
a subformula ψ by another formula [BBER01]. Later, in [AFF+03], researchers have
moved to the semantic approach, where ψ is replaced by a universally quantified atomic

proposition. We would like to use the idea of a universally quantified atomic proposition
also in the context of coverage. Thus, we seek a definition according to which w is not
covered by ϕ if ∀xK[w ← x] |= ϕ. In general, it is not clear what x is and what does
K[w ← x] stands for. There are, however, settings in which an appropriate definition for
x exists. In particular, in symbolic methods, the state space is encoded by propositional
variables [BCM+92,BCC+99], and universal quantification is naturally defined. The
induced definition of coverage captures exactly our intuition of w not playing a role
in the verification process. Indeed, if, for example, we have reduced bounded model
checking to the non-satisfiability of a propositional formula θ and a vector x of variables
encodes the value of the system’s variables in state w in time t, then satisfiability of
∀xθ indicates that the values of the variables in x did play a role in the model-checking
procedure. Note that, as with usual coverage, there is a need to distinguish between
structure, tree, and node coverage.

3.3 Returning an interesting witness to the user

A witness for the satisfaction of a specification in a system is a sub-system, usually a
computation, that satisfies the specification. A witness is interesting if it satisfies the
specification non-vacuously [BBER01,KV03]. For example, a computation in which
both req and ¬grant hold is an interesting witness for the satisfaction of AG(req →
AF grant). An interesting witness gives the user a confirmation that his specification
models correctly the desired behavior, and enables the user to study some nontrivial
executions of the system.

An interesting witness in the context of coverage is a subformula that causes a com-
ponent to be covered. It is easy to extend existing coverage algorithms to return, for
each component of the system, the parts of the specification with respect to which it
is covered. More informative, however, and closer to the way interesting witnesses are
used in vacuity, is to return to the user information on how the component is covered.
Thus, for every component c of the system, the user should be able to get witnesses
to the coverage of c by means of an erroneous computations in which c is mutated.
From an algorithmic point of view, this involves solving exactly the same problem as
the problem of generating interesting witnesses in vacuity, namely the problem of gen-
erating counter examples [CGMZ95,KV03]. In the context of coverage, however, we
return to the user a family of counterexamples – one for each sub-specification that is
no longer satisfied in the system with c mutated.

4 Adopting Ideas from Coverage to Vacuity

The adoption we suggested in Section 4 considers the challenges of defining vacuity
and coverage and of returning helpful information to the user. In the context of cover-
age, much effort has been put in order to develop efficient algorithms for computing
coverage. As we shall detail below, this has to do with the fact that a naive algorithm
for coverage increases the complexity of model checking by a factor that depends on
the size of the system, whereas one for vacuity detection increases the complexity only

by a factor that depends on the specification. While the specification is typically much
smaller than the system, it is still desirable to get rid of this factor.

A naive algorithm for the detection of components of the system that are not covered
by the specification proceeds by model checking mutations of the system. For example,
in order to find the set of states not q-covered by ϕ in a Kripke structure K with n
states, the naive algorithm executes the model-checking procedure n times, where in
each execution K̃w,q is checked for a different state w. Likewise, a naive algorithm for
vacuity detection proceeds by checking mutations of the specification, each obtained
by replacing a single subformula by a universally quantified proposition (in case the
subformula is of a mixed polarity) or by true or false (in case it is of a pure polarity).

In [CKV01,CKKV01], we presented two alternatives to the naive algorithm for cov-
erage. The first is symbolic, and the second makes use of overlaps among different
mutations of the same Kripke structures. In this section we briefly describe the two al-
gorithms and show how exactly the same ideas can be used in order to detect vacuous
satisfaction of polar formulas.

4.1 A symbolic approach

We start with the symbolic coverage detection algorithm for LTL specifications. The
algorithm is described in [CKKV01]. For simplicity, we start with node coverage,
and then explain how tree and structure coverage can be checked with the same idea.
The algorithm extends the LTL automata-based model-checking algorithm. There, we
translate an LTL specification ϕ to a nondeterministic Büchi automaton A¬ϕ that ac-
cepts all words that do not satisfy ϕ [VW94]. Model checking of K with respect to
ϕ can then be reduced to checking the emptiness of the product K × A¬ϕ. Let K =
〈AP,W,R,win, L〉 be a Kripke structure that satisfies ϕ, and letA¬ϕ = 〈2AP , S, δ, S0, α〉
be the nondeterministic Büchi automaton for ¬ϕ. The product of K with A¬ϕ is the
fair Kripke structure K × A¬ϕ = 〈AP,W × S,M, {win} × S0, L

′,W × α〉, where
M(〈w, s〉, 〈w′, s′〉) iff R(w,w′) and s′ ∈ δ(s, L(w)), and L′(〈w, s〉) = L(w). Note
that an infinite path π in K × A¬ϕ is fair iff the projection of π on S satisfies the ac-
ceptance condition of A¬ϕ. Since K satisfies ϕ, we know that no initialized path of K
is accepted by A¬ϕ. Hence, L(K ×A¬ϕ) is empty.

Let P ⊆ W × S be the set of pairs 〈w, s〉 such that A¬ϕ can reach the state s as
it reads the state w. That is, there exists a sequence 〈w0, s0〉, . . . , 〈wk, sk〉 such that
w0 = win, s0 ∈ S0, wk = w, sk = s, and for all i ≥ 0 we have R(wi, wi+1)
and si+1 ∈ δ(si, L(wi)). Note that 〈w, s〉 ∈ P iff 〈w, s〉 is reachable in K × A¬ϕ.
For an observable signal q ∈ AP and w ∈ W , we define the set Pw,q ⊆ W × S as
the set of pairs 〈w′, s′〉 such that w′ is a successor of w and A¬ϕ can reach the state
s′ as it reads the state w′ in a run in which the last occurrence of w has q flipped.
Formally, if we denote by L̃q : W → 2AP the labeling function with q flipped (that is,
L̃q(w) = L(w) ∪ {q} if q 6∈ L(w), and L̃q(w) = L(w) \ {q} if q ∈ L(w)), then

Pw,q = {〈w′, s′〉 : there is s ∈ S such that 〈w, s〉 ∈ P,R(w,w′), and s′ ∈ δ(s, L̃q(w))}.

Recall that a state w is node q-covered inK iff there exists a a w-node x in TK such
that K̃x,q does not satisfy ϕ. We can characterize node q-covered states also as follows

Theorem 3. Consider a Kripke structure K, an LTL formula ϕ, and an observable
signal q. A state w is node q-covered in K by ϕ iff there is a successor w′ of w and a
state s′ such that 〈w′, s′〉 ∈ Pw,q and there is a fair 〈w′, s′〉-path in K ×A¬ϕ.

Theorem 3 reduces the problem of checking whether a state w is node q-covered to
computing the relation Pw,q and checking for the existence of a fair path from a state in
the product K × A¬ϕ. Model-checking tools compute the relation P and compute the
set of states from which we have fair paths. Therefore, Theorem 3 suggests an easy im-
plementation for the problem of computing the set of node-covered states. We describe
a possible implementation in the tool COSPAN, which is the engine of FormalCheck
[HHK96,Kur98]. We also show that the implementation can be easily modified to han-
dle structure and tree coverage.

In COSPAN, the system is modeled by a set of modules, and the desired behavior
is specified by an additional moduleA. The language L(A) is exactly the set of wrong
behaviors, thus the module A stands for the automaton A¬ϕ in cases the specification
is given an LTL formula ϕ. In order to compute the set of node q-covered states, the
system has to nondeterministically choose a step in the synchronous composition of the
modules, in which the value of q is flipped in all modules that refer to q. Note that this is
the same as to choose a step in which the moduleA behaves as if it reads the dual value
of q. This can be done by introducing two new Boolean variables flip and flag, local to
A. The variable flip is nondeterministically assigned true or false in each step. The
variable flag is initialized to true and is set to false one step after flip becomes true.
Instead of reading q, the module A reads q ⊕ (flip ∧ flag). Thus, when both flip and
flag hold, which happens exactly once, the value of q is flipped (⊕ stands for exclusive
or). So, the synchronous composition of the modules is not empty iff the state that was
visited when flip becomes true for the first time is node q-covered.

With a small change in the implementation we can also check tree coverage. Since
in tree coverage we can flip the value of q several times, the variable flag is no longer
needed. Instead, we need log |W | variables x1, . . . , xlog |W | for encoding the state w
that is now being checked for tree q-coverage. The state w is not known in advance and
the variables x1, . . . , xlog |W | are initialized to some special value ⊥. The variable flip
is nondeterministically assigned true or false in each step. When flip is changed to
true for the first time, the variables x1, . . . , xlog |W | are set to encode the current state
w. Instead of reading q, the module A reads q ⊕ (flip ∧ at w), where at w holds iff
the encoding of the current state coincides with x1, . . . , xlog |W |. Thus, when both flip
and at w hold, which may happen several times, yet only when the current state is w,
the value of q is flipped. So, the synchronous composition of the modules is not empty
iff the state that was visited when flip becomes true for the first time is tree q-covered.
Finally, by nondeterministically choosing the values of x1, . . . , xlog |W | at the first step
of the run and fixing flip to true, we can also check structure coverage.

Note that our algorithm is independent of the fairness condition being Büchi, and it
can handle any fairness condition for which the model-checking procedure supports the
check for fair paths. Also, it is easy to see that the same algorithm can handle systems
with multiple initial states. Finally, it is also easy to adjust the algorithm to definitions
of coverage in which several mutations are checked mutually.

Remark 4 The above algorithm handles specifications in LTL. A different symbolic
algorithm for coverage computation is described for CTL in [CKV01]. The algorithm
addresses the fact that even if model checking of each of the mutant Kripke structures is
checked symbolically, there may be many mutations to check. If we have, for example,
a mutant structure for each state, then there are |W | mutant structures to check, and we
would like to refer also to these structures symbolically. Consider a Kripke structure
K = 〈AP,W,R,w0, L〉 and an atomic proposition q ∈ AP . For a CTL formula ϕ, we
define

P (ϕ) = {〈w, v〉 : K̃v,q, w |= ϕ}.

Thus, P (ϕ) ⊆ W ×W contains exactly all pairs 〈w, v〉 such that w satisfies ϕ in the
structure where we dualize the value of q in v. The q-covered set in K for ϕ can be
derived easily from P (ϕ) as it is the set {w : 〈w0, w〉 6∈ P (ϕ)}.

The symbolic algorithm in [CKV01] computes the OBDDs P (ψ) for all subfor-
mulas ψ. The algorithm works bottom-up, and is based on the symbolic CTL model-
checking algorithm. The symbolic algorithm for CTL model-checking uses a linear
number of OBDD variables. The algorithm in [CKV01] above doubles the number of
OBDD variables, as it works with sets of pairs of states instead of sets of states. By the
nature of the algorithm, it performs model-checking for all K̃w,q globally, and thus the
OBDDs it computes contain information about the satisfaction of the specification in
all the states of all the dual Kripke structures, and not only in their initial states. ut

We now turn to describe how the same idea can be used in order to symbolically
detect vacuity of polar formulas. The algorithm we describe can be viewed as a special
case of the symbolic algorithm in [CKV03] for the detection of vacuity coverage. Re-
call that checking whether a system satisfies a specification vacuously involves model
checking of a mutant specification. We can use the idea in [CKKV01] in order to check
symbolically for vacuous satisfaction by adding a new variable x that encodes the sub-
formula ψ that is being replaced with ⊥. The subformula ψ belongs to the set cl(ϕ) of
subformulas of ϕ. The variable x is an integer in the range 0, . . . , |cl(ϕ)|, thus it can
be encoded with O(log |ϕ|) Boolean variables. The value 0 of x stands for “no replace-
ment”, thus it checks the satisfaction of ϕ in the system. The value of (the variables
that encode) x is chosen nondeterministically at initialization and is kept unchanged.
For example, if ϕ = y1 ∨ y2, and 1 encodes y1 and 2 encodes y2, then the value 1
of x corresponds to the replacement of y1 with false (which is the ⊥ value for y1 in
ϕ) resulting in the formula (y1 ∨ y2)[y1 ← false] = y2. In the automaton A¬ϕ, each
state variable corresponds to a subformula (cf. [BCM+92]), thus the nondeterministic
choice of the subformula leads to a mutant automaton A¬ϕ[ψ←⊥]. The state space of
the augmented product now consists of triples 〈x, u, s〉, where x encodes the subfor-
mula replaced with ⊥, and u and s are the components of the product automaton. The
successors of 〈x, u, s〉 are the triples 〈x, u′, s′〉 such that 〈u′, s′〉 is a possible successor
of 〈u, s〉 in a product between the system with the automaton A¬ϕ[ψ←⊥], where ψ is
the subformula encoded by x. The subformulas that affect the value of ϕ in the systems
are these encoded by a value x for which there are initial states u0 and s0 of the system
and the automaton, respectively, such that there is a fair path from 〈x, u0, s0〉. Let P be
the set of triples from which a fair path exists in the augmented product (as above, P
can be found symbolically), and let P ′ be the intersection of P with the initial states of

the system and the automaton, projected on the first element. Note that x ∈ P ′ iff the
subformula associated with x affects the value of ϕ in the system. Thus, ψ is satisfied
vacuously in the system if ¬P ′(0) and P ′ 6= {1, . . . , cl(ψ)}.

4.2 Improving average complexity

Consider a Kripke structureK = 〈AP,W,R,w0, L〉, a formulaϕ, and an atomic propo-
sition q. Recall that the naive CTL coverage algorithm, which performs model checking
for all dual Kripke structures, has running time of O(|K| · |ϕ| · |W |). While for some
dual Kripke structures model-checking may require less than O(|K| · |ϕ|), the naive
algorithm always performs |W | iterations of model checking; thus, its average com-
plexity cannot be substantially better than its worst-case complexity. This unfortunate
situation arises even when model checking of two dual Kripke structures is practically
the same, and even when some of the states ofK obviously do not affect the satisfaction
of ϕ in K. In [CKV01] we presented an algorithm that makes use of such overlaps and
redundancies. The expectant running time of our algorithm is O(|K| · |ϕ| · log |W |).
Formally, we have the following:

Theorem 5. The set q-cover(K,ϕ) can be computed in average3 running time ofO(|K|·
|ϕ| · log |W |).

Our algorithm is based on the fact that for each w, the dual Kripke structure K̃w,q

differs fromK only slightly. Therefore, there should be a large amount of work that we
can share when we model check all the dual structures. In order to explain the algorithm,
we introduce the notion of incomplete model checking. Informally, incomplete model
checking of K is model checking of K with its labeling function L partially defined.
The solution to the incomplete model checking problem can rely only on the truth values
of the atomic propositions in states for which the correspondingL is defined. Obviously,
in the general case we are not guaranteed to solve the model-checking problem without
knowing the values of all atoms in all states. We can, however, perform some work in
this direction, which is not needed to be performed again when missing parts of L are
revealed.

Consider a partition ofW into two equal sets,W1 andW2. Our algorithm essentially
works as follows. For all the dual Kripke structures K̃w,q such that w ∈ W1, the states
in W2 maintain their original labeling. Therefore, we start by performing incomplete
model checking of ϕ in K with L that does not rely on the values of q in states in W1.
We end up in one of the following two situations. It may be that the values of q in states
in W2 (and the values of all the other atomic propositions in all the states) are sufficient
to imply the satisfaction of ϕ inK. Then, we can infer that all the states inW1 are not q-
covered. It may also be that the values of q in states inW2 are not sufficient to imply the
satisfaction of ϕ in K. Then, we continue and partition the set W1 into two equal sets,
W11 and W12, and perform incomplete model checking that does not rely on the values
of q in states in W11. The important observation is that incomplete model checking
is now performed in a Kripke structure to which we have already applied incomplete

3 Average is taken with respect to all possible inputs to the algorithm as well as all random
choices made by the algorithm.

model checking in the previous iteration. Thus, we only have to propagate information
that involves the values of q in W12. Thus, as we go deeper in the recursion described
above, we perform less work. The depth of the recursion is bounded by log |W |. As
analyzed in [CKV01], the work in depth i amounts in average to model checking of ϕ
in a Kripke structure of size |K|2i . Hence the O(|K| · |ϕ| · log |W |) complexity.

In case of vacuity for polar formulas, the naive algorithm performs model checking
for each subformula, and thus has running time O(|K| · |ϕ|2). The quadratic depen-
dency in ϕ is less crucial than the quadratic dependency in |W | in the case of coverage,
but it is still a problem, and efforts to come up with better algorithms are described in
[PS02,Nam04]. In order to improve the average complexity, we can encode all the mu-
tations to the formula (each mutation corresponds to a subformula that is replaced by⊥)
with a vector x of variables. We then proceed with incomplete model checking where in
each iteration more variables get values. As with coverage, in each iteration we handle
smaller structures, and the overall complexity is, in average,O(|K|·|ϕ| log |ϕ|)[Cho03].

5 Discussion

Sanity checks are applied to the system after model checking has successfully termi-
nated. In addition to vacuity and coverage, other checks that have recently been advo-
cated are query checking [Cha00] and certification [Nam01]. In query checking, some
subformulas in the specification are replaced by the symbol “?” and the query-checking
algorithm returns strongest possible replacements to “?” with which the specification
is satisfied. In certification, the positive answer of the model-checking procedure is ac-
companied by a proof that the specification indeed holds. The idea is that it is much
easier to check a given certificate than to find one.

The different checks have a lot in common, both conceptually and from the algo-
rithmic point of view. Still, each approach has its own algorithms and tools. We believe
that an effort should be made in order to accommodate sanity checks in one algorith-
mic framework. A good candidate is the theory of multi-valued logic (in fact, this has
already been done for query checking in [BG01]). The idea is that typical sanity checks
repeat the model-checking procedure with respect to “mutant inputs” — inputs that are
slightly different from the original model-checking input. By associating different sets
of mutations with different values, we can hopefully reduce the question of finding the
set of mutants for which model checking no longer succeeds to the problem of multi-
valued model checking [BG04]. In addition, as suggested in [Nam04] for the case of
vacuity, it may be possible to carry the sanity checks with respect to the model-checking
certificate, rather than with respect to the system and the specification.

References
[AFF+02] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,

S. Mador-Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The ForSpec
temporal logic: A new temporal property-specification logic. In Proc. 8th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 2280 of Lecture Notes in Computer Science, pages 296–211, Grenoble,
France, April 2002. Springer-Verlag.

[AFF+03] R. Armon, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M.Y.
Vardi. Enhanced vacuity detection for linear temporal logic. In Computer Aided
Verification, Proc. 15th International Conference. Springer-Verlag, 2003.

[BB94] D. Beatty and R. Bryant. Formally verifying a microprocessor using a simulation
methodology. In Proc. 31st Design Automation Conference, pages 596–602. IEEE
Computer Society, 1994.

[BBE+01] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The tem-
poral logic Sugar. In Proc. 13th International Conference on Computer Aided Veri-
fication, volume 2102 of Lecture Notes in Computer Science, pages 363–367, Paris,
France, July 2001. Springer-Verlag.

[BBER01] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in
ACTL formulas. Formal Methods in System Design, 18(2):141–162, 2001.

[BCC+99] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking
using SAT procedures instead of BDDs. In Proc. 36th Design Automation Confer-
ence, pages 317–320. IEEE Computer Society, 1999.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: 10

20 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

[BF00] L. Bening and H. Foster. Principles of verifiable RTL design – a functional coding
style supporting verification processes. Kluwer Academic Publishers, 2000.

[BFG+05] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and M.Y. Vardi. Regular vacu-
ity. In Proc. 13th Advanced Research Working Conference on Correct Hardware De-
sign and Verification Methods, volume 3725 of Lecture Notes in Computer Science,
pages 191–206. Springer-Verlag, 2005.

[BG01] Glenn Bruns and Patrice Godefroid. Temporal logic query checking. In Proceedings
of the 16th Annual IEEE Symposium on Logic in Computer Science (LICS-01), pages
409–420, Los Alamitos, CA, June 16–19 2001. IEEE Computer Society.

[BG04] Bruns and Godefroid. Model checking with multi-valued logics. In ICALP: Annual
International Colloquium on Automata, Languages and Programming, 2004.

[CG04a] M. Chechik and A. Gurfinkel. Extending extended vacuity. In 5th International
Conference on Formal Methods in Computer-Aided Design, volume 3312 of Lecture
Notes in Computer Science, pages 306–321. Springer-Verlag, 2004.

[CG04b] M. Chechik and A. Gurfinkel. How vacuous is vacuous? In 10th International Con-
ference on Tools and algorithms for the construction and analysis of systems, volume
2988 of Lecture Notes in Computer Science, pages 451–466. Springer-Verlag, 2004.

[CGL93] E.M. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Decade of
Concurrency – Reflections and Perspectives (Proceedings of REX School), volume
803 of Lecture Notes in Computer Science, pages 124–175. Springer-Verlag, 1993.

[CGMZ95] E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. Efficient generation of
counterexamples and witnesses in symbolic model checking. In Proc. 32nd Design
Automation Conference, pages 427–432. IEEE Computer Society, 1995.

[Cha00] W. Chan. Temporal-logic queries. In Computer Aided Verification, Proc. 12th In-
ternational Conference, volume 1855 of Lecture Notes in Computer Science, pages
450–463. Springer-Verlag, 2000.

[Cho03] H. Chockler. Coverage metrics for model checking. PhD thesis, Hebrew University,
Jerusalem, Israel, 2003.

[CK02] H. Chockler and O. Kupferman. Coverage of implementations by simulating speci-
fications. In R.A. Baeza-Yates, U. Montanari, and N. Santoro, editors, Proceedings
of 2nd IFIP International Conference on Theoretical Computer Science, volume 223

of IFIP Conference Proceedings, pages 409–421, Montreal, Canada, August 2002.
Kluwer Academic Publishers.

[CKKV01] H. Chockler, O. Kupferman, R.P. Kurshan, and M.Y. Vardi. A practical approach to
coverage in model checking. In Proc. 13th International Conference on Computer
Aided Verification, volume 2102 of Lecture Notes in Computer Science, pages 66–78.
Springer-Verlag, 2001.

[CKV01] H. Chockler, O. Kupferman, and M.Y. Vardi. Coverage metrics for temporal logic
model checking. In 7th International Conference on Tools and algorithms for the
construction and analysis of systems, number 2031 in Lecture Notes in Computer
Science, pages 528 – 542. Springer-Verlag, 2001.

[CKV03] H. Chockler, O. Kupferman, and M.Y. Vardi. Coverage metrics for formal verifica-
tion. In 12th Advanced Research Working Conference on Correct Hardware Design
and Verification Methods, volume 2860 of Lecture Notes in Computer Science, pages
111–125. Springer-Verlag, 2003.

[Dil98] D.L. Dill. What’s between simulation and formal verification? In Proc. 35st Design
Automation Conference, pages 328–329. IEEE Computer Society, 1998.

[HHK96] R.H. Hardin, Z. Har’el, and R.P. Kurshan. COSPAN. In Computer Aided Verifica-
tion, Proc. 8th International Conference, volume 1102 of Lecture Notes in Computer
Science, pages 423–427. Springer-Verlag, 1996.

[HKHZ99] Y. Hoskote, T. Kam, P.-H Ho, and X. Zhao. Coverage estimation for symbolic model
checking. In Proc. 36th Design automation conference, pages 300–305, 1999.

[KGG99] S. Katz, D. Geist, and O. Grumberg. “Have I written enough properties ?” a method of
comparison between specification and implementation. In 10th Advanced Research
Working Conference on Correct Hardware Design and Verification Methods, volume
1703 of Lecture Notes in Computer Science, pages 280–297. Springer-Verlag, 1999.

[Kur98] R.P. Kurshan. FormalCheck User’s Manual. Cadence Design, Inc., 1998.
[KV03] O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking. Jour-

nal on Software Tools For Technology Transfer, 4(2):224–233, February 2003.
[Nam01] K.S. Namjoshi. Certifying model checkers. In 13th Conference on Computer

Aided Verification, volume 2102 of Lecture Notes in Computer Science, pages 2–13.
Springer-Verlag, 2001.

[Nam04] K.S. Namjoshi. An efficiently checkable, proof-based formulation of vacuity in
model checking. In 16th Conference on Computer Aided Verification, volume 2404
of Lecture Notes in Computer Science, pages 57–69. Springer-Verlag, 2004.

[Pel01] D. Peled. Software Reliability Methods. Springer-Verlag, 2001.
[PS02] M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In Proc. 14th Con-

ference on Computer Aided Verification, Lecture Notes in Computer Science, pages
485–499. Springer-Verlag, July 2002.

[TK01] S. Tasiran and K. Keutzer. Coverage metrics for functional validation of hardware
designs. IEEE Design and Test of Computers, 18(4):36–45, 2001.

[Ver03] Verisity. Surecove’s code coverage technology.
http://www.verisity.com/products/surecov.html, 2003.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, November 1994.

[ZHM97] H. Zhu, P.V. Hall, and J.R. May. Software unit test coverage and adequacy. ACM
Computing Surveys, 29(4):366–427, 1997.

