
Finding Shortest Witnesses to the Nonemptiness of
Automata on Infinite Words

Orna Kupferman and Sarai Sheinvald-Faragy

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
Email: {orna,surke}@cs.huji.ac.il

Abstract. In the automata-theoretic approach to formal verification, the satisfi-
ability and the model-checking problems for linear temporal logics are reduced to
the nonemptiness problem of automata on infinite words. Modifying the nonempti-
ness algorithm to return a shortest witness to the nonemptiness (that is, a word
of the form uvω that is accepted by the automaton and for which |uv| is mini-
mal) has applications in synthesis and counterexample analysis. Unlike shortest
accepting runs, which have been studied in the literature, the definition of short-
est witnesses is semantic and is independent on the specification formalism of
the property or the system. In particular, its robustness makes it appropriate for
analyzing counterexamples of concurrent systems.
We study the problem of finding shortest witnesses in automata with various types
of concurrency. We show that while finding shortest witnesses is more complex
than just checking nonemptiness in the nondeterministic and in the concurrent
models of computation, it is not more complex in the alternating model. It fol-
lows that when the system is the composition of concurrent components, finding
a shortest counterexample to its correctness is not harder than finding some coun-
terexample. Our results give a computational motivation to translating temporal
logic formulas to alternating automata, rather than going all the way to nondeter-
ministic automata.

1 Introduction

The automata-theoretic approach to formal verification uses the theory of automata as a
unifying paradigm for system specification, verification, and synthesis. Two fundamen-
tal problems in formal verification are reduced to the nonemptiness problem of automata
on infinite words: the satisfiability problem for a linear temporal logic (LTL) formula
ψ is reduced to the nonemptiness problem of an automaton Aψ that accepts exactly all
the computations that satisfy ψ [5, 35], and the model-checking problem of a system
S with respect to ψ is reduced to checking the emptiness of the product of S with an
automaton A¬ψ that accepts exactly all the computations that violate ψ [35]. Verifica-
tion methods based on these reductions have been implemented in both academic and
industrial automated-verification tools.

Modifying the nonemptiness algorithm to return a witness to the nonemptiness of
the automaton does not involve an additional computational price and is beneficial in
both applications: in the case of satisfiability, the witness is a computation that satisfies
the formula. In particular, when the formula describes the desired behavior of a closed

2

system, finding a witness amounts to synthesis [6]. In the case of model checking, a
witness points to a computation of the system that violates the specification, and it
helps the user to detect errors in the system. Further applications of witnesses exist in
abstraction, where refinement is directed by an analysis of counterexamples [7], and
vacuity, where a positive answer from the model checker is accompanied by a trace in
which the specification is satisfied non-vacuously [24].

A witness to the nonemptiness of an automaton on infinite words is a word of the
form uvω, for finite words u and v. The length of the witness is |u| + |v|. Modifying
the emptiness algorithm further to return a shortest witness (that is, one with a minimal
length) has useful applications. One of the weaknesses of automated synthesis is that it
may produce systems that are needlessly complicated [2]. Returning a minimal witness
amounts to returning the most optimal system that satisfies the specification. In the
context of model checking, short witnesses enable the user to find errors in the system as
soon as they appear, and they give a compact explanation to the incorrectness of system.
Using counterexamples for refinement of an abstract system, shorter counterexamples
point better to elements that have to be refined. Finally, using witnesses in the context
of vacuity, short witnesses explain better how formulas have been satisfied in a non-
vacuous way.

Finding a shortest witness to the nonemptiness of an automaton has the flavor of
finding shortest paths in graphs. Indeed, previous work on short witnesses studies the
problem of finding minimal fair cycles in graphs [8, 14, 32]. Nevertheless, the fact that
an automaton corresponds to a labeled graph, makes things more complicated. To see
this, consider for example the deterministic Büchi automaton A in Figure 1. In the
Büchi acceptance condition, a run is accepting if it visits the set of accepting states
infinitely often. The shortest accepting run that witnesses the nonemptiness of A is

c b

a b

b a

cq0 q1 q2

q3

q4

q5

Fig. 1. While the shortest accepting run in A is q0, q1, (q2, q3, q4)
ω , the shortest witness to its

nonemptiness is c(ba)ω .

q0, q1, (q2, q3, q4)
ω , which witnesses the membership of the word cb(abc)ω, of length

5, in the language of A. The automaton A, however, has an even shorter witness to its
nonemptiness. Indeed, while the accepting run q0, q1, (q2, q3, q4, q5)ω is of length 6, it
witnesses the membership of the word c(ba)ω, which is of length 3.

3

For the applications mentioned above, it is the shortest witness, rather than the short-
est accepting run, that we want to return to the user1. Indeed, in the case of synthesis,
the shortest witness points to the most optimal system that satisfies the specification,
and in the case of model checking, the shortest witness is the shortest computation that
violates the property. In particular, in the case of model checking, the automaton is the
product of the specification automaton with the system, and considering shortest accept-
ing runs rather than shortest witnesses is sensitive to the structure of the specification
automaton.

The length of a shortest witness is a robust measure, as it is independent of the spec-
ification formalism: every language L ⊆ Σω has a shortest member, and this member
is independent of whether L is specified by an LTL formula, or by a particular type of
an automaton. In [32], the authors point to the fact that a shortest witness may not co-
incide with a shortest accepting run, and studied automata for which the two measures
coincide (that is, the shortest witness is read along a shortest run). Here, we take a dif-
ferent approach, and refer to the length of the witness directly, for various specification
formalisms. Note that the shortest-witness measure is especially appropriate when we
consider the intersection of several automata, as in the case of model checking a sys-
tem that is given by means of its underlying components. There, the shortest accepting
run is defined with respect to the product of the components of the system. A shortest
witness, on the other hand, is independent of the presentation of the system, and can be
defined with respect to the underlying components.

Classical models of computations, such as Turing machines and automata, have
been enriched with features to capture concurrency. Nondeterminism, for example, amounts
to letting several processes run over the input word, each following different nondeter-
ministic choices. In the case of nondeterminism, no cooperation between the spawned
processes takes place, except when time comes to decide whether the input should be
accepted. Then, the input is accepted if some process accepts it. A dual type of coop-
eration is allowed in universal automata. There, the input word is accepted if all the
processes accept it. It turned out that such limited cooperation is sufficient to make
nondeterministic and universal automata exponentially more succinct than determin-
istic automata, and to make their combination, namely alternating automata, doubly
exponentially more succinct than deterministic automata [9]. As studied in [10], en-
riching automata with real concurrency, where the spawned processes can cooperate all
along the computation (technically, a concurrent automaton consists of several compo-
nents that run concurrently, and the transitions of a component depend on the states of
the other components), results in even more succinct automata.

The automata-theoretic approach to formal verification was originally developed
with nondeterministic automata, and is based on an exponential translation of LTL for-
mulas to nondeterministic Büchi automata [35]. In recent years, however, more and
more algorithms and tools are based on alternating automata. A significant advantage
of alternating automata is the straightforward (and linear) translation of LTL formulas to
alternating Büchi automata [26, 34]. Solving the nonemptiness problem for alternating

1 One can consider an even shorter description, where, for example, a subword aaa n. . . a is
represented by an, with n encoded in binary. Then, the description of the word may be loga-
rithmically shorter. We will refer also to such compressed descriptions.

4

Büchi automata is done by translating them to nondeterministic Büchi automata [27].
The translation involves an exponential blow-up. Thus, alternating automata do not lead
to an improved complexity, but they do suggest cleaner algorithms with practical ad-
vantages: an ability to minimize both the intermediate alternating automaton and the
nondeterministic one [12], an ability to use the structure of the alternating automaton in
order to generate minimal nondeterministic automata [15], and more.

We study the problem of finding shortest witnesses to Büchi automata with various
types of concurrency. The input to the shortest-witness problem is an automaton and an
integer k, given in binary. The problem is to determine whether a witness uvω such that
|uv| ≤ k exists2. We start with nondeterministic automata, and show that the witness
problem for them is NP-complete — more complex than the NLOGSPACE-complete
nonemptiness problem3. We describe a heuristic that does better than checking all can-
didates, and is based on the observation it is possible to transfer letters from the prefix u
of the witness to its cycle v, and vice versa. A similar idea is used in [14] in the context
of shortest accepting runs, but is more significant in the context of shortest witnesses.
We then show that the increased complexity with respect to the nonemptiness problem
is carried over also to concurrent automata, where the witness problem is NEXPTIME-
complete — more complex than the PSPACE-complete nonemptiness problem for them
[10, 21]. It follows that our heuristic can be applied to the nondeterministic automaton
obtained by removal of concurrency, but we cannot hope to do much better.

Our main result is that for alternating automata, one can do better, and the shortest-
witness problem is not more complex than the nonemptiness problem. The techni-
cal point is that while alternating automata are sufficiently strong to count to k with
O(log k) states [3], they are sufficiently weak to let us analyze the run on a word of
the form uvω by carefully analyzing the run of each of the processes in isolation. This
leads to a PSPACE algorithm to the shortest-witness problem for alternating automata.
From a practical point of view, our results give another good reason to translate LTL
formulas to alternating automata, rather than going all the way to nondeterministic ones.
Indeed, not only the algorithm for alternating automata is cleaner, but also it improves
the complexity from NEXPTIME to PSPACE. Also, in the context of model checking,
our algorithm shows that when the system is given by a set of components (that is, when
the language of the system is the intersection of the languages of its underlying com-
ponents, in which case it can be efficiently translated to an alternating automaton), it is
better to avoid the generation of the product system and reason about the components
in isolation. ¿From a theoretical point of view, our results extend previous study on the
computational price of different types of concurrency. We will go back to this point in
Section 6.

2 We specify the shortest witness problem as a decision problem rather than an optimization
problem in order to analyze its complexity in terms of the classical complexity classes. By
bounding the length of the shortest witness and performing a binary search for it, our results
imply also tight bounds in complexity classes like FPNP[log], which refer to the problem of
computing the length of the shortest witness.

3 This result is different from the NP-completeness result in [8] for the shortest accepting run
problem for a nondeterministic generalized Büchi automaton. We refer to this point lengthily
in Section 3.

5

2 Preliminaries

Given an alphabetΣ, an infinite word overΣ is an infinite sequencew = σ0 ·σ1 ·σ2 · · ·
of letters in Σ. We denote by wl the suffix σl · σl+1 · σl+2 · · · of w. An automaton on
infinite words is A = 〈Σ,Q,Q0, ρ, α〉, where Σ is the input alphabet, Q is a finite set
of states, ρ : Q × Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial states,
and α is an acceptance condition (a condition that defines a subset of Qω). Intuitively,
ρ(q, σ) is the set of states that A can move into when it is in state q and it reads the
letter σ. Since A has several initial states and the transition function of A may specify
many possible transitions for each state and letter, A is not deterministic. If |Q0| = 1
and ρ is such that for every q ∈ Q and σ ∈ Σ, we have that |ρ(q, σ)| ≤ 1, then A is
deterministic.

A run of A on w is a function r : IN → Q where r(0) ∈ Q0 (i.e., the run starts
in an initial state) and for every l ≥ 0, we have r(l + 1) ∈ ρ(r(l), σl). (i.e., the run
obeys the transition function). Acceptance is defined according to the set Inf (r) of
states that r visits infinitely often, i.e., Inf (r) = {q ∈ Q : for infinitely many l ∈
IN,we have r(l) = q}.AsQ is finite, it is guaranteed that Inf (r) 6= ∅. The way we refer
to Inf (r) depends on the acceptance condition of A. Several acceptance conditions are
studied in the literature. We consider here Büchi automata, where α ⊆ Q, and r is
accepting if it visits α infinitely often. Formally, Inf (r) ∩ α 6= ∅.

Since A is not deterministic, it may have many runs on w. In contrast, a determin-
istic automaton has a single run on w. There are two dual ways in which we can refer
to the many runs. When A is an existential automaton (or simply a nondeterministic
automaton, as we shall call it in the sequel), it accepts an input word w iff there exists
an accepting run of A on w. When A is a universal automaton, it accepts an input word
w iff all the runs of A on w are accepting. Alternation was studied in [9] in the context
of Turing machines and in [4, 9, 27] for finite automata. In particular, [27] studied alter-
nating automata on infinite words. Alternation enables us to have both existential and
universal branching choices.

For a given set X , let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ∧ and ∨). For technical convenience,
we do not allow the formulas in B+(Q) to use the constant true, where we also allow
the formulas true and false. For Y ⊆ X , we say that Y satisfies a formula θ ∈ B+(X)
iff the truth assignment that assigns true to the members of Y and assigns false to the
members of X \ Y satisfies θ. For example, the sets {q1, q3} and {q2, q3} both satisfy
the formula (q1 ∨ q2) ∧ q3, while the set {q1, q2} does not satisfy this formula.

Consider an automaton A as above. We can represent ρ using B+(Q). For example,
a transition ρ(q, σ) = {q1, q2, q3} of a nondeterministic automaton A can be written
as ρ(q, σ) = q1 ∨ q2 ∨ q3. If A is universal, the transition can be written as ρ(q, σ) =
q1 ∧ q2 ∧ q3. While transitions of nondeterministic and universal automata correspond
to disjunctions and conjunctions, respectively, transitions of alternating automata can
be arbitrary formulas in B+(Q). We can have, for instance, a transition δ(q, σ) = (q1 ∧
q2) ∨ (q3 ∧ q4), meaning that the automaton accepts a suffix wi of w from state q, if it
accepts wi+1 from both q1 and q2 or from both q3 and q4. Such a transition combines
existential and universal choices.

6

Formally, an alternating automaton on infinite words is a tupleA = 〈Σ,Q, q0, δ, α〉,
whereΣ,Q, q0, and α are as in automata, and δ : Q×Σ → B+(Q) is a transition func-
tion. When A runs on an input word, it generates (an unbounded number of) processes
that read the input word. The joint behavior of these processes can be described in a
tree; thus a run of an alternating automaton is a tree in which each node is labeled by a
state of A. A node in level l that is labeled q, corresponds to a process of A that visits
the state q and has to accept the suffix wl of w. As proven in [11], runs of alternating
Büchi automata are memoryless in the sense that if A accepts a word w, then it also
accepts w in a memoryless run — one in which two processes that are in the same state
and have to accept the same suffix proceed in the same way4. Accordingly, we restrict
attention to memoryless runs and define a run of an alternating Büchi automaton to be
a DAG (directed acyclic graph).

Formally, a run-DAG of A on an input word w = σ0 ·σ1 · · ·, is Gr = 〈V,E〉, where
V ⊆ Q× IN and E ⊆

⋃
l≥0(Q× {l})× (Q× {l+ 1}) are such that 〈q0, 0〉 ∈ V , and

for every vertex 〈q, l〉 ∈ V , there is a set S = {q1, . . . , qk} such that S satisfies δ(q, σl)
and for all 1 ≤ c ≤ k, we have 〈qc, l+ 1〉 ∈ V and E(〈q, l〉, 〈qc, l + 1〉).

A run-DAG is accepting iff all its paths5, which are labeled by words in Qω, satisfy
the acceptance condition. A wordw is accepted iff there exists an accepting run-DAG on
it. Note that while conjunctions in the transition function of A are reflected in branches
of Gr, disjunctions are reflected in the fact we can have many run-DAGs on the same
word.

A run of an alternating automaton is a tree r : Tr → Q for some Tr ⊆ IN∗. Formally,
a tree is a (finite or infinite) nonempty prefix-closed set T ⊆ IN∗. The elements of T
are called nodes, and the empty word ε is the root of T . For every x ∈ T , the nodes
x · c ∈ T where c ∈ IN are the children of x. A node with no children is a leaf . A path
π of a tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π, either x is a leaf, or
there exists a unique c ∈ IN such that x · c ∈ π. Given a finite set Σ, a Σ-labeled tree is
a pair 〈T, V 〉 where T is a tree and V : T → Σ maps each node of T to a letter in Σ.
A run of A on an infinite word w = σ0 · σ1 · · · is a Q-labeled tree 〈Tr, r〉 such that the
following hold:

– r(ε) = q0.
– Let x ∈ Tr with r(x) = q and δ(q, σ|x|) = θ. There is a (possibly empty) set
S = {q1, . . . , qk} such that S satisfies θ and for all 1 ≤ c ≤ k, we have x · c ∈ Tr
and r(x · c) = qc.

For example, if δ(q0, σ0) = (q1 ∨ q2) ∧ (q3 ∨ q4), then possible runs of A on w have
a root labeled q0, have one node in level 1 labeled q1 or q2, and have another node in
level 1 labeled q3 or q4. Note that if θ = true, then x need not have children. This is
the reason why Tr may have leaves. Also, since there exists no set S as required for
θ = false, we cannot have a run that takes a transition with θ = false.

4 [11] proves a stronger result, namely the existence of memoryless accepting runs for parity
alternating automata. Since the Büchi acceptance condition is a special case of the parity ac-
ceptance condition, the result cited above follows.

5 Recall that we do not allow the formulas in B+(Q) to use the constant true, thus all the paths
of Gr are infinite.

7

A run 〈Tr, r〉 is accepting iff all its infinite paths, which are labeled by words in
Qω, satisfy the acceptance condition. A wordw is accepted iff there exists an accepting
run on it. Note that while conjunctions in the transition function of A are reflected in
branches of 〈Tr, r〉, disjunctions are reflected in the fact we can have many runs on the
same word.

Recall that when an alternating automaton runs on an input word, it spawns to sev-
eral processes. All these processes take part in the task of deciding whether the word
belongs to the language. No cooperation, however, between the processes takes place,
except when time comes to decide whether the input should be accepted. A different
type of concurrency is one in which the processes cooperate all along the run. This type
of concurrency exists in nondeterministic Büchi automata with bounded concurrency
(concurrent Büchi automata, for short), introduced in [10]6. A CBW is a tuple A =
〈Σ,A1, . . . ,An〉 consisting of an alphabetΣ and n components A1, . . . ,An, for some
n ≥ 1. Each component Ai is a tuple 〈Qi, Q0

i , δi, αi〉, where Qi is a finite set of states,
and we require the state sets of the different components to be pairwise disjoint. Let
Q =

⋃n

j=1Qj . The set Q0
i ⊆ Qi is the set of initial states, δi : Qi ×Σ ×B(Q) → 2Qi

is a transition relation, where B(Q) denotes the set of all Boolean propositional for-
mulas over Q, and α ∈ B(Q) is a Büchi acceptance condition. Note that while each
component ofQ has its own states and transitions, its transitions depend not only on the
component’s current state but also on the current states of the other components. Also,
the Büchi acceptance condition refers to the states of all components.

A configuration of A is a tuple c = 〈q1, q2, . . . , qn〉 ∈ Q1 × Q2 × · · · × Qn,
describing the current state of each of the components. A configuration is initial if for
all 1 ≤ i ≤ n, we have qi ∈ Q0

i . We use C to denote the set of all configurations of A,
and C0 to denote the set of all its initial configurations. For a propositional formula θ
in B(Q) and a configuration c = 〈q1, q2, . . . , qn〉, we say that c satisfies θ if assigning
true to states in c and false to states not in c makes θ true. For example, s1 ∧ (t1 ∨ t2),
with s1 ∈ Q1 and {t1, t2} ⊆ Q2, is satisfied by every configuration in which A1 is in
state s1 and A2 is in either t1 or t2.

Given two configurations c = 〈q1, q2, . . . , qn〉 and c′ = 〈q′1, q
′
2, . . . , q

′
n〉, and a letter

σ ∈ Σ, we say that c′ is a σ-successor of c, if for all 1 ≤ i ≤ n there is θi ∈ B(Q) such
that c satisfies θi and q′i ∈ δi(qi, σ, θi). In other words, a σ-successor configuration is
obtained by simultaneously reading σ in all the components. A run of A on an input
word w = σ0, σ1, . . . is a function r : IN → C where r(0) ∈ C0 and for every l ≥ 0,
we have r(l + 1) is a σl successor of r(l). Acceptance is defined according to the set
Inf (r) of configurations that r visits infinitely often. A run is accepting if at least one
configuration in this set satisfies α.

We use NBW, ABW, and CBW to denote nondeterministic, alternating, and concur-
rent Büchi automata, respectively. For all types of automata, the language of A, denoted
L(A), is the set of infinite words that A accepts. Thus, each word automaton defines a
subset of Σω. For all types, we refer also to automata on finite words (denoted NFW,

6 The basic motivation for this model comes from the statecharts of [17], which can be viewed
as nondeterministic automata with both concurrency and hierarchy. Our goal here is to study
the role of concurrency, and we eliminate the hierarchy.

8

AFW, and CFW). There, acceptance is defined according to the last state visited by the
run (or a process of the run, in case of the alternating and concurrent models).

A witness to the nonemptiness of an automaton A is a word w ∈ L(A). For
an automaton A on infinite words, we define a shortest witness for A to be a word
uvω ∈ L(A) such that |uv| is minimal; that is, for all words u′(v′)ω ∈ L(A), we have
|uv| ≤ |u′v′|. We refer to |uv| as the length of the witness. For example, as discussed
in Section 1, the shortest witness for the automaton of Figure 1 is c(ba)ω, which is
of length 3. The shortest-witness problem is to decide, given an automaton A and an
integer k ≥ 0, given in binary, whether A has a witness of length at most k.

It is easy to see that for an NBW with n states, the length of a shortest witness
is bounded by 2n. In the case of ABW and CBW, a shortest witness may be expo-
nentially longer than the size of the automaton. Intuitively, the above follows from the
fact that intersection of automata can be modeled with no blow-up by both alternating
and concurrent automata. For a concrete example, consider, given k ≥ 1, the inter-
section of k automata A1, . . . ,Ak defined as follows. For i ≥ 1, let pi be the i-th
prime number. Let Ai, for 1 ≤ i ≤ k, be an NBW that accepts exactly all words of
the form (adib)ω, for di = 0 mod pi. For example, A1 accepts ((aa)∗b)ω, A2 accepts
((aaa)∗b)ω, A3 accepts ((aaaaa)∗b)ω, and so on. It is easy to see that Ai needs O(pi)
states. Since pi = O(i log i) [20], the size of all components together is polynomial in
k. On the other hand, the shortest witness to the nonemptiness of their intersection is
(a2·3·5···pkb)ω. Since 2 · 3 · 5 · · · pk is exponential in k, we get that the shortest witness
is exponential in the size of the components.

Remark 1 Recall that the shortest-witness problem gets as input both an automaton
A and an integer k. Since k is given in binary, an algorithm that is based on checking
the membership in A of all words uvω with |uv| ≤ k, is exponential in the input. By
the above discussion, the length of a shortest witness is at most exponential in the size
of A. Thus, with k given in binary, A is always the dominant part of the input (other-
wise, we can reduce the shortest-witness problem to the nonemptiness problem, which
is independent of k). Consequently, the complexities we get to our decision problem
correspond to the complexities of the optimization problem in which only A is given,
and a shortest witness has to be found.

A naive approach for finding a shortest witness first checks the nonemptiness of the
automaton and then tries witnesses of increasing lengths. Our main results in this paper
are that for nondeterministic and concurrent automata, one can proceed with algorithms
that are likely to perform in average better than the naive algorithm, yet it is impossible
to go below the NP and NEXPTIME complexities of the naive approach. On the other
hand, for alternating automata, where the naive approach also yields an NEXPTIME
algorithm, we are able to suggest a PSPACE algorithm.

3 The Shortest-Witness Problem for Nondeterministic Automata

We start with NBW and prove that the shortest-witness problem for them is NP-complete.
The result is technically easy, but is of interest, as it highlights the difference between

9

the shortest-accepting-run and the shortest-witness problems. The shortest-accepting-
run problem for NBW can be reduced to the problem of finding shortest paths in a
graph and can therefore be solved in polynomial time. On the other hand, it is proven in
[8] that the shortest-accepting-run problem for nondeterministic generalized Büchi au-
tomata (NGBW) is NP-complete. In an NGBW, the acceptance condition is a set of sets
of states, and a run is accepting if it visits all sets infinitely often. By the above, hard-
ness of the shortest-accepting-run problem in NP crucially depends on the use of the
generalized Büchi condition. An NGBW A can be translated to an NBW A′ with only
a polynomial blow up. How come, then, that the problem is in PTIME for NBW and is
NP-hard for NGBW? Well, while A′ accepts the same language as A, it has a different
structure, and a shortest accepting run for it says nothing about a shortest accepting run
for A. This is a drawback of the shortest-accepting-run measure, which depends on the
specification formalism. The shortest-witness measure, on the other hand, is indepen-
dent of the specification formalism, and the solution of the shortest-witness problem
can (and indeed does) involve translations between different specification formalisms.

Theorem 2. The shortest-witness problem for NBW is NP-complete.

Proof: We first prove membership in NP. Consider an NBW A = 〈Σ,Q, δ, q0, α〉.
When A is not empty, a witness uvω is induced by a simple path (labeled u) fromQ0 to
a state in α that is reachable from itself (by a simple cycle labeled v). Thus, the length
|uv| of a shortest witness is bounded by 2|Q|. Since the membership-problem for NBW
can be solved in polynomial time, membership in NP follows.

For the lower bound, we do a reduction from the Hamiltonian-cycle problem. There,
we are given a graph G = 〈V,E〉 and we have to decide whether there exists a simple
cycle traversing all vertices in V . Given G, let V = {1, . . . , n}. We define an NBW
A = 〈E, V × V, {〈1, 1〉}, δ, {〈n, n〉}〉, where δ(〈i, j〉, (i, h)) is 〈h, (j mod n) + 1〉 if
i = j, and is 〈h, j〉 if i 6= j. Intuitively, a state 〈i, j〉 indicates that A traverses a path
that now visits vertex i, and is waiting for a visit in vertex j. Accordingly, from state
〈i, j〉, the NBW A can read only edges with source i, and it updates the first element of
the successor state to be the target of the edge. In addition, if i = j, then the path visits
the vertex for which A waits, and it updates the second element of the successor state
to be the next vertex. Consequently, A visits the state 〈n, n〉 infinitely many times iff
the traversed path has visited all vertices infinitely often.

It is easy to see that A has a witness of length (at most) n iff G has a Hamiltonian
cycle. Indeed, if G has a Hamiltonian cycle C, then for a word w read along C from
vertex 1, we have wω ∈ L(A). For the other direction, assume that A has a witness uvω

of length n. An accepting run r on uvω visits 〈n, n〉 infinitely often. By the definition of
δ, the run r also visits the states 〈i, i〉 infinitely often, for all 1 ≤ i ≤ n. The transitions
to each of these states are labeled by different letters. Therefore, v must include at least
n different letters, and can include only n letters only if G has a Hamiltonian cycle.

Remark 3 Membership in NP holds also for nondeterministic generalized Büchi au-
tomata. There, the length of a shortest witness can be bounded by 2k|Q|, where k is
the index of the automaton. Note that the automaton A used in the hardness proof is
deterministic. Moreover, with some more technicality (going to an accepting loop from

10

the state 〈n, n〉), it is possible to modify A to be a Büchi automaton with α = Q
(also known as a looping automaton). Thus, NP-hardness holds already for determinis-
tic looping automata.

Remark 4 As mentioned in Section 1, a compressed description of a witness is such
that subwords consisting of a block of m repetitions of the same subword x are repre-
sented by xm, with m given in binary. For example, if the witness is aabaab(cccb)ω, a
compressed description for it is (a2b)2(c3b)ω. In the shortest compressed witness prob-
lem, we are given an automaton A and an integer k, given in binary, and we have to
decide whether a witness of compressed length k exists.

Since the length of a witness is bounded by 2|Q|, so is the length of a compressed
witness, which implies that the shortest compressed-witness problem is in NP. In addi-
tion, since our NP-hardness proof for the shortest-witness problem imposes a witness
with no repeated letters, NP-hardness holds also for the shortest compressed-witness
problem.

The NP-completeness of the shortest-witness problem for NBW implies that a poly-
nomial algorithm for finding a shortest witness is unlikely to exist. A naive algorithm
for finding a shortest witness for a given NBW A goes over all words of the form uvω

such that |uv| is bounded by 2|Q|, and returns the shortest such word that is accepted
by A. In the full version, we tighten the 2|Q| bound to |Q| and describe an exponential
time and polynomial space algorithm that has a better running time than the naive algo-
rithm. Essentially, the improved algorithm is based on the observation that the we can
choose the location where the loop starts in such a way that the paths traversed along
u and v are disjoint. This observation is also used in [14] in the context of shortest ac-
cepting runs, but its applications are more significant in our setting. Formally, we have
the following.

Proposition 1. Consider an NBW A = 〈σ,Q, δ,Q0, α〉. For a state q ∈ Q, let uq be a
word labeling a shortest path from Q0 to q, and let vq be a shortest word such that vωq
is accepted by A with initial state q. Then, a shortest witness for A is uqvωq , for some
q ∈ Q.

4 The Shortest-Witness Problem for Concurrent Automata

We now turn to study the shortest-witness problem for concurrent automata. Note that
for concurrent automata, shortest accepting runs are not defined7. On the other hand, the
definition of shortest witnesses is semantic, and we can refer to the shortest witnesses
of concurrent automata.

Theorem 5. The shortest-witness problem for CBW is NEXPTIME-complete.

7 One can define shortest accepting runs for CBW by referring to the product of the components,
but this gives up the exponential succinctness of the concurrent model.

11

Proof: A CBW A can be translated to an NBW with an exponential blow up [10].
Thus, membership in NEXPTIME follows from Theorem 2. For the lower bound, we
do a reduction from the succinct Hamiltonian cycle problem. A succinct representa-
tion of a graph with 2n nodes is a Boolean circuit C with 2n input gates. The graph
represented by C is GC = 〈{0, . . . , 2n − 1}, E〉, where E(i, j) iff C has value 1 on
the input (of length 2n) that has the n-bit binary encoding of the integers i and j.
The succinct Hamiltonian circle problem is to determine, given a circuit C, whether the
graphGC has a Hamiltonian cycle. Like many other problems on succinct graphs whose
“non-succinct version” (that is, over graphs given enumeratively) is NP-complete, the
succinct Hamiltonian cycle problem is NEXPTIME-complete [16].

Given C with 2n input gates, we construct a CBW A with |C| + n components,
each with two states, such that A has a witness of length at most n2n iff GC has a
Hamiltonian cycle. We partition the components of A to 2n input components, |C|−2n
internal-gate components, and n counting components. Recall that each component has
two states, thus we refer to the value of a component, which is either 0 or 1, according
to the state it visits.

The alphabet of A is {0, 1}, and an input word w = w0, w1, . . . describes an at-
tempt to encode a path v0, v1, . . . in GC , where the vertex vi is encoded in the subword
win, . . . , w(i+1)n−1. The word w encodes a path if its partition to blocks of length n
indeed describes a path. Thus, there is an edge between vi and vi+1 for all i ≥ 0.
Equivalently, the value of C on win, . . . , w(i+2)n−1 is 1, for all i ≥ 0.

Accordingly, A proceeds as follows. The 2n input components maintain the last
edge that was taken, and the internal-gate components maintain the value of the inter-
nal gates of C with respect to this edge. The automaton A updates its guess for the next
edge whenever a block in the input word starts (that is, once every n letters). The update
consists of the following steps: a check that the component of the output gate (the one
that maintains the value of C) is 1, a transfer of the values of the input components
n+ 1, . . . 2n to the input components 1, . . . , n, a guess for the new values of the input
components n + 1, . . . , 2n, and a guess for the value of the internal-gate components.
Once the update has been performed, the input and internal-gate components do not
change their value until A finishes reading the current block. They may, however, get
stuck (and do so in case of a bad guess), during the reading of the current block. Tech-
nically, when the current block is read, the input components n+ 1, . . . , 2n check that
the guess for the next vertex is correct (that is, in the i-th letter of the block, the input
component n+ i+1 expects to read the letter that agrees with its value. If this is not the
case, the component gets stuck, and the run is rejected. In addition, each internal-gate
components checks that its guessed value corresponds to the semantics of the gate with
which it is associated. For example, an internal-gate component associated with an and
gate, stays in its state if its value is the conjunction of the values of the components
associated with its operands. If this is not the case, the component gets stuck, and the
run is rejecting. For the initial configuration, A guesses values for all input compo-
nents. Note that the components of A make use of its concurrency: the transitions of
one component depends on the values of other components.

By the above, A accepts a word only if it encodes a path in CG. It is left to describe
how A takes care of the path being a Hamiltonian cycle. This is where the counter

12

components enter the picture. The job of these components is similar to the job of
the second element in the pair in the state space of the NBW described in the proof
of Theorem 2. While there blowing up the state space of the NBW by the number of
vertices is not a problem, here we cannot blow-up the state space by a factor of 2n, and
instead we use the ability of concurrent automata to count to 2n with n components.
Formally, whenever a block is read and the vertex in this block agrees with the value
of the counter (that is, the value of the input components n + 1, . . . , 2n agree with the
value of the counter components), A increases the value of the counter by 1.

Remark 6 Note that our reduction involves a generation of a CBW that accepts a word
iff it is a path in a graph represented succinctly. Thus, the technique we developed for
the shortest-witness problem is useful for proving NEXPTIME-hardness of a family of
problems for which the corresponding problem on NBW is NP-hard [30].

5 The Shortest-Witness Problem for Alternating Automata

In the concurrent case, our results indicate that one cannot do better than translating the
CBW to an NBW and solving the shortest-witness problem with respect to the NBW.
ABW can also be translated to NBW with an exponential blow up [27]. Solving the
shortest-witness problem by translating the ABW to an NBW would then result in an
NEXPTIME algorithm. In this section we show that the translation to NBW can be
avoided, and that a direct algorithm on the ABW requires only polynomial space.

Consider an ABW A = 〈Σ,Q, δ, q0, α〉. For two sets S, S′ ⊆ Q, let A[S, S′] =
〈Σ,Q, S, δ, S′〉 be the alternating automaton on finite words obtained from A by defin-
ing S to be the set of conjunctively related initial states and S ′ to be its set of fi-
nal states8. For simplicity, when S = {q} is a singleton, we denote the automaton
by A[q, S′]. Note that for every sets S, S ′, and S′′, with S′ ⊆ S′′, we have that
L(A[S, S′]) ⊆ L(A[S, S′′]), and L(A[S′′, S]) ⊆ L(A[S′, S]).

For m ≥ 1, we say that a function f : Q → 2Q \ {∅} is m-cyclic on A if there
exists a set Q′ ⊆ Q such that

1. q0 ∈ Q′,
2.

⋃
q∈Q′ f(q) ⊆ Q′, and

3. there exists a word w such that |w| = m and w ∈
⋂
q∈Q′ L(A[q, f(q)]).

We say that Q′ is a core of f . Thus, f is m-cyclic on A if there is a set Q′ of states that
contains q0, the application of f on a state in Q′ results in states in Q′, and there is a
word w of length m such that for all states in Q′, the word w is accepted by the AFW
with initial states q and accepting set f(q). Intuitively, m-cyclic functions reduce the
existence of a witness to the nonemptiness of the alternating automaton to the existence
of the same witness to the nonemptiness of several automata.

8 An alternating automaton with a set of conjunctively related initial states has to accept the
input word from all the initial states. Automata with a set of conjunctively related initial states
can be easily translated to an automaton with a single initial state: the transition from the new
initial state is a conjunction of the transitions from the states in the set of initial states.

13

In order to describe how we use m-cyclic cycles in order to solve the shortest-
witness problem for ABW, let us first consider a special case of the Büchi condition,
where α = Q. In such automata (also known as looping automata), every infinite run is
accepting. Also, let us first handle the case where the witness is of the form vω .

Lemma 1. Consider an alternating looping automaton A. For all m ≥ 1, there exists
a witness wω ∈ L(A) such that |w| = m iff there exists an m-cyclic function on A.

Proof: Let A = 〈Σ,Q, δ, q0, Q〉. For the first direction, let wω ∈ L(A) be such that
|w| = m. Consider an accepting memoryless run r of A on wω . Let Gr = 〈V,E〉 be
the run DAG of r. For each i ≥ 0, let Qi denote the set of states in the (im)-th level of
Gr; thus, Qi = {q : 〈q, im〉 ∈ V }. Since the run is accepting, Qi 6= ∅ for all i ≥ 0.
Note that for all i ≥ 0, the set Qi is the set of states that r visits after reading the prefix
wi of wω . For a state q ∈ Qi, let Sq,i denote the subset of Qi+1 that contains all states
reachable from q. Formally, q′ ∈ Sq,i iff 〈q′, (i+1)m〉 is reachable from 〈q, im〉. Since
r is memoryless, then for all i, j ≥ 0 and q ∈ Qi ∩ Qj , we have that Sq,i = Sq,j .
Indeed, both sets contain the set of states that q “generates” when it reads the prefix w
of wω. For a state q for which q ∈ Qi for some i ≥ 0, let Sq = Sq,i. As argued, the
definition of Sq is independent of i.

We construct an m-cyclic function f as follows. Let Q′ =
⋃
i≥0 Qi. Thus, the core

of f is the set of states that r visits in levels 0,m, 2m, 3m, For q ∈ Q′, we define
f(q) = Sq. For q /∈ Q′, we define f(q) arbitrarily. We claim that the three conditions
for f being m-cyclic hold. First, since Q0 = {q0}, we have that q0 ∈ Q′. Second, if
q′ ∈ f(q) then q′ ∈ Q′, and hence

⋃
q∈Q′ f(q) ⊆ Q′. Finally, for each q ∈ Qi, we

have that w ∈ A[q, Sq], so, by the definition of f , we also have that w ∈ L(A[q, f(q)]).
Hence, as |w| = m, there exists a word of length m in

⋂
q∈Q′ L(A[q, f(q)]).

For the other direction, let f be an m-cyclic function on A, and let Q′ be a core
for f . Since f is m-cyclic, there exists a word w of length m in

⋂
q∈Q′ L(A[q, f(q)]).

We claim that A accepts wω. We define a run r of A on wω as follows. Let r0 be an
accepting run of A[q0, f(q0)] on w. Such a run exists, as by the definition of f , we
have that w ∈ L(A[q0, f(q0)]). Let S1 be the set of states that r0 visits after reading
w. Let r1 be an accepting run of A[S1,

⋃
q∈S1

f(q)] on w. Again, such a run exists, as
S1 ⊆ Q′, and hencew ∈ L(A[q, f(q)]) for all q ∈ S1. We continue in the same manner
to obtain, for each i ≥ 0, a set Si ⊆ Q′ and an accepting run ri of A[Si,

⋃
q∈Si

f(q)]
on w. Since there are 2n subsets of Q, it is guaranteed that there are j ′ < j ≤ 2n such
that Sj = Sj′ . The run obtained by concatenating r0, r1, . . . , rj′−1 and then repeatedly
concatenating rj′ , . . . , rj−1 is an infinite accepting run of A on wω .

We can now extend m-cyclic function to ABW. In [29], Muller et al. introduce
weak alternating automata (AWW). In an AWW, the acceptance condition is α ⊆ Q,
and there exists a partition of Q into disjoint sets, Qi, such that for each set Qi, either
Qi ⊆ α, in which case Qi is an accepting set, or Qi ∩ α = ∅, in which case Qi is
a rejecting set. In addition, there exists a partial order ≤ on the collection of the Qi’s
such that for every q ∈ Qi and q′ ∈ Qj for which q′ occurs in δ(q, σ), for some σ ∈ Σ,
we have Qj ≤ Qi. Thus, transitions from a state in Qi lead to states in either the same
Qi or a lower one. It follows that every infinite path of a run of a AWW ultimately gets

14

“trapped” within some Qi. The path then satisfies the acceptance condition if and only
if Qi is an accepting set. Thus, we can view a AWW with an acceptance condition α
as both a Büchi automaton with an acceptance condition α, and a co-Büchi automaton
with an acceptance condition Q \ α. Indeed, a run gets trapped in an accepting set iff
it visits infinitely many states in α, which is true iff it visits only finitely many states in
Q \ α.

The translation of LTL formulas to alternating automata results in weak automata
[26]. Also, ABW can be translated to an AWW with a quadratic blow up [23]. Ac-
cordingly, we are going to use m-cyclic functions of AWW in our algorithm for the
shortest-witness problem for ABW.

We say that an m-cyclic function f has a rejecting cycle if for every core Q′ for
it, there exists a sequence q1, q2, . . . , qk, with k ≤ |Q|, of states in Q′ \ α such that
q(i mod k)+1 ∈ f(qi) for all 1 ≤ i ≤ k. Note that a rejecting cycle refers only to
states in Q′ and requires some path in the run induced by f to visit Q \ α infinitely
often. As we argue in Lemma 2 below, the weakness of the automaton guarantees that
the fact a rejecting cycle refers only to states “sampled” by f does not prevent it from
characterizing acceptance.

Lemma 2. Consider an AWW A. For every m ≥ 1, there exists a word wω ∈ L(A)
such that |w| = m iff there exists an m-cyclic function f on A that does not have a
rejecting cycle.

Proof: Let A = 〈Σ,Q, δ, q0, α〉. For the first direction, let wω ∈ L(A) be such that
|w| = m. Let r be a memoryless accepting run of A on w and let Gr = 〈V,E〉 be its
run DAG. We claim that the m-cyclic function f defined in the proof of Lemma 1 does
not have a rejecting cycle. Assume by way of contradiction that f has a rejecting cycle
q1, . . . , qk. Since for each 1 ≤ i < k we have that q(i mod k)+1 ∈ f(qi), then, by the
way we have defined f , there exists an index j ≥ 0 and a vertex 〈q1, j ·m〉, reachable
from 〈q0, 0〉, from which there is a path π1 to the vertex 〈q2, (j+ 1) ·m〉. Again, by the
definition of f , there exists a path π2 from 〈q2, (j + 1) ·m〉 to 〈q3, (j + 2) ·m〉. We can
continue in a similar way and generates an infinite path inGr that visits infinitely many
states in Q \ α, contradicting the fact that Gr is accepting.

For the other direction, let f be an m-cyclic function on A that does not have a
rejecting cycle, and let Q′ be the core of f . We claim that the run r constructed in the
proof of Lemma 1 is accepting. Assume by way of contradiction that r is rejecting.
Then, the DAG Gr has a path π = 〈q0, 0〉, 〈q1, 1〉, . . . such that there is an index l ≥ 0
such that qj /∈ α for all j ≥ l. By the definition of r, we have that Qi ⊆ Q′ for all
i ≥ 0. Let j be such that j · m > l. The sequence qjm, q(j+1)m, q(j+2)m, . . . is such
that for all i ≥ 1, we have that q(j+i)m ∈ Q′ \ α, and q(j+i+1)m ∈ f(q(j+i)m). By the
pigeonhole principle, there exist i′ and i with i′ < i < n such that q(j+i′)m = q(j+i)m.
Therefore, the sequence q(j+i′)m, q(j+i′+1)m, . . . , q(j+i−1)m is a rejecting cycle in f ,
and we reach a contradiction.

Theorem 7. The shortest witness problem for ABW is PSPACE-complete.

Proof: An ABW with n states can be translated to an NBW with 3n states [27]. There-
fore, since by Proposition 1 length of a shortest witness for an NBW is bounded the

15

number of its states, an ABW with n states is empty iff it has no witness of length
at most 3n. Hence, hardness in PSPACE follows from the PSPACE hardness of the
nonemptiness problem for ABW. [27].

Let A be an ABW with n states, and let k be an integer given in binary. We describe
an algorithm in NPSPACE for deciding whether A has a witness of length at most k.
Since NPSPACE=PSPACE [31], we are done. First, the algorithm answers “no” if A
is empty and answers “yes” if A is not empty and k > 3n. Since the nonemptiness
problem is in PSPACE, this can be done in PSPACE.

Otherwise, let A′ = 〈Σ,Q, q0, δ, α〉 be an AWW equivalent to A. By [23], such an
AWW with at most 2n2 states exists. The algorithm guesses an integer 0 < m ≤ k,
a function f : Q → 2Q \ {∅} and a set Q′ ∈ Q. The function f consists of |Q| sets
of elements in Q, each of size at most |Q|. Hence f can be encoded in space of size
O(n4 logn). The algorithm then checks that f ism-cyclic as follows. It first checks that
q0 ⊆ Q′, and that

⋃
q∈Q′ f(q) ⊆ Q′. These checks are both performed in polynomial

space. It then constructs an AFW Am of size O(logm) that accepts all words w ∈ Σm

[3]. The algorithm then constructs an AFW A[q, f(q)] for each q ∈ Q′, and checks
that the intersection L(

⋂
q∈Q′ A[q, f(q)]) ∩ L(Am) is not empty. Since alternation can

model intersection, the latter can be checked in PSPACE. Note that the intersection is
not empty iff an m-cyclic function on A exists. It is left to check that f has no rejecting
cycle. For that, the algorithm goes over each sequence q1, . . . , qk, with k ≤ |Q| and
checks that it is not a rejecting cycle. If all sequences pass the check successfully, the
algorithm returns “yes”. By Lemma 2, there exists a witness vω ∈ L(A) of length
m ≤ k iff there is an instance of the algorithm that answers “yes”.

We now expand the algorithm to account for cases where the witness is of the form
uvω. The algorithm first guesses the length of u by guessing an integer t < m. It
then guesses a sequence of t letters and a run of A on it. Let Q′

0 be the set of states
the algorithm visits after reading the t letters without getting stuck, and let A′′ be the
ABW obtained from A by defining Q′

0 to be its set of initial states. The algorithm now
proceeds as in the case of witnesses of the form vω, with respect to witnesses of length
m− t.

Recall that the definition of a shortest witness is semantic and depends on the lan-
guage of the automaton rather than its structure. Thus, the shortest-witness problem can
be defined with respect to any specification formalism that defines ω-regular languages.
LTL formulas can be linearly translated to AWW. Hence, together with the PSPACE
lower bound for LTL satisfiability, Theorem 7, implies the following.

Theorem 8. The shortest-witness problem for LTL is PSPACE-complete.

It follows that finding a shortest witness for the satisfiability of an LTL formula is
not harder than just checking its satisfiability.

6 Discussion

We studied the shortest-witness problem in three different models of concurrency. From
a theoretical point of view, our results show that the limited concurrency between the

16

processes of an alternating automaton makes reasoning about them simpler than con-
current automata: the shortest-witness problem for ABW is PSPACE-complete, like
the nonemptiness problem for it, whereas for concurrent automata, the problem is
NEXPTIME-complete. Note that while cooperation between the processes of an alter-
nating automaton is limited, this model does not bound the number of processes that run
on the input. Thus, alternation cannot be easily simulated by concurrency. In fact, the
translations between the two models involve an exponential blow up in both directions
[10].

It is interesting to compare our results with previous results about the computational
price of the two models. In Figure 2, we describe such results. The table in the figure
refers to six problems that involve automata. Simulation and fair-simulation consider
labeled transition systems, which can be viewed as automata with labels at the states
rather than on the transitions. In fair simulation, we refer to the definition of [13]; in the
case of alternating systems, we refer to the alternating simulation of [1]; the complexity
of fair alternating simulation is still open. ELTL satisfiability is the problem of deciding
the satisfiability of an LTL formula in which automata are used as temporal modalities.

nonemptiness universality simulation fair-simulation ELTL satisfiability shortest witness
NBW NLOGSPACE PSPACE PTIME PSPACE PSPACE NPTIME

[35] [33] [28] [22] [19] Th. 2
CBW PSPACE NEXPSPACE EXPTIME EXPSPACE EXPSPACE NEXPTIME

[10] [10] [18] [18] [19] Th. 5
ABW PSPACE PSPACE PTIME ? EXPSPACE PSPACE

[27] [27] [1] [19] Th. 7

Fig. 2. The computational price of different types of concurrency.

As can be seen from the table, all problems become exponentially more complex
in the concurrent setting. On the other hand, for some problems, special algorithms for
the alternating setting are less complex than an algorithm that first removes alterna-
tion, which involves an exponential blow up. The shortest-witness problem falls in this
category.

¿From a practical point of view, our results indicate that alternation can be useful not
only thanks to the straightforward translation of temporal logic formulas to alternating
automata, but also because of computational considerations. In particular, in case the
system is given symbolically by a set of underlying components, and the specification
is given by an LTL formula, it is better to translate the formula to an ABW (rather
than an NBW) and search for a shortest witness in this setting. Indeed, the intersection
of the underlying components can be modeled by an alternating automaton, and the
complexity is PSPACE, like the PSPACE complexity for the model-checking problem
(note that in the symbolic setting described above, model checking is PSPACE in both
the LTL formula and the underlying components).

Another application of the shortest-witness problem is synthesis. In the last years,
researches have developed methods for coping with the implementation difficulties of
the synthesis problem: its high complexity, and the fact its solution involves deter-

17

minization of automata on infinite words [25]. With these problems being challenged,
there is now room for studying the size of the synthesized system, and developing
automated-synthesis algorithms for generating optimal systems. Our study in this paper
handles the case of a closed system. In future research, we plan to study the case of
open systems, where the problem is to find minimal transducers that generate correct
systems.

References

1. R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement relations.
In Proc. 9th CONCUR, LNCS 1466, pages 163–178, 1998.

2. A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimal model genration. In Proc. 2nd
CAV, LNCS 531, pages 197–203, 1990.

3. J.C. Birget. State-complexity of finite-state devices, state compressibility and incompress-
ibility. Mathematical Systems Theory, 26(3):237–269, 1993.

4. J.A. Brzozowski and E. Leiss. Finite automata and sequential networks. TCS, 10:19–35,
1980.

5. J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. International
Congress on Logic, Method, and Philosophy of Science. 1960, pages 1–12, Stanford, 1962.
Stanford University Press.

6. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Proc. Workshop on LP, LNCS 131, pages 52–71, 1981.

7. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.

8. E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. Efficient generation of counterex-
amples and witnesses in symbolic model checking. In Proc. 32nd DAC, pages 427–432.
IEEE Computer Society, 1995.

9. A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. J. ACM, 28(1):114–133,
January 1981.

10. D. Drusinsky and D. Harel. On the power of bounded concurrency I: Finite automata. J.
ACM, 41(3):517–539, 1994.

11. E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy. In Proc. 32nd
FOCS, pages 368–377, 1991.

12. S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Vardi. On complementing nondeter-
ministic Büchi automata. In Proc. 12th CHARME, LNCS 2860, pages 96–110, 2003.

13. O. Grumberg and D.E. Long. Model checking and modular verification. ACM TOPLAS,
16(3):843–871, 1994.

14. P. Gastin, P. Moro, and M. Zeitoun. Minimization of counterexamples in spin. In SPIN
Workshop on Model Checking of Software, pages 92–108, 2004.

15. P. Gastin and D. Oddoux. Fast LTL to büchi automata translation. In Proc. 13th CAV, LNCS
2102, pages 53–65, 2001.

16. H. Galperin and A. Wigderson. Succinct representations of graphs. I& C, 56(3):183–198,
1983.

17. D. Harel. Statecharts: A visual formalism for complex systems. Sci. Computer Prog., 8:231–
274, July 1987.

18. D. Harel, O. Kupferman, and M.Y. Vardi. On the complexity of verifying concurrent transi-
tion systems. I & C, 173:1–19, 2002.

19. D. Harel, R. Rosner, and M.Y. Vardi. On the power of bounded concurrency iii: Reasoning
about programs. In Proc. 5th LICS, pages 478-488, 1990.

18

20. G.A. Jones, J.M. Jones, and J.M. Tyrer-Jones. Elementary Number Theory. Springer Under-
graduate Mathematics Series, Berlin, 1998.

21. D. Kozen. Lower bounds for natural proof systems. In Proc. 18th FOCS, pages 254–266,
1977.

22. O. Kupferman and M.Y. Vardi. Verification of fair transition systems. CJTCS, 1998(2), 1998.
23. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM TOCL,

2(2):408–429, July 2001.
24. O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking. J. STTT,

4(2):224–233, February 2003.
25. O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th FOCS, pages

531–540, 2005.
26. O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-

time model checking. J. ACM, 47(2):312–360, March 2000.
27. S. Miyano and T. Hayashi. Alternating finite automata on ω-words. TCS, 32:321–330, 1984.
28. R. Milner. A Calculus of Communicating Systems, LNCS 92, 1980.
29. D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic theory of

the tree and its complexity. In Proc. 13th ICALP, LNCS 226, pages 275 – 283, 1986.
30. C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
31. W.J. Savitch. Relationship between nondeterministic and deterministic tape complexities.

Journal on Computer and System Sciences, 4:177–192, 1970.
32. V. Schuppan and A. Biere. Shortest counterexamples for symbolic model checking of LTL

with past. In Proc 11th TACAS, LNCS 3440, pages 493–509, 2005.
33. A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi automata

with applications to temporal logic. TCS, 49:217–237, 1987.
34. M.Y. Vardi. Alternating automata and program verification. In Computer Science Today –

Recent Trends and Developments, LNCS 1000, pages 471–485, 1995.
35. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. I& C, 115(1):1–37,

November 1994.

