
Extended Temporal Logic Revisited

Orna Kupferman
���

Nir Piterman
�

Moshe Y. Vardi
�����

�

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
Email: orna@cs.huji.ac.il, URL: http://www.cs.huji.ac.il/

�
orna

	

Weizmann Institute of Science, Department of Computer Science, Rehovot 76100, Israel
Email: nirp@wisdom.weizmann.ac.il, URL: http://www.wisdom.weizmann.ac.il/

�
nirp

Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
Email: vardi@cs.rice.edu, URL: http://www.cs.rice.edu/

�
vardi

Abstract. A key issue in the design of a model-checking tool is the choice of the
formal language with which properties are specified. It is now recognized that a
good language should extend linear temporal logic with the ability to specify all
� -regular properties. Also, designers, who are familiar with finite-state machines,
prefer extensions based on automata than these based on fixed points or proposi-
tional quantification. Early extensions of linear temporal logic with automata use
nondeterministic Büchi automata. Their drawback has been inability to refer to
the past and the asymmetrical structure of nondeterministic automata.
In this work we study an extension of linear temporal logic, called ETL 	
� , that
uses two-way alternating automata as temporal connectives. Two-way automata
can traverse the input word back and forth and they are exponentially more suc-
cinct than one-way automata. Alternating automata combine existential and uni-
versal branching and they are exponentially more succinct than nondeterministic
automata. The rich structure of two-way alternating automata makes ETL 	
� a
very powerful and convenient logic. We show that ETL 	
� formulas can be trans-
lated to nondeterministic Büchi automata with an exponential blow up. It fol-
lows that the satisfiability and model-checking problems for ETL 	
� are PSPACE-
complete, as are the ones for LTL and its earlier extensions with automata. So,
in spite of the succinctness of two-way and alternating automata, the advantages
of ETL 	
� are obtained without a major increase in space complexity. The recent
acceptance of alternating automata by the industry and the development of sym-
bolic procedures for handling them make us optimistic about the practicality of
ETL 	
� .

1 Introduction

In formal verification, we check that a system is correct with respect to a desired behav-
ior by checking that a mathematical model of the system satisfies a formal specifica-
tion of the behavior. Early formal-verification efforts considered terminating systems.
There, the specification relates an initial condition about the system with a condition
�

Supported in part by BSF grant 9800096.
���

Supported in part by NSF grant CCR-9700061, NSF grant CCR-9988322, BSF grant 9800096,
and by a grant from the Intel Corporation.

that is guaranteed to be satisfied upon its termination [Fra92]. In 1977, Pnueli sug-
gested to use temporal logic in order to describe nonterminating and reactive systems
[Pnu81]. Temporal logics augment propositional logics with temporal modalities, mak-
ing it possible to describe a sequence of events in time. For example, using the temporal
modalities always (

�
) and eventually (�), we can specify the behavior “if � holds in all

future moments then there is a future moment in which � holds” (
� �������). Temporal

logic has led to the development of algorithmic methods for reasoning about reactive
systems [CGP99]. In particular, temporal logic model checking enjoys a substantial and
growing use in industrial applications [BBG � 94].

A key issue in the design of a model-checking tool is the choice of the formal
language with which behaviors are specified. Almost two decades ago, Wolper argued
that some very basic behaviors cannot be expressed by the linear temporal logic LTL.
For example, he showed that the behavior “

� � � ”, stating that an atomic proposition �
is true in all even positions, cannot be expressed in LTL [Wol83]. Wolper suggested to
extend linear temporal logic by grammar operators. It is more convenient to think about
Wolper’s extension in terms of 	 -regular languages, as was later suggested in [VW94]1.
Intuitively, if the system is defined over a set
�� of atomic propositions, then an infinite
behavior of the system can be viewed as a word over the alphabet
���� , and a set of
allowed behaviors can be described by an 	 -regular automaton whose alphabet consists
of Boolean formulas over
�� . For example, the behavior

� � � can be described by an
automaton whose language is ������������� �"! , and the behavior

� ���#�$� can be described
by an automaton whose language is �%�&�'�)(*�+�"�-,.� �0/1�2�3�%���&�'� ! .

It turned out that LTL can express precisely the star-free 	 -regular behaviors [Tho81],
and that its inability to express all 	 -regular expressions makes LTL inadequate for nu-
merous important tasks. For example, in compositional model checking, we verify a sys-
tem by checking assume-guarantee specifications on its components. The specification4�57698:4<;=6

states that a composition that contains
8

and satisfies
5

, also satisfies
;

. The
assumption

5
can refer only to propositions observed by

8
, and LTL is not expressive

enough to specify it [LPZ85] 2. The recognition that the specification language should
be able to specify all 	 -regular properties has led to several other extensions of LTL.
This includes augmenting LTL with quantification over atomic propositions, resulting
in QLTL [LPZ85,SVW87,MP92], and augmenting LTL with fixed-point operators, re-
sulting in the linear > -calculus [BB87,Var88]. These suggestions, however, are not very
appealing in practice: formulas of QLTL and the linear > -calculus are very hard to un-
derstand, and the satisfiability problem for QLTL is non-elementary [SVW87,Mey75].

Recall that Vardi and Wolper suggested to use 	 -automata as temporal connec-
tives [VW94]. They study the usage of different types of automata. In particular, the
logic ETL ? uses nondeterministic B üchi automata, and it enables the specification of
all 	 -regular properties. ETL ? combines two perspectives of system specification: the
operational perspective (finite-state machines) and the behavioral perspective (tempo-
ral operators). This makes ETL ? , as well as related logics, appealing in practice (cf.

1 In [ET97,HT99] full � -regularity is achieved by adding regular expressions over propositions
and actions.

2 The reason is that the assumption needs to refer to locations in the interaction between @ and
its environment, which cannot be done by a star-free � -regular expression.

[BBL98,AFG � 01]). Moreover, unlike QLTL, the satisfiability problem for ETL? is
PSPACE-complete.

The logic ETL ? still suffers from two limitations. First, it lacks temporal operators
that can refer to the past. While past temporal operators do not add expressive power to
LTL, they make the specification of many behaviors much more convenient3 [LPZ85].
This convenience is reflected in the fact that the best known translation of PLTL, which
extends LTL with past temporal operators, to LTL involves a non-elementary blow up
[Gab87]. Also, as mentioned above, in assume-guarantee reasoning in compositional
model checking, the assumptions refer only to propositions observed by the component.
In PLTL we can refer to the history of the computation, which resembles using LTL
with referring to locations in the interaction between the component and its environ-
ment [BK85,Pnu85,LPZ85]. To quote from Pnueli: “In order to perform compositional
specification and verification, it is convenient to use the past operators but necessary to
have the full power of ETL ? ” [Pnu85]. The second limitation of ETL ? follows from the
limited structure of nondeterministic automata. Unlike LTL, whose syntax contains both
disjunctions and conjunctions, runs of nondeterministic automata are treated purely dis-
junctively. Modelling of conjunctions by nondeterministic automata involves a blow up
of the state space and results in automata whose structure is different from the structure
of equivalent LTL formulas. We would like to use automata that preserve as much as
possible the structure of the formulas.

In this paper we describe and study the logic ETL ��� , which removes both limita-
tions. The extension of temporal logic with past is analogous to an extension of au-
tomata with bidirectional movement. Two-way automata can traverse the input word
back and forth (technically, the transition function of two-way automata maps a state
and a letter to a set of pairs, where each pair specifies both the next state and the direc-
tion to which the reading head of the automaton proceeds). Just like PLTL is not more
expressive than LTL, two-way automata are not more expressive than conventional one-
way automata. Also, as in the temporal-logic paradigm, it is often more convenient to
define languages using two-way automata, and the convenience is reflected in their suc-
cinctness. For example, the translation of nondeterministic two-way B üchi automata
to nondeterministic one-way B üchi automata involves an exponential blow-up [GH96].
So, our ETL ��� is going to have two-way B üchi automata as its temporal operators.

In addition, the automata are going to be alternating4. A deterministic automaton
has a single run over an input word. A nondeterministic automaton may have many
runs, and it accepts the word if one of them is accepting. This can be viewed as if
the automaton operates in an existential mode. Dually, in a universal mode, a word
is accepted if all the runs of the automaton on it are accepting. In an alternating au-
tomaton [BL80,CKS81], both existential and universal modes are allowed. The richer
combinatorial structure of alternating automata makes them a convenient specification

3 For example, it is easy to specify the fact that grants are issued only upon requests using past
temporal operators:

�����	��

������� �������	��
	�����������	���
, where

� �
(“Yesterday”) and

�
(“Since”)

are the past-time counterparts of “Next” and “Until”). The reader is encouraged to try and
specify the behavior without past temporal operators.

4 An earlier attempt to extend ETL with alternating automata is reported in [VW94]. That at-
tempt, however, was somewhat ad-hoc and could not handle alternating Büchi automata.

language. Formally, alternating B üchi automata are exponentially more succinct than
nondeterministic B üchi automata [DH94]. In addition, the complementation of alter-
nating B üchi automata is quadratic and simple [KV97].

Our interest in alternating automata is not merely theoretical. Alternating automata
have recently been used in industrial projects. The Intel ForSpec compiler uses an inter-
mediate language called SPIF, which is essentially a variant of ETL � , using alteranting
automata as temporal connectives. The ForSpec compiler translates ForSpec Temporal
Logic (FTL) formulas [AFG � 01] into SPIF, and from SPIF into nondeterministic B üchi
automata [AFF � 01]. We note, however, that the ability of FTL to refer to past events
is very limited, because of the limitations of ETL � . Using ETL ��� , it would be possible
to extend FTL and SPIF to include reference to past. We also note that it has recently
been shown how nondeterministic Boolean decision diagrams (BDDs) can be used for
maintaining sets of states in order to reason about alternating automata [Fin01]. Thus,
we believe that ETL ��� is interesting both theoretically and practically.

One may ask, why bother with the logic and not use two-way alternating automata
directly. Indeed Boolean operators are easy to implement with alternating automata.
We believe that explicit usage of Boolean connectives and nesting of formulas is more
natural to users. Furthermore, the ability to name a formula and then refer to that name
is much more convenient than dealing with the internals of alternating automata; indeed,
this functionality is available in FTL [AFG � 01].

We note that the succinctness of two-way automata holds also in the framework
of alternating automata: Birget has shown that two-way alternating automata on fi-
nite words are exponentially more succinct than one-way alternating automata on fi-
nite words [Bir93], and it is not hard to extend his result to B üchi automata [Pit00].
Also, the succinctness of alternating automata is valid in the framework of two-way
automata: two-way alternating B üchi automata are exponentially more succinct than
two-way nondeterministic B üchi automata [GH96]. So, ETL��� extends ETL ? in two
important aspects. On the other hand, the two succinctness results are not additive:
there is an exponential translation of two-way alternating B üchi automata to one-way
nondeterministic B üchi automata [Var98].

In the automata-theoretic approach to verification, we reduce questions about sys-
tems and their behavior to questions about automata [VW94]. Given a formal specifi-
cation

5
, we construct a nondeterministic B üchi automaton ��� that accepts exactly the

set of words that satisfy
5

. In order to check if
5

is satisfiable, we check whether the
language of ��� is nonempty. In order to verify a system with respect to

5
, we check

that the language of the system is contained in the language of ��� . Following this
approach, we would like to construct, given an ETL ��� formula

5
, a nondeterministic

B üchi automaton that accepts exactly the set of words that satisfy
5

.

The construction proceeds in two stages. We first translate an ETL��� formula
5

to a
two-way alternating hesitant automaton. Alternating hesitant automata are an extension
of alternating weak automata [MSS86], and they combine the B üchi and its dual co-
B üchi acceptance condition. Recall that the complementation problem for alternating
B üchi automata is quadratic. On the other hand, complementing an alternating B üchi
automaton to a co-B üchi alternating automaton can be done by dualizing the transition
function and the acceptance condition. Consequently, the combination of both condi-

tions leads to a linear translation of ETL ��� to two-way alternating hesitant automata. In
the second stage we translate the two-way alternating hesitant automaton to a one-way
nondeterministic B üchi automaton. For that, we first remove the hesitation and get a
B üchi automaton, and then combine techniques for removing alternation [MS95] with
techniques for removing bidirectionality [Var88]. The fact we deal with hesitant word
automata makes the procedure much simpler than the one required for the translation
of two-way alternating parity tree automata to one-way nondeterministic parity tree
automata [Var98]. All in all, given an ETL ��� formula

5
, the nondeterministic B üchi

automaton ��� has
�� ��� � � ��� states. It follows that the model-checking and the satisfia-
bility problems for ETL ��� can be solved in polynomial space. Matching lower bounds
are easy to show, hence the problems are PSPACE-complete, as are the ones for ETL ?
or LTL [SC85]. It follows that the in spite of the succinctness of two-way and alternat-
ing automata, the advantages of ETL ��� are obtained without a major increase in space
complexity.

2 Definitions

For a finite alphabet � , a word 	�
�� ! is an infinite sequence of letters from � . We
denote by 	�
 the � - ��� letter of 	 .
Nondeterministic automata A nondeterministic automaton is
�� 4 ������������������� 6 ,
where � is a finite alphabet, � is a finite set of states, ��� �!� is a set of initial states,
��"#�%$&� �
(' is a transition function, and �)�*� is an acceptance condition. A
run of
 on a word 	+
,� ! is an infinite sequence -.� � � � � � �0/1/0/ , where � �
!� �
and for all �3254 , we have �
 � �
6� �<�
 ��	
 � . Let �87#93�:-2� denote the set of all states
occurring infinitely often in - . Formally, �;7#93�<-2�=�?>A@CBD@C� �
 for infinitely many � ’s E .
We consider two types of acceptance conditions Büchi and co-Büchi. A run of a B üchi
automaton is accepting if it visits states from � infinitely often; i.e., �;7#93�<-2�#FG�IH��J .
A run of a co-B üchi automaton is accepting if it visits states from � only finitely often;
i.e., �87#93�:-2�KFL�6�!J .

Hesitant automata combine the B üchi and the co-B üchi acceptance conditions. They
extend weak automata [MSS86] by a richer acceptance condition. A hesitant automaton

M� 4 ����N3��OP�Q�R�(���S��� 6 is a nondeterministic automaton such that the set of states
�I��N?TUO is the disjoint union of a set N of Büchi states and a set O of co-Büchi
states. In addition, there is a partition of � into disjoint sets, such that for each set V
in the partition, either V��WN , in which case V is a Büchi set, or VX�WO , in which
case V is a co-Büchi set. For a state �Y
Z� , let [�]\ denote the set of states in � ’s set
in this partition. There exists a partial order ^ on the collection of the sets such that
for every two states � and ��_ for which ��_ occurs in ` �-�a��b0� , for some bc
�� , we have
[� _ \=^d[�]\ . Thus, transitions from a state in a set V lead to states in either the same set
or a lower one. It follows that a run - of a hesitant automaton ultimately gets trapped
within some set V in the partition. The run - is accepting iff either V6�?N is a B üchi
set and �87#93�<-&�eFf��H�gJ or Vc�hO is a co-B üchi set and �87#93�:-2�iFj�k�gJ . Thus, a run of
a nondeterminisitic hesitant automaton may switch between B üchi and co-B üchi sets,
yet eventually it stays forever in some set, and acceptance is determined according to

the classification of this set. Note that if O?�6J , then
 is a B üchi automaton, and that
if N��gJ , then
 is a co-B üchi automaton.

An automaton
 accepts a word 	 if there exists an accepting run of
 on 	 .
Otherwise,
 rejects 	 . The language of
 , denoted ���<
�� , is the set of all words
accepted by
 . The complementary language of
 is the set � !�� ���-
�� of all words 	
rejected by
 .
Alternating automata For a set � , we denote by N �����$� the set of all positive Boolean
formulas over � , where we also allow �%�&��� and �����	��� . We say that a set � _ � � satis-
fies a formula
�
.N ����� � (denoted � _ B ��
) if by assigning true to all members of � _
and false to all members of � � � _ , the formula
 evaluates to true. Note that the formula
�%�&�'� is satisfied by the empty set and the formula �����	��� cannot be satisfied. Given a
formula

 N ���;�$� , the dual of
 , denoted by �
 , is obtained from
 by switching

and / , and switching �%�&��� and ������� � .

A tree is a set �?� IIN (such that if �1����
�� , where �U
 IIN (and �
 IIN, then also
�
�� . The elements of � are called nodes, and the empty word � is the root of � . For
every �
�� , the nodes � ��� where ��
 IIN are the children of � , the nodes � ��� where
�3
 IIN (are the successors of � . A node is a leaf if it has no children. A path � of a tree
� is a set �c��� such that �C
�� and for every �&
�� , either � is a leaf or there exists
a unique �L
 IIN such that � ���L
�� . Given an alphabet � , a � -labeled tree is a pair4 ����- 6 , where � is a tree and -j"�� � � maps each node of � to a letter in � .

An alternating automaton is
 � 4 ���Q� �9�0�����S��� 6 , where � , � , and � are as in
nondeterministic automata, �0� is a unique initial state, and �h" ��$�� � N ���;�$� is
the transition function. We can say that a nondeterministic automaton accepts a word
	,�h	 �'�;	 � �;	 � �%��� from state @ if it accepts the suffix 	 � �;	 � �%��� from one of the states
in � ��@ ��	 �&� . In alternating automata, we allow posing both existential and universal
demands on the suffix of the word. For example, if � ��@ �! �3�M@ �
Y@ � /&@ � , then

accepts a word starting with from state @ if it accepts the suffix of the word from both
@ � and @ � , or it accepts the suffix from @ � . For that,
 sends to the suffix either two
copies of itself, in states @ � and @ � , or a single copy, in state @ � .

A run of an alternating automaton on a word 	
g� ! is a � -labeled tree
4 � ��- 6 ,

where -��	� � � � � and for all �G
"� the (possibly empty) set >0- �����#�%� B��P
 IIN and ���#�R

�CE satisfies the formula �.�<-����.� ��	 � $ � � . For a path � in the tree � , let �87#93�<- B � � denote
the set of all states occurring infinitely often along that path in - , formally �87#93�<- B � �=�
>A@CBD@ �,- �%� � for infinitely many � in � E . We consider alternating B üchi and co-B üchi
automata. A run of an alternating B üchi automaton is accepting if for all infinite paths
� in � , we have �87#93�:-iB � �=FU� H�+J . A run of an alternating co-B üchi automaton is
accepting if for all infinite paths � in � we have �87#93�:-iB � �#F��k�gJ .
Two-way alternating automata A 2-way alternating automaton is
!� 4 �������9� � ������� 6 ,
where � , � , � � , and � are as in alternating automata, and the transition function is
�L"i� $.� � N ��� >'&)(��4e�*(�EC$ �$� . Alternating automata allowed us to pose both ex-
istential and universal demands on the suffix of the word. Two-way automata allow us
to pose demands also on the prefix of the word. Technically, when the reading head of

 is on the � -th position of 	 , it can move to locations �+&,(, � , and �.-/(. For example,
�.�;@1� �! �f� �#&)((��@ � �0
 �#((��@ � �=/ ��4i�Q@ � � means that when the automaton is in state @A�
reading the letter in location � , it can either send a copy in state @ � to location �1&/(

and a copy in state @ � to location � -/(, or stay in location � in the state @ � . If � �!4 , the
automaton must choose the second option.

A run of
 on a word 	k
 � ! is a ���U$ IIN � -labeled tree
4 ����- 6 , where -��	� � � �-�1� ��4 �

and for all �G
 � with - ���.� � �:-D� � � , the set > �-�a��� � B��P
 IIN � � � �
"��� and -���� � ��� �
�<�a� � -��3E satisfies the formula � �:-D��	�� � . For a path � , the set �;7#93�<-iB � � is defined
as in alternating automata, thus �87#93�<- B � ���)>A@�B there are infinitely many nodes �6

� with - �%� �f
 >A@(Ef$ IIN E . A run of a 2-way alternating B üchi automaton is accepting
if all infinite paths � in � have �;7#93�<-iB � �=F.� H�5J and a run of a 2-way alternating
co-Büchi automaton is accepting if all infinite paths � in � have �87#93�<- B � �KFL�k�!J .

A 2-way alternating hesitant automaton
)� 4 ����N �QOP�9�0� ������� 6 obeys the same
restrictions as a nondeterministic hesitant automaton. Namely, the state set �Z�!N T3O
is the union of B üchi and co-B üchi sets, there is a partition of the state set and a partial
order that restricts the transition function. It follows that every infinite path in a run tree
of a 2-way alternating hesitant automaton ultimately gets trapped within some V $ IIN,
for a set V in the partition. The run

4 ����- 6 is accepting if for every infinite path � in � ,
either Vc� N and �87#93�:-iB � �KFL�%H�!J , or Vc�hO and �87#93�<- B � �KFL�k�!J .

Note that a 1-way alternating automaton can be viewed as a 2-way alternating
automaton whose transition function is restricted to formulas from N � � >'(�E $g�$� .
Also, a nondeterministic automaton can be viewed as an alternating automaton whose
transitions are restricted to disjunctions over the set � . Given an automaton
 �4 �������9� � ������� 6 and a state �
.� , we denote by
�� the automaton with initial state � ;
i.e, is
	��� 4 ����� � �a������� 6 .

Given a 2-way alternating B üchi automaton
I� 4 ����� � � � ���S��� 6 , the dual of

is the co-B üchi automaton �
�� 4 �������9� � � ������ 6 , where �� ��@ �! � is the dual of � ��@ � �� .
The automata
 and �
 accept complementary languages [MS87]; i.e. ��� �
 ���W� ! �
���<
 � . Given an alternating hesitant automaton
?� 4 ����N3��OP� � � ������� 6 , the dual of

is the alternating hesitant automaton �
�� 4 ����OP��N � � � � ������ 6 , where the set of B üchi
states and the set of co-B üchi states switch roles. Again, �
 accepts the complementary

language of
 . Clearly, � �
 is
 again.
We denote the different types of automata by four-symbol acronyms in > ((�
 E�$

>�
G���G�9
 E $L>]N �QOP��
 E $�>�� E , where the first symbol describes whether the automa-
ton is 2-way or 1-way, (for 1-way automata we often omit the (), the second symbol
describes the branching mode of the automaton (deterministic, nondeterministic, or al-
ternating), the third symbol describes the type of acceptance condition (B üchi, co-B üchi
or hesitant), and the last symbol indicates that the automaton runs over words. For exam-
ple, 1DBW denotes 1-way deterministic B üchi automata, as well as the set of 	 -regular
languages that can be recognized by a deterministic B üchi word automaton.
Linear Temporal Logic The linear temporal logic LTL extends propositional logic
by temporal operators like always (

�
), eventually (�), until (�), and next-time (

�
)

[Pnu81]. The semantics of LTL is defined with respect to infinite words in �
 ��� � ! , for
a set
�� of atomic propositions. For example, the formula

� � (always �) is satisfied
by words all of whose letters contain the atom � . For full syntax and semantics see
[Pnu81].
Extended Temporal Logic As mentioned above, Vardi and Wolper suggested to in-
crease the expressive power of LTL by using 1NBW as temporal connectives [VW94].

Suppose the alphabet of an 1NBW
 is the set
+��� . The 1NBW
 defines a set of
sequences of truth assignments to the propositions. We can view
 as a formula that
is satisfied by exactly all the words accepted by
 . The formal definition is a bit more
complex, as automata are allowed to use other formulas as part of their alphabet and not
only propositions. Below we describe the definition of ETL? as defined in [VW94].

We start with the syntax. Formulas are defined with respect to a set
�� of atomic
propositions as follows.

– Every proposition �G

�� is a formula.
– If

;
� and

;
� are formulas, then , ; � ,

;
� / ; � , and

;
�
 ; � are formulas.

– For every 1NBW
!� 4 ����� ���S�Q� � ��� 6 with � �6> � �1/0/1/1� ���E , if
;
� �1/0/1/ � ; � are

formulas, then
 � ; � �0/1/1/1� ; � � is a formula.

The semantics of ETL ? is defined with respect to pairs ��� ��� ��
 �
���� � ! $ IIN, of
words and locations. Consider an 1NBW
 � 4 ���Q� ��� � ������� 6 . A run of a formula

 � ; � �1/0/1/1� ; � � over a word � starting at point � , is an infinite sequence b � � � �9� � �0/1/1/
of states from � , such that � �
U� � and for all

� 2,4 , there is some ��f
&� such that
�%� ���+- � � B � ;

� and � � � �
 � �<� � �! �� � . The run is accepting if �87#93�:-2�KF��%H�,J .
We use ��� ��� ��B � 5

to indicate that the word � in the location � satisfies the formula5
. For a word �U
 �-
 ��� � ! and a location �
 IIN, the relation B � is defined as follows.

– For a proposition �

�� , we have �%� ��� � B � � iff �G
 �
 .
– �%� ��� � B � , ; � iff not �%� ��� � B � ;

� .
– �%� ��� � B � ;

� / ; � iff �%� ��� � B � ;
� or �%� ��� � B � ;

� .
– �%� ��� � B � ;

�
 ; � iff �%� ��� � B � ;
� and �%� ��� � B � ;

� .
– �%� ��� �cB�#
 � ; � �1/0/1/ � ; � � iff there is an accepting run of
 � ; � �1/0/1/ � ; � � over �

starting at � .
Consider for example the 1NBW
 � 4 ��������� � ������� 6 , where �W�%>� ����AE � �d�

> � � �9� � E � � �<� � �! �j�X�.�-� � �! �f�I> � � E � � �<� � ��� �f�X� �<� � ��� �f�I> � � E , and � � �X�+�
> � � E . The state � � is visited exactly when
 reads the letter � . A run of
 is accept-
ing if it visits state � � infinitely often. Hence, the ETL? connective
 �-,.�#�-�.� , where
� is a proposition, is true iff � is true infinitely often. It is equal to the LTL formula� �*� . As another example, consider the formula

5 � � �	��

������� � &:� ,���
���������

���&�"�
stating that grants are issued only upon requests. We describe an equivalent ETL ? for-
mula for it. Consider the 1NBW
�� 4 ����� �Q�C�(������� 6 , where �W� > ����A� �D�
�eE � �d�
> � � �9� � E � � �<�1�(�! � ��> �1��E � � �<� � ���%�=��> � � E � � �<� � � �%� ��>�� � E � �.�-� � �
���=� >�� �DE � �C�R�
> � �(E , and �)�)>��1�(�9� � E . Note that all the infinite runs of
 are accepting. The state
� � corresponds to a configuration in which no requests are pending. The state � � corre-
sponds to a configuration in which there is at least one request pending. Accordingly,
the ETL ? formula
 �-, -����
 ,��a- 7 � ��-����
 ,��a- 7 � ��� - 7 �*� -����a���a- 7 �
 , -����2� is
equivalent to

5
.

Extending temporal logic with 2-way alternating automata We now define formally
the logic ETL ��� . The logic ETL ��� extends ETL ? by having 2-way alternating automata
as its temporal connectives. Complementing the transition function of alternating au-
tomata is very simple. Hence, by allowing both B üchi and co-B üchi acceptance condi-
tions, we can make the complementation of the temporal connectives simple. Accord-
ingly, ETL ��� , uses both 2ABW and 2ACW as automata connectives. Runs of formulas
that are automata connectives are defined as follows.

Consider a 2-way alternating automaton
+� 4 ����� � �0� ������� 6 . A run of the for-
mula
 � ; � �1/0/1/ � ; � � over a word 	 starting at point � , is a finite or infinite �;�d$ IIN � -
labeled tree

4 ����- 6 such that -��	� �.� �-�1� ��� � and for all �d
 � with - ���.�.� �<�a� � � ,
there is some ��k
+� such that �%� � � �!B� ;

� and the (possibly empty) set � �
> �<� _ ��� � B There is a child � of � in � such that - �%� � � �-� _ � � - � � E satisfies the tran-
sition �.�<-����.� �! ���� . Intuitively, the children of � are labeled by the states of
 and the
locations in 	 from which the copies of the automaton should start running. Note that as;
� �1/0/1/ � ; � are not mutually exclusive, different copies may choose different formulas.

If the automaton is a 2ABW, the run is accepting if for all infinite paths � of � we have
�;7#93�<-iB � � FC�XH�!J . If the automaton is a 2ACW, the run is accepting if for all paths � of
� we have �87#93�:-iB � �#FL���ZJ . When not important or clear from the context, we often
write the formula
 � ; � �0/1/1/0� ; � � as
 .

Recall the formula
5

stating that grants are issued only upon requests. We now
describe an ETL ��� formula for it. Consider the 2ABW
+� 4 ���Q� �9�0� ������� 6 , where
� � >� ����D�!�D���iE , � � >�� �(� � � E , � �<�1�(� �� � �-� � �*(� , � �<�1�(���%� � �-� � �*(�
 �-� � �*&)(�� ,
�.�-� � ��� �P� ������� � , �.�-� � � �%�R� �%�&��� , �.�-� � ��� �C� �-� � �*&)(� , and ���W> �1��E . The formula

 �-,��a- 7 � ���a- 7 � ��-����a� , -����1
 ,�� - 7 �"� is equivalent to

5
. To see that, note that when-

ever
 visits the state �1� and reads a letter containing a grant, it sends a copy that goes
backwards, expecting a request before it comes across a grant. Also, as � � H
Y� , a re-
quest has to be eventually found. The ETL ��� formula has very much the same structure
as the PLTL formula.

Similar to other logics, handling ETL ��� is easier in positive normal form, where
negations are pushed inward using De-Morgan laws. In an ETL ��� formula in positive
normal form, negations apply to automata and atomic propositions only. For a formula5

, let �5 denote , 5 in positive normal form5.
Given an ETL ��� formula

5
in a positive normal form, the closure of

5
, denoted

���"� 5 � includes all the subformulas of
5

and their complements. This includes formulas
of the form
	� , for an automata connective
 and a state � of it. For simplicity, we
assume that the state sets of the automata connectives in

5
are pairwise disjoint, thus

we can denote the subformula
 � 5 � �0/1/1/1� 5 � � by � � � 5 � �1/1/0/1� 5 � � , for the initial state
� � of
 . Similarly, we denote
	� � 5 � �0/1/0/1� 5 � � by � � 5 � �1/0/1/1� 5 � � . When

5
� �1/0/1/0� 5 � are

clear from the context, we write just �0� or � , respectively. Formally, the set ���"� 5 � is the
minimal set satisfying all the following.

–
5
����"� 5 � ,

– If
5
�
 ���"� 5 � , then

�5
�
 ���9� 5 � .

– if
5
�
 5 �
"���"� 5 � then > 5 � � 5 � EC� ���"� 5 � ,

– if
5
� / 5 �
"���"� 5 � then > 5 � � 5 � EC� ���"� 5 � , and

5 Consider an automaton � . Note that the formula ��� � � �	� ��
����
��
 ����� is not equivalent to
the formula �� �	� ��
�������
 ��� � , where �� is the dual of � . This is because both � and �� treat the
formulas

� �
��
����
 � � existentially. Indeed, for both automata, the transition from a state to its
successor involves a choice of some

���
. In order for � to be false, all the runs of � should

be rejected, thus �� should treat the formulas
� ��
�������
 ��� universally. Universally in this case

means that if
� �

holds then �� should take the transition corresponding to the letter � � . This
is why the positive normal form for ETL 	
� allows the application of negation to automata
connectives.

– if �1� � 5 � �1/0/1/0� 5 � �
 ���"� 5 � , for a 2ABW or a 2ACW
 � 4 ���Q� �9�0�(������� 6 , then
> 5 � �0/1/0/1� 5 � EC� ���"� 5 � , and for all �j
G� , we have � � 5 � �1/0/1/ � 5 � �
"���"� 5 � .

Note that the formulas in ���9� 5 � are in positive normal form. Thus, negation applies
to atomic propositions and automata connectives only. Consider again the formula

; �

 �-,��a- 7 � ���a- 7 � ��-����a� , -����
 ,��a- 7 �"� discussed above. The closure of

;
is ���9� ; �=�

> � � �9� � � ,3�1� � ,3� � ���a- 7 � � ,�� - 7 � ��-����a� , -����a� , -����
1,�� - 7 � ��-���� / �a- 7 �QE .
For a formula

5
, the models of the formula is the set ��� 5 � of all infinite words

	k
 �
2��� � ! that satisfy the formula.

3 Decision procedures for ETL ���

In this section we solve the satisfiability and model-checking problems for ETL��� .
Given an ETL ��� formula

5
, we construct a 1NBW � � such that � � accepts exactly

all the words satisfying
5

. The size of � � is
�� �;� � � � � . Using ��� , we show that both
the satisfiability and the model-checking problems for ETL��� are PSPACE-complete.
The construction of ��� proceeds in two stages, with 2AHW serving as an intermediate
formalism.

We describe now how to construct the intermediate 2AHW.

Theorem 1. Given an ETL ��� formula
5

of length 7 , there is a 2AHW
� � such that

��� � �0� � ��� 5 � and
� � has � �:7 � states.

Proof: Given a set � of states, let , � � >�,3� B �,
%�jE . We define the function��� ��� " N � � > &)((��4e�*((E $U�$� � N � � > &)((��4e�*((E�$, �$� as follows. For a formula

N ��� > &)((��4i�*((EK$ � � , the formula

��� ���"�%
+� is obtained from 	
 (the dual of
) by replacing
every atom of the form � ���9�2�G
 >'&)((��4i��(�E $Y� by the atom � ��� ,3�2� . So,

��� ��� �%
+�
switches / and
 , and �%�&��� and ������� � , and also adds negationa in front of states in � .
For example,

��� ���"�9�"� &)(��@��
 �<4e���"�"� / �#((�9�2�9� � �9� &)(� , @��0/ �<4e� , �"�"�
 �#((� ,3�2� .
Now, given an ETL ��� formula

5
, we define

� �%� 4
2��� ��N ��OP� 5 ��
��
� 6 , where
N!T�Ok�����"� 5 � , and

– The set of B üchi states is

N�� > �fB�
 is a 2ABW connective in
5

and � is a state of
CEDT
>�,3�fB�
 is a 2ACW connective in

5
and � is a state of
 E /

The set of co-B üchi states is O � ���9� 5 � � N . We note that the decision to include
elements of ���"� 5 � that are not states of automata in O is arbitrary. Indeed, the tran-
sition from such states is to strict subformulas, and the automaton is not going to
get trapped in a set associated with them.
The partition of ���"� 5 � is as follows. For every state @3
,���"� 5 � such that @ is not a
state of an automaton, the Singleton >D@(E is a set of the partition. For an automaton

,� 4 ����� � � � ������� 6
����"� 5 � , all the states > � B ��
 �jE form a set in the partition,
and all the states >�,3��B ��
Y� E form a set in the partition. The partial order ^ on
the sets is such that [@ _ \#^6[@ \ iff @ _
 ���"��@�� .

– The transition function
L"'���9� 5 � $
+��� � N ��� >'&)(��4e�*(�ER$ ���"� 5 �"� is defined for
every formula in ���9� 5 � and letter 3

+��� as follows.� For a proposition �Y

�� , we have
�� � �! � � ������� and
�� ,.�#�! �R� ������� � if

�G
� , and
 � �#� �� � ������� � and
��-,.�#� � � ������� if � H
� .�
�� 5 �
 5 � � � � � 5 � ��4 �
 � 5 � ��4+��
�� 5 � / 5 � � � � � 5 � ��4 ��/ � 5 � ��4+�� Let
 � 5 � �1/0/1/ � 5 � �3
 ���"� 5 � such that
 � 4 > � �0/1/0/ �! ���E �Q� �9� � ���S��� 6 . For
every �f
G� we have
 �-� � 5 � �0/1/0/1� 5 � � �! � � � �
�� � [� 5
 ��4 �
��.�-�a�!
 � \� Let
 � 5 � �0/1/0/1� 5 � �
 ���"� 5 � such that
M� 4 > � �0/1/0/1�! ���E ��� � � � ���S��� 6 . For
every �f
G� we have
 � ,3� � 5 � �1/1/0/ � 5 � � �! � ��� �
�� � [� �5
���4 �0/ ��� ���9�:� �<�a�! a
 �"� \

The transition from states associated with a 2ABW or a 2ACW
 � 5 � �1/0/1/ � 5 � �
makes sure that there is indeed an accepting run of the formula. For that, when the
automaton is in state � of
 , it checks that there is a formula

5
 in
5
� �1/0/1/1� 5 � such

that
5
 holds in the current location (checked by sending the copy � 5
���4+�), and that

the formula
 � has an accepting run starting with the transition taken by reading i

(checked by the copies sent by � �<�a�
 �). The transition from states associated with
a formula ,3
 � 5 � �0/1/0/ � 5 � � are dual.
It is easy to see that
 respects the partial order on the partition of NgT O .

– The acceptance condition is

�U�Z>��a� ,3��B �f
L� � for an automaton connective
!� 4 ����� � �0��������� 6 in
5 E /

For a 2ABW
 and state �g
 � , we would like to visit � infinitely often, and
indeed � is a B üchi state in � . On the other hand, the transition from the state ,3�
is obtained by dualizing the transitions from � , we would like to visit it finitely
often, and indeed it is a co-B üchi state in � . So, both � and ,3� are members of �
and the restriction as to whether they should be visited finitely or infinitely often is
determined by their classification as B üchi and co-B üchi states, respectively.

We describe how to transform the intermediate 2AHW to 1NBW. In [Var98], Vardi
translates 2-way alternating parity tree automata to 1-way nondeterministic parity tree
automata. Since

� � can be defined as a parity automaton, and since words are a special
case of trees, one could use the transformation in [Var98]. We describe here a simpler
and more direct construction. We first need some notations.

Consider a 2AHW
Z� 4 ���Q� �9�0�(�
 ��� 6 . A restriction of
 is a set �j

 '��
	�� ��
 �
 ��� �i' .
For a restriction �f� � $ >'&)((��4i��(�E $f� , we define � � ��� � ��� �=�Z>��G")��� ������� _ �
��aE . A
strategy for
 is an infinite sequence �G��� � ��� � �1/1/0/ of restrictions. We sometimes de-
note �
 by �0�:� � . We say that the strategy � is on a word 	 if � �
�� � ��� � ��� � � , for all �
 IIN
and states ��
 @0� �������
 � , the set >�� ���9� _ �0B �-�a�����9� _ �
��
 E satisfies
��<�a��	
 � , and for all
�
 IIN and �<�a� �3� � _ �f
��
 we have � _
�� � ��� � ���
 � � � (or
��<� _ ��	
 � � � � � -!� �). Intu-
itively, a strategy suggests at each location � , a possible way for satisfying the transition
function.

Lemma 1. Consider a 2AHW
!� 4 �������9�0�(�
 ��� 6 with 7 states. There is a 1DBW
 _
over the alphabet �W$
 '��"	#� ��
 �
 ��� �i' such that
 _ has
(� � � � states and it accepts a
word �:	 � ���1���3�+�:	 � ��� � � �%��� iff � � ��� � �%���%� is a strategy for
 on 	 � ��	 � �%���%� .

Proof: The intuition is quite simple. When reading �:	
����1
 � , the automaton
 _ has to
remember two sets. The set of states that �]
 restricts (� � ��� � ���0
 �) and the set of states that
�1
 promises that have a strategy from �]
 � � (if �<�a��((�9� _ �3
��1
 then �1
 promises that � _
has a strategy from �
 � �). It then checks that the states that are promised by �
 � � that
have a strategy from �
 are indeed restricted by �
 and that all promises of �
 are indeed
fulfilled. The local requirements, that the strategy fulfills the transition of
 and that
states that should be restricted by �
 are indeed restricted need no memory in order to
be checked. The formal proof is ommitted.

A path in a strategy � is a finite or infinite sequence �<4e�9� � � � �:� � �9� � � � �:� � � � � � �1/0/1/ of
pairs from IIN $G� such that either the path is infinite, in which case for all ��2h4 , there
is � �R
U> &)((��4e�*((E such that �<� � � � �(�9��� � � �
��0�<� � � and � � � � � � � - � � , or the path is
finite �<4i� � � � �1/1/0/1� �:����� ��� � , in which case for all 4 ^������ , there is � �j
&>'&)(��4i��(�E
such that �-� � � � � �9� � � � ��
 �0�<� � � , � � � � �!� � - � � , and
��<� � ��	

	 �=�!� - � � . An infinite
path is accepting if it gets trapped in N and visits IIN $.� infinitely often or if it gets
trapped in O and visits IIN $ � finitely often. A finite path is always accepting. We say
that � is winning if all infinite paths in � are accepting. Otherwise, � is losing. It is not
hard to see that a 2AHW accepts a word iff it has a winning strategy on the word (c.f.,
[MS95,Var98,KV00]).

Lemma 2. Consider a 2AHW
,� 4 ���Q� �9� � ��
���� 6 with 7 states. There is a 2NBW
 _
over the alphabet
 '��
	�� ��
 �
 ��� �i' such that
 _ has � �<7 � states and it accepts exactly
all the losing strategies for
 .

Proof: We first define a 2NHW
 _ _ that accepts exactly all the losing strategies of
 .
The automaton
 _ _ � 4
�' �"	#� ��
 �
 ��� � '���� � � � ��
 _ ��� 6 , where the co-B üchi set of
 _ _ is
the B üchi set of
 , the B üchi set of
 _ _ is the co-B üchi set of
 , and
 _ is defined for all
�
 � and ��

('��"	#� ��
 �
 ��� �i' as follows. Let �
� �������"� �-�a��� � � > � ���9� _ � B �-�a�����9� _ �

�aE . Then,

 _ �<�a��� � �
� ������� � If �
� ������� �+�-�a��� � �,J�
� ������� ���<�a��� � Otherwise.

Intuitively, when the automaton
 _ _ reads a strategy � , it guesses a path in � that is
not accepting. Accordingly,
 _ _ rejects when the strategy reaches a location in which
the set of restrictions is empty (this corresponds to the case where the candidate path is
finite). When the candidate path is infinite, it is not accepting in � iff it does not satisfy
the acceptance condition of
 , which is why
 _ _ dualizes
 .

Now, it is easy to translate the 2NHW
 _ _ to a 2NBW
 _ with a linear blow up:
whenever we are in a co-B üchi set V , we can nondeterministically move to a copy of
the set in which only states from V � � are present.

The automaton
 _ in Lemma 2 uses its bidirectionality in order to follow the strategy
� . This enables us to remove alternation, but still leaves us with bidirectionality. To
remove the latter, we have to blow up the state space:

Lemma 3. [Var88] Given a 2NBW
 with 7 states, we can construct a 1NBW
 _ with

�� � � ��� states such that ���-
 _ � �,� ! � ���<
 � .

Intuitively, the
 � � � ��� blow up follows from the fact we have to remember, for each
pair of states

4 �a� � _ 6 , the set of states visited between subsequent visits of the automaton
in � and � _ . We can now combine Lemmas 1, 2, and 3 to obtain our goal.

Theorem 2. Given a 2AHW
�

over � , we can construct a 1NBW � with
 � � � ��� states
such that ��� � � �/��� � � .
Proof: Let

� � 4 ���Q� �9� � �
 ��� 6 . By Lemma 1, we can construct a 1DBW
 � over
the alphabet �5$
(' �"	#� ��
 �
 ��� � ' such that
 � has
(� � � � states and it accepts a word
�:	 � ��� � �=� �:	 � ��� � � �%��� iff � � ��� � �1/1/0/ is on 	 � ��	 � �1/1/0/ . Also, by Lemmas 2 and 3, we can
construct a 1NBW
 � such that
 � accepts a word over the alphabet � $
 ' �"	#� ��
 �
 ��� � '
iff its projection on
(' �"	#� ��
 �
 ��� � ' is an accepting strategy. The automaton � is the in-
tersection of
 � and
 � , projected on � .

We combine now the constructions described above and use the resulting 1NBW for
solving the satisfiability and model-checking problems for ETL��� . First, Theorems 1
and 2 immediately imply the following.

Theorem 3. Given an ETL ��� formula
5

of length 7 , there is a 1NBW ��� such that

��� ���0� �/��� 5 � and � � has
�� � � ��� states.

Once we construct � � , we can reduce satisfiability of
5

to nonemptiness of � � , and
we can reduce model checking of a system V with respect to

5
to the language inclusion

problem ����V � � ��� � �0� . (The system V is given as a finite state-transition graph, ����V �
is the set of all the words that V generates, and we say that V satisfies

5
if ��� ��4 �PB � 5

for all the words � that V generate.) As in LTL, we can use the fact that ETL ��� is
closed under negation and check the latter by checking the emptiness of the intersection
V $ ��� � [VW94]. Since the nonemptiness problem for B üchi automata can be solved
in NLOGSPACE, we have the following (the lower bounds follow immediately from
the lower bounds on LTL [SC85] and the linear translation of LTL to 1ABW [Var96]).

Theorem 4. The satisfiability and the model-checking problems for ETL ��� are PSPACE-
complete.

It follows that in spite of the succinctness of two-way and alternating automata, the
advantages of ETL ��� are obtained without a major increase in space complexity.

4 Discussion

We studied an extension of linear temporal logic with two-way alternating automata.
The resulting logic ETL ��� , is as expressive as previous extensions of linear temporal
logic with 	 -regular automata, but the added strength of bidirectionality and alternation
makes the logic substantially more convenient. The satisfiability and model-checking
problems for ETL ��� are PSPACE-complete, as is the case with LTL or weaker exten-
sions of LTL with automata. There have been two recent developments that make us
optimistic about the practicality of ETL ��� : the development of symbolic procedures for

handling alternating automata [Fin01], and the usage of alternating automata as an in-
termediate formalism at Intel [AFF � 01]. Using ETL ��� , it would be possible to extend
this intermediate formalism to include convenient reference to past.

In this paper we considered the linear framework to verification. Branching tempo-
ral logic extends linear temporal logic with the path quantifiers
 (“for all path”) and

�

(“there exists a path”), and its formulas describe computation trees. The same limitation
of LTL applies to its branching-time extension CTL

�

. Similar suggestions to extend the
expressiveness of CTL

�

are studied in the literature. This includes both the extensions
of the path formulas of CTL

�

with 	 -regular word automata [VW84,CGK92], and the
extension of the state formulas with 	 -regular tree automata [MS85]. As in the linear
framework, one can strengthen these extensions by using more powerful automata, in
particular two-way and alternating ones. Since it is possible to remove bidirectionality
and alternation also in the branching framework [Var98], our treatment of ETL ��� should
work here as well. Its implementation, however, is going to be much more complicated
in the branching framework.

References

[AFF � 01] R. Armoni, L. Fix, A. Flaisher, R. Gerth, T. Kanza, A. Landver, S. Mador-Haim,
A. Tiemeyer, M.Y. Vardi, and Y. Zber. The ForSpec compiler. Submitted, 2001.

[AFG � 01] R. Armoni, L. Fix, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
A. Tiemeyer, E. Singerman, and M.Y. Vardi. The ForSpec temporal logic: A new
temporal property-specification logic. Submitted, 2001.

[BB87] B. Banieqbal and H. Barringer. Temporal logic with fixed points. In Temporal Logic
in Specification, LNCS 398, 62–74. Springer-Verlag, 1987.

[BBG � 94] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Methodology and
system for practical formal verification of reactive hardware. In 6th CAV, LNCS 818,
182–193, Springer-Verlag, 1994.

[BBL98] I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL formulas.
In 10th CAV, LNCS 1427, 184–194. Springer-Verlag, 1998.

[Bir93] J.C. Birget. State-complexity of finite-state devices, state compressibility and incom-
pressibility. Mathematical Systems Theory, 26(3):237–269, 1993.

[BK85] H. Barringer and R. Kuiper. Hierarchical development of concurrent systems in a
framework. In Seminar in Concurrency, LNCS 197 , 35–61. Springer-Verlag, 1985.

[BL80] J.A. Brzozowski and E. Leiss. Finite automata and sequential networks. TCS, 10:19–
35, 1980.

[CGK92] E.M. Clarke, O. Grumberg, and R.P. Kurshan. A synthesis of two approaches for
verifying finite state concurrent systes. Logic and Computation, 2(5):605–618, 1992.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Associ-

ation for Computing Machinery, 28(1):114–133, January 1981.
[DH94] D. Drusinsky and D. Harel. On the power of bounded concurrency I: Finite automata.

Journal of the ACM, 41(3):517–539, 1994.
[ET97] E.A. Emerson and R.J. Trefler. Generalized quantitative temporal reasoning: An au-

tomata theoretic approach. In TAPSOFT, LNCS 1214, 189–200. Springer, 1997.
[Fin01] B. Finkbeiner. Symbolic refinement checking with nondeterministic BDDs. In

TACAS, LNCS 2031. Springer-Verlag, 2001.
[Fra92] N. Francez. Program verification. Int. Computer Science. Addison-Weflay, 1992.

[Gab87] D. Gabbay. The declarative past and imperative future. In Temporal Logic in Specifi-
cation, LNCS 398 , 407–448. Springer-Verlag, 1987.

[GH96] N. Globerman and D. Harel. Complexity results for two-way and multi-pebble au-
tomata and their logics. TCS, 143:161–184, 1996.

[HT99] J.G. Henriksen and P.S. Thiagarajan. Dynamic linear time temporal logic. Annals of
Pure and Applied Logic, 96(1–3):187–207, 1999.

[KV97] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. In 5th
ISTCS, 147–158. IEEE Computer Society Press, 1997.

[KV00] O. Kupferman and M.Y. Vardi. � -calculus synthesis. In 25th MFCS, LNCS 1893,
497–507. Springer-Verlag, 2000.

[LPZ85] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics of Programs,
LNCS 193, 196–218, Springer-Verlag, 1985.

[Mey75] A. R. Meyer. Weak monadic second order theory of successor is not elementary
recursive. In Proc. Logic Colloquium, Vol. 453 of Lecture Notes in Mathematics,
132–154. Springer-Verlag, 1975.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, Berlin, January 1992.

[MS85] D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-
order logic. TCS, 37:51–75, 1985.

[MS87] D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. TCS, 54:267–
276, 1987.

[MS95] D.E. Muller and P.E. Schupp. Simulating alternating tree automata by nondetermin-
istic automata: New results and new proofs of theorems of Rabin, McNaughton and
Safra. TCS, 141:69–107, 1995.

[MSS86] D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic
theory of the tree and its complexity. In 13th ICALP, LNCS 226, 1986.

[Pit00] N. Piterman. Extending temporal logic with � -automata.
M.Sc. Thesis, The Weizmann Institute of Science, Israel, 2000,
http://www.wisdom.weizmann.ac.il/home/nirp/public html/publications/msc thesis.ps.

[Pnu81] A. Pnueli. The temporal semantics of concurrent programs. TCS, 13:45–60, 1981.
[Pnu85] A. Pnueli. In transition from global to modular temporal reasoning about programs. In

Logics and Models of Concurrent Systems, volume F-13 of NATO Advanced Summer
Institutes, pages 123–144. Springer-Verlag, 1985.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.
Journal ACM, 32:733–749, 1985.

[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Büchi au-
tomata with applications to temporal logic. TCS, 49:217–237, 1987.

[Tho81] W. Thomas. A combinatorial approach to the theory of � -automata. Information and
Computation, 48:261–283, 1981.

[Var88] M.Y. Vardi. A temporal fixpoint calculus. In 15th POPL, pages 250–259, 1988.
[Var96] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for

Concurrency: Structure versus Automata, LNCS 1043, 238–266, 1996.
[Var98] M.Y. Vardi. Reasoning about the past with two-way automata. In 25th ICALP LNCS

1443, 628–641. Springer-Verlag, 1998.
[VW84] M.Y. Vardi and P. Wolper. Yet another process logic. In Logics of Programs, LNCS

164, 501–512. Springer-Verlag, 1984.
[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and

Computation, 115(1):1–37, November 1994.
[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1–

2):72–99, 1983.

