
Coverage Metrics for Formal Verification

Hana Chockler
�
, Orna Kupferman

���
, and Moshe Y. Vardi

�����

�
Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel

Email:
�
hanac,orna � @cs.huji.ac.il, URL: http://www.cs.huji.ac.il/

�
	
hanac,

	
orna ��

Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
Email:vardi@cs.rice.edu, URL: http://www.cs.rice.edu/

	
vardi

Abstract. In formal verification, we verify that a system is correct with respect
to a specification. Even when the system is proven to be correct, there is still a
question of how complete the specification is, and whether it really covers all the
behaviors of the system. The challenge of making the verification process as ex-
haustive as possible is even more crucial in simulation-based verification, where
the infeasible task of checking all input sequences is replaced by checking a test
suite consisting of a finite subset of them. It is very important to measure the ex-
haustiveness of the test suite, and indeed, there has been an extensive research in
the simulation-based verification community on coverage metrics, which provide
such a measure. It turns out that no single measure can be absolute, leading to the
development of numerous coverage metrics whose usage is determined by indus-
trial verification methodologies. On the other hand, prior research of coverage in
formal verification has focused solely on state-based coverage. In this paper we
adapt the work done on coverage in simulation-based verification to the formal-
verification setting in order to obtain new coverage metrics. Thus, for each of the
metrics used in simulation-based verification, we present a corresponding metric
that is suitable for the setting of formal verification, and describe an algorithmic
way to check it.

1 Introduction

Today’s rapid development of complex hardware designs requires reliable verification
methods. In formal verification, we verify the correctness of a design with respect to a
desired behavior by checking whether a labeled state-transition graph that models the
design satisfies a specification of this behavior, expressed in terms of a temporal logic
formula or a finite automaton [CGP99]. Beyond being fully-automatic and reliable, an
additional attraction of formal-verification tools is their ability to accompany a negative
answer to the correctness query by a counterexample to the satisfaction of the specifi-
cation in the design [CGMZ95]. On the other hand, when the answer to the correctness
query is positive, most formal-verification tools terminate with no further information
to the user. Since a positive answer means that the design is correct with respect to the
specification, this seems like a reasonable policy. In the last few years, however, there
�

Supported in part by by NSF grant CCR-9988172.��
Supported in part by NSF grant CCR-9700061, NSF grant CCR-9988322, BSF grant 9800096,
and by a grant from the Intel Corporation.

has been growing awareness of the importance of suspecting the design of containing
an error also in the case verification succeeds. The main justification for such suspi-
cion are possible errors in the modeling of the design or of the behavior, and possible
incompleteness in the specification.

Several sanity checks have been suggested for further assessment of the modeling
of the design and the specification [Kur97]. One direction is to detect vacuous satis-
faction of the specification [BBER01,KV03,PS02], where cases like antecedent failure
[BB94] make parts of the specification irrelevant to its satisfaction. For example, the
specification “every request is eventually granted” is vacuously satisfied in a design in
which no requests are sent. A similar direction is to check the validity of the specifi-
cation (a specification is valid if it holds for all designs). Clearly, vacuity or validity
of the specification suggests some problem. It is less clear how to check completeness
of the specification. Indeed, specifications are written manually, and their completeness
depends entirely on the competence of the person who writes them. The motivation for
a completeness check is clear: an erroneous behavior of the design can escape the verifi-
cation efforts if this behavior is not captured by the specification. In fact, it is likely that
a behavior not captured by the specification also escapes the attention of the designer,
who is often the one to provide the specification.

The challenge of making the verification process as exhaustive as possible is even
more crucial in simulation-based verification. Each input vector for the design induces
a different execution of it, and a design is correct if it behaves as required for all
possible input vectors. Checking all the executions of a design is an infeasible task.
Simulation-based verification is traditionally used in order to check the design with
respect to some input vectors [BF00]. The vectors are chosen so that the verification
would be as exhaustive as possible, but still, design errors may escape the verification
process. Since simulation-based verification is a heuristic that replaces the infeasible
task of checking all input vectors, it is very important to measure the exhaustiveness of
the input sequences that are checked. Indeed, there has been an extensive research in
the simulation-based verification community on coverage metrics, which provide such a
measure [TK01]. Coverage metrics are used in order to monitor progress of the verifica-
tion process, estimate whether more input sequences are needed, and direct simulation
towards unexplored areas of the design. Essentially, the metrics measure the part of the
design that has been activated by the input sequences. For example, in code-based cov-
erage metrics, the design is given as a program in some hardware description language
(HDL), and one measures the number of code lines executed during the simulation. In
Section 3, we survey the variety of metrics that are used in simulation-based verification
(see also [ZHM97,Dil98,Pel01,TK01]). Coverage metrics today play an important role
in the design validation effort [Ver03].

Measuring the exhaustiveness of a specification in formal verification (“do more
properties need to be checked?”) has a similar flavor as measuring the exhaustiveness
of the input sequences in simulation-based verification (“are more sequences need to
be checked?”). Nevertheless, while for simulation-based verification it is clear that cov-
erage corresponds to activation during the execution on the input sequence, it is less
clear what coverage should correspond to in formal verification, as in model checking
all reachable parts of the design are visited. Early work on coverage metrics in formal

verification [HKHZ99,KGG99] suggested two directions. Both directions reason about
a finite-state machine (FSM) that models the design. The metric in [HKHZ99], later
followed by [CKV01,CKKV01,CK02], is based on mutations applied to the FSM. Es-
sentially, a state � in the FSM is covered by the specification if modifying the value
of a variable in the state renders the specification untrue. The metric in [KGG99] is
based on a comparison between the FSM and a reduced tableau for the specification.
See [CKV01] for a discussion of pros and cons of this metric.

Coming up with an exhaustive specification is of great importance and challenge in
formal verification. Sanity checks have been helpful in detecting design errors that es-
cape the verification process in industrial settings [BBER01,HKHZ99,PS02]. The main
lesson to be learned from several years of research in coverage in simulation-based ver-
ification [Pel01,TK01] is that coverage is a heuristic that measures the exhaustiveness
of the verification effort, but no single measure can be absolute. Consequently, research
in simulation-based coverage has identified numerous coverage metrics; their usage
is determined by practical verification methodologies. Prior research of coverage in
formal verification [HKHZ99,KGG99,CKV01,CKKV01,CK02] has focused solely on
state-based coverage. In contrast, in simulation-based coverage one finds many other
coverage metrics, including several metrics of code coverage, which measure that all
syntactic aspects of the design have been covered [Pel01,TK01]. Our goal in this paper
is to adapt the work done on coverage in simulation-based verification to the formal-
verification setting in order to obtain new coverage metrics. Thus, for each of the metrics
used in simulation-based verification, we present a corresponding metric that is suitable
for the setting of formal verification. In addition, we describe symbolic algorithms for
computing each of the new metrics.

The adoption of metrics from simulation-based verification is not straightforward.
To see this, consider for example code-based coverage and a check whether both branches
of an if statement have been executed during the simulation. A straightforward adop-
tion would check the satisfaction of the specification in a mutant design, one for each
branch, in which the branch is disabled. Such a mutant design, however, has less behav-
iors than the original design, and would clearly satisfy all universal specifications (i.e.,
specifications that apply to all behaviors, as in linear temporal logic) that are satisfied by
the original design. In general, the problem we are facing is the need to assess the role
a behavior has played in the satisfaction of a universal specification – one that is clearly
satisfied in the design obtained by removing this behavior. The way we suggest to do so
is to check whether the specification is vacuously satisfied in a mutant design in which
this behavior is disabled: a vacuous satisfaction of the specification in such a design (we
assume that the specification is not vacuously satisfied in the original design) indicates
that the specification does refer to this behavior; on the other hand, a non-vacuous satis-
faction of the specification in the mutant design indicates that the specification does not
refer to the missing behavior. Accordingly, some of the new metrics we suggest reduce
coverage to queries about vacuous satisfaction. On the other hand, a code-based metric
that checks whether a particular assignment in the code has been executed may also
be reduced to a metric that checks the satisfaction of the specification in a mutant de-
sign in which the assignment is changed. Accordingly, some of the metrics we suggest
follow the approach in [HKHZ99] and reduce coverage to queries about satisfaction

of the specification in mutant designs. Unlike previous work, however, the mutant de-
signs we consider are not arbitrary, and capture the different metrics of coverage used
in simulation-based verification.

Due to lack of space, this version misses many technical details. A fuller version
can be found at the authors’ URLs.

2 Preliminaries

2.1 Simulation-Based Verification

In simulation-based verification, the implementation of a hardware design is executed
in parallel with a reference model described at a different level of abstraction or with
monitors and assertions that check for certain behavior of the implementation [KN96].
The execution is done with respect to a selected set of finite input sequences, referred to
as tests. Thus, assuming the implementation has a set

�
of input signals, a test is a finite

sequence �������	�
� � ��������
���������	����� of input assignments. Implementations of hardware
designs can be described by different formalisms. We consider two formalisms with
respect to which coverage metrics are naturally defined.

The first formalism is that of hardware description languages (HDL). A typical
HDL program specifies the input and output variables of the various modules of the
design, and, using control and assignment statements, the interaction of the modules
among themselves and with an environment that provides the input signals. Reasoning
about rich HDL such as Verilog involves difficult technical details.1 We consider here
the simplified model of control flow graph (CFG). Each HDL statement corresponds
to a control state and induces a node in the CFG. We refer to CFG nodes as locations.
Assignment statements have a single successor, and control statements, such as if or
while, have several successors, corresponding to the possible locations to which the
control can jump. Transitions from a control statement to its successors are labeled by
an expression that guards the transition. Recall that the design interacts with an envi-
ronment that supplies its input signals. When the design is described as a CFG, the
interaction induces a traversal of the CFG. Formally, given a CFG � with a set � of lo-
cations, and a test ����������� � �����������������	��� � � � of input assignments, the execution of �
on � is a sequence !"���	��# �� �������
�$&% ��'(�()*�!"� � �
�� ���������# �$,+ �
' �)-������*��!"���.�
�� ������*��# �$0/ ��'1�2)&�
��� �43 � � 3 � 56� � � � such that # �� is the initial location of � , for all 7�89�,8�: , the lo-
cation #�;$0< corresponds to a read and write assertion, ' ; is the new assignment to the
output variables, and # ; � �

� matches the control flow of the CFG from location #�;$0< upon
reading � ; � � . The locations # ; � �� �������
#�; � �$&<>=?+ then correspond to the control flow of the

CFG from # ; � �� until the next input assignment is read. We often ignore the input and
output variables and refer to the interaction as a word in �@� obtained by projecting the
execution above on � .

The second formalism is that of sequential circuits. We refer to a circuit as a tupleA �B! � ��CD�
EF�
GH�JIK��L �) , where
�

and C are the sets of input and output signals, respec-
tively, E is a set of latches, L*�M�N� O describes the initial values of the latches, and G

1 For a description of a formal model of a real-life HDL see, for example, [FLLO95].

and I are families of the next-state and output functions. Thus, each latch # � E has
a function

����� � � 3 �	O��	��7 ��
� in G , and each output signal ' � C has a func-
tion ��� � � � 3 � O � ��7 ��
� in I . A configuration L � � O of the circuit describes
the value of each latch. The circuit starts its interaction with the environment in con-
figuration L � . When the circuit is in configuration L and it reads a set � ���"� of input
signals, it moves to configuration L�� in which the value of each latch # is

� � � �J�
L�� , and
in which it sends to the environment the set of output signals ' with � � �"�J�
L� ��
 .
Accordingly, the execution of a circuit

A
on a test �4� � � ��� � ��������� � � ���	��� � � � , is a

sequence !"���	��L-����'(��)*�!"� � �
L � �
' �)-�������!"���.��L*�.�
'1�2)D� ���	� 3 � O 3 � 5 � � � �
that satisfies

the conditions above.
Both HDL and circuits enable a description of the design at different levels of

abstraction [Hos95], yet abstraction is most naturally supported when the design is
modeled as a symbolic finite state machine (FSM). We assume that the design is de-
fined with respect to a set � of state variables, and it is specified by predicates on
� and ��� – a primed version of the variables in � . Formally, an FSM is a tuple� � ! � ��CD��� ������ �������!
��I) , where

�
and C are the input and output variables, �

is the set of state variables, inducing the state space ��" , � ��� is a predicate on � de-
scribing the set of initial states, � ����! is a predicate on �$#%��� describing the transition
relation (there is a transition from state & to state ' iff � ����! �(& ��' � �), and I is a fam-
ily of predicates that associates with each input or output variable � a predicate)+* on
� describing the set of states in which � holds. Likewise, predicates on � are used
to describe other sets of interest, for example, the set of fair states when the design
comes with an unconditional fairness constraint. Formally, a fair FSM

�
is a tuple� � ! � �JCD��� ���+�,� ����+�-�.
�JI6��/) , where / is a predicate on � describing the accepting

condition. A behavior 0 is accepted by
�

if it satisfies / . The simplest accepting con-
dition is Büchi condition [Büc62] (called impartiality in [MP92]), where / is a set of
states and a behavior 0 satisfies / if it visits a state from / an infinite number of times.

2.2 Model checking, vacuity, and coverage

In linear-time model checking, we check whether a design has a desired behavior by
checking whether a Büchi automaton for the negation of the specification has accept-
ing runs on an FSM describing the design [VW86]. The specification can be expressed
as an LTL formula [Hol97], as a ForSpec formula [AFG � 02], or as a Büchi automa-
ton [HHK96,Kur98]. A specification 1 in linear temporal logic can be translated to
a nondeterministic Büchi automaton 24365 that accepts all words that do not satisfy 1
[VW94]. Given an automaton 24365 , we check that the product of

�
with 24365 , which is

a fair FSM
� 3 2 365 , does not contain accepting paths.

Sanity checks for model checking address the problem of errors in the modeling of
the design and the desired behavior, which are not discovered by model checking. These
problems may cause “false positive” results of model checking and conceal errors in the
design. Two such checks are vacuity and coverage, which we briefly review below (for
the full details, see [BBER01,KV03,HKHZ99,CKV01]).

Intuitively, an FSM
�

satisfies a formula 1 vacuously if
�

satisfies 1 yet it does
so in a non-interesting way, which is likely to point on some trouble with either

�
or

1 . In order to formalize this intuition, we first say that a subformula 7 of 1 does not

affect 1 in
�

if for every formula � , the FSM
�

satisfies 1�� 7������ iff
�

satisfies 1 ,
where 1�� 7	�
��� denote the formula obtained from 1 by replacing 7 with � [BBER01].
As shown in [KV03], when 7 has a single occurrence in 1 , then instead of checking
the replacement of 7 by all formulas � , one can check only the replacement of 7 by
the formulas ������ and ��������� . Thus, 7 does not affect 1 in

�
whenever

�
satisfies

1�� 7����������� iff
�

satisfies 1�� 7�������������� . Now, an FSM
�

satisfies a formula 1
vacuously iff

�! � 1 and there is some subformula 7 of 1 such that 7 does not affect 1
in
�

. Equivalently,
�

satisfies 1 vacuously if
�� � 1 and there is some subformula 7

of 1 such that
�

also satisfies 1�� 7"�$#%� , where # is either ��������� or �&����� , depending
on the polarity of 7 in 1 . It is easy to see that vacuous satisfaction can be detected by
a naive algorithm that model checks

�
with respect to formulas obtained from 1 . More

sophisticated algorithms are suggested in [PS02,KV03,Cho03,AFF � 03].

Coverage in model checking was introduced in [HKHZ99,KGG99]. The metric in
[HKHZ99] is based on FSM mutations. For an FSM

� � ! � ��CD��� ��� ��� ��� ����! ��I) , a
state ' � �" and an output variable (�NC , a mutant FSM)��*�+ , is obtained from

�
by dualizing the value of (in the state ' . Thus, if) , is the predicate describing the
set of states satisfying (in

�
, then the predicate)) *�+ , , which describes the set of states

satisfying (in)� *�+ , , is satisfied by ' iff) , is not satisfied by ' . For all states '.-�/' ,
the predicate)) *�+ , is satisfied by ' iff) , is satisfied by ' . For an FSM

�
, a specification

1 that is satisfied in
�

, and an output variable (, we say that 10(-covers ' iff)�1*�+ , no
longer satisfies 1 . By [HKHZ99], a state is covered if it is (-covered for some output
variable (. It is easy to see that the set of states (-covered by 1 can be computed by a
naive algorithm that performs model checking of 1 in)�1*�+ , for each state ' of

�
. More

sophisticated algorithms are suggested in [HKHZ99,CKV01,CKKV01].

Chockler et al. also suggest the following refinement of coverage metrics [CKKV01].
Instead of performing local mutations in

�
, we can perform local mutations in the in-

finite tree 243 obtained by unwinding
�

. A state ' of
�

can appear many (possibly an
infinite number of) times in 2 3 . Flipping the value of (in one occurrence of ' in 2 3
can have a different effect from flipping the value of (in all or some of the occurrences
of ' in 2 3 . These differences are captured by the notions of node, structure, and tree
coverage. Node coverage of a state ' corresponds to flipping the value of (in one oc-
currence of ' in the infinite tree. Structure coverage corresponds to flipping the value
of (in all the occurrences of ' in the tree. Chockler et al. describe a framework in
which node, structure, and tree coverage can be computed by a symbolic algorithm;
minor changes are required to capture the different types of coverage [CKKV01]. We
describe their algorithm in more detail in Section 5.

In this paper we introduce new types of mutations and new types of coverage metrics
in model checking in order to capture better the different notions of coverage used in
simulation-based verification. Coverage in model checking is performed by applying
mutations to a given FSM and then examining the resulting mutant FSMs with respect
to a given specification. Each mutation is generated in order to check whether a specific
element of the design is essential for the satisfaction of the specification. As we explain
in more detail in Section 4, mutations correspond to omissions and replacements of
small elements of the design, which can be given as an HDL program, an FSM, or a

sequential circuit. Once we have a mutant FSM, there are two coverage checks we can
perform on it.

1. Falsity coverage: does the mutant FSM still satisfy the specification?
2. Vacuity coverage: if the mutant FSM still satisfies the specification, does it satisfy

it vacuously?

Falsity coverage is the metric introduced in [HKHZ99], and we extend it here to
handle mutations richer than these studied in the literature so far. Vacuity coverage is
new. As we demonstrate in Example 1, it often provides information that falsity cov-
erage fails to detect. In particular, in mutations that are based on omission of elements
from the original design (as we are going to see in Section 4, such mutations are popular
in metrics adopted from simulation-based verification), falsity coverage is useless for
universal specifications. Indeed, having less behaviors, the mutant design is guaranteed
to satisfy all the specifications satisfied by the original design.

Example 1. Consider the FSM
�

described below, which abstracts a design with re-
spect to the output signals ���������
	 and ���������� . Let 1 �9�@����������
	 � � �����������?� . Thus,

1 requires that (in all execution paths) each grant
to the first user is followed by a grant to the sec-
ond user. It is easy to see that 1 is satisfied in

�
.

Recall that the goal of coverage metrics is to check
whether all the elements of the design play some
role in the satisfaction of 1 . Let us see which parts
of
�

are covered by 1 . We refer only to structure
coverage in this example.

���
� �� ��
* �

* %
���
� �� +
* +

*�� *��
����� � ��

� The positive value of ���������� in '�� is essential to the satisfaction of 1 : the state '�� is
falsity covered by 1 with respect to mutations that flip the value of ��������
� .� The value of ��������
	 in ' � is not essential to the satisfaction of 1 . On the other hand,
the designer had a reason to set it to ����1� in ' � , as it is essential to the non-vacuous
satisfaction of 1 : the state ' � is vacuity covered by 1 with respect to mutations in which' � is omitted and with respect to mutations that flip the value of �������� 	 .� One may also question negative values of variables. For example, while the negative
value of ��������� � in ' � is not essential to the satisfaction of 1 , it is essential to its non-
vacuous satisfaction: the state ',� is vacuity covered by 1 with respect to mutations that
flip the value of ���������� .� Consider now the value of ����������� in the state ' � . All the paths of

�
that pass through' � describe a behavior in which two grants – in both ' � and in '�� , are given to the

second user, after at most one grant was given to the first user. The specification does
not require such a behavior, nor does it require a correspondence between the number
of grants that each user gets. The labeling of ' � indeed does not play a role in the
satisfaction of 1 : the state ' � is neither falsity nor vacuity covered by 1 with respect
to mutations that omit ' � or flip the value of ��������� � . This information may hint on a
possible impreciseness or incompleteness in the definition of 1 .

3 Coverage Metrics in Simulation-based Verification

In this section we survey coverage metrics in simulation-based verification – metrics we
are going to adopt for the setting of formal verification in the next section. Each of the
metrics is “tailored” for a specific representation of the design or a specific verification
goal. The reader is referred to [TK01] for a detailed survey. All metrics refer to a set of
input sequences (or tests) �6� � �	�(�
� with respect to which the design is simulated.

3.1 Syntactic coverage metrics

Syntactic coverage metrics assume a specific formalism for the description of the design
and measure the syntactic part of the design visited in the process of execution of a given
input sequence. Commonly [Mar99,TK01], high coverage according to syntactic-based
metrics is considered a precondition to moving to other more sophisticated (and time
consuming) coverage metrics.

Code coverage Code-based coverage metrics refer to the HDL program that describes
the design or to its CFG. Measuring code coverage requires little overhead and it is
easy to interpret the coverage information. This makes code coverage the most popular
metric [UZ98,TK01]. The most widely used code-coverage metrics are statement and
branch coverage. Essentially, an object is covered if it is visited during the execution of
the input sequence. Again, the fully-formal definition depends on the particular HDL
used, but a semi-formal definition is given in terms of the computation of the CFG as
follows. Let � be a CFG. For an input sequence � � ��� � � � such that the execution of
� on � , projected on the sequence of locations, is # � �������
$, we say that a statement)
is covered by � if there is 7 8�� 8�� such that the control location #�� corresponds to
) . We say that a branch !�# �
�) between two control locations is covered by � if there is
7 8�� 8��	�
 such that #
� ��# and #
� � � ��# � . More sophisticated metrics measure the
way expressions in the guards labeling the CFG’s transitions are satisfied. For example,
expression coverage checks whether a Boolean expression has been satisfied by all its
satisfying assignments (e.g., whether � � � ��� � has been satisfied by both an � � �
� � �97 and an � � ��� � �
 assignment).

Circuit coverage Circuit-structure based coverage metrics refer to the circuit that de-
scribes the design. Thus they identify the physical parts of the circuit that are covered.
Measuring circuit coverage is usually easy and it is easy to interpret the coverage infor-
mation. Unlike code coverage, however, it is not easy to use the coverage information
in order to generate new tests that direct simulation towards the unexplored areas of the
design. The most widely used circuit-coverage metrics are latch and toggle coverage
[HH96,KN96]. Essentially, a latch is covered if it changes its value at least once during
the execution of the input sequence. Similarly, an output variable is covered if its value
has been toggled. Formally, for a circuit

A
and an input sequence �6����� �(� � � � such that

the execution of
A

on � is ! � � �
L � �
' �)-��!"� � ��L � ��' �)*���������!"� � �
L � ��' �) , we say that a latch
#&� E is covered by � if there is �� 7 such that #&� L�� iff # -� L � . Similarly, an output
variable '@� C is covered by � if there are 7���� � ��� � such that ' � '(� iff ' -� ' � + iff
' ��' � � . Note that toggle coverage requires that the value of an output variable should
be changed at least twice during the execution of � .

3.2 Semantic coverage metrics

Semantic coverage metrics measure the part of the functionality of the design exercised
by the set of input sequences. Semantic coverage metrics require user help and are more
sophisticated than syntactic coverage metrics. We consider the following metrics.

FSM coverage Due to the large size of FSMs for complete systems, FSM-based cov-
erage metrics refer to more abstract FSMs constructed manually by the designer, or
automatically extracted from the design by projecting its symbolic description on a
subset of the state variables as explained in Section 2.1 [TK01]. Similarly to code cov-
erage, a state or a transition of the abstract FSM is covered if it is visited during the
execution of the input sequence. The fact that coverage is checked with respect to an
abstract FSM makes the interpretation of the coverage information harder (linking the
uncovered parts of the FSM to uncovered parts of the HDL program is not trivial) and
have led to the use of more sophisticated metrics. In particular, limited-path coverage
metrics check that important sequences of behavior are exercised [SA99]. Transition
coverage can be viewed as a special case of path coverage, for paths of length
 .

Assertion coverage In assertion coverage (“functional coverage”, in [TK01,Cad03]),
the user provides a list of assertions referring to the variables of the design. The asser-
tions describe some conditions that may be satisfied during the execution or a state of
the design during the execution. They may be propositional (“snapshot tasks”) or tem-
poral (describing a behavior along several clock cycles). A test � covers an assertion �
if the execution of the design on � satisfies � . The assertion-coverage metric measures
what assertions are covered by a given set of input sequences.

Mutation coverage In mutation coverage, the user introduces a small change (aka “mu-
tation”) to the design, and checks whether the change leads to an erroneous behavior
[DLS78,Bud81,ZHM97]. The coverage of a test � is measured as the percentage of the
mutant designs that fail on � , that is, the percentage of the mutations that � “catches”.
The list of interesting mutations can be written manually or automatically following
some mutation criteria. For example, a local mutation can be flipping a value of one
output variable in a circuit. In mutation coverage the goal is to find a set of input se-
quences such that for each mutant design there exists at least one test that fails on it. As
discussed in Section 2.2, mutation coverage is the metric that inspired most of the work
on coverage in model checking.

4 Coverage Metrics in Model Checking

In this section we discuss how the coverage metrics from simulation-based verification
can be adopted in model checking. Thus, for each of the metrics described in Section 3,
we define a metric that can be used in the context of model checking.

4.1 Syntactic coverage

In syntactic coverage, we assume that we are given the syntactic representation of the
design (an HDL code or a CFG) with respect to which we measure the coverage. Since
in the process of model checking we visit the whole reachable part of the design, metrics
that measure the part of the design exercised during the simulation cannot be applied
directly to model checking. Essentially, we adopt these metrics by replacing the ques-
tion whether a part of the design has been visited during the simulation by the question
whether the part plays a role in the success of the verification process, where playing a
role means that the part is essential for the satisfaction or the non-vacuous satisfaction
of the specification. The latter is checked by reasoning about the behavior of a mutant
design in which the part is modified or omitted.

Code coverage Let � be a CFG and 1 a specification that is satisfied in � . We say
that a statement) of � is covered by 1 if omitting) from � causes vacuous satisfac-
tion of 1 in the mutant CFG. Similarly, a branch !�# �
�) of � is covered if omitting it
causes vacuous satisfaction of 1 . Note that falsity coverage would be meaningless here,
since omitting a statement or a branch of CFG results in a design with fewer behaviors,
which is guaranteed to satisfy the universal specification. In expression coverage, we
check whether omitting the behaviors in which the variables have a particular satisfy-
ing assignment for a particular expression leads to vacuous satisfaction of 1 .

Circuit coverage Recall that latch and toggle coverage metrics check whether the value
of a specific latch or variable in the circuit changes during the execution of an input se-
quence. We replace this question by the question whether disabling the change causes
the specification to be satisfied vacuously. Thus, a latch # � E is covered if the specifi-
cation is vacuously satisfied in the circuit obtained by fixing the value of # to its initial
value. Similarly, an output variable ' ��� is covered if the specification is vacuously
satisfied in the circuit obtained by allowing ' to change its value only once. Thus, if the
initial value of ' is 7 , the circuit is obtained by fixing ' to
 as soon as it changes its
value to
 , and if the initial value of ' is
 , the circuit is obtained by fixing ' to 7 as
soon as it changes its value to 7 .

4.2 Semantic coverage

Among the semantic coverage metrics, mutation coverage has already been adopted to
the setting of model checking. As discussed in Section 2.2, we suggest a strengthening
of the adopted metrics by checking the effect of the mutation not only on the satisfaction
of the specification, but also on its vacuous satisfaction. Below we describe the adoption
of the other semantic coverage metrics.

FSM coverage In FSM coverage we are given an abstract FSM
�

and we check the
influence of mutations and omissions in this FSM on the result of model checking of the
specification 1 in the design. In state coverage, for a state ' of

�
we check the influence

of omission of ' or changing the values of output variables in ' on the (non-vacuous)
satisfaction of the specification in the design. Clearly, a mutant FSM)� * obtained from

�
by omitting ' has fewer behaviors than

�
, thus for omissions of a state we only

check vacuity coverage. On the other hand, a mutant FSM)� *�+ � obtained from
�

by
flipping the value of the output variable 'M� C in ' can also falsify the specification,
thus we check falsity and vacuity coverage.

In path coverage, we check the influence of omitting or mutating a finite path on
the (non-vacuous) satisfaction of the specification in the design. A path 0 of length L
in
�

is a sequence of states ' � �������� '�� of
�

such that for all
@8 � 8BL �
 we have
� ����! ��' ; � ' ; � � � . Let us first define coverage for omissions of a path. A path 0 is cov-
ered by 1 if the mutant FSM)� � obtained from

�
by omitting all behaviors that contain

0 satisfies 1 vacuously. On the other hand, we can also introduce mutations that replace
0 with a mutant path)0 in the FSM. Then, the mutant FSM)� � +��� is obtained from

�
by

replacing 0 with)0 . The mutant FSM)� � +��� can falsify 1 or can satisfy 1 vacuously, thus
for mutations that replace a path with another, mutant, path we check both falsity and
vacuity coverage. We note that all possible mutations in the FSM can be introduced con-
sistently on each occurrence of the mutated element, on exactly one occurrence, or on
a subset of occurrences, thus resulting in structure, node, or tree coverage, respectively.

Assertion coverage An input to assertion-coverage check is an FSM
�

, a specification
1 that is satisfied non-vacuously in

�
, and a list of LTL assertions � � ������� ��� . An as-

sertion � ; is covered by 1 in
�

if the mutant FSM)��� < obtained from
�

by omitting all
behaviors that do not satisfy � satisfies 1 vacuously. We note that this definition is sim-
ilar to the definition of FSM path coverage. The only difference is in the description of
the mutation: in FSM path coverage we omit behaviors that contain a given finite path
0 , whereas in assertion coverage we omit behaviors that do not satisfy a given assertion.

5 Coverage Computation

In Section 4 we described new coverage metrics for model checking. In this section
we discuss how to compute these metrics. We first show that both vacuity and falsity
coverage can be reduced to model checking (possibly of mutant specifications and/or
mutant designs). Let

�
be an FSM, 1 a specification that is satisfied in

�
non-vacuously,

and)� a mutant FSM. If)� does not satisfy 1 , we say that)� is falsity covered by 1 . If)� satisfies 1 , it still may be vacuity covered by 1 if it satisfies 1 vacuously. Formally,)� satisfies 1 vacuously if)� � 1 and there exists 7 � L*#
� 1 � such that)� satisfies
1�� 7	� #%� . Thus, like falsity coverage, we check whether a mutant design)� satisfies a
specification, only that here the specification is also mutated.

Mutation coverage The algorithm we present for falsity-coverage computation is based
on the coverage algorithm described in [CKKV01]. That algorithm computes symboli-
cally falsity coverage for mutations that flip the value of a variable (� C in one state '
of the FSM. The idea is to look for a fair path in the product of the mutant FSM)� and
an automaton 2 365 for the negation of 1 . The state space of the product is ��" 3 	 , where
� is the set of state variables of

�
,
	

is the state space of 243�
 , and the transitions of the
product are induced by the transition relations of

�
and 243�
 . In order to compute the

set of covered states, it is suggested in [CKKV01] to add
 � new variables that encode

the state ' in which the value of (is flipped. It is now possible to define symbolically
an augmented product, with state space � " 3 �+" 3 	

, where the first component of
a state !�' ��& � �() is the state ' that is being considered, and the two other components
are as in the usual product automaton. The value of the first component is chosen non-
deterministically at initialization and is kept unchanged. The copy of the augmented
product with first component ' checks whether the mutation of

�
in which (is flipped

in ' contains a fair path (in which case flipping (in ' violates the specification). Thus,
when the augmented product is in a state ! ' � ' � �() , the set of successor states contains
all triples !�' ��& ����) such that & is a successor of & and � ��� � �	�)� � , where)� is the label
of ' in)� *�+ , . The above describes structure coverage, where the value of ' is flipped
in all visits. Likewise, we can define an augmented product in which the value of (in' is flipped only one time (node coverage) or some of the times (tree coverage). We
can now use a symbolic algorithm in order to find the set � of all triples ! ' ��& � ��) from
which there exists a fair path in the augmented product automaton.

Vacuity coverage Recall that checking whether a system satisfies a specification vacu-
ously involves model checking of a mutant specification. We adjust the symbolic algo-
rithm in [CKKV01] to this setting by adding a new variable � that encodes the subfor-
mula 7�� L*#
� 1 � that is being replaced with # . The variable � is an integer in the range
72������*� L�#�� 1 � , thus it can be encoded with C �����
	 1 � Boolean variables. The value 7 of
� stands for “no replacement”, thus it checks the satisfaction of 1 in the system. As with
mutations, the values of these variables are chosen nondeterministically at initialization
and are kept unchanged. In the automaton 2%365 , each state variable corresponds to a
subformula (cf. [BCM � 92]), thus the nondeterministic choice of the subformula leads
to a mutant automaton 2 365��
����� . The state space of the augmented product now con-
sists of triples !�� ��& � ��) , where � encodes the subformula replaced with # , and & and �

are the components of the product automaton. The successors of !�� ��& � ��) are the triples
!�� ��& ��� � �) such that !(& ��� � �>) is a possible successor of ! & � �() in a product between the
system with the automaton 2 365��
����� , where 7 is the subformula encoded by � . The
subformulas that affect the value of 1 in the systems are these encoded by a value � for
which there are initial states & � and � � of the system and the automaton, respectively,
such that there is a fair path from !�� ��& � � � �) . Let � be the set of triples from which a
fair path exists in the augmented product (as above, � can be found symbolically), and
let � � be the intersection of � with the initial states of the system and the automaton,
projected on the first element. Note that � ��� � iff the subformula associated with � af-
fects the value of 1 in the system. Thus, 7 is satisfied vacuously in the system if ��� ��� 7?�
and � � -� ��
	��������
L*#
�(70�!� .

In order to get a symbolic algorithm for vacuity coverage, we combine the above
algorithm with the one of [CKKV01]. For example, if we want to find the set of states '
such that flipping the value of (in ' causes the specification to be satisfied vacuously,
we augment the state space of the product of

�
and 2%365 by variables that encode both

the state in which we do the mutation and the subformula that is being replaced with # .
As we specify below, if we want to check vacuity coverage for other types of mutations,
we use the variables in order to encode the other types of mutations.

Code coverage Recall that in code coverage we need to check whether the omission
of parts of the code causes the specification to be satisfied vacuously. Accordingly, for
code coverage, it is simpler to define the mutations with respect to the HDL code. Let�

be the number of elements in the code we want to check (e.g., the number of lines).
We introduce a new variable � & � , which is an integer in the interval �
	������*� � � . The
value � of � & � indicates that the mutation is in element # ; , which we want to omit, and
we need C ��� � 	 � � Boolean variables to encode it. The HDL code is instrumented using
source-to-source translation in (see [BKM02] as an example of such instrumentation)
so that # ; in the code is replaced by the statement “if � � & � -� � � then # ; else skip”. The
instrumented code represents all the mutant designs2. The product of the FSM induced
by the instrumented code and 24365 subsumes all the mutations of the code. It is now
possible to apply the symbolic algorithm described above (instead of the variables that
encode ' , we now have the variables that encode � & �) for detecting the mutations that
lead to vacuous satisfaction.

In expression coverage, we do something similar. Let � � ���������� $ be the expres-
sions we want to check, and let � ; � � ' ;� ������*��' ;� � be the variables over which � ; is
defined. Note that : bounds the number of variables in every expression. Let “if � ;
then � ; ” be the statement that contains � ; as a guard (handling of “while” or “until”
statements is similar). Recall that we want to check, for each � ; and for each satisfying
assignment

� � ��� < , whether skipping � ; when the variables have value
�

causes the
specification to be satisfied vacuously. Accordingly, we add a variable � & � (encoded
by C ��� � 	 � � Boolean variables) that indicates the expression to be checked, and : vari-
ables & � ������*��& � that encode assignments to : variables. As usual, the variables get
their value nondeterministically at initialization. The HDL code is now instrumented so
that “if � ; then � ; ” in the code is replaced by “if � � & � -�9� � or (� ;

��� �
	 � 	 � ' ;� -� & �)
then � ; else skip”. It is now possible to apply the symbolic algorithm described above
for detecting the expressions and assignments that lead to vacuous satisfaction.

Circuit coverage In latch coverage, we restrict the product of
�

and 2%365 to paths in
which the value of a latch is not allowed to change, and check whether this causes vacu-
ous satisfaction. Thus, we augment the product with variables that encode the examined
latch and (for the vacuity check) the subformula of 1 that we replace with # .

FSM coverage State and transition coverage can be computed using the techniques of
mutation-based metrics. We now describe the computation of path coverage. We start
with mutations that omit all behaviors that contain a given finite path 0�� ' � ������� ' � .
Let � � be a monitor that filters away paths that contain 0 as a sub-path. That is, � � is
a fair FSM that accepts paths � such that 0 is not a sub-path of � . Since � � only cares
for the values of control variables that encode the states (and not, for example, for the
values of output variables in these states), the set of input variables of � � is the set of
control variables � of

�
, and � � does not have output variables. For a given path 0 ,

the mutant FSM)� � is the product FSM
� 3 � � , which contains only the computations

of
�

that do not have 0 as a sub-path. Then, 0 is vacuity covered by 1 if)� � satisfies

2 The user may wish to include (no mutation) in the range of ����� , in which case the instru-
mented code represents also the original design.

1 vacuously. For a set of paths � 0 � ��������0 ��� , we can compute the set of covered paths
symbolically using the techniques as described above for vacuity coverage.

In a similar way we can define mutations of paths that replace a finite path 0 with
a path)0 of the same length, redirecting the system to another execution. If a mutated
path is of length
 , the mutation redirects one transition. For a path 0 replaced with
a mutant path)0 , we use a monitor � � +��� . In the product)� � of

�
with � � +��� , all the

occurrences of 0 are replaced by)0 . Note that for mutated (rather than omitted) paths
we can compute both falsity and vacuity coverage.

Assertion coverage For an LTL assertion � , a monitor for � is the automaton 2 3 � .
Given assertions � � ������� � � , the mutant FSM is the product

� 3 2 3 � + 3 ���� 3 2 3 ��� .
Falsity and vacuity coverage of a set of assertions is computed similarly to FSM path
coverage, where the variable � & � encodes the assertion � $���� for
 8�� & �K8 �

.

References

[AFF
�

03] R. Armon, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, and M.Y. Vardi. Enhanced
vacuity detection for linear temporal logic. In Proc. 15th CAV, 2003.

[AFG
�

02] R. Armoni, L. Fix, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
A. Tiemeyer, E. Singerman, M.Y. Vardi, and Y. Zbar. The ForSpec temporal language:
A new temporal property-specification language. In Proc. TACAS’02, LNCS 2280,
pp. 296–311, 2002.

[BB94] D. Beatty and R. Bryant. Formally verifying a microprocessor using a simulation
methodology. In Proc. 31st DAC, pp. 596–602. IEEE Computer Society, 1994.

[BBER01] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in
ACTL formulas. Formal Methods in System Design, 18(2):141–162, 2001.

[BCM
�

92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
model checking: �
 �	� states and beyond. I&C, 98(2):142–170, 1992.

[BF00] L. Bening and H. Foster. Principles of verifiable RTL design – a functional coding
style supporting verification processes. Kluwer Academic Publishers, 2000.

[BKM02] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on java
predicates. In Proc. ISSTA, pp. 123–133, 2002.

[B üc62] J.R. B üchi. On a decision method in restricted second order arithmetic. In Proc.
ICLMP, pp. 1–12, 1962.

[Bud81] T.A. Budd. Mutation analysis: Ideas, examples, problems, and prospects. Computer
Program Testing, pp. 129–148, 1981.

[Cad03] Cadence. Assertion-based verification. http://www.cadence.com, 2003.
[CGMZ95] E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. Efficient generation of

counterexamples and witnesses in symbolic model checking. In Proc. 32nd DAC, pp.
427–432, 1995.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[Cho03] H. Chockler. Coverage metrics for model checking. PhD thesis, Hebrew University,

Jerusalem, Israel, 2003.
[CK02] H. Chockler and O. Kupferman. Coverage of implementations by simulating specifi-

cations. In Proc. 2nd TCS, 223:409–421, 2002. Kluwer Academic Publishers.
[CKKV01] H. Chockler, O. Kupferman, R.P. Kurshan, and M.Y. Vardi. A practical approach to

coverage in model checking. In Proc. 13th CAV, LNCS 2102, pp. 66–78, 2001.

[CKV01] H. Chockler, O. Kupferman, and M.Y. Vardi. Coverage metrics for temporal logic
model checking. In Proc. TACAS, LNCS 2031, pp. 528 – 542, 2001.

[Dil98] D.L. Dill. What’s between simulation and formal verification? In Proc. 35st DAC,
pp. 328–329. IEEE Computer Society, 1998.

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for
the practicing programmer. IEEE Computer, 11(4):34–43, 1978.

[FLLO95] R.S. French, M.S. Lam, J.R Levitt, and K. Olukotun. A general method for compiling
event-driven simulations. In Proc. DAC, pp. 151–156, 1995.

[HH96] R.C. Ho and M.A. Horowitz. Validation coverage analysis for complex digital de-
signs. In Proc. ICCAD, pp. 146–151, 1996.

[HHK96] R.H. Hardin, Z. Har’el, and R.P. Kurshan. COSPAN. In Proc. 8th CAV, LNCS 1102,
pp.423–427, 1996.

[HKHZ99] Y. Hoskote, T. Kam, P.-H Ho, and X. Zhao. Coverage estimation for symbolic model
checking. In Proc. 36th DAC, pp. 300–305, 1999.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997. Special issue on Formal Methods in Software Practice.

[Hos95] Y.V. Hoskote. Formal techniques for verification of synchronous sequential circuits.
PhD thesis, The University of Texas at Austin, 1995.

[KGG99] S. Katz, D. Geist, and O. Grumberg. “Have I written enough properties ?” a method
of comparison between specification and implementation. In Proc. 10th CHARME,
LNCS 1703, pp. 280–297, 1999.

[KN96] M. Kantrowitz and L. Noack. I’m done simulating: Now what? verification coverage
analysis and correctness checking of the dec chip 21164 alpha microprocessor. In
Proc. DAC, pp. 325–330, 1996.

[Kur97] R.P. Kurshan. Formal verification in a commercial setting. In Proc. DAC‘97, 34:258–
262, 1997.

[Kur98] R.P. Kurshan. FormalCheck User’s Manual. Cadence Design, Inc., 1998.
[KV03] O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking. Jour-

nal on Software Tools For Technology Transfer, 4(2):224–233, 2003.
[Mar99] B. Marick. How to misuse code coverage. In Proc. 16th ICTCS, June 1999.
[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:

Specification. 1992.
[Pel01] D. Peled. Software Reliability Methods. 2001.
[PS02] M. Purandare and F. Somenzi. Vacuum cleaning CTL formulae. In Proc. 14th CAV,

LNCS pp. 485–499, 2002.
[SA99] J. Shen and J.A. Abraham. An RTL abstraction technique for processor microarchi-

tecture validation and test generation. Journal of Electronic Testing, 16(1-2):67–81,
1999.

[TK01] S. Tasiran and K. Keutzer. Coverage metrics for functional validation of hardware
designs. IEEE Design and Test of Computers, 18(4):36–45, 2001.

[UZ98] S. Ur and A. Ziv. Off-the-shelf vs. custom made coverage models, which is the one
for you? In Proc. ICSTAR, 1998.

[Ver03] Verisity. Surecove’s code coverage technology.
http://www.verisity.com/products/surecov.html, 2003.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. 1st LICS, pp. 332–344, 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. I&C, 115(1):1–37,
1994.

[ZHM97] H. Zhu, P.V. Hall, and J.R. May. Software unit test coverage and adequacy. ACM
Computing Surveys, 29(4):366–427, 1997.

