
From Pre-historic to Post-modern
Symbolic Model Checking

�

Thomas A. Henzinger Orna Kupferman Shaz Qadeer

Department of EECS, University of California at Berkeley, CA 94720-1770, USA
Email:

�
tah,orna,shaz � @eecs.berkeley.edu

Abstract. Symbolic model checking, which enables the automatic verification of large sys-
tems, proceeds by calculating with expressions that represent state sets. Traditionally, sym-
bolic model-checking tools are based on backward state traversal; their basic operation is
the function ����� , which given a set of states, returns the set of all predecessor states. This is
because specifiers usually employ formalisms with future-time modalities, which are natu-
rally evaluated by iterating applications of ����� . It has been recently shown experimentally
that symbolic model checking can perform significantly better if it is based, instead, on
forward state traversal; in this case, the basic operation is the function �
	��� , which given a
set of states, returns the set of all successor states. This is because forward state traversal
can ensure that only those parts of the state space are explored which are reachable from an
initial state and relevant for satisfaction or violation of the specification; that is, errors can
be detected as soon as possible.

In this paper, we investigate which specifications can be checked by symbolic forward state
traversal. We formulate the problems of symbolic backward and forward model checking
by means of two � -calculi. The ����� - � calculus is based on the ����� operation; the ������� - �
calculus, on the �
	��� operation. These two � -calculi induce query logics, which augment
fixpoint expressions with a boolean emptiness query. Using query logics, we are able to
relate and compare the symbolic backward and forward approaches. In particular, we prove
that all � -regular (linear-time) specifications can be expressed as ������� -� queries, and there-
fore checked using symbolic forward state traversal. On the other hand, we show that there
are simple branching-time specifications that cannot be checked in this way.

1 Introduction

Today’s rapid development of complex and safety-critical systems requires verification methods
such as model checking. In model checking [CE81,QS81], we ensure that a system exhibits a
desired behavior by executing an algorithm that checks whether a mathematical model of the
system satisfies a formal specification that describes the behavior. The algorithmic nature of
model checking makes it fully automatic, and thus attractive to practitioners. At the same time,
model checking is very sensitive to the size of the mathematical model of the system. Commercial
model-checking tools need to cope with the exceedingly large state spaces that are present in real-
life examples, making the so-called state-explosion problem perhaps the most challenging issue
in computer-aided verification. One of the important developments in this area is the discovery
of symbolic model-checking methods [BCM � 92]. In particular, use of BDDs [Bry86] for model
representation has yielded model-checking tools that can handle very large state spaces [CGL93].

Traditional symbolic model-checking tools have been based on backward state traversal
[McM93,BHSV � 96]. They compute with expressions that represent state sets using, in addition
to positive boolean operations, the functions ����� and ������ , which map a set of states to a subset

This work is supported in part by ONR YIP award N00014-95-1-0520, by NSF CAREER award CCR-
9501708, by NSF grant CCR-9504469, by ARO MURI grant DAAH-04-96-1-0341, and by the SRC
contract 97-DC-324.041.

of its predecessor states. Formally, given a set � of states, the set � � ������� contains the states for
which there exists a successor state in � , and the set �� � ������� contains the states all of whose
successor states are in � . By evaluating fixpoint expressions over boolean and pre operations,
complicated state sets can be calculated. For example, to find the set of states from which a state
satisfying a predicate � is reachable, the model checker starts with the set � of states in which �
holds, and repeatedly adds to � the set � � ������� , until no more states can be added. Formally, the
model checker calculates the least fixpoint of the expression �
	��������������� . Symbolic model-
checking techniques were first applied to branching-time specifications, and later extended to
linear-time specifications, both via translations into fixpoint expressions [BCM� 92,CGH94].

As an alternative to symbolic model checking, in enumerative model checking states are
represented individually. Traditional enumerative model-checking tools check linear-time speci-
fications by forward state traversal [Hol97,Dil96]. There, the basic operation is to compute, for
a given state, the list of successor states. Forward state traversal has several obvious advantages
over backward state traversal. First, for operational system models, successor states are often
easier to compute than predecessor states. Second, only the reachable part of the state space is
traversed. Third, optimizations such as on-the-fly [GPVW95] and partial-order [Pel94] methods
can be incorporated naturally. For example, in on-the-fly model checking, only those parts of the
state space are traversed which are relevant for satisfying (or violating) the given specification.

Some of the advantages of forward state traversal can be easily incorporated into symbolic
methods. For example, we may first compute the set of reachable states by symbolic forward state
traversal, and then restrict backward state traversal for model checking to the reachable states.
This method, however, is unsatisfactory; for example, it cannot find even a short error trace if
the set of reachable states cannot be computed. We present a tighter, and more advantageous,
integration of forward state traversal with symbolic methods. In symbolic forward state traversal,
we replace the functions � � � and ���� � by the functions ������� and �������� , respectively, which map a
set of states to a subset of its successor states. Formally, given a set � of states, the set �������������
contains the states for which there exists a predecessor state in � , and the set �������������� contains
the states all of whose predecessor states are in � . Then, we evaluate fixpoint expressions over
boolean and post operations on state sets. It has recently been shown that certain branching-time
as well as linear-time specifications, such as response (i.e., �����! #"�$%�), can be model checked
by symbolic forward state traversal [INH96,IN97]. We attempt a more systematic study of what
can and what cannot be model checked in this way. In particular, we show that all & -regular
(linear-time) specifications (which include all LTL specifications) are amenable to a symbolic
forward approach, while some CTL (branching-time) specifications are not.

For this purpose, we define ��'%(*) - + , a fixpoint calculus that is based on post operations in
the same way in which the traditional + -calculus, here called ����� - + , is based on pre operations
[Koz83]. While ����� - + expressions refer to the future of a given state in a model, ��'%(*) - + expres-
sions refer to its past. Therefore, in stark contrast to the fact that every LTL and CTL specification
has an equivalent expression in ����� - + , almost no LTL or CTL specification, including response,
has an equivalent expression in �,'%(�) - + . In order to compare pre and post logics, rather, we need
to define query logics, whose formulas refer to a whole model, not an individual state. Query
logics are based on the emptiness predicate - . For a specification . , which is true in some states
of a model and false in others, the query -/�0.1� is true in a model iff . is false in all states of
the model. The query logic ��'%(*) - +32 contains all queries of the form -/�0.1� and 45-/�0.1� , for ��'%(*) - +
expressions . . On the positive side, we prove that every & -regular (Büchi) specification has an
equivalent query in �,'%(�) - +32 . As with the translation from Büchi automata to ����� - + expressions
[EL86,BC96], the translation from Büchi automata to ��'%(*) - +62 queries is linear and involves only
fixpoint expressions of alternation depth two. Moreover, we show that every co-Büchi speci-
fication has an equivalent query in alternation-free ��'%(*) - +�2 , which can be checked efficiently
(in linear time). On the negative side, we prove that there are CTL specifications that are not
equivalent to any boolean combination of �,'%(�) - +52 queries.

Symbolic forward model checking combines the benefits of symbolic over enumerative state
traversal with the benefits of forward over backward state traversal. In [INH96,IN97], the authors
present experimental evidence that symbolic forward state traversal can be significantly more ef-
ficient than symbolic backward state traversal. Our preliminary experimental results confirm this
observation. In addition, we give some theoretical justifications for the symbolic forward ap-
proach. We show that unlike enumerative forward model checking (which is traditionally based
on depth-first state traversal) and unlike symbolic backward model checking, the symbolic for-
ward approach guarantees a.s.a.p. error detection. Intuitively, if a model violates a safety specifi-
cation, and the shortest error trace has length � , then the breadth-first nature of symbolic forward
model checking ensures that the error will be found before any states at a distance greater than
� from the initial states are explored.

The remainder of this paper is organized as follows. In Section 2 we define the logics ����� - +
and �,'%(�) - + , and the query logics they induce. In Section 3, we translate Büchi automata into
equivalent �,'%(�) - +32 queries of alternation depth two, and co-Büchi automata into equivalent
alternation-free �,'%(�) - +32 queries. We also show that the translation guarantees a.s.a.p. error detec-
tion for safety specifications. In Section 4, we compare the distinguishing and expressive powers
of the various pre, post, and query logics. Finally, in Section 5 we put our results in perspective
and report on some experimental evidence for the value of symbolic forward model checking.

2 Definition of Pre and Post Logics

2.1 Pre and post � -calculi

The + -calculus is a modal logic augmented with least and greatest fixpoint operators [Koz83].
In this paper, we use the equational form of the propositional + -calculus, as in [BC96]. The
modalities of the + -calculus relate a set of states to a subset of its predecessor states. Therefore,
we refer to the + -calculus by ����� - + .

The formulas of ����� - + are defined with respect to a set � of propositions and a set � of
variables. A modal expression is either � , 4,� , � , � ��� , �	�
� , � � , or � � , for propositions
���� , variables ���� , and modal expressions � and � . Let � be a finite subset of the set of
natural numbers. An equational block � 	����������	� 	���� �"! #�%$'& consists of a flag �#(�*+)�+*,$
and a finite set of equations � � 	-� � , where each � � is a variable, each � � is a modal expression,
and the variables � � are pairwise distinct. If � 	 + , then � is a + -block; otherwise � is a
* -block. For the equational block � , let .0/ �����1� � 	2��� � ��!
3�%$ be the set of variables on
the left-hand sides of the equations of � . A block tuple 4 	5�6�87"��9�9�9:�;�=<>& is a finite list of
equational blocks such that the variable sets .'/ �����6�@? � , for ACBEDFBHG , are pairwise disjoint.
For the block tuple 4 , let .0/ ��� �64 ��	JI 7LK>?:K,< .0/ �����6�M? � . For every variable �NO.'/ ��� �P4 � , let
�RQ �%/0S,T>U5�6� � be the modal expression on the right-hand side of the unique equation in 4 whose
left-hand side is � . A ����� - + formula . 	E�P4@�V�
W�& is a pair that consists of a block tuple 4 and
a variable � W X.0/ �����P4 � . The variable � W is called the root variable of . . The formula . is
a ����� - + sentence if every variable that occurs in some modal expression of 4 is contained in
.'/ ��� �P4 � .

The semantics of a ����� - + formula is defined with respect to a Kripke structure and a valuation
for the variables. A Kripke structure is a tuple Y#	H�6�Z�+[\�R]^�;_`& that consists of a finite set �
of propositions, a finite set [of states, a binary transition relation]Jab[dc([total in both
the first and second arguments (i.e., for every state efg[, there is a state eih such that] �6ej�Ve=h �
and there is a state e=h h such that] �Pe=h h��Ve �), and a labeling function _Fkl[nmlo that assigns to
each state a set of propositions. The set � of propositions contains the distinguished propositionp S p � ; a state eq�[is initial if

p S p �@_ �6e � . We define four functions � � � , �� � � , ������� and ��������

from m�� to m�� as follows. For any set �Xa [of states, let

����������� 	O� efg[� there exists a state e@h� � with] �Pe �Ve=h �+$l�
������������ 	O� efg[� for all states e h with] �Pej�Re h �:� we have e h �8$ �
�������������/	O� efg[� there exists a state e@h� � with] �Pe=h��Ve �L$l�
��������������/	O� efg[� for all states e h with] �Pe h �Ve �:� we have e h �8$ 9

A Y -valuation for a set � of variables is a function
� ki� m�� that assigns to each variable

a set of states. If
�

and
� h are Y -valuations for � , and �8h@a � is a subset of the variables,

we write
��� � h�� � h
	 for the Y -valuation for � that assigns

� h��P� � to each variable � (� h , and� �6� � to each variable � #���"�8h .
Given a Kripke structure Y 	 �1�Z�;[\�;]^�R_`& and a Y -valuation

�
for a set � of variables,

every modal expression � over the propositions � and the variables � defines a set �� � � � aF[
of states: inductively, �� � � � 	H��e [� � �_ �Pe��+$, ��4,�,�� � � � 	H� eH [� ��� _ �Pe �L$,
� � � �!	 � �6� � , �1� �\� � � � �!	n� � � ����� � � � , �1� �\� � � � �!	2� � � ����� � � � ,
�1� � �� � � � 	 ��� ���1�� � � � � , and � � � �� � � � 	 �� � ���6�� � � � � . Given Y , every block tuple
4 	 �1� 7 ��9�9�9��;� < & over � and � defines a function 4� from the Y -valuations for � to the
Y -valuations for � : inductively, if G 	�� , then 4� � � � 	 �

; if � 7 is a + -block, then 4� � � � is
the least fixpoint of the function ��U � ! ; if � 7 is a * -block, then 4� � � � is the greatest fixpoint of
�"U � ! . The monotonic function �#U � ! from valuations to valuations is defined by

� U � ! � � h � �P� � 	
$
�;Q �>/"S,T �6� �� �R�6�&%"��9�9�9��R� < &� � ��� � h'� .0/ ��� �1� 7 �(� �*),+�� \.0/ ��� �1� 7 �L�
�R�6�&%"��9�9�9��R� < &� � ��� � h'� .0/ ��� �1� 7 �(� ���P� � -�.0/214365�)8701"9

Note that for a ����� - + sentence .�	J�P4@�V��W & , the function 4 is a constant function. Given Y ,
the sentence . defines the set .0 	 49 � � � �P� W � of states (for any choice of

�
). For a state

e [and a ����� - + sentence . , we write e � 	 . if eJ . . For a Kripke structure Y , we
write Y � 	 . , and say that Y satisfies . , if there is an initial state e of Y such that e � 	 . .1

The model-checking problem for ����� - + is to decide, given a Kripke structure Y and a ����� - +
sentence . , whether Yn� 	 . .

Given a block tuple 4 	 �6�j7"��9�9�9:�;�=<>& , the block � � depends on the block � ? if !:�	 D
and some variable that occurs in a modal expression of � � is contained in .0/ ��� �1�M?�� . The ����� - +
sentence . 	f�64=�R� W�& is alternation-free if the dependency relation on the blocks of 4 is acyclic
(i.e., its transitive closure is asymmetric). The model-checking problem for the alternation-free
fragment of ����� - + can be solved in linear time [CS91].

The logic �,'%(*) - + is obtained from the logic ����� - + by replacing the future modal operators
� and � by the past modal operators � - and � - , with the interpretations �1� - � �� � � � 	
�������*�6�� � � � � and � � - � �� � � � 	 ����������6�� � � � � . The semantics of �,'%(*) - + can alternatively
be defined as follows. For a Kripke structure Y 	 �6�Z�;[��R]^�R_ & , define the Kripke structure
Y<; 7 	J�6�Z�+[\�R]�; 7 �R_ & , where]�; 7 �6ej�Ve h � iff] �6e h��Re � . For a ��'%(*) - + sentence . , define .=; 7
to be the ����� - + sentence obtained from . by replacing each occurrence of � - and � - by �
and � , respectively. Then, for every state e of Y , we have eX� 	 . iff eX� 	 &>�? .@; 7 .
2.2 Query logics

We define query logics that are based on ����� - + and �,'%(�) - + . The sentences of ����� - + refer to
the future of a given state in a Kripke structure, and the sentences of ��'%(*) - + refer to its past.
By contrast, the sentences of query logics, called queries, refer to the whole structure and thus
enable us to translate between pre and post logics. The query logics are obtained from ����� - + and

1 Note that we work, for convenience, with the dual of the usual requirement that all initial states satisfy a
����� - � sentence.

��'%(*) - + by adding a predicate - on sentences, called the emptiness predicate. For a logic � , the
query logic � 2 contains the two queries -/�0.1� and 45-/��.,� for each sentence . of � . The query
logic ��� is richer and its queries are constructed inductively as follows:

– -/�0.1� , where . is a formula of � ,
– 4�� 7 and � 7 ��� % , where � 7 and � % are queries of ��� .

The satisfaction relation � 	 for queries on a Kripke structure Y is inductively defined as follows:

– Y � 	 -/��.,� iff for all states (of Y , we have (�� 	 . ,
– Y � 	 4�� 7 iff Y �� 	�� 7 , and Y2� 	�� 7 ��� % iff Yn� 	�� 7 or Yn� 		� % .

While our motivation for query logics is theoretical, for the purpose of comparing pre and post
logics, query logics are also practical. This is because once the state set .@ has been computed
(either explicitly or implicitly, using BDDs), the evaluation of the query -/�0.1� requires constant
time. Therefore, checking a query in ��� � - + � or ������� - + � is no harder than model checking ����� - +
or �,'%(*) - + , respectively.

2.3 Equivalences on Kripke structures induced by pre and post logics

Let Y 	E�6�Z�+[\�R]^�;_`& and YCh3	E�1�Z�;[3h��R] h1�R_ h & be two Kripke structures with the same set of
propositions. A relation
faq[c([�h is a pre-bisimilarity relation if for all states e and e h ,
we have that
 �Pej�Re h � implies (1) _ �Pe ��	 _`h��Pe h � , (2) for every state � with] �Pej����� , there is
a state � h with] h��Pe h ��� h � and
 ��,��� h � , and (3) for every state �>h with] h0�6e h���� h � , there is a state
� with] �Pej����� and
/���i��� h � . Note that, in particular,
/�Pe �Ve@h � implies that either both e and
e h are initial, or neither of them is initial. The pre-bisimilarity relation
 is a pre-bisimulation
between Y and YCh if for all states eX([, there is a state e@h [3h such that
/�Pej�Re=h � , and for
all states e hM [3h , there is a state e [such that
 �Pej�Re=h � . The pre-bisimilarity relation

is an init-pre-bisimulation between Y and Y h if for all initial states e [, there is an initial
state e=h83[3h such that
/�6ej�Ve=h � , and for all initial states e@h83[3h , there is an initial state
eJF[such that
/�6ej�Ve=h � . The relation
3ab[c([fh is a post-bisimulation (resp. init-post-
bisimulation) between Y and Y(h if
 is a pre-bisimulation (resp. init-pre-bisimulation) between
Y<; 7 and Y h
; 7 . The following is an easy extension of a well-known result for ����� - + [BCG88].

Proposition 1. Let Y and Y\h be two Kripke structures.

– There is an init-pre-bisimulation (resp. init-post-bisimulation) between Y and Y h iff for all
sentences . of ����� - + (resp. ��'%(*) - +), we have Yn� 	 . iff Y(h�� 	 . .

– The following three statements are equivalent:
(1) There is a pre-bisimulation (resp. post-bisimulation) between Y and Y h .
(2) For all queries � of ����� - + 2 (resp. ��'%(*) - +32), we have Y � 		� iff Y h � 	�� .
(3) For all queries � of ����� - +�� (resp. ��'%(*) - +��), we have Y2� 	�� iff YCh�� 		� .

3 Intersection of Pre and Post Logics

Of particular interest is the intersection of the query logics ����� - + � and ��'%(*) - + � . It contains the
queries that can be specified in both ����� - +�� , which often is more convenient for specifiers, and
in ��'%(*) - +�� , which often is more efficient for symbolic model checking. In this section we show
that essentially all linear properties lie in this intersection. On the other hand, there are simple
branching properties that do not lie in the intersection.

3.1 In

Consider a Kripke structure Y 	 �6�Z�+[\�R]^�R_ & . An observation of Y is a subset of the proposi-
tions � . An error trace of Y is a finite or infinite sequence of observations. A linear property of
Y is a set of error traces.2 Many useful linear properties, namely, the & -regular linear properties,
can be specified by finite automata. A finite automaton � 	 �6�Z���)��� Wl�����Z� �0����& consists of a
finite set � of propositions, a finite set � of states, a set � W a�� of initial states, a set �	�Oa��
of accepting states, a binary transition relation �	a��Fc
� , and a labeling function �8k�� m o
that assigns to each state a set of propositions. The following definitions regarding paths apply
equally to Kripke structures and automata. A path � 	� W �� 7 ��9�9�9 of Y (resp. �) is a finite or
infinite sequence of states such that for all !�� � , we have] ��+� ��,� � 7 � (resp. � �� �V��,� � 7 �). The
path � is initialized if W is an initial state. By �:S��5���3� we denote the set of states that appear in �
infinitely often. The labeling functions _ and � are lifted from states to paths in the obvious way.

With each finite automaton � we associate a sentence ��� that is interpreted over a Kripke
structure Y with the same propositions as � . The model-checking problem for automata is to
decide, given Y and � , whether Y�� 	���� . We define Y�� 	f��� if there exist an initialized path
� 7 of Y and an accepting initialized path ��% of � such that _ ��� 7 �/	�� ��� %�� ; such an observation
sequence _ ��� 7 � is called an error trace of Y with respect to � . Which paths of � are accepting
depends on the interpretation we place on the automaton � . We consider here three different
interpretations: safety automata, Büchi automata, and co-Büchi automata. For each interpretation
we reduce the model-checking problem for automata to the model-checking problem for ��'%(*) - + 2 ,
by translating automata into equivalent ��'%(*) - +52 queries. The �,'%(*) - +32 query � is equivalent to the
automaton � if for every Kripke structure Y , we have Y � 	���� iff Yn� 		� .

In all translations, we will make use of the following. With each state (of the automaton � ,
we associate two variables, ��� and � h� . In addition, we use the two variables � � and � h� . For
each state (of � , let ��� be a variable-free and modality-free expression that characterizes states
locally, namely, � � 	�� �"!"#�$ �&% � �'�(�*)!"#�$ �+% 4,� . Now, let �-, be the following + -block, which
consists of � �M�/.�A equations, with .'/ �����1�0, � 	f��� � �%(1� $�� ���2�`$:

�3� 	
$ �4��� � p S p � �1576 !98�:<;�$ �&% � - � 6 �),+ (1� W �
�4���=5 6 !98�:<;�$ �&% � - � 6),+ (�1� W �

�2��	 5?> !A@9B@� > 9
Note that the size of �0, is linear in the size of � .

Safety automata A safety property of a Kripke structure Y is a set of finite error traces. The
regular safety properties can be specified by safety automata. A safety automaton is a finite
automaton � such that a path � of � is accepting if � is a finite path and its last state is an
accepting state of � . It is not difficult to see that the safety automaton � is equivalent to the
��'%(*) - + 2 query � , 	 45-/�V�R�6� , &L�R� � & � .

If a finite error trace exists, during model checking, we would like to find it as soon as
possible. By evaluating the query �C, as follows (in the standard way), this can indeed be guar-
anteed. The evaluation of the + -block �(, over a Kripke structure Y proceeds in iterations. Let
�: �6! �@aO[denote the value of variable � .0/ �����1� , � after the i-th iteration, and let

� �P! �
denote the Y -valuation that assigns to each variable in � f.0/ ��� �1� , � the value � �6! � . Ini-
tially, � � ���/	ED for all � (.0/ �����1� , � . In all subsequent iterations, the value of each variable
� \.0/ ��� �1� , � is updated according to the equation � �P!�.�A��6	 �RQ �%/0S T �P� �� � � �6! � � . Since
the modal expressions in � , are monotonic, once � � �P�!� �	FD for some � , we know that

2 Recall that we work, for convenience, in a setting that is dual to the one that considers linear properties
to consist of all non-error traces.

�:� �6G3�&�	 D for all G � � . Hence, we can detect that Y � 	��9, as soon as � � �P�!� is nonempty.
The following theorem guarantees that if there is an error trace of length � , then we will find
it in � iterations. In other words, using symbolic forward state traversal, we will explore only
states up to distance � from initial states.

Theorem 1. For every safety automaton � , an equivalent alternation-free �,'%(*) - + 2 query �", can
be constructed in linear time. Further, for every Kripke structure Y , if the shortest error trace in
Y with respect to � has length � , then � � �6� � �	 D , where �2� is the root variable of �C, .

Büchi automata Safety automata cannot specify infinite error traces. For that, we use Büchi
automata. A Büchi automaton � is a finite automaton such that a path � of � is accepting if
�LS��5���3� �?� � �	 D ; that is, some accepting state of � occurs infinitely often in � . It is well-known
[EL86,Dam94,BC96] that for every Büchi automaton � , there exists a ����� - + 2 query ��, such that
for every Kripke structure Y , we have Y � 	 ��� iff Yn� 	�� , . We now show that there exists also
a ��'%(*) - + 2 query �9, with the same property, thereby proving that the model-checking problem for
Büchi automata lies in the intersection of ����� - +52 and �,'%(�) - + 2 . We define two equational blocks:
a * -block � 7 and a + -block � % . The block �j7 contains the following � �	�M� .OA equations, with
.'/ ��� �6� 7�� 	f��� h> ��� 1���Z$�� ��� h� $:

� h> 	�� > � 5 6 !98�:&;�$ > % � - � h6 �
� h� 	 5?> !A@CB@� h> 9

The block � % contains an equation for each state (j=� �C�	� , defined by

� h� 	 � � � 5 6 !98�:<;�$ �+% � - � h6 9
Then, � , 	 45-/�V�R�6� 7 �R�&%"�R� , &L�R� h� & � . Notice that, as with ����� - + 2 [BC96], the translation is
linear in the size of the Büchi automaton. Also, the equational blocks � 7 and � % depend on each
other and the alternation depth of � , is two. Since Büchi automata are expressively equivalent to
the & -regular languages, the query logic �,'%(�) - +52 can specify all & -regular properties.

Theorem 2. For every Büchi automaton, an equivalent ��'%(*) - + 2 query of alternation depth two
can be constructed in linear time.

In particular, since all sentences of the linear temporal logic LTL can be translated to Büchi
automata [VW94], Theorem 2, together with [EL86], implies that all LTL sentences lie in the
intersection ����� - +32 � ��'%(*) - + 2 . Hence, LTL model checking can proceed by symbolic forward
state traversal. Since the translation from LTL to Büchi automata involves an exponential blow-
up, the translation from LTL to �,'%(*) - + 2 is also exponential.

Co-Büchi automata Recall that the translation from Theorem 2 results in formulas of alterna-
tion depth two. It has been recently argued [KV98] that a linear property given by a co-Büchi
automaton can be translated into an alternation-free ����� - +62 query.3 Consequently, the model
checking of linear properties that are specified by co-Büchi automata requires time that is only
linear in the size of the Kripke structure. We now show that every co-Büchi automaton � can
also be translated into an equivalent alternation-free ��'%(*) - +62 query �", , thereby proving that the
model-checking problem for co-Büchi automata lies in the intersection of alternation-free ����� - + 2
and alternation-free �,'%(�) - +32 . A co-Büchi automaton � is a finite automaton such that a path � of

3 The results in [KV98] refer to sentences of the form ��� , for deterministic B üchi automata � . Since an � -
regular language can be specified by a deterministic B üchi automaton iff its complement can be specified
by a co-B üchi automaton, the corresponding result for 	
� , for co-B üchi automata � , follows by duality.

� is accepting if �LS � ���3� a � � ; that is, all the non-accepting states of � occur in � only finitely
often. We define an equational * -block ��� that contains the following � �	�M� . A equations, with
.'/ ��� �6��� � 	f��� h> ��� 1���Z$�� ��� h� $:

� h> 	�� > � 576 !98�:<;�$ > %�� @9B � - � h6 �
� h� 	 5 > !A@ B � h> 9

Then, � , 	 45-/�V�R�6� � �R� , &:�V� h� & � . Notice that � , is alternation-free and linear in the size of � .

Theorem 3. For every co-Büchi automaton, an equivalent alternation-free ��'%(*) - +62 query can
be constructed in linear time.

3.2 Out

We now show that there exist branching temporal-logic specifications that cannot be model
checked by evaluating ��'%(*) - +�� queries. A ��'%(*) - +�� query � is equivalent to a ����� - + sentence
. if for every Kripke structure Y , we have Yd� 	 . iff Yd� 	 � . Consider the ����� - + sentence
. 7�	 �V�R�1* ����� 	 � �g� � ��$'&R&L�V�(& , which is equivalent to the CTL sentence �1� � � ,
and consider the Kripke structures Y#7 and YCh7 appearing in Figure 1. It is easy to see that

� �

init init init
���	�
� 	

Fig. 1. �� and ��� are post-bisimilar but not pre-bisimilar.

there is a post-bisimulation between Yg7 and YCh7 . Hence, by Proposition 1, no ��'%(*) - +�� query
can distinguish between them. On the other hand, while the structure Y 7 satisfies .R7 , the struc-
ture Y h7 does not satisfy .�7 . Using a similar argument, it can be shown that the ����� - + sen-
tence that is equivalent to the CTL sentence ��" � � � ��" � � ��"�$%� can distinguish between two
structures that have a post-bisimulation between them, implying there is no equivalent ��'%(*) - + �
query. Interestingly, the ����� - + sentence �V�6� 7"�R� % &:�V� 7:& with � 7 	 ��* �:� � 7 	q� % �C� � 7'$'&
and � % 	 � +)����� % 	 �!� � � %0$'& , which is equivalent to the CTL sentence �1�Z��" � , and
which is not equivalent to any LTL sentence [CD88], does have an equivalent query in ��'%(*) - + 2 .
The query is 45-/�R�V�1� � �R��� &L�R� 7 & � , with � � 	 �1*>�:� � 7 	 � �C� %"�V� %!	 � � �\� - � %0$0& and
��� 	X� +)����� � 	 p S p �3� � - � � $'& .
Proposition 2. There exist ����� - + sentences (in fact, CTL sentences) that have no equivalent
��'%(*) - +�� queries.

4 Hierarchy of Pre and Post Logics

Let � 7 and � % be two logics whose sentences are interpreted over Kripke structures. The logic
� % is as expressive as the logic �M7 if for every sentence .�7 of �Z7 , there is a sentence . % � %

such that for every Kripke structure Y , we have Y � 	 . 7 iff Y � 	 . % . The logic � % is more
expressive than �M7 if � % is as expressive as �M7 but � 7 is not as expressive as � % . The logic � % is
as distinguishing as the logic � 7 if for all Kripke structures Y and Y h , if there is a sentence .�7
of � 7 such that Y�� 	 . 7 but Y h �� 	 . 7 , then there is a sentence .�% of ��% such that Y�� 	 . % but
Y h��� 	 . % . Finally, the logic � % is more distinguishing than � 7 if � % is as distinguishing as � 7 but
� 7 is not as distinguishing as ��% . In this section, we study the distinguishing and the expressive
powers of ����� - + and �,'%(*) - + and the query logics they induce. For this purpose, the sentences of
query logics are the queries.

� �

�
initinit

�� ���
� �

Fig. 2. ��� and � �� are init-post-bisimilar but not post-bisimilar

Proposition 3. The distinguishing powers of pre and post logics are summarized in the figure
below. An arrow from logic �M7 to logic � % indicates that � 7 is as distinguishing as � % . A line
without arrow indicates incomparability.

����� - �
	

������ - � ������ - � 	������ - ���

����� - � ����� - � �

Proof. Proposition 1 implies that the distinguishing powers of ����� - + 2 and ����� - + � coincide, and
similarly for �,'%(�) - + . In order to prove the incomparability results, we show that the four re-
lations init-pre-bisimulation, init-post-bisimulation, pre-bisimulation, and post-bisimulation are
all distinct. Recall that there may be states in a Kripke structure that are not reachable from an
initial state, as there may be states from which no initial state is reachable. Consider the Kripke
structures Y % and YCh% appearing in Figure 2. There is an init-pre-bisimulation and an init-post-
bisimulation between Y % and Y h% , but no pre-bisimulation or post-bisimulation. Hence, (post)
pre-bisimulation is more distinguishing than (init-post) init-pre-bisimulation. Now consider the
Kripke structures Yg7 and YCh7 appearing in Figure 1. There is a post-bisimulation and an init-
post-bisimulation between Yg7 and YCh7 , but no pre-bisimulation or init-pre-bisimulation. Also,
there is a pre-bisimulation and an init-pre-bisimulation between Y ; 77 and Y h ; 77 but no post-
bisimulation or init-post-bisimulation. Hence, pre-bisimulation and post-bisimulation as well as
init-pre-bisimulation and init-post-bisimulation are incomparable. ��

Proposition 4. The expressive powers of pre and post logics are summarized in the figure below.
An arrow from logic �M7 to logic � % indicates that �M7 is as expressive as � % . A line without arrow
indicates incomparability.

������ - � ������ - � 	������ - � �

����� - � ����� - �
	����� - � �

Proof. It is easy to see that if a logic � % is not as distinguishing as a logic � 7 , then � % is not as
expressive as � 7 . Therefore, most of our expressiveness results follow from the corresponding
results about distinguishability. In addition, as a Kripke structure Y satisfies a sentence . iff Y
satisfies the query 45- � p S p ���!.1� , the query logics ����� - +�2 and ��'%(*) - +32 are more expressive than
����� - + and �,'%(*) - + , respectively. In order to prove the advantage of the full query logics ����� - + �
and ��'%(*) - + � over its subsets ����� - +32 and ��'%(*) - +32 , it is easy to see that no query of the query
logics ����� - +32 and ��'%(*) - +32 is equivalent to the query -/���1� � -/� $%� . ��

5 Discussion and Experimental Results

5.1 Intersection of pre and post logics

While previous works presented symbolic forward state-traversal procedures for model check-
ing some isolated linear and branching properties [INH96,IN97], we attempted to study more
systematically the class of properties that can be model checked using both symbolic forward
and backward state traversal. In particular, we showed that all & -regular linear properties (which
includes all properties expressible in LTL) fall into this class, while some simple branching prop-
erties (expressible in CTL) do not. Furthermore, every query that can be specified in both ����� - + 2
and �,'%(*) - + 2 cannot distinguish between structures that are both pre-bisimilar and post-bisimilar.
Yet the exact characterization of the intersection ����� - +52&� ��'%(*) - + 2 remains open. In [GK94],
the authors identified a set of temporal-logic sentences called equi-linear. In particular, a ����� - +
sentence is equi-linear if it cannot distinguish between two Kripke structures with the same
language (i.e., observation sequences that correspond to initialized paths). Clearly, all LTL sen-
tences are equi-linear. However, some CTL sentences that have no equivalent LTL sentence are
also equi-linear. For example, it is shown in [GK94] that while the CTL sentence �1�Z� � is
not equi-linear, the CTL sentence �1�Z��" � is equi-linear. Motivated by the examples from Sec-
tion 3.2, we conjecture that equi-linearity precisely characterizes the properties that can be model
checked using both symbolic forward and backward state traversal. Formally, we conjecture that
a ����� - + sentence is equi-linear iff there is an equivalent ��'%(*) - +52 query.

5.2 Union of pre and post logics

In this paper, we primarily think of �,'%(*) - +�� as a language for describing symbolic model-
checking procedures for temporal-logic specifications. Furthermore, we have focused on spec-
ification languages that contain only future temporal operators. Since LTL with past temporal
operators is no more expressive than LTL without past operators [LPZ85], every LTL+past sen-
tence can also be translated into an equivalent ��'%(*) - +52 query. In addition, ��'%(*) - + also permits the
easy evaluation of branching past temporal operators that cannot be evaluated using ����� - + . For
example, the sentence �5�����
�R/0S��� �04 p S p � ��� �� � ����� , where �� is a past version of the “weak-
until” operator [MP92], specifies that grants are given only upon request. Assuming a branching
interpretation for past temporal operators [KP95], this sentence has an equivalent ��'%(*) - + 2 query,
but no equivalent ����� - +�� query; that is, it can be model checked by symbolic forward state
traversal but not by symbolic backward state traversal.

While the intersection ����� - +�� � ��'%(*) - +�� identifies the queries that can be model checked
by both symbolic forward and backward state traversal, it is the “union” ������� - +:� ��'%(*) - +3��� 4

that identifies the queries that can be model checked at all symbolically, by mixed forward and
backward state traversal.5 Furthermore, it is the alternation-free fragment of ������� - + � ��'%(*) - +3� �
that identifies the queries that can be model checked efficiently. Thus it is also of interest to ask
which temporal logics can be translated into the (alternation-free) union of pre and post query
logics. Such temporal logics can have both future and past temporal operators. In particular, it
is easy to see that every CTL+past sentence (under the branching interpretation for past) has an
equivalent query in the alternation-free fragment of ������� - + � ��'%(*) - +3��2 .
5.3 Experimental results

In our experiments, we performed BDD-based symbolic model checking on a parameterized
sliding-window protocol for the reliable transmission of packets over an unreliable channel. The
parameter to the protocol is �2����� ����� , the number of outstanding unacknowledged messages
at the sender end. In the protocol, the messages are modeled as boolean values. We checked
whether all computations of the protocol satisfy the partial specification . , which states that if
the produced message msgP toggles infinitely often at the sender end, then so does the consumed
message msgC at the receiver end. Formally, the specification . is given by the LTL sentence
� " ��	� ��
� 4�	 � ��
�� � " ��	 � ���� 4�	 � ��� � . We note that this sentence cannot be
handled by the methods presented in [INH96,IN97].

In the table below we list the running times (in seconds) for different values of � ����� ����� for
checking . using VIS [BHSV � 96] for both symbolic forward and backward state traversal. The
quantity within the parentheses is the number of boolean variables used to encode the state space
of the protocol. It is folk wisdom in symbolic model checking that using don’t-care minimization
based on unreachable states can dramatically improve the running times. So we also applied
first symbolic forward state traversal to compute the set of reachable states and then symbolic
backward state traversal for model checking, using the unreachable states as don’t cares. These
results are shown in the last column. A dash indicates an unsuccessful verification attempt. In
the future, we hope to compare our approach also against enumerative forward state-traversal
methods for LTL model checking.

WINSIZE Forward Backward Reach-optimized backward
2 (30) 18 222 91
3 (45) 300 4584 -
4 (50) 5231 - -

Acknowledgments

We thank Rajeev Alur, Bob Brayton, Ed Clarke, Allen Emerson, and Orna Grumberg for helpful
discussions, and Carl Pixley for drawing the authors’ attention to [INH96].

References

[BC96] G. Bhat and R. Cleavland. Efficient model checking via the equational � -calculus. In Proc. 11th
IEEE Symposium on Logic in Computer Science, pp. 304–312, 1996.

4 By the union ����� -��� ������� - � we refer to the logic with all four modal operators 	 , � , 	 - , and � - .
It has, of course, strictly more sentences than the union of the sets of ����� -� and ������� -� sentences.

5 In fact, not only can model checking algorithms be extended from ����� - � to � ����� - ��� ������� -����� without
extra cost, the satisfiability problem for the union is also no harder than the satisfiability problem for
either ����� -� or ����� � -� [Var98].

[BCG88] M.C. Browne, E.M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in propo-
sitional temporal logic. Theoretical Computer Science, 59:115–131, 1988.

[BCM � 92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model check-
ing: ��� ��� states and beyond. Information and Computation, 98(2):142–170, 1992.

[BHSV � 96] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng,
S. Edwards, S. Khatri, T. Kukimoto, A. Pardo, S. Qadeer, R.K. Ranjan, S. Sarwary, T.R. Shiple, G. Swamy,
and T. Villa. VIS: a system for verification and synthesis. In CAV 96: Computer Aided Verification, LNCS
1102, pp. 428–432, Springer, 1996.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean-function manipulation. IEEE Trans. on Com-
puters, C-35(8), 1986.

[CD88] E.M. Clarke and I.A. Draghicescu. Expressibility results for linear-time and branching-time log-
ics. In Proc. Workshop on Linear Time, Branching Time, and Partial Order in Logics and Models for
Concurrency, LNCS 354, pp. 428–437, Springer, 1988.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using branching
time temporal logic. In Proc. Workshop on Logic of Programs, LNCS 131, pp. 52–71, Springer, 1981.

[CGH94] E.M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model checking. In CAV
94: Computer Aided Verification, LNCS 818, pp. 415 – 427, Springer, 1994.

[CGL93] E.M. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent systems.
In Decade of Concurrency – Reflections and Perspectives (Proc. REX School), LNCS 803, pp. 124–175,
Springer, 1993.

[CS91] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the alternation-free
modal � -calculus. In CAV 91: Computer Aided Verification, LNCS 575, pp. 48–58, Springer, 1991.

[Dam94] M. Dam. CTL

and ECTL

as fragments of the modal � -calculus. Theoretical Computer Science,
126:77–96, 1994.

[Dil96] David L. Dill. The Mur � Verification System. In CAV 96: Computer Aided Verification, LNCS
1102, pp. 390–393, Springer, 1996.

[EL86] E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional � -calculus.
In Proc. 1st Symposium on Logic in Computer Science, pp. 267–278, 1986.

[GK94] O. Grumberg and R.P. Kurshan. How linear can branching-time be. In Proc. 1st International
Conference on Temporal Logic, LNAI 827, pp. 180–194, Springer, 1994.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In Protocol Specification, Testing, and Verification, pp. 3–18, Chapman, 1995.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering, 23(5):279–295,
1997.

[IN97] H. Iwashita and T. Nakata. Forward model checking techniques oriented to buggy designs. In Proc.
IEEE/ACM International Conference on Computer Aided Design, pp. 400–404, 1997.

[INH96] H. Iwashita, T. Nakata, and F. Hirose. CTL model checking based on forward state traversal. In
Proc. IEEE/ACM International Conference on Computer Aided Design, pp. 82–87, 1996.

[Koz83] D. Kozen. Results on the propositional � -calculus. Theoretical Computer Science, 27:333–354,
1983.

[KP95] O. Kupferman and A. Pnueli. Once and for all. In Proc. 10th IEEE Symposium on Logic in
Computer Science, pp. 25–35, 1995.

[KV98] O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: from linear-time to
branching-time. In Proc. 13th IEEE Symposium on Logic in Computer Science, 1998.

[LPZ85] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics of Programs, LNCS
193, pp. 196–218, Springer, 1985.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.

Springer, 1992.
[Pel94] D. Peled. Combining partial order reductions with on-the-fly model-checking. In CAV 94: Com-

puter Aided Verification, LNCS 818, pp. 377–390, Springer, 1994.
[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In Proc.

5th International Symp. on Programming, LNCS 137, pp. 337–351, Springer, 1981.
[Var98] M.Y. Vardi. Reasoning about the past with two-way automata. In Proc. 25th International Coll.

on Automata, Languages, and Programming, LNCS, Springer, 1998.
[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation,

115(1):1–37, 1994.

