Module Checking Revisited*

OrnaKupferman®* and Moshe Y. Vardi?~>*

! EECS Department, UC Berkeley, Berkeley CA 94720-1770, U.SA.
Email: or na@ecs. ber kel ey. edu
2 Rice University, Department of Computer Science, Houston, TX 77251-1892, U.S.A.
Email: var di @s. ri ce. edu, URL:http://wwmv. cs.rice. edu/ ~vardi

Abstract. When we verify the correctness of an open system with respect to a desired
reguirement, we should take into consideration the different environments with which the
system may interact. Each environment induces a different behavior of the system, and
we want all these behaviorsto satisfy the requirement. Module checking is an algorithmic
method that checks, given an open system (modeled as a finite structure) and a desired
regquirement (specified by a temporal-logic formula), whether the open system satisfiesthe
reguirement with respect to all environments. In this paper we extend the module-checking
method with respect to two orthogonal issues. Both issuesconcern the fact that often we are
not interested in satisfaction of the requirement with respect to all environments, but only
with respect to these that meet some restriction. We consider the casewhere the environment
has incomplete information about the system; i.e., when the system has internal variables,
which are not readable by its environment, and the case where some assumptionsare known
about environment; i.e., when the system is guaranteed to satisfy the requirement only when
its environment satisfies certain assumptions. We study the complexities of the extended
module-checking problems. In particular, we show that for universal temporal logics (e.g.,
LTL, VCTL, and VCTL*), module checking with incomplete information coincides with
module checking, which by itself coincides with model checking. On the other hand, for
non-universal temporal logics (e.g., CTL and CTL*), module checking with incomplete
information is harder than module checking, which is by itself harder than model checking.

1 Introduction

Temporal logics, which are modal logics geared towards the description of the tempora or-
dering of events, have been adopted as a powerful tool for specifying and verifying reactive
systems [Pnu8l]. One of the most significant developments in this area is the discovery of d-
gorithmic methods for verifying temporal-logic properties of finite-state systems [CE81, QS81,
LP85, CES86]. This derives its significance both from the fact that many synchronization and
communication protocols can be modeled as finite-state systems, as well as from the great ease
of use of fully agorithmic methods.

We distinguish between two types of temporal logics: universal and non-universal. Both
logics describe the computation tree induced by the system. Formulas of universal temporal
logics describe requirements that should hold in &l the branches of the tree [GL94]. These
requirements may be either linear (e.g., in al computations, only finitely many requests are sent)
or branching (e.g., in all computations we eventually reach a state from which, no matter how

* Part of thiswork wasdonein Bell Laboratoriesduring the DIMACS special year on Logic and Algorithms.
** Supportedin part by the ONR Y | P award N00014-95-1-0520, by the NSF CAREER award CCR-9501708,
by the NSF grant CCR-9504469, by the AFOSR contract F49620-93-1-0056, by the ARO MURI grant
DAAH-04-96-1-0341, by the ARPA grant NAG2-892, and by the SRC contract 95-DC-324.036.
*** Supported in part by the NSF grant CCR-9628400.

we continue, no requests are sent). In both cases, the more behaviors the system has, the harder
it is for the system to satisfy the requirements. Indeed, universal tempora logics induce the
simulation order between systems [Mil71, CGB86]. That is, asystem M simulates a system M’
if and only if al universal tempora logic formulas that are satisfied in M’ are satisfied in M as
well. On the other hand, formulas of non-universal temporal logics may aso impose possibility
requirements on the system (e.g., there exists a computationin which only finitely many requests
are sent). Here, it isno longer true that simulation between systems corresponds to agreement on
satisfaction of requirements. Indeed, it might be that adding behaviors to the system helpsiit to
satisfy a possibility requirement or, equivalently, that disabling some of its behaviors causes the
requirement not to be satisfied.

We a so distingui sh between two types of systems: closed and open [HP85]. A closed system
isasystemwhosebehavior iscompletely determined by the state of the system. An open systemis
asystemthat interactswithitsenvironment and whose behavior depends on thisinteraction. Thus,
whilein aclosed system all the nondeterministic choices areinternal, and resolved by the system,
in an open system there are also externa nondeterministic choices, which are resolved by the
environment [Hoa85]. In order to check whether a closed system satisfies arequired property, we
trand ate the system into some formal model, specify the property with atemporal-logic formula,
and check formaly that the model satisfies the formula. Hence the name model checking for
the verification methods derived from this viewpoint. In order to check whether an open system
satisfies a required property, we should check the behavior of the system with respect to any
environment, and often thereis much uncertai nty regarding the environment [FZ88]. In particul ar,
it might be that the environment does not enable all the external nondeterministic choices. To see
this, consider a sandwich-dispensing machine that serves, upon request, sandwiches with either
ham or cheese. The machine is an open system and an environment for the system is an infinite
line of hungry people. Since each person in the line can like either both ham and cheese, or only
ham, or only cheese, each person suggests a different disabling of the external nondeterministic
choices. Accordingly, there are many different possible environments to consider.

It turned out that model -checking methods are applicable also for verification of open systems
with respect to universal temporal-logic formulas [MP92, KV96]. To see this, consider a com-
position of an open system with amaximal environment; i.e., an environment that enables dl the
externa nondeterministic choices. Thiscompositionisaclosed system, and it issimulated by any
other composition of the system with some environment. Therefore, one can check satisfaction
of universal requirements in an open system by model checking the composition of the system
with thismaximal environment. As discussed in [KV96], this approach can not be adapted when
verifying an open system with respect to non-universal requirements. Here, satisfaction of the
requirements with respect to the maximal environment does not imply their satisfaction with re-
spect to all environments. Hence, we should explicitly make surethat all possibility requirements
are satisfied, no matter how the environment restricts the system. For example, verifying that
the sandwi ch-dispensing machine described above can always eventually serve ham, we want to
make sure that this can happen no matter what the eating habits of the peoplein line are. Note
that while this requirement holds with respect to the maximal environment, it does not hold, for
instance, in an environment in which all the peoplein line do not like ham.

In [KV96], we suggested module checking as a general method for verification of open sys-
tems. Given an open system M and a temporal-logic formula +, the module-checking problem
asks whether for al possible environments &, the composition of M with £ satisfies 4. In this
paper we extend the modul e-checking method with respect to two orthogonal issues. Both issues
concern the fact that often we are not interested in satisfaction of with respect to al environ-
ments, but only with respect to those that meet some restriction. In particular, we consider the

case where £ hasincompleteinformationabout M ; i.e., not al thevariablesof M arereadable by
&, and the case where some assumptions are known about £. We now describe these extensions
in more detail.

An interaction between a system and its environment proceeds through a designated set
of input and output variables. In addition, the system often has internal variables, which the
environment cannot read. If two states of the system differ only in the values of unreadable
variables, then the environment cannot di stinguish between them. Similarly, if two computations
of the system differ only in the values of unreadable variables along them, then the environment
cannot distinguish between them either and thus, its behaviors along these computations are
the same. More formally, when we compose a system M with an environment £, and several
states in the composition look the same and have the same history according to £’s incomplete
information, then the nondeterministic choices done by £ in each of these states coincide. In the
sandwi ch-di spensing machine example, the people in line cannot see whether the ham and the
cheese are fresh. Therefore, their choices are independent of this missing information. Given an
open system M with a partition of M’svariablesinto readable and unreadable, and a temporal -
logic formula 1y, the module-checking problem with incomplete information asks whether the
composition of M with & satisfies), for all environments £ whose nondeterministic choices are
independent of the unreadable variables (that is, £ behaves the same in indistinguishabl e states).

Often, the environment is known to satisfy some assumptions. In the sandwich-dispensing
machine example, it may be useful to know that the machine is located in a vegetarian village.
In the assume-guarantee paradigm [Jon83, Lam83], the specification of an open system consists
of two parts. One part describes the guaranteed behavior of the system. The other part describes
the assumed behavior of the environment with which themoduleisinteracting. A system M then
satisfies a specification with assumption ¢ and guarantee + if and only if in all compositions of
M with &, if the composition satisfies ¢, then it satisfies v as well. Checking assume-guarantee
specificationsis hel pful in modular verification [GL94]. For universal temporal logics, automatic
methods for this check are suggested in [Pnu85, Var95, KV95]. These methods depend on the
fact that the simulation order captures agreement on universal temporal-logic formulas, and they
cannot be extended to handle non-universal formulas. Modul echecking can beviewed asaspecia
case of the assume-guarantee paradigm, where the guarantee may be any formula, not necessarily
auniversal one, and the assumption istrue. We extend here modul e checking to handle arbitrary
assumptions. This suggests a complete and uniform assume-guarantee paradigm, for both the
universal and non-universal settings, with both complete and incomplete information.

We solve the problems of module checking with assume-guarantee specifications and with
incomplete information and consider their complexities. It turns out that while checking assume-
guarantee specifications is not harder than module checking, the presence of incomplete infor-
mation makes modul e checking more complex. To see why, consider an environment of asystem
with unreadable variables. Recall that several states in the composition of the system and the
environment may be different and till be indistinguishable by the environment. Accordingly,
the environment should behave the same in these states. Such a condition on the behavior of the
environment relates remote nodes in the computation tree of the system, and there is no regular
condition that relates these nodes (i.e., one cannot define an automaton that accepts all treesin
which nodes that are indistinguishable by the environment have the same label). This need to
rel ate i ndi stingui shable nodes makes incompl ete information very challenging.

We claim that alternation is a suitable and helpful mechanism for coping with incomplete
information. Using alter nating tree automata, we show that the problem of modul e checking with
incomplete information is decidable. In particular, it is EXPTIME-complete and 2EXPTIME-
completefor CTL and CTL*, respectively. As the module-checking problem for CTL ishard for

EXPTIME aready for environments with complete information, it might seem asif incomplete
information can be handled at no cost. Thisis, however, not true. While both problems can be
solved intimethat isexponential in thesizeof theformula, only the onewith compl eteinformation
can be solved in time that is polynomial in the size of the system [KV96]. On the other hand,
modul e checking with incompl eteinformation requirestimethat isexponentia in both theformula
and the system. Keeping in mind that the system to be checked istypically aparalel composition
of several components, which by itself hides an exponentia blow-up, thisimplies that checking
non-universal properties of open systems with internal variablesisrather intractable.

2 Prdiminaries
2.1 Treesand Labeled Trees

Given afiniteset 7", an T-treeisanonempty set 7' C 7* such that if s - v € 7', wheres € T
andv € 7', thenalso s € T. When 7" isnot important or clear from the context, we call 7" atree.
The elements of 7" are called nodes, and the empty word ¢ istheroot of 7. For every s € T, the
nodess - v € T'wherev € 7" arethe children of s. AnT-tree T isafull infinitetree if 7' = 7"*.
Each node s of T" has adirection in 7. The direction of the root is some designated vg € 7. The
direction of anodes - viswv. Aninfinitepath = of T'isaset # C 7" such that ¢ € = and for every
s € wthereexistsauniquev € 7" suchthat s - v € w. Given twofinitesets? and X', a X'-labeled
Y-treeisapair (T,V) where T isanT-treeand V : T' — X maps each node of 7" to aletter in
Y. When7 and X are not important or clear from the context, we call (T, V') alabeled tree.

For finite sets X and Y, and anode s € (X x Y)*, let hidey(s) be the node in X*
obtained from s by replacing each letter (x - y) by the letter 2. For example (see figure), when
X =Y = {0, 1}, thenode 0010 of the (X x Y)-tree on theright corresponds, by hidey , to the
node 01 of the X -tree on the | eft. Note that the nodes 0011, 0110, and 0111 of the (X x Y')-tree
also correspondto the node 01 of the X -tree.

€

N T N
/\ /\ //\\ //\\ //\\ //\\

00000001 00100011 0100010101100111 1000100110101011 1100110111101111

Let Z be afinite set. For a Z-labeled X -tree (T, V'), we define the Y-widening of (7, V),
denoted widey ((T',V')), asthe Z-labeled (X x Y)-tree(T", V') wherefor every s € T', we have
hidey(s) C T" and for every t € T, we have V'(t) = V (hidey (t)). Note that for every node
te T, andz € X, thechildrent - (z - y) of ¢, for al y, agree on their label in (T”, V') Indeed,
they are al labeled with V(hidey (t) - z).

2.2 Modulesand Composition of Modules
We describe asystemby amodule M = (I, 0, H, W, wo, R, L), where

— 1,0, and H are sets of input, readable output, and hidden (internal) variables, respectively.
We assume that 7,0, and H are pairwise digoint, we use K to denote the variables known
to the environment; thus K = 7 U O, and weuse P to denoteall variables; thusP = K U H.
— Wisaset of states, and wp € W isaninitial state.

— R C W x W isatotd transtionrelation. For (w, w’) € R, we say that w’ isasuccessor of
w. Requiring R to be total means that every state w has at least one successor.

— L : W — 2F maps each state to the set of variables that hold in this state. The intuitionis
that in every stete w, themodulereads L(w) N I and writes L(w) N (O U H).

Note that M has no fairness condition. The difficulties caused by adding such a condition are
orthogonal to the problems considered in thiswork. As we shall further discussin Section 3.2,
our framework can be easily adjusted to handle modul eswith fairness conditions. A computation
of M is a sequence wg, wy, ... of states, such that for al ¢ > 0 we have (w;, w;+1) € R. We
definethesize |M| of M as(|W|*|P|)+ | R|. We assume, without loss of generdlity, that al the
statesof M arelabeled differently; i.e., thereexist no wy and wo in W for which L(w1) = L(w2)
(otherwise, we can add variablesin H that differentiate states with identical labeling). With each
module M we can associate acomputationtree (T, Vi) obtained by pruning M fromtheinitial
state. More formaly, (Tar, Var) isa 2P -labeled 27 -tree (not necessarily with a fixed branching
degree). Each node of (T, Vr) correspondsto astate of M, with the root corresponding to the
initial state. A node corresponding to a state w is labeled by I(w) and its children correspond
to the successors of w in M. The assumption that the nodes are labeled differently enable us to
embody (T, Var) ina(27)*-tree, with anode with direction v labeled v.

A module M isclosed iff I = (. Otherwisg, it is open. Consider an open module M. The
module interacts with some environment £ that supplies its inputs. When A isin state w, its
ability tomoveto acertain successor w’ of w isconditioned by thebehavior of itsenvironment. If,
forexample, L(w')N T = o and the environment does not supply ¢ to M, then M cannot moveto
w’. Thus, the environment may disable some of M’ stransitions. We can think of an environment
to M asadtrategy £ : (2K)* — {T, L} that maps afinite history s of acomputation (as seen by
the environment) to either T, meaning that the environment enables M totrace s, or L, meaning
that the environment does not enable M to trace s. In other words, if M reaches a state w by
tracing some s € (2%)*, and a successor w’ of w has L(w) N K = ¢, then an interaction of M
with & can proceed from w to w’ iff £(s - o) = T. We say that the tree ((2X)*, £) maintains
the strategy applied by £. We denote by M <1 £ the composition of M with &; that is, the tree
obtained by pruning from the computation tree (T, Var) subtrees according to £. Note that
& may disable al the successors of w. We say that a composition M <1 £ is deadlock free iff
for every state w, at least one successor of w is enabled. Given M, we can define the maximal
environment &4, for M. The maximal environment has £,,,4.. (z) = T for al = € (2K)*; thus
it enables al thetransitionsof M.

The hiding and widening operators (see Section 2.1) enable ustorefer to theinteraction of M
with £ as seen by both M and £. Aswe shall see below, thisinteraction looks different from the
two pointsof views. First, clearly, the [abels of the computation tree of M, as seen by £, do not
contain variablesin H . Consequently, £ thinksthat (T, Var) isa 2% -tree, rather than a2f -tree.
Indeed, £ cannot distinguish between two nodesthat differ only in the values of variablesin H in
their 1abels. Accordingly, abranch of (7, Vas) into two such nodes is viewed by £ asasingle
transition. This incomplete information of £ is reflected in its strategy, which is independent
of H. Thus, successors of a state that agree on the labeling of the readable variables are either
al enabled or all disabled. Formally, if ((25)*, &) isthe {T, L}-labeled 2K -tree that maintains
the strategy applied by £, thenthe {T, L }-labeled 2”-tree wide ,x) (((2%)*, £)) maintains the
“full” strategy for £, as seen by someone that sees both K and H.

Another way to see the effect of incompl eteinformationisto associate with each environment
& atree obtained from (T, Vas) by pruning some of itssubtrees. A subtreewithroot s € Ty is
prunediff K'(hideom)(s)) = L. Every twonodess; and s that are indistinguishableaccording
to £'sincomplete information have hide omy(s1) = hideom(s2). Hence, either both subtrees

with roots s; and s, are pruned or both are not pruned. Note that once £(z) = L for some
s € (2K)*, wecan assumethat £(s - t) for al ¢ € (25)* isalso L. Indeed, once the environment
disables the transition to a certain node s, it actualy disables the transitions to al the nodes
in the subtree with root s. Note aso that M <1 £ is deadlock free iff for every s € Ty with
g(hlde(zH)(S)) = T, at least onedirectionv € 2F hass - v € Ty and g(hlde(zH) (S : U)) =T.

3 Module Checking

The module-checking problem (with complete information) is defined as follows. Let M be a
modulewith # = (}, and let ¢y be atemporal-logic formulaover theset P of M’'svariables. Does
M « & satisfy 4 for every environment £ for which M <1 £ isdeadlock free? When the answer to
the modul e-checking question is positive, we say that M reactively satisfies, denoted M =, 1.
The modul e-checking problem is introduced and solved in [KV96] 3. We define two orthogonal
extensions of the module-checking problem:

— Module Checking with Incomplete Information: Let A7 be amoduleand let i) be atemporal -
logic formulaover P. Does M < & satisfy i for every environment £ for which M <1 £ is
deadlock free?

— Assume-Guarantee Module Checking: Let M be a module with H = § and let ¢ and v
be temporal-logic formulas over P. Does M <1 & satisfy ¢ for every environment £ for
which M < £ is deadlock free and satisfies ¢. When the answer to the assume-guarantee
modul e-checking question is positive, we say that M reactively satisfies ¢ with assumption
®, denoted (@) M ().

In this section we solve the two extended problems, as well as the problem of assume-
guarantee module checking with incomplete information, which subsumes them. We consider
temporal-logic formulas in LTL, CTL, and CTL*. We first handle the case where) and ¢ are
universal tempora-logicformulas. Asshownin [KV96], checking whether M reactively satisfies
auniversal formulas can bereduced to checking whether M <1 &4, Satisfiesy. Since M <1 &gz
is simulated by any composition M <1 £ irrespective of the variablesreadable by £, thisremains
valid in the presence of incomplete information. In addition, the assume-guarantee problem for
LTL, YCTL, and YCTL* (theuniversal fragmentsof CTL and CTL*, inwhich only universa path
guantification is alowed) has been studied in the literature. Hence the following theorem.

Theorem 1.

(1) [KV96] The module-checking problemwith incompl eteinformationis PTIME-compl ete (and
solvablein linear time) for VCTL and is PSPACE-complete for LTL and VCTL*.

(2) [Pnu85, KV95] The assume-guarantee module-checking problem is PSPACE-complete for
LTL and YCTL and is EXPSPACE-complete for YCTL*.

Aswithmodul echecking, thingsbecomemore chall enging when weturnto solvetheproblems
for the case ¢ and ¢ are not necessarily universal temporal-logic formulas. We first show that
assume-guarantee modul e checking can be easily reduced to module checking.

Lemma2. For every module M and formulas ¢ and 1, we have (@) M () iff M =, ¢ — .

3 In [KV96], we define a module using system and environment states, and only transitions from environ-
ment states may be disabled. Here, the interaction of the system with its environment is more explicit,
and transitions are disabled by the environment assigning values to the system’s input variables.

Lemma 2 follows immediately from the definition of assume-guarantee module checking.
As the reduction to module checking is so simple, one may wonder why the original assume-
guarantee problem, with ¢ and « in universa logics could not be ssimply reduced to model
checking. The reason liesin thefact that universal temporal logicsare not closed under negation.
Thus, the formula ¢ — + isno longer a universal temporal-logic formula, and checking it with
respect to any environment cannot be done easily. The reduction above implies that assume-
guarantee module checking is not harder than module checking. As assume-guarantee module
checking isaso at least as hard as module checking, the theorem bel ow followsfrom the known
complexity bounds for the modul e-checking problem [KV96].

Theorem 3. The assume-guarantee module-checking problem is EXPTIME-complete for CTL
and is 2EXPTIME-complete for CTL*.

While handling of assumptions about the environment is easy, handling incomplete informa-
tionis complicated. The solutionwe suggest is based on alternating tree automata and is outlined
below. In Sections 3.1 and 3.2, we define alternating tree automata and describe the solutionsin
detail. We start by recalling the solution to the modul e-checking problem. Given A and ¢, we
proceed as follows.

Al. Define a nondeterministic tree automaton .4, that accepts all the 27 -labeled trees that
correspond to compositionsof M with some &€ for which M <1 £ isdeadlock free. Thus, each
tree accepted by A,y isobtained from (s, Var) by pruning some of its subtrees.

A2. Define a nondeterministic tree automaton .4, that accepts al the 2”-labeled trees that do
not satisfy .

A3. M [, ¢ iff no composition M <1 & satisfies =), thusiff the intersection of LA and A~y
is empty.

The reduction of the module-checking problem to the emptiness problem for tree automata
implies, by the finite-model property of tree automata [Eme85], that defining reactive satisfaction
with respect to only finite-state environments is equivalent to the current definition.

In the presence of incompleteinformation, not al possible pruning of (T, Vas) correspond
to compositions of M with some £. In order to correspond to such a composition, a tree should
be consistent in its pruning. A tree is consistent in its pruning iff for every two nodes that the
paths leading to them differ only in values of variables in H (i.e., every two nodes that have
the same history according to £’s incomplete information), either both nodes are pruned or both
nodes are not pruned. Intuitively, hiding variables from the environment makes it easier for M
to reactively satisfy a requirement: out of al the pruning of (Tas, Vas) that should satisfy the
requirement in the case of complete information, only these that are consistent should satisfy the
requirement in the presence of incompl ete information. Unfortunately, the consistency condition
is non-regular, and cannot be checked by an automaton. In order to circumvent this difficulty,
we employ alternating tree automata. We solve the module-checking problem with incomplete
information as follows.

B1. Define an alternating tree automaton A,y - that accepts a {T, L}-labeled 2 -tree iff it
correspondsto astrategy ((25)*, £) suchthat M < & isdeadlock free and does not satisfy 1.

B2. M |, ¢ iff al deadlock free compositionsof M with £ that isindependent of H satisfy v,
thus iff no strategy induces a computéation tree that does not setisfy +, thus iff Az -y
is empty.

We now turn to a detailed description of the solution of the module-checking problem with
incomplete information, and the complexity resultsit entails. For that, we first define formally
alternating tree automata.

3.1 Alternating Tree Automata

Alternating tree automata generalize nondeterministic tree automata and were first introduced in
[MS87]. An dternating tree automaton A = (X, @, qo, d, o) runson full X-labeled 7-trees (for
an agreed set 7" of directions). It consists of afinite set @@ of states, an initia state ¢qo € @, a
transition function §, and an acceptance condition « (acondition that defines a subset of Q«).

For a set T of directions, let BT (T x @) be the set of positive Boolean formulas over
T x @; i.e, Boolean formulas built from elements in 7" x @ using A and Vv, where we aso
alow theformulastrue and falseand, asusual, A has precedence over V. Thetransition function
§:Q x X — BYT x Q) maps a state and an input letter to a formula that suggests a new
configuration for the automaton. For example, when 7" = {0, 1}, having

d(g,0) = (0,41) A (0,92) V (0, 92) A (1, 42) A (L, 43)

means that when the automaton isin state ¢ and reads the letter o, it can either send two copies, in
states ¢q; and 2, to direction O of the tree, or send a copy in state ¢, to direction 0 and two copies,
in states g, and g3, to direction 1. Thus, unlike nondeterministic tree automata, here thetransition
function may require the automaton to send several copiesto the same direction or alow it ot to
send copiesto all directions.

A run of an alternating automaton A on an input X-labeled T-tree (T, V') isatree (T, r)
in which the root is labeled by qo and every other node is labeled by an element of 7* x Q.
Each node of 7,. correspondsto anode of 7'. A nodein T,., labeled by (z, ¢), describes a copy
of the automaton that reads the node = of T and visits the state q. Note that many nodes of 7,
can correspond to the same node of T; in contrast, in a run of a nondeterministic automaton on
(T, V) there is a one-to-one correspondence between the nodes of the run and the nodes of the
tree. The labels of a node and its children have to satisfy the transition function. For example, if
(T,V)isa{0,1}-treewith V(¢) = a and d(go, a) = ((0,q1) V (0, ¢2)) A ((0,43) V (1, 42)), then
the nodes of (7., r) at level 1 include the label (0, ¢1) or (0O, ¢2), and includethe label (0, ¢3) or
(1, ¢q2). Eachinfinite path p in (T, r) islabeled by aword r(p) in Q. Let inf(p) denote the set
of statesin () that appear in r(p) infinitely often. A run (7, r) isaccepting iff dl itsinfinitepaths
satisfy the acceptance condition. In Blichi alternating tree automata, o« C @, and an infinite path
p satisfies a iff inf (p) N a # . Aswith nondeterministic automata, an automaton accepts a tree
iff there exists an accepting run on it. We denote by £(.4) the language of the automaton A; i.e,
the set of all labeled trees that A accepts. We say that an automaton is nonempty iff £(.A) # 0.

We define the size | A| of an dlternating automaton A = (¥, Q, g0, 6, &) as |Q| + || + 4],
where || and |«| are the respective cardindities of the sets) and «, and where || isthe sum of
the lengths of the satisfiable (i.e., not false) formulas that appear asd(q, o) for some ¢ and o.

3.2 Solvingthe Problem of Module-Checking with Incomplete I nformation

Theorem 4. Givenamodule M andaCTL formulas) over thesets7, O, and H , of M’svariables,
there exists an alternating Biichi tree automaton .4y, over {T, L}-labeled 27V -trees, of size
O(|M| * |9|), such that £L(Aar) iSexactly the set of strategies £ such that M <1 £ isdeadlock
free and satisfies 1.

Proof (sketch): Let M = (1,0, H,W,wo, R, L),andlet K = TUO.Forw € W andv € 2K,
we define s(w,v) = {w’ | (w,w’) € R and L(v')N K = v} andd(w) = {v | s(w,v) # 0}.
That is, s(w, v) containsall the successors of w that agreeintheir readable variableswith v. Each
such successor correspondstoanodein (Tar, Var) withadirectionin hide(‘zﬁ) (v). Accordingly,

d(w) containsal directions v for which nodes corresponding to w in (Tar, Var) have at least one
successor with adirection in hide 5, (v).

Essentially, the automaton .4 s , 1ssimilar to the product &l ternating tree automaton obtained
in the aternating-automata theoretic framework for CTL model checking [BVW94]. There, as
there is a single computation tree with respect to which the formulais checked, the automaton
obtained is a 1-letter automaton. Here, as there are many computation trees to check, we get a
2-letter automaton: each {T, L }-labeled tree induces a different computation tree, and A s
considersthem all. In addition, it checks that the composition of the strategy in the input with A/
isdeadlock free. We assume that + is given in apositive normal form, thus negations are applied
only to atomic propositions. We define Axr o = ({T, L}, Q, qo0, 6, &), where

- Q=Wx(cd(¥)U{pr}) x{V,3})U{q0}, wherecl(s) denotestheset of 1)’s subformulas.
Intuitively, when the automaton is in state (w, ¢, V), it accepts all strategies for which w is
either pruned or satisfies ¢, where ¢ = pt issatisfied iff theroot of thestrategy islabeled T.
When the automaton is in state (w, ¢, 3), it accepts all strategies for which w is not pruned
and it satisfies . Wecall V and 3 themode of the state. Whilethestatesin W x {p1} x {V, 3}
check that the composition of A/ with the strategy in theinput is deadlock free, the statesin
W x el(v) x {V, 3} check that this composition satisfies . Theinitia state ¢o sends copies
to check both the deadl ock freeness of the composition and the satisfaction of .

— Thetransitionfunctiond : Q@ x ¥ — B+ (2K x Q) isdefined asfollows (with m € {3, V}).

. J(qo, J_) = falsg, and (5(q0, T) = 5(<w0,p1—, 3>, T) A 6(<w0, Y, E|>, T)
o Fordl wand ¢, wehave §({w, ¢,V), L) =trueand 6 ((w, ¢, 3), L) = false.
o §((w,pr,m), T) =
(\/’UEZI‘ \/w 'es(w U)(< ’pT’E|>))A(/\UEZI‘ /\w ‘es(w v)(< 1pT’V>))

(w,p,m), T) =trueifp € L(w),and d({(w,p, m), T) = falseif p ¢ L(w).

(w,—p,m), T) =trueif p & L(w), and §((w, =p, m), T) = falseif p € L(w).

<w P11 p2,m >1T):6(<w1§017 >’)/\6(< 13027m>7—|—)'

<w p1V 2, m >a) 6((“" ¥1,m > T ((w ¥2,m >’T)

(

(

(

bl

J

3

J

3)V

52 w AX§07m> T /\’UEZR /\w ‘es w,v)(<w 307V>)
)

(

)= (
§((w, EX0,m), T) =V eox Vs o (0 (0,9, 3)).
b

w, AprU o, m), T) =
3((w, p2,m), T)V (4
o S((w, Ep1Upo,m), T) =
I((w, p2,m), T)IV(6((w, o1, m), TIAV ,cor Vs vy (v (W', E@aU2,3))).
o I((w, AGp,m), T) = 6((w,,m), TIA Apear Awresuw,n) (v (@', AGe, V).
hd 6(<w,EG¢,m>,) _5(<w’30’ >7T)/\V’UEZK Vw’Es(w,U)(Uﬂ<w/7EG$075|>)'
Consider, for example, a transition from the state (w, AX ¢, 3). Firgt, if the transition to w
isdisabled (that is, the automaton reads L), then, as the current mode is existential, the run
is rgjecting. If the transition to w is enabled, then w’s successors that are enabled should
satisfy . The state w may have several successors that agree on some labdling v € 2K
and differ only on the labeling of variablesin H. These successors are indistinguishable by
the environment, and the automaton sends them al to the same direction v. This guarantees
that either all these successors are enabled by the strategy (in case the letter to be read in
direction v is T) or al are disabled (in case the letter in direction v is L). In addition, since
the requirement to satisfy ¢ concerns only successors of w that are enabled, the mode of the
new states is universal. The copies of .4z, that check the composition with the strategy
to be deadlock free guarantee that at least one successor of w is enabled. Note that as the
transitionrelation R istotal, the conjunctionsand disunctionsin é cannot be empty.

(<’U}, P1s m>7 T)/\/\’UEZK /\w’Es(w,U) (U, <w/7 AQDJ-USDZ’ V>))

—a =W x G(y¥) x {3,V}, where G(v) isthe set of al formulas of theform AGy or EGe
in cl(v). Thus, while the automaton cannot get trapped in states associated with “Until-
formulas’ (then, the eventuality of the until is not satisfied), it may get trapped in states
associated with “Always-formulas’ (then, the safety requirement is never violated).

We now consider the size of Az ~y. Clearly, |Q| = O(|W] « |¢|). Also, as the transition
associated with astate (w, ¢, m) depends on the successors of w, wehavethat |§| = O(|R|*|v|).
Findly, |a| < |@|, and we are done. O

Extending the alternating automata described in [BVW94] to handle incomplete information
is possible thanksto the specia structure of the automata, which alternate between universal and
existential modes. This structure (the “hesitation condition”, as called in [BVW94]) exists aso
in automata associated with CTL* formulas, and imply the following anal ogous theorem.

Theorem 5. Given a module M and a CTL* formula ¢ over the sets 7,0, and H, of M’s
variables, there exists an alternating Rabin tree automaton .A »r ,, over {T, L}-labeled 27V9-
trees, with || * 2°(¥]) states and two pairs, such that £ (A) is exactly the set of strategies
& such that M <1 £ isdeadlock free and satisfies /.

The aternating-automata-theoretic approach to CTL and CTL* model checking is extended in
[KV95] to handle Fair-CTL and Fair-CTL*[EL85]. Using the same extension, we can handle
here modul es augmented with fairness conditions.

We now consider the complexity boundsthat follow from our agorithm.

Theorem 6. The modul e-checking problem with incompl ete information is EXPTIME-compl ete
for CTL and is 2EXPTIME-complete for CTL*.

Proof (sketch): The lower bounds follows from the known bounds for module checking with
complete information [KVV96]. For the upper bounds, in Theorems 4 and 5 we reduced the
problem M =, ¢ to the problem of checking the nonemptiness of the automaton Az -y .
When ¢ isa CTL formula, Az -y isan aternating Buchi automaton of size O(|M | * |¢]). By
[VW86, MSB5], checking the nonemptiness of A s -, iSthen exponentia in the sizesof M and
. When 1 isa CTL* formula, the automaton A, -, is an alternating Rabin automaton, with
|W | % 20(%1) states and two pairs. Accordingly, by [EJ88, MS95], checking the nonemptiness of
Anr -y isexponential in |17 and double exponentia in |4 O

By Lemma 2, the bounds above hold a so for the problem of assume-guarantee modul e checking
with incomplete information. As the module-checking problem for CTL is aready EXPTIME-
hard for environmentswith complete information, it might seem asif incompleteinformation can
be handled at no cost. Thisis, however, not true. Let us define the program compl exity of module
checking as the complexity of the problem in terms of the size of the system, assuming that the
specification is fixed [VW86]. Since the system is typicaly much bigger than the specification,
this complexity is of particular interest [LP85]. By [KV96], the program complexity of CTL
modul e checking with complete information is PTIME-complete. On the other hand, the time
complexity of the algorithm we present here is exponentia in the size of the both the formula
and the system. Can we do better? In Theorem 7 bel ow, we answer this question negatively. To
see why, consider a module A with hidden variables. When M interacts with an environment
&, the module seen by £ is different from M. Indeed, every state of the module seen by &
corresponds to a set of states of M. Therefore, coping with incomplete information involves
some subset construction, which blows-up the state space exponentialy. In our agorithm, the
subset construction hides in the emptinesstest of Az -y .

Theorem 7. The program complexity of CTL module checking with incomplete information is
EXPTIME-complete.

Proof (sketch): The upper bound follows from Theorem 6. For the lower bound, we do a
reduction from the outcome problem for two-players games with incomplete information, proved
to be EXPTIME-hard in [Rei84]. A two-player game with incompl ete information consists of an
AND-OR graph with an initia state and a set of designated states. Each of the states in the graph
is labeled by readable and unreadable observations. The game is played between two players,
caled the or-player and the AND-player. The two players generate together a path in the graph.
The path starts a theinitia state. Whenever the gameis at an ORr-state, the Or-player determines
the next state. Whenever the game is at an AND-state, the AND-player determines the next state.
The outcome problem is to determine whether the orR-player has a strategy that depends only
on the readable observations (that is, a strategy that maps finite sequences of sets of readable
observationsto a set of known observations) such that following this strategy guarantees that, no
matter how the AND-player plays, the path eventually visits one of the designated states.

Given an AND-OR graph (G asabove, we defineamodule M such that M reactively satisfies
afixed CTL formula ¢ iff the OR-player has no strategy as above. The environments of Mg
correspond to strategies for the OrR-player. Each environment suggests apruning of {Tas.,, Varg)
such that the set of paths in the pruned tree correspondsto a set of paths that the or-player can
force the game into, no matter how the AND-player plays. The module M ¢ isvery similar to G,
and the formula ¢ requires the existence of a computation that never visits a designated state.
The forma definition of M and ¢ involves some technical complications required in order to
make sure that the environment disables only transitionsfrom or-states. O

4 Discussion

Module checking considers the verification of open systems. In [KV96], we claim that the
complexity of the module-checking problem, which is EXPTIME for specificationsin CTL and
only PSPACE for specifications in LTL, questions the traditiona belief of the computational
superiority of the branching-time paradigm. In this paper we considered open systems that have
interna variables. In this common case, the environment has incomplete information about
the system, and the module-checking problem should be revised accordingly. We showed that
incomplete information makes CTL module checking even harder, while it comes a no cost
for linear (and universal) logics. Hence, it provides an additional evidence that checking CTL
propertiesis actually harder than checking LTL properties.

The setting we consider here is more genera than the one in [KV96], but can till be
generalized further. In both [KV96] and here, we assume that an environment may disable
some of the system’s transition. More general settings allow more dominant environments. For
example, if we consider environments that are modules, then a composition of a system with an
environment may not only disable some of the system’s transitions, but also add new transitions
(e.g., the environment may cause a certain transition of the system to branch into two transitions,
each leading to a state with different assignments to the environment’s variables). Asin module
checking, while verification of universal propertiesin these settings can be done using closed-
system verification methods, there is a need to revise verification methods in order to handle
non-universal properties.

Acknowledgment We thank Rajeev Alur for referring usto [Rei84] and pointingitsrelevance to
the lower bound in Theorem 7.

References

[BVW94] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time

[CES1]

model checking. In Proc. 6th CAV, LNCS 818, pp. 142-155, June 1994.
E.M. Clarkeand E.A. Emerson. Design and synthesisof synchronization skeletonsusing branch-
ing time temporal logic. In Proc. LP, LNCS 131, pp. 52-71, 1981.

[CGB86] E.M. Clarke, O. Grumberg, and M.C. Browne. Reasoning about networks with many identical

[CESS86]
[EJ88]
[EL8S5]
[Emes5]
[FZ8g]
[GL94]

[Hoa85]
[HPSS5]

[Jong3]
[KV95]
[KV96]
[Lam83]
[LP85]
[Mil71]

[MP92]
[MS87]

[MS95]

[Pnus1]

[Pnu85]

[Qs81]
[Reig4]

[Var95]
[VW86]

finite-state processes. In Proc. 5th PODC, pp. 240248, August 1986.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM TPLS, 8(2):244-263, 1986.

E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proc.
29th FOCS, pp. 368-377, October 1988.

E.A. Emerson and C.-L. Lei. Temporal model checking under generalized fairness constraints.
In Proc. 18th Hawaii International Conference on System Sciences, Hawaii, 1985.

E.A. Emerson. Automata, tableaux, and temporal logics. In Proc. LP, LNCS 193, pp. 79-87,
1985.

M.J. Fischer and L.D. Zuck. Reasoning about uncertainty in fault-tolerant distributed systems. In
Proc. Formal Techniquesin Real-Time and Fault-Tolerant Sys., LNCS 331, pp. 142-158, 1988.
O. Grumberg and D.E. Long. Model checking and modular verification. ACM Trans. on Pro-
gramming Languagesand Systems, 16(3):843-871, 1994.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

D. Harel and A. Pnueli. On the development of reactive systems. In Logics and Models of
Concurrent Systems, volume F-13 of NATO Advanced Summer Institutes, pp. 477-498, 1985.
C.B. Jones. Specification and design of (parallel) programs. In Proc. Sth IFIP, pp. 321-332,
North-Holland, 1983.

O. Kupferman and M.Y. Vardi. On the complexity of branching modular model checking. In
Proc. 6th CONCUR, LNCS 962, pp. 408422, August 1995.

O. Kupferman and M.Y. Vardi. Module checking. In Proc. 8th CAV, LNCS 1102, pp. 75-86,
August 1996.

L. Lamport. Specifying concurrent program modules. ACM Trans. on Programming Languages
and Systenms, 5:190-222, 1983.

O. Lichtensteinand A. Pnueli. Checking that finite state concurrent programs satisfy their linear
specification. In Proc. 12th POPL, pp. 97-107, January 1985.

R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd [JCAI, British
Computer Society, pp. 481-489, September 1971.

Z. Mannaand A. Pnueli. Temporal specification and verification of reactive modules. 1992.
D.E. Muller and PE. Schupp. Alternating automata on infinite trees. Theoretical Computer
Science, 54,:267-276, 1987.

D.E. Muller and PE. Schupp. Simulating aternating tree automata by nondeterministic automata:
New results and new proofs of theoremsof Rabin, McNaughton and Safra. Theoretical Computer
Science, 141:69-107, 1995.

A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer Science,
13:45-60, 1981.

A. Pnueli. Applications of temporal logic to the specification and verification of reactive systems:
A survey of current trends. In Proc. Advanced School on Current Trendsin Concurrency, LNCS
224, pp. 510-584, 1985.

J.P. Queilleand J. Sifakis. Specificationand verification of concurrent systemsin Cesar. In Proc.
5th International Symp. on Programming, LNCS 137, pp. 337-351, 1981.

J.H. Reif. The complexity of two-player games of incomplete information. J. on Computer and
System Sciences, 29:274-301, 1984.

M.Y. Vardi. On the complexity of modular model checking. In Proc. 10th LICS, June 1995.
M.Y. Vardi and P. Wolper. Automata-theoretic techniquesfor modal logics of programs. Journal
of Computer and System Science, 32(2):182-221, April 1986.

