An Automata-Theoretic Approach to
Branching-Time Model Checking *

Orna Kupferman Moshe Y. Vardi Pierre Wolper
Hebrew University Rice University? Université de Liege’

August 20, 1999

Abstract

Translating linear temporal logic formulas to automata has proven to be an effective
approach for implementing linear-time model-checking, and for obtaining many extensions
and improvements to this verification method. On the other hand, for branching temporal
logic, automata-theoretic techniques have long been thought to introduce an exponential
penalty, making them essentially useless for model-checking. Recently, Bernholtz and Grum-
berg have shown that this exponential penalty can be avoided, though they did not match
the linear complexity of non-automata-theoretic algorithms. In this paper we show that
alternating tree automata are the key to a comprehensive automata-theoretic framework
for branching temporal logics. Not only, as was shown by Muller et al., can they be used
to obtain optimal decision procedures, but, as we show here, they also make it possible
to derive optimal model-checking algorithms. Moreover, the simple combinatorial struc-
ture that emerges from the automata-theoretic approach opens up new possibilities for the
implementation of branching-time model checking, and has enabled us to derive improved
space complexity bounds for this long-standing problem.

* A preliminary version of this work was presented at the 1994 Conference on Computer-Aided Verification.

tAddress: Institute of Computer Science, Jerusalem 91904, Israel. Email: orna@cs.huji.ac.il.
URL: http://wuw.cs.huji.ac.il/” orna.

tAddress: Department of Computer Science, Houston, TX 77251-1892, U.S.A. Email: vardi@cs.rice.edu.
URL: http://www.cs.rice.edu/~vardi. Supported in part by NSF grants CCR-9628400 and CCR-9700061,
and by a grant from the Intel Corporation.

$Address: Institut Montefiore, B28; B-4000 Lidge Sart-Tilman; Belgium. Email: pu@montefiore.ulg.ac.be.
URL: http://www.montefiore.ulg.ac.be/~ pw. Supported in part by ESPRIT LTR action REACT.

1 Introduction

Temporal logics, which are modal logics geared towards the description of the temporal or-
dering of events, have been adopted as a powerful tool for specifying and verifying concur-
rent programs [Pnu81]. One of the most significant developments in this area is the dis-
covery of algorithmic methods for verifying temporal logic properties of finite-state programs
[CES86, LP85, QS81]. This derives its significance both from the fact that many synchroniza-
tion and communication protocols can be modeled as finite-state programs, as well as from the
great ease of use of fully algorithmic methods. Finite-state programs can be modeled by tran-
sition systems where each state has a bounded description, and hence can be characterized by
a fixed number of Boolean atomic propositions. This means that a finite-state program can be
viewed as a finite propositional Kripke structure and that its properties can be specified using
propositional temporal logic. Thus, to verify the correctness of the program with respect to a
desired behavior, one only has to check that the program, modeled as a finite Kripke structure,
satisfies (is a model of) the propositional temporal logic formula that specifies that behav-
ior. Hence the name model checking for the verification methods derived from this viewpoint.
Surveys can be found in [CGL93, Wol89].

There are two types of temporal logics: linear and branching [Lam80]. In linear temporal
logics, each moment in time has a unique possible future, while in branching temporal logics,
each moment in time may split into several possible futures. For linear temporal logics, a close
and fruitful connection with the theory of automata over infinite words has been developed
[VW86a, VW94]. The basic idea is to associate with each linear temporal logic formula a
finite automaton over infinite words that accepts exactly all the computations that satisfy the
formula. This enables the reduction of linear temporal logic problems, such as satisfiability
and model-checking, to known automata-theoretic problems, yielding clean and asymptotically
optimal algorithms. Furthermore, these reductions are very helpful for implementing temporal-
logic based verification methods, and are naturally combined with techniques such as on-the-fly
verification [VW86a, JJ89, CVWY92] that help coping with the “state-explosion” problem.

For branching temporal logics, the automata-theoretic counterpart are automata over infi-
nite trees [Rab69, VW86b]. By reducing satisfiability to the nonemptiness problem for these
automata, optimal decision procedures have been obtained for various branching temporal log-
ics [Eme85, EJ88, ES84, SE84, VW86b]. Unfortunately, the automata-theoretic approach does
not seem to be applicable to branching-time model checking. Indeed, model checking can be
done in linear running time for CTL [CES86, QS81] and for the alternation-free fragment of
the p-calculus [Cle93], and is in NPNco-NP for the general p-calculus [EJS93], whereas there is
an exponential blow-up involved in going from formulas in these logics to automata. Similarly,
while model checking for the full branching time logic CTL* is PSPACE-complete, going from
CTL* formulas to automata involves a doubly-exponential blow up [ES84]. Thus, using the

construction of a tree automaton as a step in a model-checking algorithm seems a non-starter,

which can only yield algorithms that are far from optimal. (Indeed, the proof in [EJS93] avoids
the construction of tree automata that correspond to u-calculus formulas.)

A different automata-theoretic approach to branching-time model checking, based on the
concepts of amorphous automata and simultaneous trees, was suggested by Bernholtz and Grum-
berg in [BG93]. Amorphous automata have a flexible transition relation that can adapt to trees
with varying branching degree. Simultaneous trees are trees in which each subtree is duplicated
twice as the two leftmost successors of its root. Simultaneous trees thus enable the automa-
ton to visit different nodes of the same path simultaneously. Bernholtz and Grumberg showed
that CTL model checking is linearly reducible to the acceptance of a simultaneous tree by an

amorphous automaton and that the latter problem can be solved in quadratic running time.

While this constitutes a meaningful first step towards applying automata-theoretic tech-
niques to branching-time model checking, it is not quite satisfactory. First, unlike the situation
with linear temporal logic, different automata are required to solve model checking and satisfi-
ability and thus, we do not get a uniform automata-theoretic treatment for the two problems.
Second, and more crucial, the complexity of the resulting algorithm is quadratic in both the
size of the specification and the size of the program, which makes this algorithm impractical;
after all, most of the current research in this area is attempting to develop methods to cope
with linear complexity.

In this paper we argue that alternating tree automata are the key to a comprehensive and
satisfactory automata-theoretic framework for branching temporal logics. Alternating tree au-
tomata generalize the standard notion of nondeterministic tree automata by allowing several
successor states to go down along the same branch of the tree. It is known that while the trans-
lation from branching temporal logic formulas to nondeterministic tree automata is exponential,
the translation to alternating tree automata is linear [MSS88, EJ91]. In fact, Emerson stated
that “p-calculus formulas are simply alternating tree automata” [Eme96]. In [MSS88], Muller
et al. showed that this explains the exponential decidability of satisfiability for various branch-
ing temporal logics. We show here that this also explains the efficiency of model checking for
those logics. The crucial observation is that for model checking, one does not need to solve the
nonemptiness problem of tree automata, but rather the 1-letter nonemptiness problem of word
automata. This problem (testing the nonemptiness of an alternating word automaton that is
defined over a singleton alphabet) is substantially simpler. Thus, alternating automata provide
a unifying and optimal framework for both the satisfiability and model-checking problems for
branching temporal logic.

We first show how our automata-theoretic approach unifies previously known results about
model checking for branching temporal logics. The alternating automata used by Muller et al.
in [MSS88] are of a restricted type called weak alternating automata. To obtain an exponential
decision procedure for the satisfiability of CTL and related branching temporal logics, Muller
et al. used the fact that the nonemptiness problem for these automata is in exponential time
[MSS86]. (In fact, as we show here, it is EXPTIME-complete.) We prove that the 1-letter

nonemptiness of weak alternating word automata is decidable in linear running time, which
yields an automata-based model checking algorithm of linear running time for CTL. We present
a linear translation from alternation-free p-calculus formulas to weak alternating automata.
This implies, using the same technique, that model checking for this logic can be done in linear
running time. For the general u-calculus, it follows from the results in [EJ91] that u-calculus
formulas can be linearly translated to alternating Rabin automata. We prove here that the
1-letter nonemptiness of alternating Rabin word automata is in NP, which entails that model
checking of p-calculus formulas is in NPNco-NP.

As the algorithms obtained by our approach match known complexity bounds for branching
temporal logics [CES86, Cle93, EJS93], what are the advantages offered by our approach? The
first advantage is that it immediately broadens the scope of efficient model checking to other,
and more expressive, branching temporal logics. For example, the dynamic logic considered in
[MSS88] allows, in the spirit of [Wol83], nondeterministic tree automata as operators. Since
this logic has a linear translation to weak alternating automata, it follows directly from our
results that it also has a linear model-checking algorithm.

The second advantage comes from the fact that our approach combines the Kripke structure
and the formula into a single automaton before checking this automaton for nonemptiness.
This facilitates the use of a number of implementation heuristics. For instance, the automaton
combining the Kripke structure and the formula can be computed on-the-fly and limited to its
reachable states. This avoids exploring the parts of the Kripke structure that are irrelevant
for the formula to be checked, and hence addresses the issue raised in the work on local model
checking [SW91, VL93], while preserving optimal complexity and ease of implementation. The
above advantage of our approach is reflected in the performance of its implementation, as
described in [Vis98, VB99].

The third advantage of the automata-theoretic approach is that it offers new and signifi-
cant insights into the space complexity of branching-time model checking. It comes from the
observation that the alternating automata that are obtained from CTL formulas have a special
structure: they have limited alternation. We define a new type of alternating automata, hes-
itant alternating automata, that have this special structure. A careful analysis of the 1-letter
nonemptiness problem for hesitant alternating word automata yields a top-down model-checking
algorithm for CTL that uses space that is linear in the length of the formula and only poly-
logarithmic in the size of the Kripke structure. We also present a translation of CTL* formulas
to hesitant alternating automata and hence obtain a space-efficient model-checking algorithm
for this logic too. This is very significant since it implies that for concurrent programs, model
checking for CTL and CTL* can be done in space polynomial in the size of the program de-
scription, rather than requiring space of the order of the exponentially larger expansion of the
program, as is the case with standard bottom-up model-checking algorithms. On the other
hand, the weak alternating automata that are obtained for alternation-free p-calculus formulas
do not have this special structure. Accordingly, we show that for this logic, as well as for the

general p-calculus, model checking for concurrent programs is EXPTIME-complete.

As discussed in Section 7, the automata-theoretic approach to branching-time model check-
ing described here has contributed to several other results concerning the specification and
verification of reactive systems. These results include contributions to the verification and
synthesis of open systems, timed systems, and distributed systems (possibly with fairness con-
straints), as well as techniques for incorporating modularity and partial-order methods into

branching-time verification.

2 Preliminaries

2.1 Temporal Logics and p-Calculi
2.1.1 The Temporal Logics CTL* and CTL

The logic CTL* combines both branching-time and linear-time operators [EH86]. A path quan-
tifier, either A (“for all paths”) or E (“for some path”), can prefix an assertion composed of
an arbitrary combination of the linear-time operators X (“next time”), and U (“until”). A
positive normal form CTL* formula is a CTL* formula in which negations are applied only to
atomic propositions. It can be obtained by pushing negations inward as far as possible, using De
Morgan’s laws and dualities of quantifiers and temporal connectives. For technical convenience,
we use the linear-time operator U as a dual of the U operator, and write all CTL* formulas
in a positive normal form. There are two types of formulas in CTL*: state formulas, whose
satisfaction is related to a specific state, and path formulas, whose satisfaction is related to a
specific path. Formally, let AP be a set of atomic proposition names. A CTL* state formula is
either:

e true, false, p, or —p, for all p € AP;
e 1 Ao or 1V g, where 1 and o are CTL* state formulas;

e Ay or Evp, where ¢ is a CTL* path formula.
A CTL* path formula is either:

e A CTL* state formula;

o 1 A, 1 V o, X1, V1Us, or 9 ﬁz/)g, where 11 and 19 are CTL* path formulas.

CTL* is the set of state formulas generated by the above rules.

The logic CTL is a restricted subset of CTL* in which the temporal operators must be
immediately preceded by a path quantifier. Formally, it is the subset of CTL* obtained by

restricting the path formulas to be X1, p1Ups, or ¢1Ups, where ¢, and ¢y are CTL state

formulas.

We use the following abbreviations in writing formulas:

e F =trueUvy (“eventually”).
o Gy = falseUv) (“always”).

We say that a CTL formula ¢ is an U-formula if it is of the form Ap;Uyps or Ep1Ugps.
The subformula @9 is then called the eventuality of . Similarly, ¢ is a U-formula if it is of
the form Ag1Upy or Eg1Upy. The closure cl(p) of a CTL* (CTL) formula ¢ is the set of all
CTL* (CTL) state subformulas of ¢ (including ¢, but excluding true and false). We define
the size ||| of ¢ as the number of elements in cl(p). Note that, even though the number of
elements in the closure of a formula can be logarithmic in the length of the formula if there
are multiple occurrences of identical subformulas, our definition of size is legitimate since it
corresponds to the number of nodes in a reduced DAG representation of the formula.

The semantics of CTL* is defined with respect to a Kripke structure K = (AP,W, R,w°, L),
where AP is a set of atomic propositions, W is a set of states, R C W x W is a transition
relation that must be total (i.e., for every w € W there exists w’' € W such that (w,w') € R),
w? is an initial state, and L : W — 24P maps each state to the set of atomic propositions true
in that state. A path in K is an infinite sequence of states, @ = wgp, w1, ... such that for every
i >0, (w;, wiy1) € R. We denote the suffix w;, w;,1,... of 7 by 7¢. We define the size || K|| of
K as |W|+|R|.

The notation K, w = ¢ indicates that a CTL* state formula ¢ holds at the state w of the
Kripke structure K. Similarly, K, 7 |= 1 indicates that a CTL* path formula % holds on a path
7 of the Kripke structure K. When K is clear from the context, we write w |= ¢ and 7 = 9.
Also, K | ¢ if and only if K, w° = .

The relation = is inductively defined as follows.

¢ For all w, we have w |= true and w |~ false.

e w=pforpe AP iff p € L(w).

wl—pforpe AP iff p & L(w).

wE 1 A2 iff wE ¢ and w = po.

wE eV iff wEe orwlE).

w = At iff for every path m = wo, w1, ..., with wy = w, we have 7 = 9.

w = E iff there exists a path m = wg, w1, ..., with wy = w, such that = = 1.

7 = ¢ for a state formula ¢, iff wy = ¢ where 7 = wy, w1, - ..
T =1 A iff T =91 and T = 4ha.
T =1 Vi iff = oy or = g

T = X iff 7 = 9.

7 |= ¥1Ubs iff there exists i > 0 such that 7 =1, and for all 0 < j < 4, we have 7/ = ;.

T E 1 U, iff for all i > 0 such that 7 K~ 1ba, there exists 0 < j < i such that 7/ = 1.

Note that 7 = 41Uty if and only if m = (—p1)U(—)s). That is, a path 7 satisfies 1 U)o
if 9 holds everywhere along 7 (thus, the U does not reach its eventuality), or if the first
occurrence of —)s is strictly preceded by an occurrence of 11 (thus, —; is falsified before the
eventuality is reached). Another way to understand the U operator is to interpret 11Uty by
“as long as ; is false, ¥ must be true”.

2.1.2 The Propositional p-calculus

The propositional p-calculus is a propositional modal logic augmented with least and greatest
fixpoint operators [Koz83]. Specifically, we consider a p-calculus where formulas are constructed
from Boolean propositions with Boolean connectives, the temporal operators EX and AX, as
well as least (u) and greatest (v) fixpoint operators. We assume that p-calculus formulas are
written in positive normal form (negation only applied to atomic propositions constants and
variables). Formally, given a set AP of atomic proposition constants and a set APV of atomic
proposition variables, a u-calculus formula is either:

e true, false, p or —p for all p € AP;

y for all y € APV

1 A 2 or 1 V g, where 1 and @9 are p-calculus formulas;

AXp or EXp, where @ is a p-calculus formula;

puy-f(y) or vy.f(y), where y € APV and f(y) is a p-calculus formula containing y as a
free variable.

A sentence is a formula that contains no free atomic proposition variables. We call AX and
EX next modalities, and we call y and v fizpoint modalities. We say that a p-calculus formula
is a p-formula (v-formula), if it is of the form py.f(y) (vy.f(y)). We use A to denote a fixpoint
modality g or v. For a A-formula Ay.f(y), the formula f(Ay.f(y)) is obtained from f(y) by
replacing each free occurrence of y with Ay.f(y).

The closure, cl(¢p), of a u-calculus sentence ¢ is the smallest set of u-calculus sentences that
satisfies the following:

¢ € cl(p).

If o1 A2 € cl(p) or @1 V s € cl(p), then 1 € cl(p) and ¢o € cl(p).

If AXp € cl(p) or EXp € cl(p), then ¢ € cl(p).

o If py.f(y) € cl(y), then f(uy.f(y)) € cl(yp).

o Ifvy.f(y) € cl(p), then f(vy.f(y)) € cl(ep).

For example, for ¢ = py.(¢V(pAEXY)), cl(p) = {p,qV(PANEXp),q,pANEX @, p, EXp}. Tt
follows from a result of [Koz83] that for every p-calculus formula ¢, the number of elements in
cl(yp) is linear with respect to a reduced DAG representation of . Accordingly, as with CTL*,
we define size ||¢|| of ¢ as the number of elements in cl(p).

Given a Kripke structure K = (AP, W, R,w", L), and a set {y1,...,yn} of free variables, a
valuation V : {y1,...,yn} — 2% is an assignment of subsets of W to the variables {y1,-..,yn}.
For a valuation V), a variable y, and a set W' C W, we denote by V[y < W] the valuation
obtained from V by assigning W' to y. A formula ¢ with free variables {y1, ..., y,} is interpreted
over the structure K as a mapping ¢ from valuations to 2. Thus, ¢® (V) denotes the set of
states that satisfy ¢ with the valuation V. The mapping ¥ is defined inductively as follows:

e true’(V) = W and false® (V) = 0;

For p € AP, we have pX (V) = {fw € W : p € L(w)} and (-p)X (V) = {w € W : p & L(w)};

For y; € APV, we have yX (V) = V(y;);
o (k1 Ap2)X (V) = of (V) N5 (V);
o (1 V) (V) = pf (V) Ul (V);

(AXp)E(V) = {w € W : Vo' such that (w,w') € R, we have w' € pX(V)};

(EX @)X (V) = {w € W : Fu’ such that (w,w') € R and v’ € o¥(V)};

o (uy-fW)EW)=N{W' CW: fEVy « W) C W'}
o vy fW)EW)=UH{W'CW: W' C fEV[y « W)}

Note that no valuation is required for a sentence. For a state w € W and a sentence ¢,
we say that w = ¢ iff w € ¢X. For example, the u-calculus formula py.(q V (p A EXy)) is
equivalent to the CTL formula EpUgq.

A p-calculus formula is alternation free if, for all y € APV, there are respectively no
occurrences of v (u) on any syntactic path from an occurrence of py (vy) to an occurrence
of y. For example, the formula pz.(p V py.(x V EXy)) is alternation free and the formula

ve.py.((p A z) V EXy) is not alternation free. The alternation-free p-calculus is a subset of
p-calculus containing only alternation-free formulas.

A p-calculus formula is guarded if for all y € APV, all the occurrences of y that are in a
scope of a fixpoint modality A are also in a scope of a next modality which is itself in the scope
of A\. Thus, a p-calculus sentence is guarded if for all y € APV, all the occurrences of y are
in the scope of a next modality. For example, the formula uy.(p V EXy) is guarded and the
formula EX py.(pV y) is not guarded. We assume that all y-calculus formulas are guarded. By
the theorem below, stated without a proof in [BB87], this can be done without loss of generality.

Theorem 2.1 Given a p-calculus formula, we can construct, in linear time, an equivalent

guarded formula.

Proof: We first define a function
new : p-calculus formulas x {u, v} x APV — p-calculus formulas.

The formula new(yp, y,y) is obtained from ¢ by replacing with false every occurrence of y that
is not in a scope of a modality. Similarly, new(p,v,y) is obtained from ¢ by replacing with
true every occurrence of y that is not in a scope of a modality. Formally, we define new(y, A, y)

by induction on the structure of ¢ as follows:
e new(y,pu,y) = false. e new(y,v,y) = true.
e new(pr A @2, A\, y) = new(p1, A\, y) A new(pz, A\, y).
e new(pr V @2, A\, y) = new(p1, \,y) V new(pz, A, y).
e For all o that differ from y, 1 A @2, or @1 V @2, we have new(p, A\, y) = ¢.

For example, new(y VpV EXy,u,y) = pV EXy. We now prove that for all \,y, and f(y), we
have

My.f(y) = Ay.new(f, A, y)(y)-

We consider here the case where A = p. The proof for the case A = v is symmetric. By the
semantics of y-calculus, for a Kripke structure K = (AP, W, R,w°®, L) and every w € W and
valuation V for the free variables (except y) in f(y), we have that w € uy.f(y)¥ (V) if and only
if we W' CW: fX(V[y < W']) C W'}. For every W' C W, we prove that

FXVly « W) C W' if and only if new(f, s, y)* (VIy + W')) C W".

Assume first that fX(V[y «+ W']) C W'. As for every valuation V' we have new(f, u, y)¥ (V') C
fEO), clearly new(f, u,y)¥ (V[y + W']) C W'. For the second direction, we assume that f
is given in a disjunctive normal form. We prove that if new(f, u, y)% (V[y + W']) C W', then
for every w, if there exists a disjunct g in f such that w € g¥(V[y < W']), then w € W'. Tt
follows that fX(V[y < W']) C W'. Let g be such that w € g% (V[y < W’]). We consider two

cases.

L T g = new(g, u,y), then w € new(f, 1, y)< (Vly + W']), and since new(f, 1, 5)X (Vly +
W']) C W', we are done.

2. Otherwise, there is a conjunct y in g and it must be that g% (V[y + W']) C W’. Hence,
we are also done.

At first glance, it might appear that to transform a p-calculus formula into an equiva-
lent guarded formula, it is sufficient to replace all subformulas Ay.f(y) by Ay.new(f, A, y)(y).
However, this transformation only ensures that the occurrences of y are in the scope of some
modality, not necessarily of a next modality. Fortunately, one can easily work around this
problem as follows. First notice that for the syntactically innermost Ay.f(y), we have that
Ay.new(f, A, y)(y) puts all occurrences of y in the scope of a next modality. So, we start the
transformation with the innermost A-formulas. Now, consider a Az.g(z) on the next outer syn-
tactic level. In Az.new(g, A, 2)(z), the variable z can appear within an inner Ay.new(f, A, y)(y)
without being in the scope of a next modality. To avoid this, instead of replacing the inner

Ay.f(y) by Ay.new(f, A\, y)(y), we replace it by

new(f, A, y)(Ay.new(f, A, y)(v)), (1)

which is semantically equivalent. In new(f, A,y), all the occurrences of y are in the scope of a
next modality. Therefore, in (1), all occurrences of variables (e.g. z) that are in the scope of
some modality are in the scope of a next modality. Thus, after this transformation, replacing
Az.9(z) by Az.new(g, A\, z)(z) ensures that all occurrences of z are in the scope of a next modality,
and replacing Az.g(z) by new(g, A, z)(Az.new(g, A, z)(2)) allows the same transformation to be
also used at the next outer syntactic level. Proceeding likewise to the outermost syntactic
level we obtain an equivalent guarded formula. Finally, notice that for the outermost Az.g(z),
replacing it by Az.new(g, A, 2)(z) is sufficient since there is no outer fixpoint modality. In
Figure 1, we describe the translation procedure guard(1) formally. The procedure operates on
formulas represented as reduced DAGs. It uses the function order, which, given a p-calculus
formula 1, returns an ordered list of the u and v subformulas of 1 that preserves the subformula
order.

For example, translation of the formula ¢ = py.(pVvz.(y V(2 A AXz))) proceeds as follows.

1. order() = (wz.(y V (z A AX2)),).
2. new(y V (z A AX2),v,2)(2) = y V AXz.

3. Therefore, new(yV (zAAX2), v, 2)(vz.new(yV (zAAXz2),v,2)(2)) = yV AX (v2.yV AXz).
4. new(pVyV AX(vay V AX2), 1,y)(y) = pV AX (vz.y V AX2).

5. Therefore, py.new(pVyV AX(vz.yV AXz),p,y)(y) = py.pV AX(vz.y vV AXz).

10

procedure guard();

let (A1y1.01, A2y2.902, - - -, A\nYn-n) = order(2p);
fori=1...n—1do

let ¢ := ¢ with A\;y;.¢; replaced by new(v;, As, yi)(Nivi-new(ws, Ai, ¥i)(¥s))

od;
let ¢ := 9 with Apyn-en replaced by Apyn-new(@n, An, Yn)(Yn));
return .

Figure 1: Translating a formula to an equivalent guarded formula

We now consider the size, ||guard()||, of the guarded formula obtained from . First, note
that for all ¢, A, and y, we have ||[new(p, A\, y)(y)|| < ||¢(y)||- Therefore, the only potential
blow up in guard (1)) originates from the replacement of subformulas A\y.¢(y) by ¢'(Ay.¢'(v)),
for ¢' with ||¢'|| < ||¢||- However, since by definition ¢'(Ay.¢'(y)) € cl(Ay.¢'(y)), this does not
increase the size of the resulting formula.]

2.2 Alternating Tree Automata

A tree is a set T' C IN* such that if - ¢ € T where z € IN* and ¢ € IN, then also z € T, and
forall 0 < ¢ < ¢, z-c €T. The elements of T are called nodes, and the empty word ¢ is the
root of T'. For every x € T, the nodes - ¢ where ¢ € IN are the successors of x. The number
of successors of z is called the degree of z and is denoted by d(z). A node is a leaf if it has no
successors. A path w of a tree T is a set m C T such that € € 7 and for every x € m, either z is
a leaf or there exists a unique ¢ € IN such that x - ¢ € . Given an alphabet X, a X-labeled tree
is a pair (T, V) where T is a tree and V : T — ¥ maps each node of T' to a letter in ¥. Note
that an infinite word in ¥ can be viewed as a X-labeled tree in which the degree of all nodes
is 1. Of special interest to us are X-labeled trees in which X = 247 for some set AP of atomic
propositions. We call such X-labeled trees computation trees. A computation tree (T, V) with
¥ = 24P can be viewed as the Kripke structure Kyvy = (AP,T, Rr,¢,V), where Rr(z, ') iff
x' is a successor of z in T. We sometimes refer to satisfaction of temporal logic formulas in a
computation tree, meaning their satisfaction in this Kripke structure. Given a set D C IN, a
D-tree is a computation tree in which all the nodes have degree in D.

Automata over infinite trees (tree automata) run over Y-labeled trees that have no leaves
[Tho90]. Alternating automata generalize nondeterministic tree automata and were first intro-
duced in [MS87] (see [Slu85] for alternating automata on finite trees). For simplicity, we refer
first to automata over binary trees (i.e., when 7' = {0,1}*). Consider a nondeterministic tree
automaton A = (X, Q,d, qo, F'), where ¥ is the input alphabet, @ is a finite set of states, J is
a transition function, ¢y € @ is an initial state, and F specifies the acceptance condition (a

11

condition that defines a subset of Q“; we define several types of acceptance conditions below).
The transition relation § : Q X ¥ — 25 maps an automaton state ¢ € @ and an input letter
o € X to a set of pairs of states. Each such pair suggests a nondeterministic choice for the
automaton’s next configuration. When the automaton is in a state q as it reads a node z labeled
by a letter o, it proceeds by first choosing a pair (g1, g2) € §(q,0), and then splitting into two
copies. One copy enters the state ¢g; and proceeds to the node z - 0 (the left successor of z),
and the other copy enters the state g2 and proceeds to the node x - 1 (the right successor of).

For a given set X, let BT(X) be the set of positive Boolean formulas over X (i.e., Boolean
formulas built from elements in X using A and V), where we also allow the formulas true and
false and, as usual, A has precedence over V. For a set Y C X and a formula § € BT(X), we
say that Y satisfies 0 iff assigning true to elements in Y and assigning false to elements in
X \'Y makes 6 true. We can represent the transition relation ¢ of a nondeterministic automaton
on binary trees using B*({0,1} x Q). For example, §(q,0) = {{q1,¢2), (¢3,91)} can be written
as §(¢,0) = (0,q1) N (1,92) V (0,93) A (1,4q1), meaning that the automaton can choose between
two possibilities. In the first, the copy that proceeds to direction 0 enters the state ¢; and the
one that proceeds to direction 1 enters the state go. In the second, the copy that proceeds to
direction 0 enters the state g3 and the one that proceeds to direction 1 enters the state ¢.

In nondeterministic tree automata, each conjunction in § has exactly one element associated
with each direction. In alternating automata over binary trees, §(g,o) can be an arbitrary
formula from BT ({0,1} x Q). We can have, for instance, a transition

5(q70) = (Oa ql) A (an2) v (OaQ2) A (17q2) A (15 q3)'

The above transition illustrates that several copies may go to the same direction and that
the automaton is not required to send copies to all the directions. Formally, a finite alternat-
ing automaton over infinite binary trees is a tuple A = (X, Q,d, go, F) as in nondeterministic
automata, only that the transition function is now § : @ x ¥ — B ({0,1} x Q).

We now generalize alternating automata to trees where nodes can have varying degrees. As
we consider finite automata (and thus, in particular, automata with a finite transition function),
our generalization is restricted to trees for which the set of all possible degrees is finite and known
in advance. Explicitly, we require that each automaton has a finite set D C IN of possible
degrees, specified in its definition. Then, the transition functionis § : Q x ¥ x D — B*(IN x Q)
with the requirement that for every k € D, we have 6(q,0,k) € BY({0,...,k — 1} x Q). Thus,
g, o and k are all arguments of the transition function. When the automaton is in a state ¢
as it reads a node that is labeled by a letter o and has k successors, it applies the transition
d(q,0,k). For each ¢ € Q and o € X, we denote Vcp (g, 0, k) by §(g,0). We define the size
lA|| of an automaton A = (X,D,Q,6,q0,F) as |D| + |Q| + |F| + ||6]|, where |D|, |Q|, and |F|
are the respective cardinalities of the sets D, @, and F', and where ||d|| is the sum of the lengths
of the nonidentically false formulas that appear as (g, o, k) for some g € Q, 0 € ¥, and k € D

12

(note that the restriction to nonidentically false formulas is to avoid an unnecessary |Q|-|X|-|D|
minimal size for §).

A run of an alternating automaton A over a tree (T, V) is a tree (T}, r) in which the root
is labeled by gp and every other node is labeled by an element of IN* x Q). Each node of T,
corresponds to a node of 7. A node in 7, labeled by (z, ¢), describes a copy of the automaton
that reads the node x of T' and visits the state ¢g. Note that many nodes of T, can correspond to
the same node of T'; in contrast, in a run of a nondeterministic automaton over (T, V') there is a
one-to-one correspondence between the nodes of the run and the nodes of the tree. The labels
of a node and its successors have to satisfy the transition function. Formally, a run (7, r) is a
¥,-labeled tree where ¥, = IN* x Q and (T}, r) satisfies the following:

1. 7(e) = (g, q0)-

2. Let y € T, with r(y) = (z,q) and é(q,V(z),d(z))

set S = {(CQ,C]O),(Cl,Ql),---,(cnaQn)} C {07 (
hold:

6. Then there is a (possibly empty)
) — 1} x @, such that the following

e S satisfies 6, and

e forall0<i<n,wehavey-i €T, and r(y- i) = (z - ¢, qi)-

For example, if (T, V) is a binary tree with V(¢) = a and 6(qo,a,2) = ((0,41) V (0,g2)) A
((0,93)V (1, q2)), then, at level 1, (T}, r) includes a node labeled (0, g1) or a node labeled (0, g2),
and includes a node labeled (0,q3) or a node labeled (1,¢2). Note that if, for some y, the
transition function § has the value true, then y need not have successors. Also, § can never
have the value false in a run.

A run (T,,r) is accepting if all its infinite paths satisfy the acceptance condition. We
consider here Biichi, Rabin, Streett, and parity acceptance conditions. Given a run (7,,7) and
an infinite path © C T}, let inf(7) C @ be such that ¢ € inf(x) if and only if there are infinitely
many y € 7 for which V,.(y) € IN* x {¢}. That is, inf(m) contains exactly all the states that
appear infinitely often in 7. The four acceptance conditions are defined as follows.

e A path 7 satisfies a Biichi acceptance condition F' C @ if and only if inf(7) N F # 0.

e A path 7 satisfies a Rabin acceptance condition F' = {(G1, B1), ..., {(Gm, Bm)}, where for
1<i<m, G CQand B; C Q, if and only if there exists a pair (G;, B;) € F for which
inf(r) NG; # 0 and inf(m) N B; = 0.

e A path 7 satisfies a Streett acceptance condition F' = {(G1,B1),...,(Gm, Bm)}, where
for 1 <i<m, G; C Q and B; C Q, if and only if for all pairs (G;, B;) € F, either
inf(r)NG; =0 or inf(m) N B; # 0.

13

e A path 7 satisfies a parity acceptance condition F = {Fy, Fs,...,Fp} with F; C Fy C
.-+ C Fy, iff the minimal index 7 for which inf(m) N F; # 0 is even. The number k of sets
in F' is called the index of the automaton.

An automaton accepts a tree if and only if there exists a run that accepts it. We denote by
L(A) the set of all ¥-labeled trees that A accepts. Note that if D is a singleton, then A runs
over trees with a fixed branching degree. We then say that A is a fized arity tree automaton.
In particular, note that an alternating automaton over infinite words is simply an alternating
automaton over infinite trees with D = {1}. Formally, we define an alternating automaton over
infinite words as A = (2, Q, d,qo, F) where 6 : Q X ¥ — BT(Q).

In [MSS86], Muller et al. introduce weak alternating automata (WAAs). In a WAA, we
have a Biichi acceptance condition F' C @ and there exists a partition of @) into disjoint sets,
Q1,-..,Qm, such that for each set Q;, either @; C F, in which case @; is an accepting set, or
Q;NF = 0, in which case Q; is a rejecting set. In addition, there exists a partial order < on the
collection of the Q;’s such that for every ¢ € Q; and ¢’ € Q; for which ¢’ occurs in (g, 0, k), for
some o € X and k € D, we have Q; < ;. Thus, transitions from a state in @); lead to states
in either the same @); or a lower one. It follows that every infinite path of a run of a WAA
ultimately gets “trapped” within some ;. The path then satisfies the acceptance condition if
and only if @); is an accepting set. Indeed, a run visits infinitely many states in F' if and only if
it gets trapped in an accepting set. We sometimes refer to the type of an automaton, meaning
its acceptance condition, and its being weak or not weak.

We call the partition of @ into sets the weakness partition and we call the partial order
over the sets of the weakness partition the weakness order. Often (in particular, in all the
cases we consider in this work) a WAA is given together with its weakness partition and order.
Otherwise, as we claim below, these can be induced by the partition of the graph of the WAA
into mazimal strongly connected components (MSCCs). Formally, given A, let G4 be a directed
graph induced by A; that is, the vertices of G4 are states in A and there is an edge from vertex
q to vertex ¢’ iff there is a transition in A from the state ¢ that involves the state ¢’. Let
Ci,...,Cy be a partition of G4 to maximal strongly connected components. That is, for every
C; and for every two vertices ¢ and ¢’ in Cj, there is a path from ¢ to ¢’ and from ¢’ to ¢, and for
every vertex ¢”, the set C; U {¢"} no longer satisfies this condition. Since the partition to the
MSCCs is maximal, there is a partial order < between them so that C; < C; iff C; is reachable
from Cj.

Theorem 2.2 Given a WAA A, the partition of its states to mazimal strongly connected com-
ponents is a weakness partition with a weakness order <.

Proof: Let C4,...,C, be the MSCCs of G4. We show that each C; is either contained in F’
or disjoint from F'. Since A is weak, there is weakness partition Q1,...,Q, for A. We claim
that the partition to the C;’s refines the partition to the @Q;’s, in the sense that each set @Q; is a

14

union of maximal strongly connected components. Indeed, since there is a path between every
two states in a strongly connected component, all the states of a component must belong to the
same set ;. Now, since each @); is either contained in F or disjoint from F', the same holds for
all the maximal strongly connected components, and we are done. L]

It follows, by [Tar72], that when a weakness partition and order are not given, they can be

found in linear running time.

Remark 2.3 Since the modalities of conventional temporal logics, such as CTL* and the u-
calculus, do not distinguish between the various successors of a node (that is, they impose
requirements either on all the successors of the node or on some successor), the alternating
tree automata that one gets by translating formulas to automata are of a special structure, in
which whenever the automaton reads a node z and a state s is sent to direction ¢, the state s
is sent to all the directions ¢’ € d(z), in either a disjunctive or conjunctive manner. Formally,
following the notations in [GW99], the formulas in BT({0,...,k — 1} x Q) that appear in
transitions 6(g, o, k) of such alternating tree automata are members of BT ({0, ¢} x @), where
Os stands for Aqcqo,... k—13(c, 8) and Os stands for Vcqo,. x—13(c,). We say that an alternating
tree automaton is symmetric if it has the special structure described above. As detailed in
Section 4, all the alternating tree automata we use in this work are symmetric, and thus can
also be described using transitions in B1 ({0, 0} x Q). O

3 Alternating Automata and Model Checking

In this section we introduce an automata-theoretic approach to model checking for branching
temporal logic. The model-checking problem for a branching temporal logic is as follows.
Given a Kripke structure K and a branching temporal formula 1, determine whether K =
1. Recall that for linear temporal logic, each Kripke structure may correspond to infinitely
many computations. Model checking is thus reduced to checking inclusion between the set of
computations allowed by the Kripke structure and the language of an automaton describing
the formula [VW86a]. For branching temporal logic, each Kripke structure corresponds to a
single non-deterministic computation. On that account, model checking is reduced to checking
the membership of this computation in the language of the automaton describing the formula
[Wol89]. We show here that alternating automata are the suitable framework for automata-
based model-checking algorithms. Alternation is used to reduce the size of the automaton from
exponential in the length of ¢ to linear in the length of .

A Kripke structure K = (AP, W, R,w°, L) can be viewed as a tree (Tx, V) that corresponds
to the unwinding of K from w°®. Formally, for every node w, let d(w) denote the degree of w
(i.e., the number of successors that w has, and note that for all w we have d(w) > 1), and let

15

succg(w) = (wo, ..., Wq(w)—1) be an ordered list of w’s R-successors (we assume that the nodes
of W are ordered). We define T, and Vk inductively as follows:

1. VK(€) = wo.

2. For y € Tk with succr(Vk (y)) = (wo,. .., ws) and for 0 < i < m, we have y-i € Tk and
Vi (y i) = w;.

We will sometimes view (Tk,Vk) as a computation tree over 24F, taking the label of a
node to be L(Vk(x)) instead of Vi (z). Which interpretation is intended will be clear from the

context.

Let ¥ be a branching temporal formula and let D C IN be the set of degrees of a Kripke
structure K. Suppose that Ap y is an alternating automaton that accepts exactly all the D-
trees that satisfy 1. Consider a product of K and Ap y; i.e., an automaton that accepts the
language L(Ap) N {(Tk,Vk)}. The language of this product either contains the single tree
(Tk,Vk), in which case K = 1, or is empty, in which case K [~ 1. This discussion suggests
the following automata-based model-checking algorithm. Given a branching temporal formula
1 and a Kripke structure K with degrees in D, proceed as follows.

(1) Construct the alternating automaton Ap y.

(2) Construct an alternating automaton Ax, = K X Apgy by taking the product of K
and Ap . This automaton simulates a run of Ap 4 over (Tx, Vk).

(3) Output “Yes” if L(Ak,y) # 0, and “No”, otherwise.

The type of Apy and, consequently, the type of Ax . as well as the complexity of its
nonemptiness test, depend on the logic in which v is specified. The crucial point in our approach
is that the automaton Ak y can be defined as a word automaton over a 1-letter alphabet; this
reduces the complexity of the nonemptiness test. In the remainder of this section we discuss
the 1-letter nonemptiness problem and present the product automaton Ag y.

3.1 The 1-letter Nonemptiness Problem

The nonemptiness problem for nondeterministic word automata is reducible to the 1-letter
nonemptiness problem for them; instead of checking the nonemptiness of an automaton A =
(2,Q,9,q0, F), one can check the nonemptiness of the automaton A’ = ({a}, @, ', go, F'), where
for all ¢ € Q, we have §'(¢,a) = U,cx0(q,0). It is easy to see that if A accepts some word,
then A’ accepts a¥. Also, as each transition of A’ originates from a transition of A, it is not
hard to see that if A’ accepts a“, then there exists a word that is accepted by A. One way to
view this is that A’ first guesses an input word and then proceeds like A over this word.

16

This reduction, however, is not valid for alternating word automata: if A’ accepts a¥, it is
still not guaranteed that A accepts some word! Indeed, a necessary condition for the validity
of the reduction is that the points of the run of A’ that correspond to the same suffix guess the
same Y.-labeling for this suffix, but nothing enforces this. This problem does not occur when
A is defined over a singleton alphabet, because there is only one possible word. (Note however
that this simplification does not hold for finite words since the length of the word is then a
distinguishing factor.)

The theorem below relates the complexity of the nonemptiness problem for various classes

of automata on infinite words.

A formula in B (X) is simple if it either atomic, true, false, or has the form z * y, where
x € {A\,V} and z,y € X. An alternating automaton is simple if all its transitions are simple.
Thus, in each transition, a simple alternating automaton splits into two copies in either a
universal or an existential (when * is V) mode. Note that states of a 1-letter simple alternating
automaton corresponds to nodes in an AND/OR graph.

Theorem 3.1 For automata of a given type (i.e., Bichi, Rabin, Street, weak or not, ...), the

following three problems are intereducible in linear time and logarithmic space.

1. 1-letter nonemptiness of alternating word automata.
2. 1-letter nonemptiness of simple alternating word automata.

3. Nomemptiness of nondeterministic fizxed-arity tree automata.

Proof: We prove the theorem by reducing problem 1 to problem 2, reducing problem 2 to
problem 3, and reducing problem 3 to problem 1. Before we get to the proof we define the
two functions deflate: BT(IN x Q) — BT(Q) and inflate: BT(Q) — BT(IN x Q). For a formula
6 € BT(IN x Q), the formula deflate(6) is the formula obtained from 6 by replacing each atom
(¢,q) in 6 by the atom ¢g. The function inflate is defined with respect to an enumeration
40,91, - - - » qn of the states in Q. For a formula 8§ € B™(Q), the formula inflate(#) is the formula
in B*({0,...n} x Q) obtained from 6 by replacing each atom g, in 6 by the atom (c,q.). For

example,

o deflate(((0,90) A (0,92)) V ((0,92) A (1,92) A(1,41))) = (90 A g2) V (g2 A g2 A qu).

o inflate((go A q2) V (g2 A g2 A q1)) = ((0,90) A (2,92)) V ((2,92) A (2,42) A (1, q1))-

We start by reducing problem 1 to problem 2. Given an alternating word automaton
A = ({a},Q,6,q0, F), we define an alternating word automaton A’ = ({a},Q’, ¥, qo, F'), such

that for all ¢ € @', the formula §'(q, a) is simple, and L(A) # 0 iff L(A') # 0. The idea is that
since all the suffixes of a¥ are the same, we can regard transitions of A’ as e-transitions and

17

replace a transition in § with several simple transitions in ¢’. This requires an extension of the
state set of A with at most the number of subformulas of transitions in §. We assume, without
loss of generality, that for all ¢ € @, the parse tree of the formula d(g,a) is binary; that is,
d(q, a) is either true, false, or has the form 6, 6 (* denotes A or V). We define Q' inductively
as follows:

e For every q € Q, we have g € Q'.
e For every q € Q with d(q,a) = 0 * 02, we have ; € Q' and 05 € Q’.
e For every 61 x 65 € Q', we have 6; € Q' and 6, € Q'.

Thus, a state in Q' is either ¢ € @, or 61 * 65 € BT (Q). Moreover, Q' contains all the formulas
in BT(Q) that are strict subformulas of transitions in §. We define &' as follows:

e §'(g,a) = d(g,a). That is, if §(g,a) is true or false, so is §'(¢g,a). Otherwise, d(q,a) is of
the form 6 * 65, in which case the subformulas 6, and 05 are regarded in §'(g,a) as states.

e §/(61 x02,a) = 61 x 05.

It is easy to see that all the transitions in §’ are simple.

Consider the alphabets ¥ = IN* x Q and ¥/ = IN* x ', and consider an infinite word b’ over
%', The (possibly finite) word b\'z is obtained from b’ by restricting it to its letters in . We say
that a word b’ over X' corresponds to a word b over X iff b\'z = b. Consider a run (T",7') of A’
(recall that one can regard a run of an alternating word automaton as a run of an alternating
tree automaton with D = {1}). For every F C @ and for every path 7' C T’ we have that 7’
visits infinitely many states in F' iff so does 7r"2. Accordingly, as all our acceptance conditions
only refer to visiting subsets of @ infinitely often, we define F' = F.

Every run (T,r) of A corresponds to a run (T”,7') of A, in the sense that for each path
m C T there exists a path 7' C T" such that r'(n’) corresponds to r(r), and vice versa. Indeed,
the run (T, r') proceeds exactly as (T, 7), only in “smaller steps”. Similarly, each run (T” ') of
A' corresponds to a run (T, 7) of A. Here, (T,r) proceeds in “larger steps”. By the definition
of §', it is guaranteed that, when necessary, A can cluster several transitions of A’ into a single
transition. Since F’' = F, we thus have that (T,r) is accepting iff (T",7') is accepting. Thus,
L(A) #£ 0 iff L(A) #0.

We prove that A and A’ are of the same type. Clearly, they agree on the type of their
acceptance conditions. We show that if A is weak then so is A’. Let {Q1,Q2,...,Q,} be the
partition of @ into sets such that @; < ... < @, is an extension of the partial order to a total
order. We define a partition {Q}, @5, ..., Q. } of Q' as follows. A state ¢’ € Q' is a member of
Q; iff one of the following holds.

1. ¢ € Qy, or

18

2. i =min{j : ¢’ is a subformula of §(g,a) for ¢ € Q,}.

That is, a state that corresponds to a state of A remains in its set there. A state associated with a
subformula 6 joins the least Q; from which 6 is reachable. It is easy to see that {Q}, Q5,...,Q.}
is a valid partition, with the ordering @} < ... < Q...

We now reduce problem 2 to problem 3. Let A = ({a},@Q,d,qo,F) be a simple alternating
word automaton. Consider the alternating tree automaton A’ = ({a}, {n},@,d, qo, F), where
n = |@| and for all ¢ € @ we have that ¢'(q,a,n) =inflate(§(q,a)). The fact that the transitions
in § are simple guarantees that so are the transitions in §’. Also, the definition of inflate
guarantees that for all ¢ € Q and all atoms (¢,q;) in §'(g,a,n), we have that ¢ = j. Thus,
if §'(g,a,n) is a conjunction that sends two copies of the automaton to the same direction,
then these copies enter the same state and they are equivalent to a single copy sent to this
direction. Hence, A’ can be viewed as a nondeterministic tree automaton. Formally, let A" =
({a},{n},Q",d",q0, F") be a nondeterministic tree automaton, where

o n=1Q|,
o Q” = Q U {Qacc}a

o 0" : Q" x {a} x {n} — 29" is defined as follows.

- If 51(‘]) a, n) = true, then 5”((17 a, n) = {<Qacm Gaces - - - 7Qacc>}-

— If §'(g,a,n) = false, then §"(q,a,n) = 0.

- If 51(‘]’ a, n) = (01, ch) A (C2a qc2)’ then 6”((], a, n) = {<30’ S81y--- ,Sn_1>}, Where 301 =
ey Sca = Geqy and 8; = ggec for @ 4 {01,02}.

— If§'(g,a,n) = (c1,ge,) V(C2, 4cy), ‘ghen 8"(g,a,n) = {(sd,s1,...,8L 1), (sd,s2,...,82_ 1)},
where s} = gc,, $2, = qc;, and s} = gacc for (5,1) € {(1,¢1),(2,¢2)}

- 5”(Qacm a, n) = {<Qacca daccs - - - a‘hcc)}-

e F" extends F by making gu.. an accepting sink. Thus, for example, if A’ is a Biichi
automaton, then F” = F U {qgec}-

Clearly, L(A') = L(A"). We show that £(A) # 0 iff L(A") # 0. Assume first that £(A) # 0.
Then, there exists an accepting run (T,7) of A over a¥. It is easy to see that the tree (T, r'),
in which /(¢) = r(¢) and for all y - ¢ € T with 7/(y) = (z,q) and 7(y - ¢) = (01#*1 ¢;), we have
r(y-c) = (z-14,¢), is an accepting run of A’ over the a-labeled |Q|-ary tree. Assume now
that £(A') # 0. Then, there exists an accepting run (T,r') of A’ over the a-labeled |Q|-ary
tree. It is easy to see that the tree (T, r), in which for all y € T with 7'(y) = (z,¢) we have
r(y) = (01*!,q), is an accepting run of A over a*. It is also easy to see that the type of A is
preserved.

19

It is left to reduce problem 3 to problem 1. The nonemptiness problem for nondeterministic
tree automata is reducible to their 1-letter nonemptiness problem [Rab69]. In addition, the
reduction preserves the type of the automaton. Hence, as nondeterministic tree automata are
a special case of alternating tree automata, we reduce the problem of 1-letter nonemptiness for
alternating fixed-arity tree automata to problem 1.

Consider a 1-letter alternating tree automaton A over n-ary trees. Since the 1-letter n-ary
tree is homogeneous (that is, all its subtrees are identical), then it is not important to which
direction A sends new copies in each of its transitions. Thus, we can assume, without loss of
generality, that for every atom (4, ¢;) in the transitions of A we have that i = j. Given an alter-
nating tree automaton A = ({a},{n}, @,d,qo, F) with this property, consider the alternating
word automaton A’ = ({a}, @, ', qo, F'), where for all ¢ € Q we have §'(q,a) =deflate(d(q, a,n)).
We show that £(A) # 0 iff £L(.A') # 0. Intuitively, since the 1-letter tree that could be accepted
is unique, its branching structure is not important.

Assume first that £(.A) # (0. Then, there exists an accepting run (T, r) of A over the n-ary
a-labeled tree. It is easy to see that the tree (T, r'), in which for all y € T with r(y) = (z,q)
we have r/(y) = (01%l,¢), is an accepting run of A’ over a*. Assume now that £(A') # 0. Then,
there exists an accepting run (7T, r') of A’ over a”. Consider the tree (T, r) in which r(¢) = r/(¢)
and for all y - ¢ € T with 7(y) = (z,q) and r'(y - ¢) = (0¥1*1,g;), we have 7(y - ¢) = (z - 1, ¢).
As we assumed that all atoms (7, ¢;) in § have i = j, it is easy to see that (T',r) is an accepting
run of A. Clearly, the reduction preserves the type of A.]

We will study later in the paper the complexity of the 1-letter nonemptiness problem.

3.2 The Product Automaton

In this section we present the core step of our approach. Given the alternating tree automaton
Apy and a Kripke structure K, we define their product Ak 4 as a 1-letter alternating word
automaton. Thus, taking the product with K gives us two things. First, we move from a tree
automaton to a word automaton. Second, we move from an automaton over an alphabet 247
to a 1-letter automaton. Obviously, the nonemptiness problem for tree automata can not, in
general, be reduced to the nonemptiness problem of word automata. Also, as discussed above,
the nonemptiness problem for alternating word automata cannot, in general, be reduced to the
1-letter nonemptiness problem. It is taking the product with K that makes both reductions
valid here. Since each state in Ag 4 is associated with a state w of K, then each state has the
exact information as to which subtree of (T, Vi) it is responsible for (i.e., which subtree it
would have run over if Ag 4 had not been a 1-letter word automaton). The branching structure
of (T, Vi) and its 24P-labeling are thus embodied in the states of Ag,y. In particular, it is
guaranteed that all the copies of the product automaton that start in a certain state, say one
associated with w, follow the same labeling: the one that corresponds to computations of K
that start in w.

20

Let Apy = <2AP,D,Q¢,5¢,qO,F¢) be an alternating tree automaton that accepts exactly
all the D-trees that satisfy t (the details of the construction of Ap ,, depend on the logic in which
1 is specified; we consider some examples in the next section) and let K = (AP, W, R,w°, L) be
a Kripke structure with degrees in D. The product automaton of Ap 4 and K is an alternating
word automaton Ag .y = ({a}, W x Qy,d, (w®, qo), F) where § and F are defined as follows:

o Let ¢ € Qy, w € W, succr(w) = (wo, - -, Wq(w)—1), and dy(g, L(w),d(w)) = 6. Then
d((w,q),a) = @', where @' is obtained from 6 by replacing each atom (c,¢’) in 6 by the
atom (we,q').

e The acceptance condition F is defined according to the acceptance condition Fy of
Apy. If Fy C Qy is a Biichi condition, then FF = W x Fy is also a Biichi condi-
tion. If Fy = {(G1,B1),...,(Gm,Bm)} is a Rabin (or Streett) condition, then F =
{{(W x G1,W X By),...,(W X G, W X B,)} is also a Rabin (or Streett) condition.

It is easy to see that A 4 is of the same type as Ap . In particular, if Ap ,, is a WAA (with
a partition {Q1,Q2, ..., Qn}), then sois Ax (with a partition {W xQ1, W xQa2,..., W xQyn}).

Proposition 3.2

(1) [l Akl = O K] - | ADyl)-

(2) L(Ak,y) is nonempty if and only if K |= .

Proof: (1) follows easily from the definition of Ag 4. Indeed, |W x Qy| = [W| * |Qyl, [|0]| =
(W |6y l, and |F| = [W]x |Fy].

To prove (2), we show that L(Afg,y) is nonempty if and only if Apy accepts (Tx, Vk).
Since Ap 4 accepts exactly all the D-trees that satisfy v, and since all the degrees of Tk are
in D, the later holds if and only if K |= 1. Given an accepting run of Ayp 4 over (Tx, Vi), we
construct an accepting run of Ag . Also, given an accepting run of Ag y, we construct an
accepting run of Ap 4 over (T, Vi).

Assume first that Ap, accepts (Tx,Vik). Thus, there exists an accepting run (T;,r) of
Apy over (Tk, Vi). Recall that T, is labeled with IN* x Q. A node y € T, with r(y) = (z,q)
corresponds to a copy of Ap y that is in the state ¢ and reads the tree obtained by unwinding
K from Vi (z). Consider the tree (T;.,r') where T} is labeled with 0* x W X @, and for every
y € T, with r(y) = (z,q), we have r'(y) = (01, Vi (x),q). We show that (T},r') is an accepting
run of Ag . In fact, since F = W X Fy, we only need to show that (Ty,r’) is a run of Ag y;
acceptance follows from the fact that (T,.,7) is accepting. Intuitively, (T,,7r') is a “legal” run,
since the W-component in 7' always agrees with Vi. This agreement is the only additional
requirement of § with respect to dy. Consider a node y € T, with r(y) = (z,q), Vk(z) = w,
and succg(w) = (wo, ..., wg—1). Let dy(q, w, k) = 6. Since (T;,r) is a run of Ap 4, there exists

21

a set {(co,q0),(c1,q1),---,(cn,an)} satisfying 6, such that the successors of y in 7T, are y - ¢, for
1 < i < n, each labeled with (z - ¢;,¢;). In (Ty,r'), by its definition, r'(y) = (0*,w, q) and the
successors of y are y - i, each labeled with (01®+1 w,,, ¢;). Let §(¢,a) = 6. By the definition of
d, the set {(wey,90), (Wey,q1),-- -, (We,,qn)} satisfies §'. Thus, (T,,r') is a run of Ag 4.

Assume now that Ag y accepts a*. Thus, there exists an accepting run (T7,7) of Ak y.
Recall that 7, is labeled with 0* x W x Q. Consider the tree (T,,7') labeled with IN* X Qy,
where 7/(¢) = (¢,90) and for every y - ¢ € T;, with 7'(y) € {z} x Qy and r(y - ¢) = (01*+!, w, q),
we have r'(y - ¢) = (x - i,q), where i is such that Vi (z -i) = w. As in the previous direction, it
is easy to see that (T;,r') is an accepting run of Ap 4 over (Tk, V).]

Proposition 3.2 can be viewed as an automata-theoretic generalization of Theorem 4.1 in
[EJS93].

In conclusion, given an alternating automaton Ap , such that Ap accepts exactly all the
D-trees that satisfy 1, model checking of a Kripke structure K with degrees in D with respect
to 1 is reducible to checking the 1-letter nonemptiness of a word automaton of the same type
as Ap y and of size O(||K|| *||Ap,y||). Similar approaches, where Boolean graphs and games are
used for model checking and for bisimulation checking are presented in [And92, Lar92, AV95]
(Boolean graphs) and [Sti96] (games). In the following sections, we show how this approach can
be used to derive, in a uniform way, known complexity bounds for model checking of several
branching temporal logics, as well as to obtain new space complexity bounds.

4 Primary Applications

In the previous section, we presented an automata-based method for model checking of branch-
ing temporal logics. The efficiency of our method depends on the efficiency of the translation of
branching temporal logic formulas to automata as well as the efficiency of the 1-letter nonempti-
ness test for them. In this section we present an application of the method with respect to CTL,
the alternation-free u-calculus, and the p-calculus.

4.1 Model Checking for CTL and Alternation-free u-Calculus

Vardi and Wolper showed how to solve the satisfiability problem for CTL via an exponential
translation of CTL formulas to Biichi automata over infinite trees [VW86b]!. Muller et al.
provided a simpler proof, via a linear translation of branching dynamic logic formulas to WA As
[MSS88]. We exploit here the ideas of Muller et al. by demonstrating a linear translation from
CTL formulas to WAAs. The idea is simple: each state in the automaton for 1 corresponds
to a subformula of ¥. The transitions of the automaton then follows the semantics of CTL.

!The translation described in [VW86b] handles PDL formulas, but can be easily adjusted to CTL.

22

For example, the automaton for the formula EF'p has a single state ¢. When the automaton
in state ¢ reads a node in which p holds, its task is completed, and the transition function is
true. When the automaton is state g reads a node in which p does not hold, it sends a copy in
state g to one of the successors of the node. The acceptance condition of the automaton is 0,
guaranteeing that eventually the automaton reads a node in which p holds.

Theorem 4.1 Given a CTL formula ¢ and a set D C IN, we can construct in linear running
time @ WAA Apy = (247 D, cl(y), 6,9, F) such that L(Apy) is ezactly the set of D-trees

satisfying 1.

Proof: The set F of accepting states consists of all the U-formulas in cl(). It remains to
define the transition function §. For all o € 24F and k € D, we define:

e d(p,o,k) =trueifp € o. e §(p,0,k) =falseif p & 0.
e §(—p,o,k) =trueifp & o. ¢ §(—p,0,k) =false if p € 0.
b 6(()01 N 2,0, k) = 5(@170716) A 5(@2101 k)

® (1 Vp2,0,k) = 6(p1,0,k) V (2,0, k).

o 5(AX@,0,k) = NiZ5(c,).

. §(EXe,0,k) = VET (e,).

o 5(Ap1Ugps,0,k) = 6(pa,0,k) V (8(p1,0,k) A Ns=g(c, A1 Ugpa)).
o §(Bp1Ugpa, 0,k) = 6(pa,0,k) V (6(p1,0,k) A VEZi(c, BprUgps)).
o 5(Ap1Ups,0,k) = 8(pa,0,k) A (8(p1,0,k) V N3 (e, Apr Uipa)).
o (B0, 0,k) = 8,0, k) A (8(p1, 0, k) V VS e, By Uiga)).

The weakness partition and order of Ap , are defined as follows. Each formula ¢ € cl(1))
constitutes a (singleton) set {¢} in the partition. The partial order is then defined by {¢1} <
{@2} iff 1 € cl(p2). Since each transition of the automaton from a state ¢ leads to states
associated with formulas in ¢l(¢p), the weakness conditions hold. In particular, each set is either
contained in F' or disjoint from F.

We now prove the correctness of our construction, namely, that £L(Ap) contains exactly
all the D-trees that satisfy 1. We first prove that Ap 4 is sound. That is, given an accepting
run (T;,r) of Ap 4 over a tree (T, V), we prove that for every y € T, such that 7(y) = (z, ¢),
we have Vi (z) = ¢. Thus, in particular, Vi (¢) |= ¢. The proof proceeds by induction on the
structure of . The case where ¢ is an atomic proposition is immediate and the cases where
@ is o1 A s, w1 V o, AXp1, or EX¢; follow easily, by the induction hypothesis, from the

23

definition of 8. Less immediate are the cases where ¢ is an U-formula or a U-formula. Consider
first the case where ¢ is of the form Ap1Ugs or Ep1Ugps. As (T,,r) is an accepting run, it
visits the state ¢ only finitely often. Since Ap y keeps inheriting ¢ as long as ¢ is not satisfied,
then it is guaranteed, by the definition of § and the induction hypothesis, that along all paths
or some path, as required in ¢, 9 does eventually holds and ¢1 holds until then. Consider now
the case where ¢ is of the form ApiUpy or Ep1Ugs. Here, it is guaranteed, by the definition
of § and the induction hypothesis, that ¢ holds either always or until both 5 and ¢; hold.

We now prove that Ap 4 is complete. That is, given a D-tree (Tk, Vi) such that (Tk, Vi) |=
1, we prove that Ap y accepts (Tk,Vk). In fact, we show that there exists an accepting run
(T, r) of Ap 4 over (Tk,Vik). We define (T,,r) as follows. The run starts at the initial state;
thus € € T, and r(¢) = (¢,%). The run proceeds maintaining the invariant that for all y € T,
with r(y) = (z,¢), we have Vx(z) | ¢. Since (Tk,Vk) = 9, the invariant holds for y = e.
Also, by the semantic of CTL and the definition of §, the run can always proceed such that all
the successors y-c of a node y that satisfies the invariant have r(y-c) = (2, ¢') with Vi (2) = ¢'.
Finally, the run always try to satisfy eventualities of U-formulas. Thus, whenever ¢ is of the
form Ap1Uypa or Epi1Ugs and Vi (z) = @2, it proceeds according to §(p2, Vi (x),d(x)). It is
easy to see that all the paths in such (7}, r) are either finite or reach a state associated with a
U-formula and stay there thereafter. Thus, (T, r) is accepting.]

By the sufficient degree property [ES84], a CTL formula 1 is satisfiable if and only if it is
satisfied in an {n}-tree, where n is the number of occurrences of the path quantifier E in 1.
Hence, satisfiability of 1 can be reduced to the nonemptiness of Ay} 4. As the nonemptiness
problem for WA As is in exponential time [MSS86], the above described WA As provide also an
exponential-time satisfiability procedure for CTL.

Example 4.2 Consider the CTL formula ¢ = A(trueU(AfalseUp)). For every D C IN, the
WAA associated with ¢ is Ap . = ({{p},0}, D, {v, AfalseUp}, 6, v, { AfalseUp}), where § is
described in the following table (we restrict Ap 4 to the reachable states).

state ¢ || (g, {p}, k) | 8(g,0,%) |
¥ | Neole, AfalseUp) v AeSo (%) | Aéso(ev)
AfalseUp | AFZ4(c, AfalseUp) false

In the state ¢, if p holds in the present, then Ap, may either guess that AfalseUp, the
eventuality of 1, is satisfied in the present, or proceed with /\f;&(c,), which means that the
requirement for fulfilling the eventuality of 9 is postponed to the future. The crucial point is
that since 1 ¢ F', infinite postponing is impossible. In the state AfalselUp, Ap y expects a
tree in which p is always true in all paths. Then, it keeps visiting Afalseﬁp forever. Since
AfalseUp € F, this is permitted.

24

Example 4.3 Consider the CTL formula ¢ = A((EX-p)Ub). For every D C IN, the WAA
associated with ¢ is Ap y = (218} D {4p, —p},d,4,0), where § is described in the following
table (we restrict Ap 4 to its reachable states).

state ¢ || d(q, {p, b}, k) | 8(q, {p}, k) | 5(q, {b}, k) | 6(q,0,k) |
0 true so(e,=p) AN (e, 9) | true b3 (e, —p) A NEZg (e,)
-p false false true true

In the state 4, if b does not hold on the present, then Ap y requires both EX—-p to be
satisfied in the present (that is, —p to be satisfied in some successor), and v to be satisfied by
all the successors. As 9 € F, Ap y should eventually reach a node that satisfies b.

We now present a similar translation for the alternation-free p-calculus.

Theorem 4.4 Given an alternation-free guarded p-calculus formula 1 and a set D C IN, we
can construct in linear running time a WAA Apy = (24P D, cl(v),8,%, F), such that L(Ap)
is exactly the set of D-trees satisfying 1.

Proof: For atomic propositions constants and for formulas of the forms 1 Aps, w1 A, AX @,
or EX ¢, the transition function § is equal to the one described for CTL. For u and v formulas,
and for all ¢ € ¥ and k € D, we define:

s 6(,uy.f(y)’ g, k) = 5(f(,uyf(y)), g, k)
b 6(Vy-f(y)’ g, k) = 5(f(1/yf(y)), g, k)

Note that since v is guarded, it is guaranteed that we have no circularity in the definition of 4.
In order to define F', we define an equivalence relation R over cl(¢) where

w1 Ry iff 1 € cl(p2) and @2 € cl(yp1).

Since 1) is alternation free, it is guaranteed that an equivalence class of R cannot contain both
a v-formula and a p-formula. A state ¢ € cl(y) belongs to F if and only if it belongs to an
equivalence class that contains a v-formula.

The weakness partition and order of Ap , are induced by R as follows. Each equivalence
class of R constitutes a set Q;. We denote each set Q; by [¢], for some ¢ € @;. The partial order
is defined by [¢1] < [p2] iff ¢1 € cl(p2). As in CTL, since each transition of the automaton
from a state ¢ leads to states associated with formulas in cl(p), the weakness conditions hold.
In particular, each set is either contained in F or disjoint from F.

The correctness proof of the construction is similar to the one for CTL. Here, the definition

of F' guarantees that an accepting run cannot get trapped in a set with a y-formula, and, on

25

the other hand, it is allowed to stay forever in a set with a v-formula. We describe here the
soundness and completeness for the formula pz.f(z). Recall that pz.f(z) is equivalent to the
formula f(pz.f(z)). Thus, proceeding according to f(uz.f(z)) is consistent with the semantics
of p-calculus. Assume that (T,,r) is an accepting run over a tree (Tx,Vk). We prove that
for every ¢ € cl(y) and for every y € Tk such that r(y) = (z,¢), we have Vk(z) |E ¢. Asin
CTL, the proof proceeds by induction on the structure of ¢. Let ¢ = pz.f(2). Since r is an
accepting run, it visits the set [¢] only finitely often. The only possibility of r to escape from
the set [¢] is to proceed to states ¢ that appear in d(f (), 0, k)) and for which ¢ ¢ cl(¢). For
such £, we can employ the induction hypothesis, which implies, by the semantics of u-calculus
and the definition of §, that Vi (z) = ¢. For the completeness, we show that if (T, Vk) = v,
then there exists an accepting run of Ap, over (Tx,Vk). As in CTL, we can define a run
(Ty,r) such that for all y € T, with 7(y) = (z,), we have Vi (z) = ¢. Consider a node y € T,
with 7(y) = (z,pz.f(z)). Let ¢ = pz.f(z). If Vg(z) satisfies ¢ by satisfying a subformula
€ of f(pz.f(2)) for which ¢ ¢ cl(€), we say that y is an escape node. By the semantics of
p-calculus and the definition of 4, all the nodes y € T, with r(y) = (z, uz.f(z)) eventually reach
an escape node. Hence, the run (T}, r) can proceed to states associated with the corresponding
subformulas ¢ and avoids [¢]-cycles. 0

Example 4.5 Consider the formula ¢» = py.(p V EXAXy). For every D C IN, the WAA
associated with ¢ and D is Ap y = ({{p},0}, D, {¢, AX¥},d,%,0), where § is described below
(we restrict Ap 4 to its reachable states).

By definition, §(uy.(p V EXAXy),0,k) =0(pV EXAXpuy.(pV EXAXy),0,k). Hence we
have:

state ¢ || (g, {p},k) | 8(q,0,%) |
") true VEZS (e, AX)
AXY || A (e w) | ARy (e,)

In the state 1, if p does not hold in the present, A X should be satisfied in some successor.
Since the state set of Ap 4 constitutes a single rejecting set, p should eventually hold.

We now turn to study the complexity of the nonemptiness problem for WAAs. We first
consider the general nonemptiness problem for them.

Theorem 4.6 The nonemptiness problem for weak alternating automata is EXPTIME-complete.

Proof: Membership in EXPTIME is proved in [MSS86]. Hardness in EXPTIME follows from
reduction of satisfiability of CTL, proved to be EXPTIME-hard in [FL79]. U

26

Thus, the general nonemptiness problem for WA As, the one required for solving the satis-
fiability problem, cannot be solved efficiently. For model checking, we do not have to solve the
general nonemptiness problem. Taking the product with the Kripke structure, we get a 1-letter
WAA over words. As we prove below, the nonemptiness problem for these automata can be
solved in linear time. We note that the general nonemptiness problem for WAA over words
is PSPACE-complete [MH84|. Thus, the transition to a 1-letter automaton is essential. Also,
as follows from Theorem 3.1, the best upper-bound known for 1-letter nonemptiness of Biichi
alternating word automata is quadratic [VW86b]. Thus, the weakness of the automaton is also
essential.

Theorem 4.7 The 1-letter nonemptiness problem for weak alternating word automata is de-

cidable in linear running time.

Proof: Following Theorem 3.1, we prove that the 1-letter nonemptiness problem for simple
weak alternating word automata is decidable in linear running time. We present an algorithm
with linear running time for checking the nonemptiness of the language of a simple weak alter-
nating word automaton A = ({a},Q,d, Q°, a).

The algorithm labels the states of A with either ‘T’, standing for true, or ‘F’, standing for
false. The intuition is that states ¢ € @ for which the language of A7 (i.e., the language of A
with ¢ as the initial state) is nonempty are labeled with ‘T’ and states ¢ for which the language
of A7 is empty are labeled with ‘F’. The language of A is thus nonempty if and only if the
initial state gg is labeled with “T".

As A is weak, there exists a partition of @ into disjoint sets @; such that there exists a
partial order < on the collection of the @;’s and such that for every ¢ € Q; and ¢’ € Q; for
which ¢' occurs in §(g, a), we have that Q; < Q;. Thus, transitions from a state in Q; lead to
states in either the same); or a lower one. In addition, each set Q); is classified as accepting,
if Q; C a, or rejecting, if @Q; Na = (). Following Theorem 2.2, if the partition of @ is not given,
one can find such a partition in linear time. The algorithm works in phases and proceeds up the
partial order. We regard true and false as states with a self loop. The state true constitutes
an accepting set and the state false constitutes a rejecting set, both minimal in the partial
order. Let @, < ... < @, be an extension of the partial order to a total order. In each phase
i, the algorithm handles states from the minimal set @); that still has not been labeled.

States that belong to the set @) are labeled according to the classification of Q1. Thus,
they are labeled with “I” if 1 is an accepting set and they are labeled with ‘F’ if it is a
rejecting set. Once a state ¢ € @; is labeled with “I” or ‘F’, transition functions in which ¢
occurs are simplified accordingly; i.e., a conjunction with a conjunct ‘F’ is simplified to ‘F’ and
a disjunction with a disjunct ‘T’ is simplified to ‘T’. Consequently, a transition function §(¢’, a)
for some ¢’ (not necessarily from ;) can be simplified to true or false. The state ¢' is then
labeled, and simplification propagates further.

27

Since the algorithm proceeds up the total order, when it reaches a state g € @); that is still
not labeled, it is guaranteed that all the states in all Q; for which Q; < Q;, have already been
labeled. Hence, all the states that occur in §(g,a) have the same status as g. That is, they
belong to @Q; and are still not labeled. The algorithm then labels ¢ and all the states in d(g, a)
according to the classification of @);. They are labeled ‘T” if Q); is accepting and are labeled ‘F’

otherwise.

Correct operation of the algorithm can be understood as follows. It is guaranteed that
once the automaton visits a state that belongs to @, it visits only states from @)1 thereafter.
Similarly, when the automaton visits a state ¢ whose labeling cannot be decided according to
labeling of states in lower sets, this state leads to a cycle or belongs to a cycle of states of the
same status, so the labeling of states according to the classification of the set to which they

belong.

Formally, we prove that for all 1 < ¢ < n, all the states in @; are labeled correctly. The
proof proceeds by induction on i. The case ¢ = 1 is immediate. Assume that we have already
labeled correctly all the states in all Q; with j < i and let ¢ € ;. We consider the case where
Q; is an accepting set. The proof is symmetric for the case where Q; is a rejecting set. We
distinguish between three possibilities of labeling g:

1. The state ¢ is labeled ‘T’ before the phase i. Then, the value of (g, a), simplified according
to the labeling already done, is true. Therefore, there exists a run of A2 in which every
copy created in the first step (i.e., every copy that is created in order to satisfy d(q,a))
reaches a state ¢ for which, by the induction hypothesis, the language of A? is not empty.

Hence, the language of A7 is also not empty.

2. The state ¢ is labeled ‘F’ before the phase i. The correctness proof is symmetric to the
one of the previous case: The value of §(g, a), simplified according to the labeling already
done, is false. Therefore, every run of A? has at least one copy created in the first step
and reaches a state ¢ for which, by the induction hypothesis, the language of AY is empty.

Hence, the language of A? is also empty.

3. The state g is labeled ‘T’ during the phase ¢. Then, it must be the case that the simplifi-
cation of §(g, a) contains states of @;. Moreover, it contains only states of @; and they all
have not been labeled before the phase i. Thus, there exists a run of A7 in which every
copy created in the first step either reaches a state ¢’ for which the language of A? is not

empty, or stays forever in @);. Hence, the language of A? is not empty.

Note that these are indeed the only possibilities of labeling ¢: a state in an accepting set Q;
cannot be labeled after the phase ¢ and it cannot be labeled with ‘F’ during the phase ¢ since
we are dealing with an accepting Q;.

Using an AND/OR graph, as suggested in [BB79, Bee80, DG84], the algorithm can be im-
plemented in linear running time. The graph, G, induced by the transition function, maintains

28

the labeling and the propagation of labeling performed during the algorithm execution. In more
details, each node of G corresponds to a state ¢ € Q. For ¢ with é(g,a) = g1 * g2, the node ¢
is a *-node with two successors, ¢; and go. For ¢ = {true, false}, the node ¢ is a sink-node.
Since A is simple, these are the only possible forms of transitions and hence the only possible
nodes. Each *-node ¢ is labeled by a triple (x,last, ptrs), where last is a Boolean flag and ptrs
is a list of pointers that point to nodes that have g as a successor. The Boolean flag last is
true iff one of the two successors of ¢ has already been labeled with ‘T’ or ‘F’, its labeling has
been propagated to ¢, but did not suffice to label ¢ as well. In the beginning, last = false for
all the nodes. Each sink-node ¢ is labeled by a set ptrs of pointers that point to nodes that
have ¢ as a successor. It is easy to see that the size of G is linear in the size of 4, and it can be

constructed in linear running time.

In addition, the algorithm maintains an integer ¢ that contains the current phase and two
stacks St and Sr. The stacks contain nodes that were labeled with ‘T’ and ‘F’, yet still have not
propagated their labeling further. In the beginning, ¢ = 1, the stack St contains the sink-node
true (if exists), and the stack Sy contains the sink-node false (if exists).

Using G, the algorithm proceeds as follows. Whenever a node in the graph is labeled with
‘T’ (‘F’), the node is pushed into St (Sr). As long as St or Sp are not empty, some node q is
popped from either stacks, and labeling is propagated to every node ¢’ that has ¢ as a successor
(as detected by ptrs). In the case g € St, the node ¢ is labeled as follows.

e If ¢’ is a V-node, then label ¢’ with ‘T".

e If ¢’ is a A-node with last = true, then label ¢’ with ‘T".

e If ¢’ is a A-node with last = false, then change last to true.
In the case ¢ € SF, the node ¢ is labeled as follows.

e If ¢’ is a A-node, then label ¢’ with ‘F’.

e If ¢’ is a V-node with last = true, then label ¢’ with ‘F’.

e If ¢’ is a V-node with last = false, then change last to true.

When both St and Sr are empty, nodes that correspond to the states of the current Q); are
labeled according to the classification of @); and 7 is increased. Since each node of G is pushed
into a stack only once, and since handling of a node that is popped from a stack involves a
constant number of operations to each of the nodes that have it as a successor, the entire
complexity is linear in the size of G; hence linear in the size of 4.]

Theorems 4.1, 4.4, and 4.7, together with Proposition 3.2, yield model-checking algorithms
for CTL and for the alternation-free p-calculus with running time O(||K||? - ||%]|). Indeed,

29

the size of the automaton Ap y is linear in both |D| and |||, the tightest bound for |D| is
the number of states in K, and thus the size of Ak y, as guaranteed from Proposition 3.2, is
quadratic in ||K|| and linear in ||4||. Nevertheless, a closer look at Ag , shows that its size is
only linear in both || K|| and ||¢||, and hence, so is the running time of our algorithm. To see
this, consider the automaton Ap . The |D| factor in the size of Ap 4 comes from the need to
specify the transition function for all the branching degrees in D. This is not the case in Ag y.
There, every state is associated with a state in K. Therefore, every state is associated with a
single branching degree. Hence, when we define Ak ,, we need to specify for each of its states
(w,) only the transition induced by d(¢, L(w),d(w)) in Ap 4. It follows that the size of the
transitions in Ag 4 is bounded by |R| - ||4||, implying its linear size.

The algorithm used in the proof of Theorem 4.7 is clearly reminiscent of the bottom-up
labeling that takes place in the standard algorithms for CTL and alternation-free u-calculus
model checking [CES86, Cle93]. Thus, the automata-theoretic approach seems to capture the
combinatorial essence of branching-time model checking.

4.2 Model Checking for the u-Calculus

The intimate connection between the p-calculus and alternating automata has been noted in
[Jut90, EJ91, BC96b, Eme96]. We show here that our automata-theoretic approach provides
a clean proof that model checking for the p-calculus is in NPNco-NP. The key steps in the
proof are showing that p-calculus formulas can be efficiently translated to alternating parity
automata, and that the 1-letter nonemptiness problem for alternating Rabin word automata is
in NP.

Theorem 4.8 Given a p-calculus formula ¥ and a set D C IN, we can construct, in linear
running-time, an alternating parity automaton Ap .y such that L(Ap) is eractly the set of
D-trees satisfying .

Proof: To build an alternating automaton from a u-calculus formula, one is naturally tempted
to use the same transition relation as for the alternation-free u-calculus. The only problem with
this is that it does not allow the necessary acceptance conditions to be defined. Indeed, if one
looks carefully at the transition relation obtained for a CTL or an alternation-free p-calculus
formula 1, not all elements of cl(¢)) are actually used as states. Specifically, a Boolean combi-
nation can appear as a state without its constituents also appearing. This makes it impossible
to express an acceptance condition involving a formula appearing only as a constituent of a
Boolean state. In the case of CTL this was of no consequence since the acceptance condition
involves exclusively U formulas and these do by construction appear as states. Similarly, for
the alternation-free u calculus, the problem was worked around by using the absence of alter-
nation to define equivalence classes of formulas in such a way that each class contains at least
one formula that is a state of the automaton. For the full u-calculus, such short cuts are not

30

possible and we thus need to avoid Boolean combinations as states (except for the initial state)
and force states to be of the form p, —p, AXp, EXp, uy.f(y), or vy.f(y). This is the purpose
of the function split introduced below.

For a p-calculus formula 1, we define the function split : BT (IN x cl(+)) — BT (IN x cl(v))
as follows.

e split(true) = true and split(false) = false.

split(61 N 02) = split(61) A split(62).

split(61 V 62) = split(61) V split(6s).

For ¢ of the form p,—p, EX¢', AX ¢, py.f(y), or vy.f(y), we have split((c,¢)) = (¢,).

split((c, 1 A p2)) = split((c, 1)) A split((c, v2)).
o split((c, 1 V p2)) = split((c, 1)) V split((c, p2)).

For example, split((0, 01 Ap2) A(1, EX(p3 Apa))) = (0,01) A(0,p2) A (1, EX(p3 A @a)). Note
that split(@) contains no atoms of the form (c, @1 A @2) or (¢, p1 V p2).

For a p-calculus sentence ¢ and a subformula ¢ = Ay.f(y) of ¢, we define the alternation
level of ¢ in 1), denoted aly(yp), as follows [BC96a).

e If ¢ is a sentence, then aly(p) = 1.

e Otherwise, let £ = N'z.g(z) be the innermost u or v subformula of 7 that has ¢ as a strict
subformula. Then, if is free in ¢ and X' # X, we have aly(p) = aly(§) + 1. Otherwise,
we have aly (@) = aly(§).

Intuitively, the alternation level of ¢ in 1 is the number of alternating fixed-point operators
we have to “wrap ¢ with” in order to reach a sub-sentence of .

Given v and D, we define the parity automaton Ap y = (24P D, cl(v),8,v, F), where

e The transition function ¢ is exactly as in the automata for the alternation-free u-calculus,
except for splitting the right hand side of the transitions. For all ¢ € 24F and k € D, we

define:
— d(p,0,k) =trueifp €o. — §(p,0,k) =falseif p € 0.
— 0(-p,0,k) =trueifp ¢ o. — §(—p,0,k) = false if p € 0.

- 6((P1 N 2,0, k) = split((S(cpl,o', k) A 5(()02a g, k))
- 5(()01 V2,0, k) = spht(é(@la g, k) v 6(902a g, k))
— §(AX,0,k) = split(NE=3 (c, ¢)).-

31

— 8(EXp,0,k) = split(VEZ5(c, ¢))-
— 0(py-f(y), 0, k) = split(6(f(py-f(v)), 0, k))-
— 0(vy-f(y),0,k) = split(5(f(vy.f(y)), 0, k)).

Our transition relation is very similar to the one suggested in [EJ91]. Splitting the for-
mulas in the right-hand side avoids the epsilon-transitions implicitly assumed there, and
explicitly given in the proof rules in [BC96a]. Indeed, the split guarantees that when the
automaton is tracing a fixed-point formula ¢, it keeps visiting the state ¢ itself.

e We first define the acceptance condition in terms of a Rabin acceptance condition, as in
[BC96a] (which dualizes the Streett condition in [EJ91]). Let d be the maximal alternation
level of subformulas of). Denote by G; the set of all the v-formulas in ¢l(¢) of alternation
level i. Denote by B; the set of all u-formulas in cl(y) of alternation depth less than or
equal to i. The Rabin condition is F' = U;c;. 4{(Gi, Bi)}. That is, if the automaton gets
stuck in a cycle, it must visit some v-formula infinitely often and can visit p-formulas of
smaller alternation levels only finitely often. Now, let Fy =), and for every 1 < i < d, let
Fy; 1 = F5_o U B; and Fy; = F;_1 UG;. It is easy to see that Fy C F5 C --- C Fy; and
that the parity condition {Fi, Fs,..., Fas} is equivalent to the Rabin condition F.

O

Theorem 4.9 The 1-letter nonemptiness problem for alternating parity word automata is de-

ctdable in nondeterministic polynomial running time.

Proof: According to Theorem 3.1, the 1-letter nonemptiness problem for alternating parity
word automata is of the same complexity as the nonemptiness problem for nondeterministic
parity tree automata. By [Eme85, VS85], the nonemptiness problem for nondeterministic Rabin
tree automata, which generalizes parity tree automata, is in NP. L]

Combining Theorems 4.8 and 4.9, Proposition 3.2, and the observation in [EJS93] that
checking for satisfaction of a formula 1 and a formula — has the same complexity, we get that
the model-checking problem for the p-calculus is in NPNco-NP. Also, since the nonemptiness
problem for a parity tree automaton with n states and index k can be solved in time O(n*)
[EJS93, KV98c], the construction in Theorem 4.8 also implies an O((|| K| - ||||)I*!) algorithm
for the model-checking problem of u-calculus.

5 The Space Complexity of Model Checking

Pnueli and Lichtenstein argued that when analyzing the complexity of model checking, a dis-
tinction should be made between complexity in the size of the input structure and complexity

32

in the size of the input formula; it is the complexity in the size of the structure that is typ-
ically the computational bottleneck [LP85]2. The Kripke structures to which model-checking
is applied are often obtained by constructing the reachability graph of concurrent programs,
and can thus be very large. So, even linear complexity, in terms of the input structure, can be
excessive, especially as far as space is concerned. The question is then whether it is possible
to perform model-checking without ever holding the whole structure to be checked in memory
at any one time. For linear temporal formulas, the answer as long been known to be positive
[VW86a]. Indeed, this problem reduces to checking the emptiness of a Biichi automaton over
words, which is NLOGSPACE-complete. Thus, if the Biichi automaton whose emptiness has to
be checked is obtained as the product of the components of a concurrent program (as is usually
the case), the space required is polynomial in the size of these components rather than of the
order of the exponentially larger Biichi automaton. Pragmatically, this is very significant and
is, to some extent, exploited in the “on the fly” approaches to model checking and in related

memory saving techniques [CVWY92, MP94].

Is the same true of branching-time model-checking? The answer to this question was long
thought to be negative. Indeed, the bottom-up nature of the known model-checking algorithms
seemed to imply that storing the whole structure was required. Using our automata-theoretic
approach to branching-time model-checking, we are able to show that this is not necessarily
so. In this section we introduce a new type of alternating automata, called hesitant alternating
automata (HAAs), for which the 1-letter nonemptiness problem can be solved with a very
efficient use of space. We show that formulas of CTL and CTL* can be translated to HAAs and
that the model-checking problem for these logics can be solved in space polynomial in mlogn,
where m is the length of the formula and n is the size of the Kripke structure. Hence, the
model-checking problem for concurrent programs for these logics is in PSPACE. We also show
that this bound is tight. We claim that the ability to translate formulas to HAAs is of a great
importance when space complexity of model checking is considered. For example, formulas of
the alternation-free u-calculus cannot be translated to HAAs and the model-checking problem
for concurrent programs for this logic is EXPTIME-complete.

5.1 Hesitant Alternating Automata

Consider the product automaton Ag, = K x Apy for a Kripke structure K and a CTL
formula 1. The states of Ak , are elements of W x cl(¢) and they are partitioned into sets Q;
according to their second component (two states are in the same @; if and only if their second
components are identical). Thus, the number of Q;’s is bounded by the size of cl(y)) and is
independent of the size of the Kripke structure. If we examine the @);’s closely, we notice that
they all fall into one of the following three categories:

*For a similar distinction in database query evaluation, see [Var82].

33

1. Sets from which all transitions lead exclusively to states in lower @);’s. These are the Q;’s
corresponding to all elements of ¢l(v) except U-formulas and U-formulas.

2. Sets Q; such that, for all ¢ € Q;, the transition §(q, a, k) only contains disjunctively related
elements of @Q; (i.e., if the transition is rewritten in disjunctive normal form, there is at
most one element of @; in each disjunct). These are the @;’s corresponding to the E;Upa
and Ep1Ups elements of cl(v)).

3. Sets @; such that, for all ¢ € Q;, the transition d(q,a, k) only contains conjunctively
related elements of @; (i.e., if the transition is rewritten in conjunctive normal form, there
is at most one element of @; in each conjunct). These are the @;’s corresponding to the
Ap1Ugs and Ap Uy elements of cl(1)).

This means that it is only when moving from one @); to the next, we can move from a state
that is conjunctively related to states in its set to a state that is disjunctively related to states
in its set, or vice-versa. In other words, when a copy of the automaton visits a state in some
set Q; which is associated with an EU-formula of an EU-formula, then as long as it stays in
this set, it proceeds in an “existential mode”; namely, it imposes only existential requirements
on its successors in @);. Similarly, when a copy of the automaton visits a state in some set @;
which is associated with an AU-formula or an AU-formula, then as long as it stays in this set,
it proceeds in a “universal mode”. Thus, whenever a copy alternates modes, it must be that it

moves from one @; to a lower one.

The above observation is captured in the restricted structure of hesitant alternating au-
tomata (HAAs), and is the key to our space-efficient model-checking procedure for CTL and
CTL*. An HAA is an alternating automaton A = (X,D, Q,J,qo, F'), where F = (G, B) with
G C Q and B C Q. That is, the acceptance condition of HAAs consists of a pair of sets of
states. As in WA As, there exists a partition of @ into disjoint sets and a partial order < such
that transitions from a state in @; lead to states in either the same @Q; or a lower one. In
addition, each set Q; is classified as either transient, existential, or universal, such that for each
set @; and for all ¢ € Q;, 0 € X, and k € D, the following hold:

1. If Q; is a transient set, then d(q, o, k) contains no elements of @Q;.
2. If Q; is an existential set, then §(q, o, k) only contains disjunctively related elements of Q;.

3. If Q; is a universal set, then §(q, o, k) only contains conjunctively related elements of Q;.

It follows that every infinite path 7 of a run r gets trapped within some existential or universal
set @;. The path then satisfies an acceptance condition (G, B) if and only if either @Q; is an
existential set and inf(7r) NG # 0, or Q; is a universal set and inf(w) N B = (. Note that
the acceptance condition of HAAs combines the Rabin and the Streett acceptance conditions:

existential sets refer to a Rabin condition {(G, 0)} and universal sets refer to a Street condition

34

{(B,0)}. Note also that while the transition function of HAAs is more restricted than the one
of WA As, their acceptance condition is more expressive. We will need the stronger acceptance
condition to handle CTL* formulas. We call the partition of @) into sets the hesitation partition
and we call the partial order over the sets the hesitation order. The length of the longest
descending chain in the hesitation order is defined as the depth of the HAA. As with WAA (see
Theorem 2.2), it is easy to see that the partition of the graph induced by an HAA to maximal
strongly connected components refines any hesitation partition and can therefore serve as such
partition. The reachability order on the MSCCs then induces the hesitation order and the
depth of the HAA. Since the reachability problem for a directed graph is in NLOGSPACE,
it follows that when a hesitation partition is not given, it is possible to refer to the partition
into MSCCs and check, in NLOGSPACE, whether two vertices belong to the same set in the
partition. In the HAA considered here, however, the hesitation partition and order are always

known.

5.2 The Space Complexity of CTL and CTL* Model Checking

In Theorem 4.1 we presented a translation of CTL formulas to WAAs. We have already shown
that the resulting WA As have the restricted structure of HAAs. By showing that their accep-
tance condition can be put in the required form, we can establish Theorem 5.1 below.

Theorem 5.1 Given a CTL formula v and a set D C IN, we can construct an HAA Ap y
of size O(|D| * ||¢||) and of depth O(||1)||) such that L(Ap.y) is exactly the set of D-trees

satisfying 1.

Proof: As observed above, each set in the WAA that correspond to CTL formulas is either
transient, existential, or universal. Thus, we only have to define a suitable acceptance condition.
In the WAA, we allow a path to get trapped in a set that corresponds to U-formulas. Accord-
ingly, in HAA, we allow a path to get trapped in an existential set only if it corresponds to a
U-formula and we allow a path to get trapped in a universal set only if it does not correspond
to a U-formula. This is done with the acceptance condition (G, B) where G is the set of all
EU-formulas in cl(v)) and B is the set of all AU-formulas in ¢l(3). Since each set in the HAA
corresponds to a single formula in ¢l(v), the depth of the HAA is at most ||¢]|- U

We now present a translation of CTL* formulas to HAAs. Weak alternating automata
define exactly the set of weakly definable languages [Rab70, MSS86]. The logic CTL* can define
languages that are not weakly definable. For example, the set of trees that satisfy the CTL*
formula AFGp is not weakly definable [Rab70]. Therefore, a stronger acceptance condition is
required for automata corresponding to formulas of CTL*. As we shall see later, the stronger
acceptance condition does not raise the complexity of the 1-letter nonemptiness problem. We
first show that complementation is easy for HAAs. For two HAA A; and As over the same

35

alphabet ¥, we say that A; is the complement of Az iff £L(A;) includes exactly all the ¥-labeled
trees that are not in £(Aj).

Given a transition function 4, let § denote the dual function of §. That is, for every g, o,
and k, with 6(q,0,k) = 6, let S(q, o,k) = 6, where 0 is obtained from 6 by switching V and A
and by switching true and false. If, for example, # = p V (true A q) then 6=pA (false V q),

Lemma 5.2 Given an HAA A= (X,Q,0,q0, (G, B)), the alternating automaton
A= (%, Q, 8, qo, (B,G)) is an HAA that complements A.

Proof: It is easy to see that A is an HAA. Indeed, the partition of Q into sets and the partial
order over them hold also with respect to A. In particular, a set that is existential in A is
universal in A and vise versa. Consider an alternating automaton A = (X, @, 4, qo, F'), for some
acceptance condition F, and consider the alternating automaton A = (%, Q, 8, 4o, ﬁ’), where F
is such that for every path m € Q“, we have that 7 satisfies F' in a run of A iff # does not
satisfy F' in a run of A. In [MS87], Muller and Schupp prove that A complements A. We prove
here that when A is a HAA with F = (G, B), then F = (B, G) satisfies the required property.

Consider a path 7 in a run of A. By the definition of acceptance of HAA, we have that
7 satisfies an acceptance condition (G, B) iff either 7 gets trapped in an existential set with
inf(r) NG # 0, or m gets trapped in a universal set with inf(w) N B = (. Since m always
gets trapped in either an existential or a universal set, it follows that m does not satisfy the
acceptance condition (G, B) iff either m gets trapped in an existential set with inf(7) NG = 0,
or m gets trapped in a universal set with inf(7w) N B # (. Dualizing §, existential sets become
universal and vice versa. Hence, 7 satisfies the acceptance condition (G, B) in a run of A iff it
does not satisfy the acceptance condition (B, G) in a run of A. U

For an HAA A, we say that A is the dual HAA of A.

Theorem 5.3 Given a CTL* formula v and a set D C IN, we can construct an HAA Ap 4
of size O(|D| x 20l and of depth O(||¢)||) such that L(Ap,y) is exactly the set of D-trees

satisfying 1.

Proof: Before defining Ap,, we need the following definitions and notations. For two CTL*
formulas 6 and ¢, we say that 6 is mazimal in @, if and only if 4 is a strict state subformula of
o and there exists no state formula “between them”, namely, there exists no strict subformula
¢ of ¢ such that 6 is a strict subformula of £&. We denote by max(p) the set of all formulas
maximal in ¢. For example, maz(A((Xp)U(EXq))) = {p, EXq}.

We construct Ap y by induction on the structure of 1. For technical convenience we describe
the definition for binary trees. The extension to any D C IN is straightforward. With each
formula ¢ € cl(1), we associate an HAA A, composed from HAAs associated with formulas

36

maximal in ¢. We assume that the state sets of composed HAAs are disjoint (otherwise, we
rename states) and that for all the HAAs we have ¥ = 24 (that is, an HAA associated with
a subformula that does not involve all of AP is extended in a straightforward way). For ¢
with maz(¢) = {¢1,...,¢n} and for all 1 < i < n, let Ay = (%,Q% 8% g8, (G, BY)) be the
HAA associated with ¢; and let Aso = (%, Qi 51,q0, (G’ B’}) be its dual HAA. We define A,
as follows.

e If o = p or ¢ = —p for some p € AP, then A, is a one-state HAA.

o If o = 1 Ao, then A, = (£,Q' U Q? U{qo},d, g0, (G* U G?, B! U B?)), where qq is a new
state and § is defined as follows. For states in Q' and Q?, the transition function & agrees
with §1 and §2. For the state g and for all ¢ € ¥, we have 6(qo,) = (g3,) A §(q3, o).
Thus, in the state go, A, sends all the copies sent by both A, and A,,. The singleton
{qo} constitutes a transient set, with the ordering {go} > @Q; for all the sets @Q; in Q*
and Q2.

The construction for ¢ = 1 V @9 is similar, with §(go, o) = §(q}, o) V §(q3, o).

o If o = E¢, where ¢ is a CTL* path formula, we first build an HAA .Afp over the alphabet
Y = 2maz(¥) That is, Afp regards the formulas maximal in ¢ as atomic propositions. Let
U = (¥, Q, M, qo, F) be a nondeterministic Biichi automaton on infinite words such that
Ug accepts exactly all the word models of { [VW94], where the maximal subformulas are
regarded as atomic propositions. Then, A, = (¥',Q,d', qo, (F,0)) extends U to trees by
simulating it along a single branch. That is, for all ¢ € Q and ¢’ € ¥/, we have

5,(qaal) = v (anl) v (]-aql)
gi€EM(q,0')
If M(q,0') = 0, then §'(q,0') = false. Note that @ constitutes a single existential set.
The HAA A, accepts exactly all the X'-labeled tree models of ¢.

We now adjust Afp to the alphabet X. The resulted automaton is A,,. Intuitively, A, starts
additional copies of the HA As associated with formulas in maz(y). These copies guaran-
tee that whenever Afp assumes that a formula in maz(p) holds, then it indeed holds, and
that whenever Aj, assumes that a formula does not hold, then the negation of the formula
holds. Formally, A, = (2,Q UU,;(Q° U Q%), 4, g0, (F U U;(G* U G%),U;(B* U B))), where
6 is defined as follows. For states in (J;(Q*U C}’), the transition function § agrees with the
corresponding 6¢ and 8%, For q € @ and for all o € X, we have

8g,0) =\ @@)ACN 8@ o)A N §igo

olex! pico! pida!

Each conjunction in ¢ corresponds to a label ¢’ € X'. Some copies of A, (these originated
from ¢'(g,0")) proceed as A, when it reads o’. Other copies guarantee that o’ indeed

37

holds in the current node. The set @) constitutes an existential set, with the ordering

Q > Q' for all the sets Q' in J;({Q'} U {Q}).

o If ¢ = A, we construct and dualize the HAA of E—£.

We prove the correctness of the construction by induction on the structure of . The proof
is immediate for the case ¢ is of the form p, —p, v1 A 2, Y1 V @2, or AE. We consider here the
case where ¢ = E¢. If a tree (T, Vi) satisfies ¢, then there exists a path 7 in it such that
7 |= {. Thus, there exists an accepting run r of U, on a word that agrees with 7 on the formulas
in maz(p). It is easy to see that a run of A, that proceeds on 7 according to r can accept
(Tk,Vk). Indeed, by the definition of Afp, the copies that proceeds according to &' satisfy the
acceptance condition. In addition, by the adjustment of .Afp to the alphabet 247 and by the
induction hypothesis, copies that take care of the maximal formulas can fulfill the acceptance
condition. Now, if a run r of A, accepts a tree (T, Vi), then there must be a path 7 in this
tree such that A, proceeds according to an accepting run of ¢ on a word that agrees with =
on the formulas in maz(p). Thus, 7 = € and (Tk, Vi) satisfies ¢.

We now consider the size of Ay. For every ¢, we prove, by induction on the structure of ¢,
that the size of A, is exponential in ||¢]|.

o Clearly, for ¢ = p or ¢ = —p for some p € AP, the size of A, is constant.

e For ¢ = 1 A g or ¢ = @1 V 2, we have ||Ay|| = O(|| Ay, || + || Ag.|]). By the induction
hypothesis, || Ay, || is exponential in ||¢1]| and || Ay,]|| is exponential in ||s||. Thus, ||Ay||
is surely exponential in ||¢||.

e For ¢ = E¢, we know, by [VW94], that the size of the word automaton ¢ is exponential
in [|]|. Therefore, A{, is exponential in [|¢||. Also, |¥'| is exponential in [maz ()| and,
by the induction hypothesis, for all ¢; € maz(y), the size of A, is exponential in ||¢;]|.
Therefore, A, is also exponential in |||

e For ¢ = A¢, we know, by the above, that ||Ag-¢| is exponential in ||¢||. Since comple-
menting an HAA does not change its size, the result for ¢ follows.

Finally, since each subformula of 3 induces exactly one set, the depth of Ay is linear in

1]]- D

We note that the same construction holds also for ECTL* [VW84]. In ECTL*, formulas are
constructed from Boolean connectives and automata connectives. As the construction above
handles a formula E¢ by translating the path formula £ into an automaton, allowing automaton
operators in the path formulas causes no difficulty. We handle these automaton operators as
we handle the word automaton U constructed for a CTL* path formula §.

38

Example 5.4 Consider the CTL* formula) = AGF(pV AXp). We describe the construction
of Ap y, for D C IN, step by step. Since 1 is of the form A, we need to construct and dualize
the HAA of EFG((—p)AEX —p). We start with the HAAs Ap ,, and Ap,, for ¢ = (=p) AEX —p.

Ap, = ({{p},0},D,{a2, a3}, 6, a2, (0, 0)), with

state g || 8(g, {p}, k) | 8(g,0,k) |

qo false K a(c,q3)
qs false true

AD,QO = <{{p}a Q)}a D’ {q~2, q~3}, S, q~2’ <@a 0>>a with

state ¢ H S(q, {r}, k) ‘ S(q,@,k) ‘

@ true o (c, g3)
g3 true false

Starting with a sequential Biichi automaton U for £ = F'Gyp, we construct Aé), Be-
u§ = <{{90}7 0}7 {QO7 q1}7 Ma q0, {(h}), with

o M(go,{¥}) = {90, a1} * M(q0,0) = {q0}

o M(q1,{¢}) = {a} o M(q1,0) =0

Hencea AID,Eg = <{{S0}7 @}7 Da {QOa q].}a 61, q0, <{q1}’ @>>; with

state g || 8'(q, {¢}, k) | 8'(q,0,k) |
o VEZ§((e;90) V (e, a1)) | VEZG (e, q0)
a VES(e,qn) false

We are now ready to compose the automata into an automaton over the alphabet {{p},0}.

A’D,E§ = <{{p}’ 0}’ D7 {qUa q1,43, q~3}a 5a q0, <{ql}’ 0>>) with (HOte that we Slmphfy the transi-
tions, replacing true A @ or false V 8 by 8, replacing true V @ by true, and replacing false A 6

by false).

state ¢ H d(q,{p}, k) ‘ 6(q,0,k) ‘

% £0(c,00) | (VES3((e,00) V (e, a1)) A VES3 (e,08)) v (VESS (c,00) A AEZG (e, dB))
@ false b ole,q) AVES (e, q3)

qs false true

g3 true false

Consider §(qq, D, k). The first conjunction corresponds to the case where AQD’ pe Suesses that ¢
holds in the present. Then, Ap g¢ proceeds with §'(qo, {¢}, k) conjuncted with é(g2, 0, k). The

39

later guarantees that ¢ indeed holds in the present. The second conjunction corresponds to the
case where ¢ does not hold in the present. Then, Ap g¢ proceeds with §'(go,#, k) conjuncted
with §(qa, 0, k).

We obtain AD,l/J by dualiZing A’D,Ef- Hencea AD,'[/I = <{{p}: Q)}: Da {qBa q~1a q’:"n Q3}a Sa (jOa <0a {‘ﬁ}))a
with

state ¢ H S(q, {r}, k) ‘ S(q,q)ak) ‘

o E5(eido) | (ASZ (e o) A (e, @) Vv NEZS (e, 68)) A (AEZd (e, o) v VEZE (e, 09))
@i true soledi) V NEZo (e, da)

g3 true false

qs3 false true

Consider the state ¢;. A copy of Ap that visits i keeps creating new copies of Ap 4, all
visiting ¢1. Spreading a copy that visits ¢1 stops only when it reaches a node that satisfies p
or AXp. Since ¢; € B, all the copies should eventually reach such a node. Hence, by sending
a copy that visits the state ¢1 to a node x, Apy guarantees that all the paths in the subtree
rooted = eventually reach a node satisfying p V AXp. Hence, in the state go, unless Ap y gets
convinced that p V AXp holds in the present, it sends copies that visit ¢; to all the successors.
In addition, it always send copies visiting ¢y to all the successors.

Before we get to the space complexity of the 1-letter nonemptiness problem for HAAs over

words, let us consider the time complexity of this problem.

Theorem 5.5 The I-letter nonemptiness problem for hesitant alternating word automata is

decidable in linear running time.

Proof: We present an algorithm with a linear running time for checking the nonemptiness
of the language of an hesitant alternating word automaton A = ({a},@,J,qo, (G, B)). The
algorithm is very similar to the one described in the proof of Theorem 4.7. The only change is
that here we do not have accepting and rejecting sets. Rather, being trapped in an existential
set, the automaton should be able to visit states from G infinitely often. Similarly, being
trapped in a universal set, the automaton should be able to visit states from B only finitely
often. As in Theorem 4.7, the algorithm proceeds up a total order of the Q);’s, labeling states
with ‘T” and ‘F’, guaranteeing that when it reaches a set Q;, all the states in all sets Q;’s for
which Q; < Q;, have already been labeled. For a transient set @;, the above implies that the
states in it have already been labeled too. For existential and universal sets, the algorithm

proceeds as follows.

e In an existential set @Q);, all the transitions from states in @; only contain disjunctively
related elements of @;. So, when the algorithm reaches @Q;, all its simplified transitions

40

are disjunctions and induce an OR-graph that has states in @); as nodes. The algorithm
partitions the graph into maximal strongly connected components Qf . Since the partition
is maximal, there exists a partial order over these components (Qf < QF if and only if
there exists a transition from Q¥ to Qf) and there exists an extension of it into a total
order @} < ... < QM. The algorithm proceeds up this total order. When it reaches a
component Qf for which Q{ NG # 0, then all the states in Qf are labeled ‘T’. Otherwise
(Qg NG = 0), they are labeled ‘F’. In both cases, the labeling is propagated. Indeed, a
copy of A can stay in @); and visit states in G infinitely often if and only if it reaches a
maximal strongly connected component Qg , with Q{ NG #0.

e For a universal set, the transitions induce an AND-graph. Accordingly, when the algo-
rithm reaches a maximal strongly connected component Qf for which Qz N B # 0, all the
states in sz are labeled ‘F’ (and the labeling is propagated). Otherwise, they are labeled
‘T’. Here, a copy of A can stay in @); and visits states in B only finitely often if and only
if it reaches a component Qg , with sz NB=0.

Consider the total order Q} < Q% <...QM < Q% <...< Q@M. Weprove that foralll1 <¢<n
and 1 < j < my, all the states in @/ are labeled correctly. The proof proceeds by induction on
(,7) (with the ordering (i1, 71) < (i2,72) iff i1 < i2 or i1 = i2 and 71 < ja):

e The set ()1 cannot be a transient set. Consider the case where it is an existential set.
Then, for every ¢ € Q1, it must be that d(g,a) is a disjunction of states in Q. The
algorithm labels all the states in Q} with “T” if and only if Q1 N G # 0. Assume first
that @} NG # 0. Then, as Q1 is a strongly connected component, there exists, for every
g € Q}, a state ¢ € G such that ¢’ is reachable from ¢ and from itself. Hence, there
exists a run of A? that visits (in its single branch) the state ¢’ infinitely often. This run is
accepting an thus the language of AY is not empty. Assume now that Q} NG = (). Then,
for every ¢ € @}, no run of A9 can visit, even once, a state in G. Thus, no run of A9 is
an accepting run. The proof is analogous for the case in which)1 is a universal set.

e Assume that we have already labeled correctly all the states in all @}, with (k,1) < (4, 5),
and let ¢ € Qf . If ¢ is labeled before the phase (7, j) then, by the same consideration we
used for WA As, it is labeled correctly. Consider the case that ¢ is labeled during the phase
(7,7) and let @Q; be a universal set. Then, the simplification of §(g,a) is a conjunction of
states in Qf and q it is labeled ‘F’ if and only if Qf NB # (). Assume first that Qf NB # 0.
Then, as @) is a strongly connected component, there exists, for every ¢ € Q!, a state
¢’ € B such that ¢’ is reachable from ¢ and from itself. Hence, in every run of A? there is
a copy that visits ¢’ infinitely often. Thus, no run of A? is an accepting run. Assume now
that Qf N B = (. Then, for every q € Qf , no copy of A? can visit, even once, a state in B.
So, every copy either stays in Qf without visiting B, or reaches a state ¢' for which the

41

language of A7 is not empty. Thus, all the copies of A7 are accepting and the language
of A7 is not empty. The proof is analogous for the case in which @; is an existential set.

Since partitioning each graph into maximal strongly connected components can be done in
linear running time [Tar72], the overall running time remains linear, as with WAAs. The
data structure used for a linear-time implementation is an AND/OR graph similar to the one
described for WA As. Since when testing WA As for nonemptiness we were dealing with simple
WA As, taking the states of the WAA as nodes induced an AND/OR graph in a straightforward
way. Here, however, A is not simple. Let A’ be the simple alternating word automaton obtained
from A by the simplification described in Theorem 3.1, and let Q) < ... < @}, be the order on
its sets (described there too). The automaton A’ is no longer an HAA. Still, taking its states as
the nodes of the AND/OR graph is adequate: the flow of the labeling in the graph guarantees
that when the algorithm reaches an existential (universal) set, all the nodes of this set that are
still not labeled induce an OR-graph (AND-graph) as required. L]

So, the 1-letter nonemptiness problem for HA As over words can be solved in linear running
time. This, together with Theorem 5.3 and Proposition 3.2 (with the observation that the size
of D does not influence the size of Ak), provides us with a model-checking procedure for
CTL* with running time O(]| K| x 29U¥I)). Note that the algorithm used there is essentially
a bottom-up labeling of the transition graph of the automaton. We now show that by using a

top-down exploration of this transition graph, we can get a space efficient 1-letter nonemptiness
algorithm for HA As.

Theorem 5.6 The I-letter nonemptiness problem for hesitant alternating word automata of

size n and depth m, can be solved in space O(mlog®n).

Proof: Consider a HAA A = ({a},Q, 4, q0, (G, B)). The algorithm described below assumes
that the hesitation partition and order for A are given. Otherwise, it proceeds with the partition
of @ into maximal strongly connected components. As discussed above, such a partition is a
hesitation partition, it induces a hesitation order, and (as we elaborate further below) it is
possible to check in space O(log?n) whether two given states in @ belong to the same set in
the partition.

The property of HA As we use is that, from a state in @), it is possible to search for another
reachable state in the same); using space O(log2 n). For a transient @Q;, there are no such
states. For universal and existential @);, the exact notion of reachability we use is the transitive
closure of the following notion of immediate reachability. Consider a set); and assume that we
have a Boolean value for all states in sets lower than Q;. Then, a state ¢’ € @ is immediately
reachable from a state ¢, if it appears in the transition from ¢ when this transition has been
simplified using the known Boolean values for states in lower @);’s. Note that the simplified
transition is always a disjunction for a state of an existential @Q;, and a conjunction for a state

42

of a universal @);. As we describe below, the algorithm does not perform simplification of the
transitions, but rather computes recursively the values of states in lower Q);’s.

We call a state ¢’ of Q; provably true if, when the procedure is applied to the successors of
¢’ that are not in @;, and the Boolean expression for the transition from ¢’ is simplified, it is
identically true. States that are provably false are defined analogously.

The following recursive procedure labels the states of the automaton with ‘I’ (accepts) or
‘F’ (does not accept).

(1) Start at the initial state.

(2) At a transient state g, evaluate the transition from ¢ by recursively applying the procedure
to the successor states of q. Label the state with the Boolean value that is obtained for
the transition.

(3) At a state g of an existential @;, proceed as follows.

(3.1) Search for a reachable state ¢’ of the same @Q; that is provably true (note that this
requires applying the procedure recursively to all states from lower @;’s that are
touched by the search). If such a state ¢’ is found, label ¢ with ‘T".

(3.2) If no such state exists, search for a state ¢’ € @Q; N G that is reachable from ¢ and
from itself. If such a state is found, label ¢ with ‘T’.

(3.3) if none of the first two cases apply, label ¢ with ‘F’.
(4) At a state g of a universal Q;, proceed as follows.

(4.1) Search for a reachable state ¢’ of the same @Q; that is provably false. If such a state
q' is found, label q with ‘F’.

(4.2) If no such state exists, search for a state ¢’ € Q; N B that is reachable from ¢ and
from itself. If such a state is found, label ¢ with ‘F’.

(4.3) if none of the first two cases apply, label g with ‘T".

With every state ¢ we can associate a finite integer, rank(q), corresponding to the depth of
the recursion required in order to label ¢q. It is easy to prove, by induction on rank(q), that ¢
is labeled correctly.

We now consider the complexity of our algorithm. We show that for each state ¢ € @,
if we already have Boolean values for all the states in sets lower than);, then evaluating the
Boolean value of ¢ can be done deterministically in space O(log2 n). In practice, we do not
keep the Boolean values of the states in sets lower than ();. Instead, whenever we need such a
value we evaluate it recursively. Clearly, the depth of the recursion is bounded by the number
of sets lower than @;. Hence, evaluating the Boolean value of the initial state can be done in
space O(mlog?n).

43

We start with ¢ that belongs to a transient set. There, we have to evaluate the transition
from ¢q. It is known that the problem of evaluating Boolean expressions is in LOGSPACE
[Lyn77]. Here, we evaluate expressions over) and the length of each expression is linear in
n. Hence, evaluating the Boolean value of a transient state in @);, assuming we have Boolean
values for all states in sets lower than @;, can be done deterministically in space O(logn).

Consider now a state ¢ € Q; for an existential set ;. For each state ¢’ € Q;, we have that
q' is provably true iff the transition from ¢’ evaluates to true when we assign false to all the
states in @Q; (and evaluates, using a recursion, states in lower sets). Checking the latter is as
simple as evaluating a transition from a transient state. Thus, determining whether a state in
Q; is provably true assuming we have Boolean values for all states in sets lower than @;, can
be done deterministically using space O(logn).

Furthermore, for each pair of states ¢’ and ¢” in an existential Q;, we have that ¢" is
immediately reachable from ¢’ iff the following two conditions hold. First, the transition from
q' evaluates to true when we assign true to ¢” and assign false to all the other states in
Q; (and evaluate recursively states from lower sets). Second, the transition from ¢’ evaluates
to false when we assign false to all the states in @; (and evaluate recursively states from
lower sets). Again, checking this is as simple as evaluating a transition from a transient state.
Thus, determining whether a given state in @); is immediately reachable from another given
state in @);, assuming we have Boolean values for all states in sets lower than @);, can be done
nondeterministically using space O(logn).

It is known, by [Jon75|, that the graph accessibility problem is in NLOGSPACE. Now,
to check whether ¢” is reachable from ¢, we restrict the graph accessibility test, replacing
immediate accessibility with immediate reachability. This, as described above, can be done
nondeterministically in space O(logn) (assuming we have Boolean values for all states in sets
lower than @;). Thus, determining whether a given state in @Q; is reachable from another given
state in @; can also be done nondeterministically in space O(logn). Hence, as the labeling of g €
Q; only involves a search for reachable states, we can determine its labeling nondeterministically
in space O(logn), or, by [Sav70], deterministically in space O(log?n).

The case where ¢ € Q; for a universal set @); is symmetric.

O

Theorems 5.1 and 5.3 provide us with the sizes and depths of the HA As associated with
formulas of CTL and CTL*. Hence, the theorem below follows from Proposition 3.2 and
Theorem 5.6.

Theorem 5.7

1. The model-checking problem for CTL can be solved in space O(mlog?(mn)), where m is
the length of the formula and n is the size of the Kripke structure.

44

2. The model-checking problem for CTL* can be solved in space O(m(m +logn)?), where m
is the length of the formula and n is the size of the Kripke structure.

The algorithm given in the proof of Theorem 5.6 can be viewed as a local model-checking algo-
rithm. However, to be practical, the searches within the existential and universal components
should be made deterministic, which cannot reasonably be done without forgoing some space
efficiency and storing the markings as they are obtained. With these changes, the algorithm
of the proof of Theorem 5.6 becomes an automata-theoretic counterpart of the algorithm pre-
sented in [VL93]. We note that once the search is made deterministic, the algorithm may need
to generate computations of the Kripke structure that are not directly relevant for determining
the truth of the formula in it. Still, the algorithm traverses, in the average, less states than
bottom-up algorithms.

Now, let us define the program complezity [VW86a] of model checking as the complexity of
this problem in terms of the size of the input Kripke structure; i.e., assuming the formula fixed.

Theorem 5.8 The program complezity of CTL and CTL* model checking is NLOGSPACE-
complete.

Proof: Fixing the formula, we get an HAA of a fixed depth. According to the algorithm
presented in the proof of Theorem 5.6, the nonemptiness problem for an hesitant alternating
word automaton of a fixed depth is in NLOGSPACE. Thus, so is the program complexity of
CTL and CTL* model checking. Hardness in NLOGSPACE is immediate by a reduction from
the graph accessibility problem, proved to be NLOGSPACE-complete in [Jon75]. L]

The fact that CTL and CTL* formulas can be translated to HAAs plays a crucial role in
our upper bounds. To see this, we prove in Theorem 5.9 bellow, that the 1-letter nonemptiness
problem for weak alternating word automata is P-complete. Thus, the restricted structure of
HAAs is essential for a space-efficient nonemptiness test.

Theorem 5.9 The I-letter nonemptiness problem for weak alternating word automata is P-
complete.

Proof: Membership in P follows from Theorem 4.7. Hardness in P follows by a reduction
from the Alternating Graph Accessibility problem, proved to be P-complete in [Imm81, CKS81,
GHR95], to nonemptiness of weak alternating word automata. In the Alternating Graph Ac-
cessibility problem, we are given a directed graph G = (V, E), a partition £ UU of V, and
two designated vertices s and ¢. The problem is whether alternating_path(s,t) is true, where
alternating_path(x,y) holds if and only if:

1. z =y, or

45

2. z € £ and there exists z with (z,2) € E and alternating_path(z,y), or

3. x €U and for all z with (z,z) € E, we have alternating_path(z,y).

Given G,&,U, s, and t, we define the weak alternating word automaton A = ({a},V, 4, s, {t})
where § is defined as follows:

o If g€ £ and ¢ # ¢, then 8(q,a) = V(g gyen ¢
o If g€ U and g # ¢, then §(q,a) = Ay ¢erd"

e §(t,a) = true.

It is easy to see that a partition of V into two sets, V' \ {¢t} and {t¢}, satisfies the weakness
requirements and that the language of A is not empty iff alternating_path(s,t).]

Recall that while we can translate alternation-free y-calculus formulas to WAA, we can not
translate them to HAA. As we show in Theorem 5.10 below, this inability is reflected in the
program complexity of alternation-free p-calculus.

Theorem 5.10 The program complezity of alternation-free p-calculus model checking is P-

complete.

Proof: The upper bound follows from the known linear complexity of AFMC model check-
ing. As in the proof of Theorem 5.9, we are doing a reduction from the Alternating Graph
Accessibility problem. Given G = (V, E),E,U, s, and t, we define the Kripke structure Kg =
({t,e,u},V, E,s, L) where for every state v € V, we have

t ifv=t,
Lv)=|e ifvel&\{t},
u ifvel\{t}

It is easy to see that the state s of K¢ satisfies the fixed alternation-free p-calculus formula
py.(tV (e NEXy)V (u N AXy)) iff alternating_path(s,t). L

6 The Complexity of Model Checking for Concurrent Programs

We consider a concurrent program P composed of n concurrent processes P;. Each process is
described by a transition system D; = (AP;, AC;, S, A, 89, L;) where AP; is a set of atomic
propositions, AC; is an action alphabet, S; is a finite set of states, A; C S; x AC; x S; is a

2AP¢

transition relation, s) € S; is an initial state, and L; : S; — maps each state to the set

46

of atomic propositions true in this state. We require that the atomic-proposition sets of the
processes are disjoint.

A concurrent behavior of these processes is defined by the usual interleaving semantics:
transition actions that appear in several processes are synchronized by common actions. Using
this convention, one can obtain a global transition system D describing the joint behavior of the
processes P;. This global transition system is computed by constructing the reachable states of
the product of the processes P;. This product is the transition system D = (AP, AC, S, A, s°, L)

where,
® AP =Ui<i<, AP

S = [l1<i<n Si- We denote the ith component of a state s € S by si].

(s,a,s') € A if and only if

— for all 1 < i < n such that a € AC;, we have (s[i],a, s'[i]) € A;, and
— for all 1 < i < n such that a &€ AC;, we have s[i] = §'[i].

o 0= (s0,53,...,5).

e For every s € S, we have L(s) = |J; L;i(s]7]).

We define the complexity of model checking for a concurrent program P with respect to
the size of its components P; and the length of the formula being checked. Accordingly, the
program complexity of model checking for concurrent programs is defined in terms of the size of
the components of the concurrent program. It is shown in [Koz77] that that the nonemptiness
problem for a concurrent program P is PSPACE-complete. This immediately implies a PSPACE
lower bound for the complexity of CTL and CTL* model checking for concurrent programs.
We still present a similar proof below, as we shall later use a variant of it in the proof of
Theorem 6.3.

Theorem 6.1 The complexity of CTL and CTL* model checking for concurrent programs is
PSPACE-complete.

Proof: We have just proved that the model-checking problem for CTL and CTL* can be
solved in space polynomial in the length of the formula but only poly-logarithmic in the size
of the Kripke structure. Since the product of the components of a concurrent program is at
most exponentially larger than the program, membership in PSPACE follows directly by an
argument similar to the one developed in [VW94]. To prove that it is hard in PSPACE, we do
a reduction from polynomial space Turing machines.

47

We show that there exists a CTL formula v such that given a Turing machine T' of space
complexity s(n), it is possible to build a concurrent program P of size O(s(n)) such that P
satisfies 9 if and only if T' accepts the empty tape.

Let T = (T, Q, —, g0, F') be a Turing machine where I is the alphabet, @ is the set of states,
—-C Q@ xI'x QxT x{R,L} is the transition relation (we use (¢,a) — (¢’,b,A) to indicate
that when T is in state ¢ and it reads the input a in the current tape cell, it moves to state ¢,
writes b in the current tape cell, and its reading head moves one cell to the right/left, according
to A), qo is the initial state, and F' C @ is the set of accepting states. The concurrent program
P has s(n) processes, one for each tape cell that is used. For all 1 < ¢ < s(n), the process P; is
defined as follows.

1. AP; = {accept;} and AC; = {i — 1,i,i + 1} x Q.

2. The state set of P; is (Q x ') UT". A state of the form (g, a) indicates that T is in state g,
its reading head is on cell ¢, and the content of cell ¢ is a. A state of the form a indicates
that the content of cell i is a and the reading head is not on cell i.

3. For each transition (g,a) — (¢',b, A) of T, we have the following transitions in P;.

(a) A transition from (g, a) to b labeled by (i +1,¢') if A = Rand by(i—1,¢') if A = L.
This transition corresponds to the head moving from cell ¢ to cell i +1 or 7 — 1.

(b) A transition from every a € T to (¢, a) labeled by (i, q’). This transition corresponds
to the head moving to cell ¢ from cell ¢ + 1 or 7 — 1.

4. The initial state of P; corresponds to the initial content of cell ;. Thus, it is (qo,e) for
i=1landitise for 1 <i<s(n).

5. We label a state (g,a) with accept; if and only if ¢ € F.

The concurrent behavior of the processes embodies all the computations of T on the empty
tape. To see this, observe that each reachable state s in P has exactly one 1 < i < n for
which s[i] € @ x I'. Thus, each reachable state in P corresponds to a configuration of 7.
Also, a transition from a state s; to a state so corresponds to a possible transition from the
configuration associated with s; to the one associated with ss.

Now, let accept=\/; accept;. Consider the CTL formula) = EFaccept. P |= v if and only
if there exists a computation of 7" on the empty tape in which eventually reaches an accepting
state. Thus, P |= 1 if and only if T accepts the empty tape.]

Theorem 6.2 The program complezity of CTL and CTL* model checking for concurrent pro-
grams is PSPACE-complete.

48

Proof: Clearly, the upper bound proved in Theorem 6.1 holds here too. Since proving the
lower bound there we used a fixed formula, hardness in PSPACE holds also here. L]

We now consider the program complexity of u-calculus and alternation-free p-calculus model
checking for concurrent programs. The WAAs that correspond to alternation-free p-calculus
do not have the restricted structure of HAAs. In Example 4.5, we presented the WAA that
corresponds to the formula ¥ = py.(p V EXAXy) and in which an alternation between exis-
tential and universal states that belong to the same set is possible. Thus, while the syntax of
CTL and CTL* makes the alternation of the path quantifiers A and E bounded by the length
of the formula, the fixed-point operators in p-calculus enable an unbounded alternation. This
unbounded alternation is the key for the following theorem:

Theorem 6.3 The program complexity of alternation-free p-calculus model checking for con-
current programs is EXPTIME-complete.

Proof: Clearly, the problem can be solved in EXPTIME by building the nondeterministic
program corresponding to the concurrent program and using the model-checking algorithm
from Section 4.1. To prove that it is hard in EXPTIME, we do a reduction from alternating
linear-space Turing machines, proved to be EXPTIME-hard in [CKS81].

Similarly to what we have done proving Theorem 6.1, we show that there exists an alternation-
free u-calculus formula ¥ such that given an alternating Turing machine 7' of space complexity
s(n), it is possible to build, with a logarithmic space construction, a concurrent program P of
size O(s(n)) such that P satisfies ¢ if and only if 7' accepts the empty tape. The model of
alternation we use is that the transition relation is universal in its even steps and is existential
in its odd steps.

Given T, the construction of P is exactly the same as in Theorem 6.1. Consider the u-
calculus formula
¥ = py-(accept V EX (accept V AXy)).

P = v if and only if there exists a computation of 7' on the empty tape in which all the leaves
of the computation tree eventually reach an accepting state. Thus, P |= ¢ if and only if T
accepts the empty tape. L]

In Theorem 6.4 below, we show that u-calculus model checking for concurrent programs
can also be done in time exponential in the program. Thus, the program complexities of model
checking for concurrent programs for alternation-free u-calculus and general p-calculus coincide.

Theorem 6.4 The program complexity of p-calculus model checking for concurrent programs

is EXPTIME-complete.

49

Proof: Clearly, hardness in EXPTIME follows from Theorem 6.3. To prove membership in
EXPTIME we use the algorithm suggested in [EL86]. Given a concurrent program P and a u-
calculus formula v, the size of a Kripke structure K that models the nondeterministic expansion
of P is of size exponential in the size of P. According to [EL86], model checking of a Kripke
structure K with respect to a u-calculus formula % is of time complexity O((||y| * || K||)"*1),
where n is the alternation depth of 1. The alternation depth of a formula % is the maximal
number of alternations between pu and v on any syntactic path from an occurrence of uy or
vy to an occurrence of y (see [EL86]). We clearly have that n < ||¢|| and, therefore, model
checking of K with respect to v is of time complexity O((||9)| * 2 FHI¥ll). Hence, fixing 3 we
get that the program complexity of p-calculus model checking for concurrent programs is in
EXPTIME.]

Theorem 6.3 implies that while the time complexities of model checking for CTL and
alternation-free p-calculus coincide, there is probably a gap between the space complexities
of model checking for these logics. Moreover, the program complexity of model checking for
CTL* is probably lower than the program complexity of model checking for the alternation-free
p-calculus. To conclude, the automata-theoretic framework provides improved (and significant)
space-complexity upper bounds for the model checking problem of CTL and CTL* and explains
why similar improved bounds cannot be obtained for model checking of the u-calculi.

7 Discussion

In this work we argue that alternating tree automata provide a comprehensive and uniform
framework for branching temporal logics. While the satisfiability problem for these logics
reduces to the nonemptiness problem for alternating tree automata, the model checking prob-
lem reduces to the (much easier) 1-letter nonemptiness problem for these automata. The
automata-theoretic approach separates the logical and the combinatorial aspects of reasoning
about systems. The translation of specifications to automata handles the logic and shifts all
the combinatorial difficulties to automata-theoretic problems. This enabled us to improve the
space complexity of branching-time model-checking. In particular, we show that alternating
tree automata provide a PSPACE procedure for CTL* model checking of concurrent programs,
and provide an explanation why this bound can not be achieved for u-calculus model checking

and even for its alternation-free fragment.

The automata-theoretic approach to branching-time model checking described here has
contributed to several other results in the area of specification and verification of reactive
systems. In [KV95], the framework is extended to handle (and improve the space complexity
of) branching-time model checking for fair systems. In [HKV96], the framework is extended to
handle real-time and hybrid systems, and in [KV96, AHK97, KVW97], it is extended for the
verification of open systems. One of the difficulties present when reasoning about open and

50

distributed systems is fact that the components of a system may have internal variables, thus
the other components have incomplete information about the global configuration of the system.
The structure of alternating tree automata has turned out to be particularly suitable for coping
with incomplete information, and in [KV97, KV99a, KV99b, KV99c|, the automata-theoretic
approach is extended to handle verification and synthesis of open and distributed systems.
Finally, the approach is combined with partial-order methods in [WW96], combined with the
assume-guarante paradigm for modular model checking in [Var95, KV98b], and it contributes to
the study of linear-time properties that can be checked efficiently and symbolically in [K'V98a).

Acknowledgments

We thank Thomas Wilke for helpful comments on a previous draft of this paper.

References

[AHK97] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proc. 38th
IEEE Symposium on Foundations of Computer Science, pages 100-109, Florida, October
1997.

[And92] H.R. Anderson. Model checking and boolean graphs. In Proc. European Symposium on Pro-
gramming (ESOP), volume 582 of Lecture Notes in Computer Science, pages 1-19. Springer-
Verlag, 1992.

[AV95] H. R. Andersen and B. Vergauwen. Efficient checking of behavioural relations and modal
assertions using fixed-point inversion. In Computer Aided Verification, Proc. 7th Int. Con-
ference, volume 939 of Lecture Notes in Computer Science, pages 142-154, Liege, July 1995.
Springer-Verlag.

[BB79] C. Beeri and P.A. Bernstein. Computational problems related to the design of normal form
relational schemas. ACM Trans. on Database Systems, 4:30-59, 1979.

[BB87] B. Baniegbal and H. Barringer. Temporal logic with fixed points. In B. Baniegbal, H. Bar-
ringer, and A. Pnueli, editors, Temporal Logic in Specification, volume 398 of Lecture Notes
in Computer Science, pages 62—74. Springer-Verlag, 1987.

[BC96a] G. Bhat and R. Cleaveland. Efficient local model-checking for fragments of the modal u-
calculus. In Proc. 1996 Workshop on Tools and Algorithms for the Construction and Analysis
of Systems, 1996.

[BC96b] G. Bhat and R. Cleavland. Efficient model checking via the equational p-calculus. In Proc.
11th IEEE Symposium on Logic in Computer Science, pages 304-312, June 1996.

[Bee80] C. Beeri. On the membership problem for functional and multivalued dependencies in
relational databases. ACM Trans. on Database Systems, 5:241-259, 1980.

[BG93] O. Bernholtz and O. Grumberg. Branching time temporal logic and AmorpPH0us tree
automata. In Proc. 4th Conferance on Concurrency Theory, volume 715 of Lecture Notes
in Computer Science, pages 262—277, Hildesheim, August 1993. Springer-Verlag.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming Languages
and Systems, 8(2):244-263, January 1986.

51

[CGLY3]

[CKS81]
[Cle93]

[CVWY92]

[DG84]
[EHS6]

[EI88]

[EJ91]

[EJS93]

[EL86]

[Eme85]

[Eme96]

[ES84]
[FL79]
[GHRO5]
[GW99]

[HKV96]

E.M. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent sys-
tems. In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Decade of Concur-
rency — Reflections and Perspectives (Proceedings of REX School), volume 803 of Lecture
Notes in Computer Science, pages 124-175. Springer-Verlag, 1993.

A K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association
for Computing Machinery, 28(1):114-133, January 1981.

R. Cleaveland. A linear-time model-checking algorithm for the alternation-free modal p-
calculus. Formal Methods in System Design, 2:121-147, 1993.

C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient algorithms
for the verification of temporal properties. Formal Methods in System Design, 1:275-288,
1992.

W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfiability of propo-
sitional horn formulae. Journal of Logic Programming, 1(3):267—284, 1984.

E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited: On branching versus
linear time. Journal of the ACM, 33(1):151-178, 1986.

E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In
Proc. 29th IEEE Symposium on Foundations of Computer Science, pages 368-377, White
Plains, October 1988.

E.A. Emerson and C. Jutla. Tree automata, Mu-calculus and determinacy. In Proc. 32nd
IEEE Symposium on Foundations of Computer Science, pages 368—377, San Juan, October
1991.

E.A. Emerson, C. Jutla, and A.P. Sistla. On model-checking for fragments of u-calculus.
In Computer Aided Verification, Proc. 5th Int. Conference, volume 697, pages 385-396,
Elounda, Crete, June 1993. Lecture Notes in Computer Science, Springer-Verlag.

E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional u-
calculus. In Proc. 1st Symposium on Logic in Computer Science, pages 267278, Cambridge,
June 1986.

E.A. Emerson. Automata, tableaux, and temporal logics. In Proc. Workshop on Logic of
Programs, volume 193 of Lecture Notes in Computer Science, pages 79-87. Springer-Verlag,
1985.

E.A. Emerson. Automated temporal reasoning about reactive systems. In VIII-th BANFF
Higher Order Workshop, volume 1043 of Lecture Notes in Computer Science, pages 41-101,
1996.

E.A. Emerson and A. P. Sistla. Deciding branching time logic. In Proc. 16th ACM Sympo-
sium on Theory of Computing, Washington, April 1984.

M.J. Fischer and R.E. Ladner. Propositional dynamic logic of regular programs. Journal of
Computer and Systems Sciences, 18:194-211, 1979.

R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits of parallel computation. Oxford Uni-
versity Press, 1995.

E. Graedel and I. Walukiewicz. Guarded fixed point logic. In Proc. 1/th Symposium on
Logic in Computer Science, July 1999.

T.A. Henzinger, O. Kupferman, and M.Y. Vardi. A space-efficient on-the-fly algorithm for
real-time model checking. In Proc. 7th Conferance on Concurrency Theory, volume 1119 of
Lecture Notes in Computer Science, pages 514-529, Pisa, August 1996. Springer-Verlag.

52

[Imm81]

[1789]

[Jon75)
[Jut90]
[Koz77]
[Koz83]

[KV95]

[KV96]

[KV97]

[KV98a]

[KV98b]

[KV98c]

[KV99a]
[KV99b]

[KV99c]
[KVWO7]

[Lam80]

[Lar92]

N. Immerman. Number of quantifiers is better than number of tape cells. Journal of
Computer and System Sciences, 22(3):384-406, 1981.

C. Jard and T. Jeron. On-line model-checking for finite linear temporal logic specifications.
In Automatic Verification Methods for Finite State Systems, Proc. Int. Workshop, Greno-
ble, volume 407, pages 189-196, Grenoble, June 1989. Lecture Notes in Computer Science,
Springer-Verlag.

N.D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Com-
puter and System Sciences, 11:68-75, 1975.

C.S. Jutla. Automata on infinite objects and modal logics of programs. PhD thesis, Austin,
Texas, 1990.

D. Kozen. Lower bounds for natural proof systems. In Proc. 18th IEEE Symposium on
Foundation of Computer Science, pages 254-266, 1977.

D. Kozen. Results on the propositional y-calculus. Theoretical Computer Science, 27:333—
354, 1983.

O. Kupferman and M.Y. Vardi. On the complexity of branching modular model checking.
In Proc. 6th Conferance on Concurrency Theory, volume 962 of Lecture Notes in Computer
Science, pages 408—422, Philadelphia, August 1995. Springer-Verlag.

O. Kupferman and M.Y. Vardi. Module checking. In Computer Aided Verification, Proc. 8th
Int. Conference, volume 1102 of Lecture Notes in Computer Science, pages 75—86. Springer-
Verlag, 1996.

O. Kupferman and M.Y. Vardi. Module checking revisited. In Computer Aided Verification,
Proc. 9th Int. Conference, volume 1254 of Lecture Notes in Computer Science, pages 36-47.
Springer-Verlag, 1997.

O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism: from linear-time
to branching-time. In Proc. 18th IEEE Symposium on Logic in Computer Science, pages
81-92, June 1998.

O. Kupferman and M.Y. Vardi. Modular model checking. In Proc. Compositionality Work-
shop, volume 1536 of Lecture Notes in Computer Science, pages 381-401. Springer-Verlag,
1998.

O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata emptiness.
In Proc. 30th ACM Symposium on Theory of Computing, pages 224-233, Dallas, 1998.

O. Kupferman and M.Y. Vardi. Church’s problem revisited. To appear in BASL, 1999.

O. Kupferman and M.Y. Vardi. Robust satisfaction. In Proc. 10th Conferance on Concur-
rency Theory, Lecture Notes in Computer Science. Springer-Verlag, August 1999.

O. Kupferman and M.Y. Vardi. Synthesizing distributed systems. Submitted, 1999.

0. Kupferman, M.Y. Vardi, and P. Wolper. Module checking. To appear in Information
and Computation, 1997.

L. Lamport. Sometimes is sometimes “not never” - on the temporal logic of programs.
In Proc. 7th ACM Symposium on Principles of Programming Languages, pages 174185,
January 1980.

K.G. Larsen. Efficient local correctness checking. In Proc. 4th Conference on Computer Aided
Verification, volume 663 of Lecture Notes in Computer Science, pages 30—43, Montreal, June
1992. Springer-Verlag.

53

[LP85]

[Lyn77]
[MHS4]

[MP94]

[MS87]

[MSS86]

[MSS88]

[Pnu8l]

[QS81]

[Rab69]

[Rab70]

[SavT70]

[SE84]

[Slu85]

[Sti96]

[SW91]

[Tar72]

[Tho90]

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proc. 12th ACM Symposium on Principles of Programming Lan-
guages, pages 97-107, New Orleans, January 1985.

N. Lynch. Log space recognition and translation of parenthesis languages. Journal ACM,
24:583-590, 1977.

S. Miyano and T. Hayashi. Alternating finite automata on w-words. Theoretical Computer
Science, 32:321-330, 1984.

M. Mihail and C.H. Papademitriou. On the random walk method for protocol testing.
In Proc. 5th Conference on Computer Aided Verification, volume 818 of Lecture Notes in
Computer Science, pages 132-141, Stanford, June 1994. Springer-Verlag.

D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical Computer
Science, 54,:267-276, 1987.

D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic theory
of the tree and its complexity. In Proc. 13th Int. Colloguium on Automata, Languages and
Programming. Springer-Verlag, 1986.

D.E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a simple ex-
planation of why most temporal and dynamic logics are decidable in exponential time. In
Proceedings 3rd IEEE Symposium on Logic in Computer Science, pages 422-427, Edinburgh,
July 1988.

A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer Science,
13:45-60, 1981.

J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar.
In Proc. 5th International Symp. on Programming, volume 137, pages 337-351. Springer-
Verlag, Lecture Notes in Computer Science, 1981.

M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transac-
tion of the AMS, 141:1-35, 1969.

M.O. Rabin. Weakly definable relations and special automata. In Proc. Symp. Math. Logic
and Foundations of Set Theory, pages 1-23. North Holland, 1970.

W.J. Savitch. Relationship between nondeterministic and deterministic tape complexities.
Journal on Computer and System Sciences, 4:177-192, 1970.

R.S. Street and E.A. Emerson. An elementary decision procedure for the Mu-calculus. In
Proc. 11th Int. Colloquium on Automata, Languages and Programming, volume 172. Lecture
Notes in Computer Science, Springer-Verlag, July 1984.

G. Slutzki. Alternating tree automata. Theoretical Computer Science, 41:305-318, 1985.

C. Stirling. Games and modal mu-calculus. In Proc. 13th Symp. on Theoretical Aspects
of Computer Science, volume 1055 of Lecture Notes in Computer Science, pages 298-312.
Springer-Verlag, 1996.

C. Stirling and D. Walker. Local model checking in the modal Mu-calculus. Theoretical
Computer Science, 89(1):161-177, 1991.

R.E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal of Computing,
1(2):146-160, 1972.

W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science,
pages 165—-191, 1990.

54

[Var8?]
[Var9s]
[VB99]
[VisO8]

[VL93]

[VS85]
[VW84]

[VW86a]

[VW86b]
[VW94]
[Wol83]

[Wol89]

[WW96]

M.Y. Vardi. The complexity of relational query languages. In Proc. 14th ACM Symp. on
Theory of Computing, pages 137-146, San Francisco, 1982.

M.Y. Vardi. On the complexity of modular model checking. In Proc. 10th IEEE Symposium
on Logic in Computer Science, pages 101-111, June 1995.

W. Visser and H. Barringer. CTL* model checking for SPIN. In Software Tools for Tech-
nology Transfer, Lecture Notes in Computer Science. Springer-Verlag, 1999.

W. Visser. Efficient CTL* model checking using games and automata. PhD thesis, Manch-
ester University, july 1998.

B. Vergauwen and J. Lewi. A linear local model checking algorithm for CTL. In Proc.
4th Conferance on Concurrency Theory, volume 715 of Lecture Notes in Computer Science,
pages 447-461, Hildesheim, August 1993. Springer-Verlag.

M.Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of
programs. In Proc 17th ACM Symp. on Theory of Computing, pages 240-251, 1985.

M.Y. Vardi and P. Wolper. Yet another process logic. In Logics of Programs, volume 164,
pages 501-512. Lecture Notes in Computer Science, Springer-Verlag, 1984.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-
tion. In Proc. First Symposium on Logic in Computer Science, pages 322-331, Cambridge,
June 1986.

M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs.
Journal of Computer and System Science, 32(2):182—221, April 1986.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Com-
putation, 115(1):1-37, November 1994.

P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1-2):72-99,
1983.

P. Wolper. On the relation of programs and computations to models of temporal logic. In
B. Baniegbal, H. Barringer, and A. Pnueli, editors, Proc. Temporal Logic in Specification,
volume 398, pages 75—123. Lecture Notes in Computer Science, Springer-Verlag, 1989.

B. Willems and P. Wolper. Partial-order methods for model checking: From linear time to
branching time. In Proc. 11th Symp. on Logic in Computer Science, pages 294-303, New
Brunswick, July 1996.

55

