
Quantitative Assume Guarantee Synthesis?

Shaull Almagor1, Orna Kupferman2, Jan Oliver Ringert3, and Yaron Velner2

1 Department of Computer Science, Oxford University, UK
2 School of Computer Science and Engineering, The Hebrew University, Israel

3 School of Computer Science, Tel Aviv University

Abstract. In assume-guarantee synthesis, we are given a specification 〈A,G〉,
describing an assumption on the environment and a guarantee for the system, and
we construct a system that interacts with an environment and is guaranteed to
satisfyG whenever the environment satisfiesA. While assume-guarantee synthe-
sis is 2EXPTIME-complete for specifications in LTL, researchers have identified
the GR(1) fragment of LTL, which supports assume-guarantee reasoning and for
which synthesis has an efficient symbolic solution. In recent years we see a transi-
tion to quantitative synthesis, in which the specification formalism is multi-valued
and the goal is to generate high-quality systems, namely ones that maximize the
satisfaction value of the specification.
We study quantitative assume-guarantee synthesis. We start with specifications in
LTL[F], an extension of LTL by quality operators. The satisfaction value of an
LTL[F] formula is a real value in [0, 1], where the higher the value is, the higher
is the quality in which the computation satisfies the specification. We define the
quantitative extension GR(1)[F] of GR(1). We show that the implication rela-
tion, which is at the heart of assume-guarantee reasoning, has two natural seman-
tics in the quantitative setting. Indeed, in addition to max{1 − A,G}, which is
the multi-valued counterpart of Boolean implication, there are settings in which
maximizing the ratio G/A is more appropriate. We show that GR(1)[F] formu-
las in both semantics are hard to synthesize. Still, in the implication semantics,
we can reduce GR(1)[F] synthesis to GR(1) synthesis and apply its efficient
symbolic algorithm. For the ratio semantics, we present a sound approximation,
which can also be solved efficiently. Our experimental results show that our ap-
proach can successfully synthesize GR(1)[F] specifications with over a million
of concrete states.

1 Introduction

Synthesis is the automated construction of a system from its specification: given a linear
temporal logic (LTL) formula ψ over sets I and O of input and output signals, we
synthesize a finite-state system that realizes ψ [10, 26]. At each moment in time, the
system reads a truth assignment, generated by the environment, to the signals in I ,
and it generates a truth assignment to the signals in O. Thus, with every sequence of

? The research leading to these results has received funding from the European Research Coun-
cil under the European Union’s 7th Framework Programme (FP7/2007-2013, ERC grant no
278410). Shaull Almagor is supported by ERC grant AVS-ISS (648701).

inputs, the system associates a sequence of outputs. The system realizes ψ if all the
computations that are generated by the interaction satisfy ψ.

In recent years, researchers have considered extensions and variants of the classical
setting of synthesis. One class of extensions originates from the assume-guarantee 4

approach that is taken in many settings of synthesis. There, the input to the synthesis
problem consists of two parts: a behavior A that the environment is assumed to have,
and a behavior G that the system is guaranteed to have [6].5 Both A and G are over
I ∪O. When A and G are in LTL, synthesis of the assume-guarantee pair 〈A,G〉 coin-
cides with synthesis of the LTL formula A → G. Still, the assume-guarantee approach
brings with it new interesting problems. For example, one may study the weakest A
that is required in order to make a given G realizable [6, 21], and dually, the strongest
G we can guarantee with a given A [11]. Indeed, the duality between the system and
the environment in synthesis is intensified in light of the duality between A and G in
assume-guarantee specifications [17]. In the more practical side, there is a challenge
of finding expressive specification formalisms for which assume-guarantee synthesis is
feasible in practice. Indeed, for LTL, the problem is 2EXPTIME-complete [26]. In [25],
the authors introduce the General Reactivity of Rank 1 fragment of LTL (GR(1), for
short). Essentially, a GR(1) formula states that if some initial, safety, and fairness en-
vironment assumptions hold, then some initial, safety, and fairness system guarantees
hold. The synthesis problem for GR(1) is in EXPTIME. It is shown, however, in [25],
that GR(1) has an efficient symbolic synthesis algorithm, which is polynomial in the
number of the concrete states of the specification. GR(1) synthesis has been used in
various application domains and contexts, including robotics [18], scenario-based spec-
ifications [24], aspect languages [23], and event-based behavior models [12], to name a
few. In addition, it is shown in [22] that almost all common LTL specification patterns
can be specified in GR(1).

Another class of extensions to the classical synthesis problem addresses the qual-
ity of synthesized systems. Since LTL is Boolean, synthesized systems are correct, but
there is no reference to their quality. This is a crucial drawback, as designers would be
willing to give up manual design only if automated-synthesis algorithms return systems
of comparable quality. Addressing this challenge, researchers have developed quanti-
tative specification formalisms. For example, in [3], the input to the synthesis prob-
lem includes also Mealy machines that grade different realizing systems. In [1], the
specification formalism is the multi-valued logic LTL[F]. The satisfaction value of an
LTL[F] formula is a real value in [0, 1], where the higher the value is, the higher is
the quality in which the computation satisfies the specification. LTL[F] is really a fam-
ily of logics, each parameterized by a set F ⊆ {f : [0, 1]k → [0, 1] | k ∈ N} of
functions (of arbitrary arity) over [0, 1]. Using the functions in F , a specifier can for-
mally and easily prioritize different ways of satisfaction. For example, as in earlier work

4 By “assume-guarantee” we refer to the notion of synthesis given environment assumptions and
system guarantees, rather than the setting of multi-agent synthesis coined in [7].

5 We note that an orthogonal line of work adds indirect assumptions about the environment,
like bounded synthesis, where we assume that there is a bound on the size of the environment
[19, 28], or rational synthesis, in which the environment has its own objectives [14] and is
assumed to behave rationally.

on multi-valued extensions of LTL (c.f., [13]), the set F may contain the min {x, y},
max {x, y}, and 1 − x functions, which are the standard quantitative analogues of the
∧, ∨, and ¬ operators. The novelty of LTL[F] is the ability to manipulate values by
arbitrary functions. For example, F may contain the binary function ⊕λ, for λ ∈ [0, 1].
The satisfaction value of the formula ϕ ⊕λ ψ is the weighted (according to λ) average
between the satisfaction values of ϕ and ψ. This enables the quality of the system to be
an interpolation of different aspects of it. As an example, consider the LTL[F] formula
ϕ = G(req → (grant ⊕ 2

3
Xgrant)). The formula specifies the fact that we want re-

quests to be granted immediately and the grant to hold for two steps. When this always
holds, the satisfaction value is 2

3 + 1
3 = 1. We are quite okay with grants that are given

immediately and last for only one step, in which case the satisfaction value is 2
3 , and

less content when grants arrive with a delay, in which case the satisfaction value is 1
3 .

Using a multi-valued specification formalism, synthesis is upgraded to generate
not only correct, but also high-quality systems. In particular, the synthesis algorithm
for LTL[F] seeks systems of the highest possible satisfaction value. An extension of
the Boolean setting to a quantitative one is of special interest in the case of assume-
guarantee synthesis. Indeed, when A and G are multi-valued, there are several ways to
define the satisfaction value of an assume-guarantee pair 〈A,G〉. If we adopt the se-
mantics of LTL[F] for→, we get that the satisfaction value of 〈A,G〉 is the maximum
between the “violation value” of A (that is, 1 minus its satisfaction value) and the sat-
isfaction value of G. With this semantics we can, for example, synthesize a system that
satisfies as many guarantees as possible when all the environment assumptions hold
(see Example 2 in Section 5.2).

Sometimes, however, other semantics are more appropriate. Consider, for example,
a specification where the environment assumption is the amount of gas in a fuel tank
(normalized to [0, 1]) and the guarantee is the distance a car can go. An optimal strategy
in the max{1 − A,G} semantics can assure a satisfaction value of 1/2. However, the
behavior of the strategy when the tank is more than half full need not be optimal and
it could afford to drive only half of the maximal distance. On the other hand, in a ratio
semantics, where the objective is to maximize G/A, the optimal strategy would strive
to maximize the fuel consumption, which is more desirable.

Another interesting issue that arises in the setting of assume-guarantee synthesis
and calls for a quantitative view is cooperative reactive synthesis, namely the ability of
the system to influence the satisfaction value of A. Indeed, recall that both A and G are
over I ∪ O. While a system that causes A to fail does satisfy an 〈A,G〉 specification,
it is very likely that a designer favors behaviors in which G holds over those in which
A is violated. In [4], the authors study this issue and present a hierarchy of cooperation
levels between the system and the environment. They also describe an algorithm that
synthesizes systems with the highest possible cooperation level, namely ones that sat-
isfy both A and G. With a quantitative approach to assume-guarantee synthesis, we can
incorporate the hierarchy within the specification.

In this work we introduce and study quantitative assume-guarantee synthesis. The
doubly-exponential solution for LTL[F] synthesis applies to specifications of the form
A → G. We define and study GR(1)[F], namely the fragment of LTL[F] that is the
multi-valued counterpart of GR(1). Recall that GR(1) formulas have two Boolean op-

erators: conjunction (between the different components of A and G) and implication
(between A and G). We discuss different possible multi-valued semantics to both oper-
ators. Our main contributions are as follows.

– We present a theoretical framework for quantitative assume-guarantee synthesis.
We identify two natural special cases of interest, namely when implication stands
for max{1 − A,G} or G/A (Section 2). For conjunction, we allow all monoton-
ically increasing quantitative functions. We relate quantitative assume-guarantee
synthesis with the solution of quantitative two-player assume-guarantee games.
The winning values in these games correspond to the values with which a GR(1)[F]
specification can be realized, and winning strategies correspond to transducers that
realize the specification in these values.
• For the max{1 − A,G} semantics, we show an efficient synthesis algorithm

for the case the number of fairness assumptions and guarantees is fixed. Fur-
ther, we show that without this assumption, as well as in the case we allow a
quantitative conjunction function that is not monotonically increasing, the cor-
responding quantitative assume-guarantee games cannot be solved efficiently,
provided P6=NP (Section 3).

• For the G/A semantics, we show that even for a single assumption and guar-
antee, the corresponding quantitative assume-guarantee games are as hard as
(Boolean) parity games. We present a sound approximation that has an efficient
solution. Essentially, our approximation replaces the eventuality requirements
in the fairness assumptions and guarantees by finitary-fairness ones [8, 20]
(Section 4).

Our algorithms efficiently reduces the GR(1)[F] synthesis problem to synthesis of
a Boolean GR(1) specification. Hence, they work also in the symbolic setting.

– Finally, we present a series of experimental results that demonstrates the differences
between the different semantics and the scalability of our solution in the symbolic
setting (Section 5). Our experimental results also demonstrate the usefulness of the
quantitative approach. Indeed, we handle specifications that are not realizable in
the Boolean approach but have a high satisfaction value in the quantitative one.

Due to lack of space, in some cases the full proofs were omitted, and can be found in
the full version in the authors’ webpages.

2 Preliminaries

2.1 The Temporal Logic LTL[F]

The linear temporal logic LTL[F], introduced in [1], generalizes LTL by replacing the
Boolean operators of LTL with arbitrary functions over [0, 1]. The logic is actually a
family of logics, each parameterized by a set F of functions.
Syntax Let AP be a set of Boolean atomic propositions, and let F ⊆ {f : [0, 1]k →
[0, 1] | k ∈ N} be a set of functions over [0, 1]. Note that the functions in F may have
different arities. An LTL[F] formula is one of the following:

– True, False, or p, for p ∈ AP .

– f(ϕ1, ..., ϕk), Xϕ1, or ϕ1Uϕ2, for LTL[F] formulas ϕ1, . . . , ϕk and a function
f ∈ F .

We define the description size |ϕ| of an LTL[F] formula ϕ to be the number of nodes
in the generating tree of ϕ. Note that the function symbols in F are treated as constant-
length symbols.
Semantics We define the semantics of LTL[F] formulas with respect to infinite com-
putations over AP . A computation is a word π = π0, π1, . . . ∈ (2AP)ω . We use πi

to denote the suffix πi, πi+1, The semantics maps a computation π and an LTL[F]
formula ϕ to the satisfaction value of ϕ in π, denoted [[π, ϕ]]. The satisfaction value is
defined inductively as follows.6

– [[π, True]] = 1 and [[π, False]] = 0.
– For p ∈ AP , we have that [[π, p]] = 1 if p ∈ π0 and [[π, p]] = 0 if p 6∈ π0.
– For a function f ∈ F , we have [[π, f(ϕ1, ..., ϕk)]] = f([[π, ϕ1]], ..., [[π, ϕk]]).
– [[π,Xϕ1]] = [[π1, ϕ1]].
– [[π, ϕ1Uϕ2]] = max

i≥0
{min{[[πi, ϕ2]], min

0≤j<i
[[πj , ϕ1]]}}.

It is not hard to prove, by induction on the structure of the formula, that for every
computation π and formula ϕ, it holds that [[π, ϕ]] ∈ [0, 1]. Also, the number of possible
satisfaction values of ϕ is finite and is bounded by 2|ϕ|.

The logic LTL coincides with the logic LTL[F] for F that corresponds to the usual
Boolean operators. For simplicity, we use these operators as an abbreviation for the
corresponding functions, as described below. In addition, we introduce notations for
some useful functions. Let x, y ∈ [0, 1] be satisfaction values and λ ∈ [0, 1] be a
parameter. Then,

• ¬x = 1− x • x ∨ y = max {x, y} • x ∧ y = min {x, y}
• x→ y = max {1− x, y} • Oλx = λ · x • x⊕λ y = λ · x+ (1− λ) · y

Other useful abbreviations are the “eventually” and “always” temporal operators,
defined as follows.

– Fϕ1 = TrueUϕ1. Thus, [[π,Fϕ1]] = max
i≥0
{[[πi, ϕ1]]}.

– Gϕ1 = ¬F¬ϕ1. Thus, [[π,Gϕ1]] = min
i≥0
{[[πi, ϕ1]]}.

2.2 GR(1) and GR(1)[F]

A propositional assertion θ is a Boolean formula over AP , describing a single state in
a computation. An invariant is an LTL formula ϕ overAP that uses only the X (“next”)
operator, and with no nesting of X’s. Thus, ϕ relates a state in a computation and its
successor.

6 The observant reader may be concerned by our use of max and min where sup and inf are in
order. It is proven in [1] that there are only finitely many satisfaction values for a formula ϕ,
thus the semantics is well defined.

The General Reactivity of Rank 1 fragment of LTL (GR(1), for short), consists of
formulas of the form7

(θe → θs)∧(θe → G((Hϕe)→ ϕs))∧((θe∧Gϕe)→ (
∧

1≤i≤ke
GFψei →

∧
1≤i≤ks

GFψsi)),

for propositional assertions θe, θs, ψei , and ψsi , and invariants ϕe and ϕs. We refer to
θe and θs as the initial assumption and initial guarantee, respectively, refer to Gϕe

and Gϕs, as the safety assumption and safety guarantee, respectively, and refer to∧
1≤i≤ke GFψ

e
i and

∧
1≤i≤ks GFψ

s
i as the fairness assumption and fairness guarantee,

respectively.
The temporal operator H (“Henceforth”) is the past variant of G. Thus, a position i

in a computation π satisfies Hϕ if all suffixes πj , for j ≤ i, satisfy ϕ.
We proceed to the quantitative counterpart. A quantitative propositional assertion

θ is an LTL[F] propositional formula over AP , assigning a value to a single state
in a computation. A quantitative conjunction is a monotonically increasing function
⊗ : [0, 1]∗ → [0, 1], which maps a vector of satisfaction values to a new satisfaction
value. Formally, for every two vectors v, u ∈ [0, 1]n, if v ≥ u (point wise), then⊗(v) ≥
⊗(u). A typical quantitative conjunction function is ∧, where x ∧ y = min{x, y}. A
quantitative implication is a function 7→: [0, 1]× [0, 1]→ [0,∞] that is monotonically
decreasing in its first parameter and monotonically increasing in its second parameter.
A typical quantitative implication function is→, where x→ y = max{1− x, y}.

The GR(1)[F] fragment of LTL[F] consists of formulas of the form
(θe → θs) ∧ (θe → G((Hϕe)→ ϕs)) ∧ ((θe ∧ Gϕe)→ (⊗1≤i≤keGFψ

e
i 7→ ⊗1≤i≤ksGFψ

s
i),

for propositional assertions θe and θs, invariants ϕe and ϕs, and quantitative proposi-
tional assertions ψei and ψsi .

Note that the subformulas that refer to the initial and safety assumptions and guar-
antees are Boolean. Indeed, the assumptions and guarantees are propositional assertions
and invariants, their satisfaction values are in {0, 1}, and they are related by ∧ and→.
The functions in F are these used in the quantitative propositional assertions ψei and
ψsi , as well as the functions 7→ and ⊗. It is easy to extend our results to a setting in
which the initial and safety assumptions and guarantees are quantitative. We are going
to focus on two quantitative implications: x→ y, mentioned above, which we are going
to term disjunctive implication, and y/x, which we are going to term ratio implication.
Note that the range of the ratio implication is [0,∞]. We may consider variants of ratio
implication with which the result is always in [0, 1]. One possibility is to be fully sat-
isfied whenever y ≥ x, which corresponds to defining y/x as min{1, y/x}. Another
possibility, especially given the finite ranges of x and y, is to map the possible values
of y/x to [0, 1] in a some monotonic way, for example by 1− 1/(1 + y/x).

We may allow a GR(1)[F] formula to apply different quantitative conjunctions ⊗e
and ⊗s to relate the components of the assumption and the guarantee.

7 In some papers in the literature, GR(1) formulas have the following weaker form. (θe∧Gϕe∧∧
1≤i≤ke GFψ

e
i)→ (θs ∧ Gϕs ∧

∧
1≤i≤ks GFψ

s
i). That is, if some safety and fairness envi-

ronment assumptions hold, then some safety and fairness system guarantees hold. The original
semantics of [25] as well as the symbolic implementation follow the stronger semantics.

We define the width of a quantitative propositional formula ψ, denoted width(ψ), as
the number of different satisfaction values that ψ may have. We further denote the width
of a GR(1)[F] specification by max{max1≤i≤ke width(ψ

e
i),max1≤i≤ks width(ψ

s
i)},

i.e., the least upper bound of the width of the quantitative propositional assertions ap-
pearing in the specification.

2.3 The Synthesis Problem

In the setting of open systems, the setAP of atomic propositions is partitioned into sets
I and O of input and output signals. An (I,O)-transducer models the computations
generated (deterministically) by a system when it interacts with an environment. The
environment assigns values to the signals in I and the systems responds with an assign-
ment to the signals inO. This process repeats forever. Formally, an (I,O)-transducer is
a tuple T = 〈I,O, S, s0, ρ, L〉, where S is a finite set of states, s0 ∈ S is an initial state,
ρ : S × 2I → S maps a state and an assignment for the input signals to a successor
state, and L : S → 2O is a labeling function that maps each state to an assignment for
the output signals. Every sequence i = i0, i1, . . . ∈ (2I)ω of assignments for the input
signals induces a single trace s = s0, s1, . . . of T , satisfying sj+1 = ρ(sj , ij) for all
j ≥ 0, and induces the computation π = π0, π1, . . . over 2I∪O in which πj = ij∪L(sj)
for all j ≥ 0.

In the Boolean setting, the realizability problem gets as input an LTL formula over
I ∪ O, and asks for the existence of an (I,O)-transducer all of whose computations
satisfy the formula. In the quantitative analogue we seek the generation of high-quality
systems. For a transducer T and an LTL[F] formula ϕ, we define the satisfaction value
of ϕ in T , denoted [[T , ϕ]], as min{[[π, ϕ]] : π is a computation of T }. Accordingly,
given an LTL[F] formula ϕ over I∪O, the realizability problem is to find max{[[T , ϕ]] :
T is an (I,O)-transducer}. The synthesis problem is then to find a transducer that
attains this value.8 Moving from an optimization to a decision problem, we say, given a
specification ϕ and a threshold T ∈ [0,∞], that ϕ is realizable with value T if there is
a transducer T such that [[T , ϕ]] ≥ T .

As shown in [1], the synthesis problem for LTL[F] is 2EXPTIME-complete. Es-
sentially, as in the Boolean setting, it is possible to construct, given an LTL[F] formula
ϕ and a predicate P ⊆ [0, 1], a nondeterministic generalized Büchi automaton Aϕ,P
that accepts exactly all computations π such that [[π, ϕ]] ∈ P . This automaton can be
used for solving the decision problems that correspond to the optimization problems for
LTL[F]. In particular, in the case of synthesis, we can check the realizability of ϕ with
value above some threshold T ∈ [0, 1], by generating a game where the objective of the
system is to generate only computations that are accepted by Aϕ,[T,1].

Remark 1. Note that our definition for [[T, ϕ]] considered the worst-case setting, where
the goal is to maximize the quality of the computation with the minimal quality. Alter-
natively, one can take a stochastic approach, where the goal is to generate a transducer

8 The specification of the problem does not require the transducer to be finite. As we shall show,
however, as in the case of LTL, if some transducer that attains the value exists, there is also a
finite-state one that does so.

that maximizes the expected quality of a computation, subject to a given distribution
of the input signals [2]. As even simple stochastic reachability games are not known to
have a polynomial solution [15] we leave it to future work.

Remark 2. In Section 1, we discussed the challenge of cooperative reactive synthe-
sis [4], where a hierarchy of cooperation levels is used in order to favor behaviors
in which the guarantee holds over these in which the assumption is violated. Using
LTL[F], the designer can easily specify her priorities in this issue. For example, if the
assumption is ϕe and the guarantee is ϕs, then the LTL[F] specification O0.9(¬ϕe)∨ϕs
has satisfaction value 0.9 in computations that only violate the assumption, and thus its
synthesis would prefer transducers in which the guarantee is satisfied. Tuning down
our satisfaction with violation of the assumption can also be achieved by taking some
power of (¬ϕe), as in (¬ϕe)2 ∨ ϕs. Dually, (¬ϕe) ∨

√
ϕs tunes up satisfaction of the

guarantee. The extend to which we want to tune the assumption down or the guarantee
up typically depends on the ability of the system to influence the satisfaction of the
assumption. Note that by tuning down the assumptions, we incentivize the system to
satisfy the guarantees, rather than to falsify the assumptions. This overcomes a com-
mon pitfall of assume-guarantee synthesis.

2.4 Games

A two-player game is G = 〈V = V1 ∪ V2, E, v0,W 〉, where V is a set of vertices
partitioned to V1 ∪ V2, E ⊆ V × V is a set of directed edges, and v0 ∈ V is an initial
vertex, and W is a winning condition, to be defined below. We assume that E is total
in its first element. The game is played between Player 1 and Player 2. It starts in v0.
Whenever the current vertex v is in Vi, for i ∈ {1, 2}, Player i chooses an edge (v, u)
and the game proceeds to u. Note that since E is total, there is always a legal move for
the players. Formally, a strategy for Player i is a function τi : V ∗ · Vi → V such that
for all π · v ∈ V ∗ · Vi, we have that E(v, τi(π · v)). The outcome of strategies τ1 and τ2
for the two players is the infinite path v0, v1, v2, . . . where for all j ≥ 0, we have that
vj+i = τi(v0, . . . , vj), for the player i for which vj ∈ Vi.

The winning condition W defines a subset of V ω . The goal of Player 2 is to en-
sure that the outcome of the game is in W , while the goal of Player 1 is to make sure
the outcome is not in W . Several types of winning conditions have been studied. In
a strong-fairness game, the condition W is given by a formula

∧
1≤i≤ke GFψ

e
i →∧

1≤i≤ks GFψ
s
i , for predicates ψei and ψsi over V . A path π in the game satisfies W

if there is 1 ≤ i ≤ ke such that π visits vertices that satisfy ψei only finitely often, or
for all 1 ≤ i ≤ ks, it visits vertices that satisfy ψsi infinitely often.

A weighted game augments G with a (multidimensional) weight function w : V →
[0, 1]k, for some k ∈ N. The width of a dimension 1 ≤ i ≤ k is |{w(v)[i] : v ∈
V }|, namely the number of different values that w may assign in the i-th dimension.
Then, the width of w is the least upper bound on the widths of all dimensions. A
weighted strong-fairness game is parameterized by quantitative conjunction and impli-
cation functions⊗ and 7→. The winning condition is of the formW = ⊗1≤i≤keGFw[i] 7→
⊗1≤i≤ksGFw[k

e + i], for ke and ks such that k = ke + ks. The value of a path π is
the evaluation of W in the path, where the value w[i], for 1 ≤ i ≤ k, in a vertex v, is

w(v)[i]. Thus, the first ke dimensions in w(v) are associated with environment assump-
tions, and then ks dimensions are associated with systems guarantees. Accordingly, we
use e[i], for 1 ≤ i ≤ ke, to denote w[i], and use s[i], for 1 ≤ i ≤ ks, to denote
w[ke + i]. For a threshold T and a weighted game G with winning condition W , we
say that Player 2 wins G with value T iff Player 2 has a strategy to force the game into
paths with value at least T .

For sets I andO of input and output signals, we say that a game G is an (I,O)-game
if, intuitively, the moves of Player 1 (the environment) correspond to assignments to the
signals in I and these of Player 2 (the system) correspond to assignments to the signals
inO. Formally, there is a finite set S such that V = 2I∪O×S, moves of Player 1 change
only the 2I component of a vertex, and then moves of Player 2 change only the 2O and
S components. It is not hard to see that a strategy of Player 2 in an (I,O)-game induces
an (I,O)-transducer with state space S.

In the Boolean setting, LTL and GR(1) synthesis is reduced to the solution of a
two-player game. For LTL, the construction of the game involves a translation of the
specification to an automaton. The special structure of GR(1) formulas circumvents the
need to construct an automaton. Instead, the initial and safety conditions determine the
initial vertex of the game as well as the allowed transitions, and the fairness conditions
induce the winning condition. In the full version we describe a similar construction
from GR(1)[F] formulas to weighted strong-fairness games. Formally, we prove the
following.

Theorem 1. Consider a GR(1)[F] formula ϕ = ϕinit ∧ ϕsafe ∧ ((θe ∧ Gϕe) →
(⊗1≤i≤keGFψ

e
i 7→ ⊗1≤i≤ksGFψ

s
i) over I ∪ O. We can construct a weighted strong-

fairness (I,O)-game G with weight function w : V → [0, 1]k
e+ks and winning con-

dition of the form ⊗1≤i≤keGFe[i] 7→ ⊗1≤i≤ksGFs[i], such that the state space of G is
contained in 2I∪O × {1, 2}, the width of w is equal to the width of ϕ, and for every
T ∈ [0,∞], we have that ϕ is realizable with value T iff Player 2 wins G with value T .

3 Weighted Games with Disjunctive Implication

In this section we study weighted games with disjunctive implication, namely these
induced by GR(1)[F] formulas in which the satisfaction value of x 7→ y is max{1 −
x, y}.

3.1 Upper bound

We start with good news and show that we can translate weighted strong-fairness games
to Boolean ones. In Section 5, we describe a symbolic implementation of this transla-
tion. Then, combining it with a symbolic algorith for Boolean GR(1) synthesis, we
obtain a symbolic synthesis algorithm for GR(1)[F].

Theorem 2. Consider a weighted strong-fairness game G with n vertices, weight func-
tion w : V → [0, 1]k

e+ks of width m, and winning condition ⊗1≤i≤keGFe[i] 7→
⊗1≤i≤ksGFs[i]. Given a threshold T , we can construct a Boolean strong-fairness game
G′ with O(n ·mke+ks) vertices, such that Player 2 wins G with value at least T iff he
wins G′.

Proof. Intuitively, at each step of G′ we record the maximal values that were attained
for e[i] during a certain segment. Once ⊗1≤i≤keGFe[i] ≥ 1 − T , we record that the
assumptions have been fulfilled, and the environment visits a winning vertex and resets
its record. Similarly, once ⊗1≤i≤ksGFs[i] ≥ T , we record that the guarantees have
been fulfilled, so the system visits a winning vertex and resets its record. Then, the goal
of the system is to generate only paths such that if the environment visits a winning
vertex infinitely often, then so does the system.

We now turn to formalize this. Let k = ke+ks and G = 〈V = V1∪V2, E, v0, w,W 〉,
with w : V → [0, 1]k. We define G′ = 〈S = S1 ∪ S2, E

′, s0,W
′〉 as follows. The ver-

tices are (a finite subset of) S = V ×[0, 1]k×{0, 1, 2}, with S1 and S2 determined by V1
and V2, respectively, in the first component, and the initial vertex is s0 = (v0, r, 0) with
r ≡ 0. Consider such a vertex (v, r, b) ∈ S. Intuitively, the game is played “mostly”
on the b = 0 component, with visits to vertices with b = 1 whenever the environment
assumptions hold, and to vertices with b = 2 whenever the system guarantees hold. We
refer to r as a tuple r = (r1, . . . , rk).

We turn to define the edges. Consider vertices s = (v, r, b) and s′ = (v′, r′, b′).
Then, (s, s′) ∈ E′ if the following hold. First, if b ∈ {1, 2}, then we only reset the
respective components of r. Thus, v′ = v, b′ = 0, and r′ is obtained from r as follows:
if b = 1 then r′i = 0 for 1 ≤ i ≤ ke and r′i = ri for ke + 1 ≤ i ≤ k, and similarly, if
b = 2 then r′i = ri for 1 ≤ i ≤ ke and r′i = 0 for ke + 1 ≤ i ≤ k.

Next, for b = 0, the edges are induced by E. That is, v′ is such that (v, v′) ∈ E. In
addition, we update the record by setting r′i = max {ri, w(v′)[i]}. Thus, r′i records the
maximal value seen by w in the i-th component since the last reset. Finally, for every
v ∈ V , if ⊗ke+1≤i≤kri ≥ T , we remove all outgoing edges from s, and set the only
edge to (v, r, 2). Otherwise, if⊗1≤i≤keri ≥ 1−T , we remove all outgoing edges from
s, and set the only edge to (v, r, 1). Note that we give a priority to the guarantee, thus we
go to a vertex with b = 2 whenever both ⊗ke+1≤i≤kri ≥ T and ⊗1≤i≤keri ≥ 1− T .

Observe that since the edges in the b = 0 component are determined by E, it is
easy to draw a correspondence between paths in G and paths in G′. Indeed, the only
non-triviality in the correspondence is the reset operation. Since, however, resets do not
change the first component of the vertex, the correspondence is maintained.

The winning condition in G′ asserts that if vertices with b = 1 are visited infinitely
often, then vertices with b = 2 should be visited infinitely often. That is, denoting
V × [0, 1]k × {j} by V j , we have W ′ = GF(V 1)→ GF(V 2).

The correctness of the construction follows from the next argument: For every path
ρ in G and a corresponding path ρ′ in G′.

– [[ρ,⊗1≤i≤keGFe[i]]] ≥ 1− T iff ρ′ satisfies GF(V 1).
– [[ρ,⊗1≤i≤ksGFs[i]]] ≥ T iff ρ′ satisfies GF(V 2).

Finally, we analyze the size of G′. Consider a reachable vertex (v, r, b) ∈ S. Then,
for every 1 ≤ i ≤ k, we have that ri is a value of w[j] for some j. Accordingly,
|S| = O(|V | ·mk · |V |). In particular, if k is fixed, this is a polynomial blow-up with
respect to G. ut

By composing Theorems 1 and 2, we can conclude with the following.

Theorem 3. Consider a GR(1)[F] formula ϕ over I ∪ O with ke assumptions, ks

guarantees, and width m. Given a threshold T ∈ [0,∞], we can construct a Boolean
strong-fairness game Gϕ whose winning condition has a single assumption and a single
guarantee, such that Player 2 wins in Gϕ iff ϕ is realizable with value T . Moreover, Gϕ
has O(2|I∪O|mke+ks) vertices.

3.2 Lower bounds

Theorem 3 reduces GR(1)[F] realizability to the solution of strong-fairness games. The
reduction relies on the monotonicity of the quantitative conjunctive operator⊗. In addi-
tion, The obtained game is polynomial in 2|I∪O| whenever the number of assumptions
and guarantees in the GR(1)[F] formula is fixed. In this section, we show that if we
drop either of the assumptions, then the corresponding weighted game becomes hard to
solve. We start by dropping the monotonicity assumption.

Theorem 4. Solving weighted strong-fairness games is NP-hard for non-monotonic ⊗
functions, even when there are no environment assumptions, and only two guarantees;
i.e., when ke = 0 and ks = 2.

Proof. We show a polynomial reduction from the problem of solving two-dimensional
parity games. A two-dimensional parity game is P = 〈V = V1 ∪ V2, E, v0, p〉, where
V , E and v0 describe a game graph, and p : V → {1, ..., k}2 is a priority function,
assigning to every v ∈ V two priorities p(v) = (p1(v), p2(v)). An infinite path is win-
ning for Player 2 if the minimal priority that is visited infinitely often in each dimension
is even. In Lemma 1 of [9], it is shown that solving such games is NP-hard.

Given a two-dimensional parity game P , we construct a weighted strong-fairness
game G = 〈V = V1 ∪ V2, E, v0, w,W 〉, where w : V → [0, 1]2 is of width k, and
the winning condition W is of the form ⊗(GFw[1],GFw[2]), such that Player 2 wins
P iff he wins G with value 1. Note that W has no environment assumption, and its
system guarantee includes two conjuncts. For all v ∈ V , we define w(v)[i] = 1

pi(v)
.

The quantitative (non-monotonic) conjunction ⊗ is defined by ⊗(x, y) = 1 if 1
x and 1

y

are even integers, and ⊗(x, y) = 0 otherwise.
We observe that for i ∈ {1, 2}, the satisfaction value of GFe[i] in a computation is 1

x ,
where x is the minimal rank that occurs infinitely often in the computation in component
i. Thus, a path has value 1 according to W iff it satisfies the parity condition. ut

Next, we show that dropping the assumption about the number of assumptions and
guarantees being fixed yields co-NP-hardness, even for a monotonic⊗ function. Specif-
ically, the function we consider is the average function.

Theorem 5. Solving weighted strong-fairness games is co-NP-hard.

Proof. We show that the complement problem is NP-hard, by showing a polynomial
reduction from the SET-COVER problem, which was shown to be NP-hard in [16]. In
the SET-COVER problem, we are given a set U = {1, . . . ,m}, a collection of subsets
S ⊆ 2U and a number k ∈ N. The problem is to decide whether there exists a collection
T ⊆ S with |T | = k such that

⋃
s∈T s = U . The collection T is called a cover

of U . We note that the problem is NP-hard also for the special case where k = |S|
2 .

Given a SET-COVER instance as above, we construct a weighted strong-fairness game
G = 〈V = V1 ∪ V2, E, v0, w,W 〉, where w : V → [0, 1]|U |+|S| is of width 3, V1 = S,
V2 = ∅, and E = V1×V1. That is, Player 1 controls all the vertices of the graph, which
is a clique of size |S|. Intuitively, Player 1 chooses a cover, i.e., subsets from S, and
he wins iff the collection is of size at most |S|2 and covers all the elements of U . We
now formally define the weight function and the winning condition. The assumptions
are the number of elements from U that are covered. Hence, for every u ∈ U , we
add a dimension to the function e, and for every vertex v ∈ V (recall that V = S),
we define e(v)[u] = 0.5 if u ∈ v and otherwise e(v)[u] = 0. The guarantees are the
number of elements from S that are used in the cover. Hence, for every r ∈ S, we
add a dimension to the function s, and for every vertex v ∈ V , we define s(v)[r] = 1
if v = r and s(v)[r] = 0 otherwise. Finally, we set ⊗ to be the average function.
A set cover of size at most |S|2 exists iff Player 1 can violate the winning condition
max(1−⊗(GFe[1], . . . ,GFe[|U |]),⊗(GFs[1], . . . ,GFs[|S|])) > 1

2 , and we are done.
ut

4 Weighted Games with Ratio Implication

In this section we study weighted games with ratio implication, namely these induced
by GR(1)[F] formulas in which the satisfaction value of x 7→ y is y/x. For this purpose
we define x/0 =∞ and allow quantitative values in [0,∞].

4.1 Lower Bound

We first show that deciding weighted games with ratio implication is hard even for the
simple winning condition GFe[1] 7→ GFs[1], namely when the fairness assumption and
guarantee consists of a single quantitative propositional assertion. For simplicity, we
refer to e[1] and s[1] by e and s, respectively. Thus, each vertex in the graph is labeled
by two weights, e and s with values in [0, 1], and the value of a path π is the ratio
[[π,GFs]]
[[π,GFe]] . We call weighted strong-fairness games with such a winning condition 1-ratio
games. We show that deciding 1-ratio games is as hard as deciding parity games.

Theorem 6. 1-ratio games are polynomial-time inter-reducible with parity games.

Proof. We first show a reduction from parity games to 1-ratio games. Let G = (V,E, p :
V → {1, . . . , n}) be a parity game. Consider weight functions e, s : V → {0, 1, . . . , n},
where e(v) = p(v) if p(v) is odd, and e(v) = 0 otherwise, and s(v) = p(v) if p(v)
is even, and s(v) = 0 otherwise. For every infinite path, the maximal priority that is
visited infinitely often is even if and only if GFs

GFe ≥ 1.
We now show a reduction in the converse direction. W.l.o.g we consider a 1-ratio

game with threshold 1 and with integer weights. A general threshold T can be simulated
simply by multiplying environment weights by T . Rational weights can be transformed
to integer weights by multiplying environment and system weights by the least com-
mon multiplier of the weights. Given a 1-ratio game G = 〈V,E, v0, e, s〉, consider the

following priority function: If s(v) ≥ e(v), then p(v) = 2s(v) + 2, and otherwise
p(v) = 2e(v) + 1. For every infinite path, the maximal priority that is visited infinitely
often is even if and only if GFs

GFe ≥ 1.

4.2 Upper bound in a finitary semantics

Theorem 6 motivates an approximated solution for the case of GR(1)[F] formulas with
ratio implication. Inspired by finitary parity games [8, 20], we strengthen the winning
condition in order to have a polynomial algorithm. Intuitively, the specification GFs

GFe ≥ T
requires that whenever a computation visits a vertex v, where the value of the assump-
tion is e(v), then eventually it would visit also a vertex u in which the value of the
guarantee is T times bigger than e(v), i.e., s(u) ≥ T · e(v). The finitary condition re-
quires the existence of a bound b, such that whenever a vertex v is visited, then a vertex
u with s(u) ≥ T · e(v) is visited within at most b moves.

Chatterjee et al., showed that finitary parity games have a polynomial solution.
Hence, by Theorem 6, synthesis over the finitary version of GFs

GFe ≥ T is also poly-
nomial. Here, we present an alternative solution that has two advantages: (i) it involves
a reduction to Boolean strong-fairness games (while the solution in [8] involves re-
peated iterations of winning region computation for a so called weak parity objective),
and thus allow us to use existing tools for GR(1) symbolic synthesis; (ii) it naturally
scales to winning conditions that involve a conjunction of objectives.

In Section 5, we describe a symbolic implementation of the GR(1)[F] synthesis
algorithm that follows from our solution.

From finitary 1-ratio games to Boolean games We first formally define the finitary
winning condition. A path π = π0, π1, . . . satisfies a a finitary 1-ratio winning condition
GFs
GFe ≥ T if there is a bound b ∈ N such that for all i ≥ 0, there is 0 ≤ ji ≤ b such
that s(πi+ji) ≥ e(πi) · T . That is, whenever a vertex v is visited, a vertex u with
s(u) ≥ e(v) · T is visited within the next b rounds.

In order to obtain a reduction to Boolean strong-fairness games, we first consider a
modified winning condition. Intuitively, the modified winning condition allows Player 2
to respond with a required guaranteed value within an unbounded number of rounds,
yet he has to declare when he gives up and no longer tries to present a high guaranteed
value, which is ok to do finitely often.

Formally, given a game G with a finitary 1-ratio winning condition with labels s and
e, we define the game G′ as follows:

– The vertices and edges are as in G, except that Player 2 can always make a “give
up” declaration when he takes a move.

– A Player 1 request is opened whenever a vertex is visited. A request can be either
satisfied or closed.
• A request of vertex v is satisfied when a vertex uwith s(u) ≥ e(v)·T is visited.
• A request is closed when Player 2 gives up (and then, all requests are closed).

– A path satisfies the winning condition if Player 2 gives up only finitely many times
and every request along the path is eventually satisfied or closed.

Clearly, if Player 2 wins G, then the same strategy used there would be winning
in G′. In addition, taking b to be the size of the memory in a finite-memory winning
strategy for Player 2 in G′, we can prove that this strategy is winning also in G. Formally,
we have the following.

Lemma 1. Player 2 wins G iff he wins G′.

We show that solving G′, and in fact generating a winning strategy for Player 2, can
be done in polynomial time. We do so by reducing G′ to a Boolean strong-fairness game
G′′. The latter games can be decided using Boolean GR(1) synthesis.

Given G′, we label its vertices by 3 priorities. Indeed, the reduction is really to a
parity game with 3 priorities (1, 2, and 3), which we can further translate to a strong-
fairness winning condition. In order to label the vertices of G′, the game G′′ keeps
track of the maximal open request. This involves an O(m) blow-up, for the width m of
GFe 7→ GFs. When the maximal request is satisfied, the vertex is labeled by priority
2. When the maximal request is closed, the vertex is labeled by priority 3. All other
vertices are labeled by 1. Hence, if Player 2 gives up infinitely often or fails to eventually
satisfy a request, then the outcome of the play is either 3 or 1, and the Player 2 loses.
Otherwise, the outcome is 2 and Player 2 wins.

Lemma 2. Player 2 wins G′ iff he wins G′′.

Lemmas 1 and 2 together imply that finitely 1-ratio games are polynomial time re-
ducible to parity games with priority set {1, 2, 3}. It is not hard to see that winning in
such games amounts to violating a strong-fairness condition, and thus can be specified
as the negation of the GR(1) formula GFV 2 → GFV 3, where V j stands for vertices
with priority j. Since synthesis tools for GR(1) specification generate also counter-
strategies, namely, strategies for the environment in case the specification is not realiz-
able, we have reduced finitely 1-ratio games to Boolean GR(1) synthesis.

From finitely (ke, ks)-ratio games to Boolean games In this section we extend the
results above to conjunctions of objectives. Consider ⊗ functions that are monotoni-
cally increasing and the objective ⊗1≤i≤ksGFs[i]

⊗1≤i≤keGFe[i] ≥ T . We first define a correspond-
ing finitary condition. Let π be an infinite path in a graph. We say that a quantitative
conjunction ⊗1≤i≤kGFw[i] gets value x in position r if along the segment between
the previous time that ⊗1≤i≤kGFw[i] got a value x (or since the beginning of the
path if it never got value x) and r, the path visited vertices {v1, . . . , vk} such that
⊗(w(v1)[1], . . . , w(vk)[k]) = x. We note that in this segment the path may visit also
other vertices other then {v1, . . . , vk}, and the order of visits does not matter.

Winning a game G with finitely winning condition W =
⊗1≤i≤ksGFs[i]

⊗1≤i≤keGFe[i] ≥ T , re-
quires the existence of a bound b ∈ N such that a computation satisfies W if whenever
⊗1≤i≤keGFe[i] gets value x, then ⊗1≤i≤ksGFs[i] gets value at least x · T at least once
within the next b positions. We refer to W as a finitary (ke, ks)-ratio game.

It is not hard to see that the finitary ratio condition is a sound approximation of
the ratio condition. Indeed, a winning strategy for the finitary version of W is also
winning for its non-finitary version. In Section 5.2, we show an example where the
approximation is not complete.

We now adjust the construction of G′ in the 1-ratio case to finitary (ke, ks)-ratio
games. The idea is similar, except that opening and closing of requests is now required
for all values obtained along the computation.

– The vertices and edges are as in G, except that Player 2 can always make a “give
up” declaration when he takes a move.

– A Player 1 request for value x is opened whenever ⊗1≤i≤keGFe[i] gets value x. A
request can be either satisfied or closed.
• A request for value x is satisfied when ⊗1≤i≤ksGFs[i] gets value greater or

equal to x · T .
• A request is closed when Player 2 gives up (and then, all requests are closed).

– A path satisfies the winning condition if Player 2 gives up only finitely many times
and every request along the path is eventually satisfied or closed.

By similar arguments as in Lemmas 1 and 2, Player 2 wins G′ if and only if he wins
G. Moreover, a construction of G′ and the reduction to GR(1) synthesis follows by the
same arguments as in the proof of Lemma 2. As in the reduction in Theorem 2, the
game G′ needs to maintain of the values that ⊗1≤i≤ksGFs[i] and ⊗1≤i≤keGFe[i] get.
For this purpose we need to keep track of whether a request for value x was opened for
every possible value of ⊗1≤i≤keGFe[i], i.e., we have to maintain a separate maximal
record for every value of ⊗1≤i≤ke . The reduction is explicitly described in Section 5.1.
Let m(⊗e) denote the number of different values that ⊗1≤i≤keGFe[i] can have. Note
that m(⊗e) ≤ mke . By the above, the state blow-up required for maintaning the values
is (mks+ke)m(⊗e). Thus, when ke, ks, and m(⊗e) are fixed, we get only a polynomial
blowup.

5 Symbolic Solution

In this section we describe a symbolic implementation (section 5.1) and experimental
results (sections 5.2, 5.2) for the GR(1)[F] synthesis algorithm. In Section 3.1, we
described a reduction from GR(1)[F] synthesis to GR(1) synthesis. Our algorithm
is based on combining a symbolic implementation of the reduction with the known
symbolic algorithm for GR(1) synthesis. For synthesis we used the implementation of
GR(1) from [5] based on JTLV [27] with CUDD 3.0 64Bit as a BDD engine. We ran the
algorithms with Java 1.8 64Bit on a Windows 7 64Bit desktop computer with 16GB and
an Intel 3.2GHz CPU. All the specifications are available in the supplementary material
from http://tinyurl.com/m5s4hsn.

5.1 Symbolic encoding

Our goal is to synthesize a reactive system that interacts with an environment that gen-
erates truth assignments to ` Boolean input signals (variables), thus I = {x1, . . . , x`},
and generates assignments to ` Boolean output signals, thus O = {y1, . . . , y`}. We use
x to denote x1, . . . , x`, and similarly for y. Each state in the system is an assignment
(x, y) ∈ {0, 1}I∪O to the signals. A computation of the system is an infinite sequence

of assignments to the signals. When a time t is known from the context we denote by x
the value of a variable x in time t and by x′ the value of x in time t+ 1.

Adjusting the basic notions to the symbolic setting, we get that an invariant is a
propositional formula ϕ(x, y, x′, y′), relating the current and the next values of the
variables. Also, a propositional quality function is ψ : {0, 1}I∪O → [0, 1], map-
ping each assignment to the variables (that is, each state) to a value in [0, 1]. Let
ϕ = (θe → θs) ∧ (θe → G((Hϕe) → ϕs)) ∧ ((θe ∧ Gϕe) → (⊗1≤i≤keGFψ

e
i 7→

⊗1≤i≤ksGFψ
s
i). Let m(ψ) be the width of a quantitative propositional assertion ψ. Re-

call that m(ψ) ≤ 2min{|ψ|,|I∪O|}. We encode each quantitative propositional assertion
ψ ∈ {ψe1, . . . , ψeke , ψs1, . . . , ψsks} by m(ψ) Boolean functions ψ1, . . . , ψm(ψ), where
ψj(x, y) holds iff ψ(x, y) = j.

In the presence of a threshold T , the user can encode the ⊗ operator with two
formulas χ⊗≥T and χ⊗≥1−T that define when the value of a conjunction is greater or
equal to T and when it is greater or equal to 1− T .

The symbolic solution is the reduction from sections 3 and 4. The maximal val-
ues record is constructed by automatically adding deterministic monitors to the GR(1)
specification, similar to the temporal testers described in [5, Sect. 5.2]. These moni-
tors add auxiliary variables and safety guarantees. In the reduction to Boolean GR(1),
the fairness assumptions are determined according to the ⊗ function over the maximal
values record.

Encoding disjunctive implication The reduction of disjunctive implication from sec-
tion 3.1 generates GR(1) specifications with a single assumption and a single guaran-
tee. Given ϕ as above, the reduction generates the GR(1) formula (θ̂e → θ̂s) ∧ (θ̂e →
G((Hϕ̂e)→ ϕ̂s))∧ ((θ̂e∧Gϕ̂e)→ (GFψ̂e → GFψ̂s)), over the signals Î and Ô, where

– Let Aux be a set of auxiliary variables used for encoding maximal records. Thus,
ae = (ae1, . . . , a

e
ke) encodes the maximal record for 1 ≤ i ≤ ke, and as =

(as1, . . . , a
s
ks) encodes the maximal record for 1 ≤ i ≤ ks. Then, Î = I and

Ô = O ∪Aux .
– θ̂e = θe and θ̂s = θs ∧

∧
1≤i≤ke a

e
i = 0 ∧

∧
1≤i≤ks a

s
i = 0.

– ϕ̂e = ϕe and ϕ̂s = ϕs ∧∧
1≤i≤ke(if ϕ⊗≥1−T (a

e) then ae′i = 0 else ae′i = max(aei , ψ
e
i (x
′, y′))) ∧∧

1≤i≤ks(if ϕ⊗≥T (a
s) then as′i = 0 else as′i = max(asi , ψ

s
i (x
′, y′))).

– ψ̂e = ϕ⊗≥1−T (a
e) and ψ̂s = ϕ⊗≥T (a

s).

The number of added Boolean auxiliary variables is |Aux | = (ke + ks) · log2(m).

Encoding Ratio Objective Recall that the reduction for the ratio implication from
section 4 leads to the negation of a GR(1) formula. Thus, in our experiments we used
a variant of a GR(1) counter-strategy synthesis algorithm (see e.g., [17]). We denote
the range of ⊗1≤i≤ke(ψ

e
i) by range(⊗e). Given ϕ as above, the reduction generates a

negated GR(1) specification (θ̂e → θ̂s) ∧ (θ̂e → G((Hϕ̂e) → ϕ̂s)) ∧ ((θ̂e ∧ Gϕ̂e) →
(
∧
r∈range(⊗e) GFψ̂

s
r ∧ FG¬giveup)), over the signals Î and Ô, where

– Let giveup be a variable for the system to declare giving up and Aux be a set of
auxiliary variables used for encoding maximal records for every r ∈ range(⊗e).

Thus, aer = (ae1,r, . . . , a
e
ke,r) encodes the maximal record for 1 ≤ i ≤ ke, and

asr = (as1,r, . . . , a
s
ks,r) encodes the maximal record for 1 ≤ i ≤ ks. Then, Î = I

and Ô = O ∪ {giveup} ∪Aux .
– θ̂e = θe and θ̂s = θs ∧

∧
r∈range(⊗e)(

∧
1≤i≤ke a

e
i,r = 0 ∧

∧
1≤i≤ks a

s
i,r = 0).

– ϕ̂e = ϕe and ϕ̂s = ϕs ∧∧
r∈range(⊗e) if ϕ⊗≥rT (asr) ∨ giveup then∧
1≤i≤ke(a

e′
i,r = 0) else ae′i,r = max(aei,r, ψ

e
i (x
′, y′))∧

r∈range(⊗e) if ϕ⊗≥rT (asr) ∨ giveup then∧
1≤i≤ks(a

s′
i,r = 0) else as′i,r = max(asi,r, ψ

s
i (x
′, y′)).

– ψ̂sr = ϕ⊗<r(a
e
r) ∨ ϕ⊗≥rT (asr)).

The number of added Boolean auxiliary variables is |Aux | = |range(⊗e)| · (ke + ks) ·
log2(m).

5.2 Experimental results

Beyond the feasibility of our algorithms, the examples below demonstrate the useful-
ness of the quantitative approach in assume-guarantee synthesis. Indeed, it involves
specifications that are not realizable in the Boolean approach, but have high satisfaction
values in the quantitative approach.

Example 1: paint robot Consider a paint robot with two arms that paints parts of man-
ufactured pieces (see Fig. 1). Each arm can paint using different colors. Colors can be
changed, one at a time, when the environment (a human operator) supports the change.
The goal of the robot is to always eventually paint pieces in a set of different color con-
figurations expressed in its specification. A GR(1) specification of the robot controller
is shown in List. 1.1. Essentially, the specification states that when the environment
enables color change in the two arms, then the robot should produce all four combina-
tions of colors. The colors used by each robot arm (color[0] and color[1]) are
system controlled (output) and the respective supported color changes (chg[0] and
chg[1]) are modeled as environment variables (input). The safety guarantees to not
change colors unless supported are expressed in l. 13-14. The safety assumption that
a change of both colors does not occur at the same time is expressed in l. 11. Finally,
the fairness assumptions are to always eventually support color changes for each arm
(l. 16) and the fairness guarantees are that the system always eventually colors pieces
in color combinations c1 to c4 (l. 18).

The GR(1) specification of the robot is realizable. Notice that the GR(1) specifi-
cation is unrealizable if one of the fairness assumptions was omitted; i.e., if one of the
arms could have a constant color.

We obtain GR(1)[F] specifications ⊗e(ψe1, ψe2) → ⊗s(ψs1, ψs2, ψs3, ψs4) with dif-
ferent semantics from the GR(1) specification, where for every fairness assumption
and guarantee ψ̂i we define a quantitative proposition ψi with value 1 if ψ̂i is satisfied
and 0 otherwise. The specification has 2 environment variables and 16 system vari-
ables (Boolean variables). The reductions use 6 auxiliary variables for the disjunctive

1 module PaintJobRobot
2 // Robot with arms that color pieces.
3 out Int(0..255)[2] color; // colors of robot
4 in boolean[2] chg; // color change allowed
5 define // different colorings
6 c1 := color[0] < 128 & color[1] < 128;
7 c2 := color[0] < 128 & color[1] >= 128;
8 c3 := color[0] >= 128 & color[1] < 128;
9 c4 := color[0] >= 128 & color[1] >= 128;

10 // change support does not appear at same
time

11 asm G !(chg[0] & chg[1]);
12 // no change support implies same color
13 gar G !chg[0] -> next(color[0])=color[0];
14 gar G !chg[1] -> next(color[1])=color[1];
15 // always eventually support change
16 asm GF chg[0]; asm GF chg[1];
17 // always eventually produce coloring
18 gar GF c1; gar GF c2; gar GF c3; gar GF c4;

Listing 1.1. GR(1) specification with winning condition
(GFchg[0]∧GFchg[1])→ (GFc1∧GFc2∧GFc3∧
GFc4)

operator

color[0]

pieces
on belt

robot arm

color[1]

chg[0]

chg[1]

Fig. 1. Sketch of paint robot
with two arms, different col-
ors, and a human operator to
support color changes.

implication semantics and 12 (⊗e = average) or 6 (⊗e = min) auxiliary variables
for the ratio implication. Table 1 shows maximal satisfaction values T for realizing the
specifications, and the running times of realizability checks.

⊗e = average ⊗e = min

disjunctive implication 1/2 (40 ms) 1 (50 ms)
ratio implication 3/2 (121 ms) 3/1 (60 ms)

Table 1. Maximal value T and running time of GR(1)[F] realizability check for⊗s = average ,
different ⊗e, and different implication semantics (all specifications in supplementary material).

For⊗e = average , the maximal value of the disjunctive implication is 1/2, as in the
worst case if one assumption is violated the robot can only paint two colors, albeit the
robot cannot commit on two specific colors. Note that even when both assumptions are
satisfied, an optimal strategy need not paint more than two colors. For the ratio objec-
tive, the maximal value is 3/2, therefore an optimal strategy paints 2 colors when one
assumption holds and paints 3 colors when both assumptions hold. Thus, the optimal
strategy for the ratio implication is more desirable in this case.9

Intuitively, for ⊗e = min, the environment has to satisfy all assumptions and thus
the system should be able to paint all four colors. Indeed, in the disjunctive implication
semantics we get value 1. However, in the ratio semantics, the formed optimal strat-
egy only paints 3 colors because of the finitary overapproximation metric. The finitary
condition dictates a bound over the response time of the system and in this case the
immediate consequence of two changes is only three different colors.

9 In the full version we explain why ratio 2 is impossible to obtain.

Spec |ψe| |ψs| |I|+ |O| t in ms |Aux | max T t̂ in ms t̂/t

amba ahb wgf 1 2 4 5 + 11 11 7 3 / 4 305 28
amba ahb wgf 2 2 6 7 + 15 72 9 5 / 6 6,337 88
amba ahb wgf 3 2 8 9 + 19 410 12 7 / 8 499,630 1,219
amba ahb wgt 1 2 3 5 + 11 10 5 0 / 3 9 1
amba ahb wgt 2 2 5 7 + 15 51 8 0 / 5 1,032 20
amba ahb wgt 3 2 7 9 + 19 92 10 0 / 7 4,653 51
amba ahb woaf 1 1 3 5 + 11 35 5 2 / 3 257 7
amba ahb woaf 2 1 5 7 + 15 175 8 4 / 5 2,058 12
amba ahb woaf 3 1 7 9 + 19 1,132 10 5 / 7 75,945 67

Table 2. Unrealizable specifications from [11], the maximal average of satisfiable fairness guar-
antees, and running times of computing the winning states.

Example 2: maximal realizability One interesting application of GR(1)[F] synthesis
is to compute maximal realizability of GR(1) specifications, i.e., the maximal number
of guarantees that can be satisfied when all assumptions hold. This is naturally cap-
tured in a quantitative setting where the quantitative value of a Boolean assumption or
guarantee is 1 if it is satisfied and 0 otherwise. Maximal realizability is expressed by
the GR(1)[F] specification max(1 −min(ψei), average(ψ

s
i)) (note that average is the

normalized sum).
For example, for a specification with environment variable x ∈ I and guarantees

GFx ∧ GF¬x, the maximal realizability is 1/2. Note that a computation of realizable
subsets would perform worse and yield result 0.

We have checked maximal realizability for unrealizable specifications of the AMBA
case study from [11]. For AMBA variants of different sizes Table 2 shows the number
of fairness assumptions |ψe| and guarantees |ψs|, the number of system and environ-
ment variables |I| + |O|, and the running times of the GR(1) algorithm for check-
ing realizability on the original problem in milli-seconds. We selected three different
sizes (prefix 1 to 3) for each variant (wgf: added fairness guarantee, wgt: added safety
guarantee, and woaf: removed fairness assumption) of AMBA provided by [11]. Ta-
ble 2 also reports on the auxiliary Boolean variables |Aux | our reduction adds (here
|Aux | = |ψs| + log2(|ψs|), see the full version), the optimal T the system can guar-
antee, the time t̂ of checking realizability of the reduced GR(1) game, and the ratio
between t and t̂.

Table 2 shows that for many unrealizable AMBA specifications, the maximal real-
izable satisfaction value T is high. The times for computing all winning states of the
GR(1)[F] specification show an expected increase with growing specification size.

References

1. S. Almagor, U. Boker, and O. Kupferman. Formalizing and reasoning about quality. Journal
of the ACM, 63(3), 2016.

2. S. Almagor and O. Kupferman. High-quality synthesis against stochastic environments. In
CSL, volume 62 of LIPIcs, pages 28:1–28:17, 2016.

3. R. Bloem, K. Chatterjee, T. Henzinger, and B. Jobstmann. Better quality in synthesis through
quantitative objectives. In CAV, pages 140–156, 2009.

4. R. Bloem, R. Ehlers, and R. Könighofer. Cooperative reactive synthesis. In ATVA, pages
394–410, 2015.

5. R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of Reactive(1)
Designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.

6. K. Chatterjee, T. Henzinger, and B. Jobstmann. Environment assumptions for synthesis. In
CONCUR, volume 5201 of LNCS, pages 147–161. Springer, 2008.

7. K. Chatterjee and T.A. Henzinger. Assume-guarantee synthesis. In TACAS, number 4424 in
LNCS, pages 261–275. Springer, 2007.

8. K. Chatterjee, T.A. Henzinger, and F. Horn. Finitary winning in omega-regular games. ACM
Trans. Comput. Log., 11(1), 2009.

9. K. Chatterjee, T.A. Henzinger, and N. Piterman. Generalized parity games. In FOSSACS,
pages 153–167, 2007.

10. A. Church. Logic, arithmetics, and automata. In Proc. Int. Congress of Mathematicians,
1962, pages 23–35. Institut Mittag-Leffler, 1963.

11. A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic information for realiz-
ability. In VMCAI, volume 4905 of LNCS, pages 52–67. Springer, 2008.

12. N. D’Ippolito, V.A. Braberman, N. Piterman, and S. Uchitel. Synthesizing nonanomalous
event-based controllers for liveness goals. ACM Trans. Softw. Eng. Methodol., 22(1):9, 2013.

13. M. Faella, A. Legay, and M. Stoelinga. Model checking quantitative linear time logic. Electr.
Notes Theor. Comput. Sci., 220(3):61–77, 2008.

14. D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In TACAS, volume 6015 of
LNCS, pages 190–204. Springer, 2010.

15. H. Gimbert and F. Horn. Solving simple stochastic games with few random vertices. 5(2),
2009.

16. R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Com-
putations, pages 85–103, 1972.

17. R. Könighofer, G. Hofferek, and R. Bloem. Debugging formal specifications: a practical
approach using model-based diagnosis and counterstrategies. STTT, 15(5-6):563–583, 2013.

18. H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Temporal-logic-based reactive mission and
motion planning. IEEE Trans. Robotics, 25(6):1370–1381, 2009.

19. O. Kupferman, Y. Lustig, M.Y. Vardi, and M. Yannakakis. Temporal synthesis for bounded
systems and environments. In STACS, pages 615–626, 2011.

20. O. Kupferman, N. Piterman, and M.Y. Vardi. From liveness to promptness. In CAV, volume
4590 of LNCS, pages 406–419. Springer, 2007.

21. W. Li, L. Dworkin, and S. A. Seshia. Mining assumptions for synthesis. In MEMOCODE,
pages 43–50, 2011.

22. S. Maoz and J.O. Ringert. GR(1) synthesis for LTL specification patterns. In ESEC/FSE,
pages 96–106, 2015.

23. S. Maoz and Y. Sa’ar. AspectLTL: an aspect language for LTL specifications. In AOSD,
pages 19–30, 2011.

24. S. Maoz and Y. Sa’ar. Assume-guarantee scenarios: Semantics and synthesis. In MODELS,
pages 335–351, 2012.

25. N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive(1) designs. In VMCAI, volume
3855 of LNCS, pages 364–380. Springer, 2006.

26. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179–190,
1989.

27. A. Pnueli, Y. Sa’ar, and L.D. Zuck. JTLV: A framework for developing verification algo-
rithms. In CAV, volume 6174 of LNCS, pages 171–174. Springer, 2010.

28. S. Schewe and B. Finkbeiner. Bounded synthesis. In ATVA, volume 4762 of LNCS, pages
474–488. Springer, 2007.

