
Leaping Loops in the Presence of Abstraction

Thomas Ball1, Orna Kupferman2, and Mooly Sagiv3

1 Microsoft Research, tball@microsoft.com
2 Hebrew University, orna@cs.huji.ac.il

3 Tel-Aviv University, msagiv@post.tau.ac.il

Abstract. Finite abstraction helps program analysis cope with the huge state
space of programs. We wish to use abstraction in the process of error detection.
Such a detection involves reachability analysis of the program. Reachability in
an abstraction that under-approximates the program implies reachability in the
concrete system. Under-approximation techniques, however, lose precision in the
presence of loops, and cannot detect their termination. This causes reachability
analysis that is done with respect to an abstraction to miss states of the program
that are reachable via loops. Current solutions to this loop-termination challenge
are based on fair termination and involve the use of well-founded sets and ranking
functions.
In many cases, the concrete system has a huge, but still finite set of states. Our
contribution is to show how, in such cases, it is possible to analyze termination of
loops without refinement and without well-founded sets and ranking functions.
Instead, our method is based on conditions on the structure of the graph that
corresponds to the concrete system — conditions that can be checked with respect
to the abstraction. We describe our method, demonstrate its usefulness and show
how its application can be automated by means of a theorem prover.

1 Introduction
Finite abstraction (such as predicate or Boolean abstraction [7, 2]) helps program analy-
sis cope with the huge state space of programs. Finite abstraction is helpful for proving
properties of programs but less helpful for proving the presence of errors. The reason,
as we demonstrate below, is that reachability analysis that is done with respect to an
abstraction misses states of the program that are reachable via loops.

procedure simple (int n)
int x:=0;
while (x < n) do x:=x+1;
while (x < 2n) do x:=x+2;
while (x < 3n) do x:=x+3;
assert false

Fig. 1. The procedure simple.

Consider the procedure simple appearing in Figure 1. The procedure is indeed
simple and it increments the value of a variable x in a deterministic manner. It is not hard

to see that the value of x eventually exceeds the value 3n and that the single execution
of the procedure eventually reaches the failing assertion. Most counterexample-driven
refinement methods, however, will generate a predicate for each loop iteration, quickly
overwhelming the ability of their analysis engines to cope with the resulting state space
explosion.

a0: 0 ≤ x < n a1: n ≤ x< 2n a2: 2n ≤ x < 3n a3: 3n ≤ x

0 1 n-1 n n+2 2n-2 2n 2n+3 3n-3 3n

Fig. 2. The concrete state space of the procedure simple and its abstraction.

To see the problem in more detail, consider Figure 2, where we describe the state
space of the procedure simple4 and its abstraction according to the predicates {0 ≤
x < n, n ≤ x < 2n, 2n ≤ x < 3n, 3n ≤ x}. Since the abstraction over-approximates
the transitions in the concrete system, and over-approximating transitions are not closed
under transitivity, we cannot conclude, based on the abstraction, that a concrete state
corresponding to a3 is reachable from the a concrete state corresponding to a0. For-
mally, the abstraction is a modal transition system (MTS) [11] in which all the transi-
tions are may transitions. According to the three-valued semantics for modal transition
systems [9], the property “exists a path in which 3n ≤ x” has truth value “unknown”
and the abstraction should be refined. Since the three-valued abstraction gives a definite
true value for reachability properties only if they hold along must transitions, the only
refinement that would work bisimulates the concrete system. Augmenting MTSs with
hyper-must transitions [12, 14] does not help in this setting either (and is orthogonal to
the contribution we describe here).

Proving reachability along loops is a long-standing challenging problem in program
abstraction. Recently, significant progress has been made by automatically proving ter-
mination [13, 5, 6, 4]. The main idea is to synthesize ranking functions proving well
foundedness. However, these techniques require the generation of rank functions and/or
are not suitable for proving that there exists a trace leading to a certain configuration in
non-deterministic systems, which is a goal of our work.

In many cases (in particular, in all realistic implementations of software with vari-
ables over unbounded domains), the concrete system has a huge, but still finite set of
states. Our contribution is to show how, in such cases, it is possible to analyze reacha-
bility in the concrete system without refinement of loops and without well-founded sets
and ranking. Instead, our method is based on conditions on the structure of the graph

4 The concrete values in Figure 2 correspond to the case n = 0 mod 6. Otherwise, the maximal
value in a1 may not be 2n− 2, and similarly for a2 and 3n− 3.

2

that corresponds to the concrete system — conditions that can be checked automatically
with respect to the abstraction.

Figure 3 illustrates the idea of our method, which is to replace the may transitions
to and from an abstract state a by must transitions to an entry port for a and from an
exit port for a, and to replace the intermediate may transition by a sequence of must
transitions from the entry port to the exit port. Essentially, this is done by checking
conditions that guarantee that the transitions of the concrete system embody a connected
acyclic graph that has the entry port as its source and has the exit port as its sink.
Finiteness of the set of concrete states associated with the abstract state then guarantees
the finiteness of this graph. The checks we do, as well as the declaration of the entry
and the exit ports, are automatic, refer to the abstract system, and are independent of
the size of the concrete system. While our conditions are sufficient but not necessary,
they are expected to hold in many cases.

may may

Before:

must

After:

must entry

port

exit

port

must* may

Fig. 3. Applying our method.

An approach similar to ours is taken in [10], where loop leaping is also performed
without well-founded sets. Like our approach, the algorithm in [10] is based on sym-
bolic reasoning about the concrete states associated with the loop. The conditions that
the algorithm in [10] imposes, however, are different, and the algorithm is much more
complicated. Essentially, loop detection along an abstract path a1, . . . , an is reduced in
[10] to the satisfiability of a propositional formula that specifies the existence of loca-
tions ai and aj along the path such that ai is reachable from aj and aj is reachable
from ai. The size of the formula is quadratic in size of the concrete state space. Our
conditions, on the other hand, are independent of the size of the concrete state space,
and are much simpler. As we argue in the paper, the conditions we give are likely to be
satisfied in many common settings.

2 Preliminaries
Programs and Concrete Transition Systems Consider a program P . Let X be the
set of variables appearing in the program and variables that encode the program counter
(pc), and let D be the domain of all variables (for technical simplicity, we assume that
all variables are over the same domain). We model P by a concrete transition system in
which each state is labeled by a valuation in D|X|.

A concrete transition system (CTS) is a tuple C = 〈SC , IC ,−→C〉, where SC is a
(possibly infinite) set of states, IC ⊆ SC is a set of initial states, −→C⊆ SC × SC is
a total transition relation. Given a concrete state c ∈ SC , let s(c) denote the successor

3

states of c; that is, s(c) = {c′ ∈ SC | c −→C c′}, and let p(c) denote the predecessor
states of c; that is, p(c) = {c′ ∈ SC | c′ −→C c}. Let c−→C

∗c′ denote that state c′ is
reachable from state c via a path of transitions.

A CTS is deterministic if every state has a single successor. A CTS is reverse-
deterministic if every state has a single predecessor. Nondeterminism in concrete sys-
tems is induced by internal or external nondeterminism, as well as resource allocation
and built-in abstractions in the programs they model.

Predicate Abstraction Let Φ = {φ1, φ2, . . . , φn} be a set of predicates (formulas of
first-order logic) over the program variables X . Given a program state c and formula φ,
let c |= φ denote that formula φ is true in state c (c is a model of φ). For a set a ⊆ Φ
and an assignment c ∈ D|X|, we say that c satisfies a iff c |=

∧
φi∈a φi.

In predicate abstraction, we merge a set of concrete states into a single abstract
state, which is defined by means of a subset of the predicates. Thus, an abstract state is
given by a set of predicates a ⊆ Φ.5 We sometimes represent a by a formula, namely
the conjunction of predicates in a. For example, if a = {(x ≥ y), (0 ≤ x < n)} then
we also represent a by the formula (x ≥ y) ∧ (0 ≤ x < n). We define the set of
concrete states corresponding to a, denoted γ(a), as all the states c that satisfy a; that
is, γ(a) = {c | c |= a}.

May and Must Transitions Given a concrete transition system and its (predicate)
abstraction via a set of predicates Φ, its modal transition system (MTS) contains three
kinds of abstract transitions between abstract states a and a′ (a, a′ ⊆ Φ, and we assume
that Φ is clear from the context):

– may(a, a′) if there is c ∈ γ(a) and a c′ ∈ γ(a′), such that c −→C c′.
– must+(a, a′) only if for every c ∈ γ(a), there is c′ ∈ γ(a′) such that c −→C c′.
– must−(a, a′) only if for every c′ ∈ γ(a′), there is c ∈ γ(a) such that c −→C c′.

Must transitions are closed under transitivity, and can therefore be used to prove
reachability in the concrete system. Formally, if there is a sequence of must+-transitions
from a to a′ (denoted by must+

∗(a, a′)) then for all c ∈ γ(a), there is c′ ∈ γ(a′) such
that c−→C

∗c′. Dually, if there is a sequence of must−-transitions from a to a′ (de-
noted by must−

∗(a, a′)) then for all c′ ∈ γ(a′), there is c ∈ γ(a) such that c−→C
∗c′.

On the other hand, may transitions are not transitive. Indeed, it may be the case that
may(a, a′),may(a′, a′′), and still for all c ∈ a and c′′ ∈ a′′, we have c6−→C

∗c′′.
Let us go back to the procedure simple and its abstraction in Figure 2. Since

every concrete state in a3 has a predecessor in a2, we have that must−(a2, a3). On the
other hand, all the other transitions in the abstraction are may transitions. As such, we
cannot use the abstraction in order to conclude that the failing statement is reachable
from the initial state. We want to detect such reachability, and we want to do it without
well-founded orders and without refining the abstraction further!

5 In the full generality of predicate abstraction, an abstract state is represented by a set of sets
of predicates (that is a, disjunction of conjunction of predicates). All our results hold for the
more general setting.

4

Weakest Preconditions and Strongest Postconditions In many applications of pred-
icate abstraction, Φ includes a predicate for the program counter. Accordingly, each ab-
stract state is associated with a location of the program, and thus it is also associated
with a statement. For a statement s and a predicate e over X , the weakest precondition
WP(s, e) and the strongest postcondition SP(s, e) are defined as follows [8]:

– The execution of s from every state that satisfies WP(s, e) results in a state that
satisfies e, and WP(s, e) is the weakest predicate for which the above holds.

– The execution of s from a state that satisfies e results in a state that satisfies SP(s, e),
and SP(s, e) is the strongest predicate for which the above holds.

For example, in the procedure simple, we have WP(x := x + 2, n ≤ x < 2n) =
n ≤ x + 2 < 2n, SP(x := x + 2, n ≤ x < 2n) = n + 2 ≤ x < 2n + 2.

Must transitions can be computed automatically using weakest preconditions and
strongest postconditions. Indeed, statement s induces the transition must+(a, a′) iff
a ⇒ WP(s, a′), and induces the transition must−(a, a′) iff a′ ⇒ SP(s, a).

We sometimes use also the Pre predicate. For a statement s and a predicate e over
X , the execution of s from a state that satisfies Pre(s, e) may result in a state that
satisfies e. Formally, Pre(s, e) = ¬WP(s,¬e).

3 Leaping Loops
Unfortunately, an abstraction of loops usually results in may transitions. As discussed
above, may transitions are not closed under transitivity, thus abstraction methods cannot
cope with reachability of programs with loops. In this section we describe our method
for coping with loops.

An entry port of an abstract state a is a predicate ea such that γ(ea) ⊆ γ(a) and for
all ce ∈ γ(ea), either ce is initial or p(ce) \ γ(a) 6= ∅. That is, every concrete state ce

represented by entry port ea is inside a and either ce is initial or some predecessor of ce

lies outside a.
Dually, an exit port of an abstract state a is a predicate xa such that γ(xa) ⊆ γ(a)

and for all cx ∈ γ(xa), we have that s(cx) \ γ(a) 6= ∅. That is, every concrete state cx

represented by exit port xa is in a and some successor of cx lies outside a.
In Section 4.1, we describe how entry and exit ports can be calculated automatically

be means of weakest preconditions and strongest postconditions. We now use entry and
exit ports in order to reason about loops.

Theorem 1. Consider an abstract state a. Let ea and xa be entry and exit ports of a
such that all the following conditions hold:

1. γ(a) is finite;
2. for all c ∈ γ(a ∧ ¬xa), we have that | s(c) ∩ γ(a) |≤ 1. That is, every concrete

state in γ(a ∧ ¬xa) has at most one successor in γ(a).
3. must−(a ∧ ¬xa, a ∧ ¬ea). That is, every concrete state in γ(a ∧ ¬ea) has a pre-

decessor in γ(a ∧ ¬xa).

Then, must−
∗(ea, xa). That is, for all c′ ∈ γ(xa), there is c ∈ γ(ea) such that

c−→C
∗c′.

5

Note that Conditions 1-3 imply that ea cannot be empty (unless xa is empty, in which
case the theorem holds trivially).

ea

xa

ea

xa

(a) (b)

Fig. 4. Inside an abstract state.

The proof of Theorem 1 is based on constructing a DAG in which all states are
reachable from the source. The finiteness of γ(a) then implies that source vertices of
the DAG are contained in γ(ea). Note that the DAG induces a well-founded order on
the states of γ(a). The well-founded order, however, is hidden in the proof and the user
does not have to provide it.

Before we prove the theorem, let us give some intuition and an example to its ap-
plication. Figure 4(a) illustrates the intuition underlying Theorem 1. The large dashed
circle represents the abstract state a with entry port ea and exit port xa. The grey nodes
represent concrete states that are consistent with the theorem. Every grey node that is
not in the exit port has at most one successor in a (but may have arbitrarily many suc-
cessors outside a). Every grey node in γ(a ∧ ¬ea) has a predecessor in a ∧ ¬xa (and
may have more than one predecessor). Note that the conditions permit cycles in the
concrete state space, as shown on the left of the figure.

The black nodes in Figure 4(b) illustrate configurations in the concrete state space
that are not permitted by the theorem. We see that the conditions of the theorem rule
out unreachable cycles, as well as non-determinism inside a. Finally, it is not permitted
to have a state in γ(a ∧ ¬ea) that does not have predecessor in γ(a ∧ ¬xa).

Example 1. Consider the procedure simple from Figure 1 and its abstraction in Fig-
ure 2. The application of our method on the abstraction is described in Figure 5. The
abstract state a0 : 0 ≤ x < n has entry port x = 0 and exit port x = n− 1. The condi-
tions of Theorem 1 hold for a0 with these ports: first, as n is finite, so is γ(a0). Second,
since the procedure is deterministic, each concrete state has a single successor. Finally,
each concrete state except for x = 0 has a predecessor in a0. We can therefore conclude
that must−

∗(x = 0, x = n − 1). In a similar way, the conditions of the theorem hold
for a1 with entry port x = n and exit port 2n− 2 ≤ x < 2n, and for a2 with entry port
2n ≤ x ≤ 2n + 1 and exit port 3n − 3 ≤ x < 3n. From this, we can conclude that
must−

∗(x = n, 2n−2 ≤ x < 2n) and must−
∗(2n ≤ x ≤ 2n+1, 3n−3 ≤ x < 3n).

Since, in addition, must−(x = n − 1, x = n), must−(2n − 2 ≤ x < 2n, 2n ≤ x ≤
2n+1), and must−(3n−3 ≤ x < 3n, 3n ≤ x), we can conclude, from the transitivity
of must−, that must−

∗(x = 0, 3n ≤ x).

6

x=0 x=n-1 x=n 2n-2 ≤ x < 2n 2n ≤ x ≤ 2n+1 3n-3 ≤ x < 3n

a0: 0 ≤ x < n a1: n ≤ x< 2n a2: 2n ≤ x < 3n a3: 3n ≤ x

Fig. 5. Entry and exit ports in the abstraction of the procedure simple.

Proof: Assume that γ(xa) is not empty; otherwise, must−
∗(ea, xa) holds trivially,

and we are done. For a directed acyclic graph (DAG) G = 〈V,E〉, let source(G) =
{c ∈ V | ∀c′ ∈ V,¬E(c′, c)} be the set of vertices in V that do not have predecessors
in G. We construct a sequence of DAGs G0, G1, . . ., such that for all k ≥ 0, the DAG
Gk = 〈Vk, Ek〉 is such that γ(xa) ⊆ Vk ⊆ γ(a) (“the exit property”) and every
state in Vk is reachable from some state in source(Gk) (“the reachability property”). In
addition, for every k ≥ 0, either source(Gk) ⊆ γ(ea) (“the entrance property”), or we
can construct a DAG Gk+1 that satisfies the exit and reachability properties and strictly
contains Gk. Since γ(a) is finite [Condition 1 of the theorem], the above implies we
must eventually reach k ≤ |γ(a)| for which source(Gk) ⊆ γ(ea).

Note that since Gk is a subgraph of the concrete system, the reachability property
implies that must−

∗(source(Gk), Vk). Thus, the existence of a DAG Gk that satisfies
all three properties, implies that must−

∗(ea, xa), and we are done.
We define Gk by induction on k, which would be the height of the DAG. For the

induction base, let G0 = 〈V0, E0〉 with V0 = γ(xa) and E0 = ∅. It is easy to see that
G0 satisfies both the exit and reachability properties. In particular, since E0 = ∅, we
have that source(G0) = V0, thus the reachability property is satisfied with empty paths.
Note that since γ(xa) is not empty, so are V0 and source(G0).

For the induction step, let k ≥ 0 be such that Gk satisfies both the exit and reacha-
bility properties and does not satisfy the entrance property. We prove we can construct
a DAG Gk+1 that satisfies the exit and reachability properties and strictly contains Gk.

Let Sk = source(Gk) \ γ(ea). Note that since Gk does not satisfy the entrance
property and source(Gk) is not empty, the set Sk is not empty either. Since must−(a∧
¬xa, a∧¬ea) [Condition 3 of the theorem] and Sk∩γ(ea) = ∅ [by the definition of Sk],
then every state in Sk has a predecessor in γ(a∧¬xa). Let V ′

k = {p(c)∩ γ(a∧¬xa) |
c ∈ Sk}. Note that V ′

k 6= ∅. Let Vk+1 = Vk ∪V ′
k , and let Ek+1 = Ek ∪{〈c′, c〉 | c ∈ Sk

and c′ ∈ p(c) ∩ γ(a ∧ ¬xa)}. Thus, Gk+1 adds to Gk states in γ(a ∧ ¬xa) that have
a transition to states in source(Gk) \ γ(ea), and it also adds the transitions from these
states to the states in source(Gk) \ γ(ea).

Since Vk ⊆ Vk+1, and, by the induction hypothesis, γ(xa) ⊆ Vk, then γ(xa) ⊆
Vk+1, thus Gk+1 satisfies the exit property.

We prove that Vk and V ′
k are disjoint. Since, by the induction hypothesis, Gk is a

DAG, this implies that Gk+1 is a DAG too. Indeed, the edges we have added to Gk are
edges from V ′

k to Vk. Also, since V ′
k 6= ∅, the fact that Vk and V ′

k are disjoint implies
that Vk+1 strictly contains Vk.

7

For the case k = 0, we have V0 = γ(xa). Since V ′
k contains only states in γ(a ∧

¬xa), then clearly V0 ∩ V ′
0 = ∅. For the case k > 0, assume by way of contradiction

that there is c ∈ V ′
k ∩ Vk. Since V ′

k and γ(xa) are disjoint, the fact that c ∈ Vk implies
that there is 1 ≤ j < k such that c ∈ V ′

j . That is, j is the iteration in which c has
joined Gk. Hence, there is c′ ∈ s(c)∩ γ(a). That is, c′ ∈ γ(a) is the successor of c that
has caused its membership in V ′

j . Since c ∈ γ(a ∧ ¬xa), then, by Condition 2 of the
theorem, |s(c) ∩ γ(a)| ≤ 1. Therefore, it must be that c′ ∈ Sk; indeed, c′ is the only
successor of c in γ(a), and in order for c to be in V ′

k , its single successor in γ(a) has to
be in Sk. Since, however, c′ has a predecessor (that is c) in Gk, it is not in source(Gk).
Therefore, c′ 6∈ Sk, and we have reached a contradiction.

It is left to prove that Gk+1 satisfies the reachability property. By definition, source(Gk+1) =
V ′

k . Also, by the induction hypothesis, all states in Vk are reachable from some state in
source(Gk). Since each state in source(Gk) is the successor of some state in V ′

k , it
follows that every state in Vk+1 is reachable from some state in source(Gk+1).

We now state a similar theorem for a forward traversal.

Theorem 2. Consider an abstract state a. Let ea and xa be entry and exit ports of a
such that all the following conditions hold:

1. γ(a) is finite.
2. for all c ∈ γ(a ∧ ¬ea), we have that | p(c) ∩ γ(a) |≤ 1. That is, every concrete

state in γ(a ∧ ¬ea) has at most one predecessor in γ(a).
3. must+(a ∧ ¬xa, a ∧ ¬ea). That is, every concrete state in γ(a ∧ ¬xa) has a suc-

cessor in γ(a ∧ ¬ea).

Then, must+
∗(ea, xa). That is, for all c ∈ γ(ea), there is c′ ∈ γ(xa) such that

c−→C
∗c′.

Proof: Assume that γ(ea) is not empty; otherwise, must+
∗(ea, xa) holds trivially,

and we are done. For a DAG G = 〈V,E〉, let sink(G) = {c ∈ V | ∀c′ ∈ V,¬E(c, c′)}
be the set of vertices in V that do not have successors in G. We construct a sequence
of DAGs G0, G1, . . ., such that for all k ≥ 0, the DAG Gk = 〈Vk, Ek〉 is such that
γ(ea) ⊆ Vk ⊆ γ(a) (“the entrance property”) and every state in Vk can reach some
state in sink(Gk) (“the reachability property”). In addition, for every k ≥ 0, either
sink(Gk) ⊆ γ(xa) (“the exit property”), or we can construct a DAG Gk+1 that satisfies
the entrance and reachability properties and strictly contains Gk. Since γ(a) is finite
[Condition 1 of the theorem], the above implies we must eventually reach k ≤ |γ(a)|
for which sink(Gk) ⊆ γ(ea).

Note that since Gk is a subgraph of the concrete system, the reachability property
implies that must+

∗(Vk, sink(Gk)). Thus, the existance of a DAG Gk that satisfies all
three properties, implies that must+

∗(ea, xa), and we are done.
For the induction base, let G0 = 〈V0, E0〉 with V0 = γ(ea) and E0 = ∅. It is easy

to see that G0 is a DAG and that it satisfies the entrance and reachability properties. In
particular, since E0 = ∅, we have that sink(G0) = V0, thus the reachability property is
satisfied with empty paths. Note that since γ(ea) is not empty, so are V0 and sink(G0).

8

For the induction step, let k ≥ 0 be such that Gk satisfies entrance and reachability
proeprties and does not satisfy the exit property. We prove we can construct a DAG
Gk+1 that satisfies the entrance and reachability properties and strictly contains Gk.

Let Sk = sink(Gk)\γ(xa). Note that since Gk does not satisfy the exit property and
sink(Gk) is not empty, the set Sk is not empty either. Since must+(a∧¬xa, a∧¬ea)
[Condition 3 of the theorem] and Sk ∩ γ(xa) = ∅ [by the definition of Sk], then every
state in Sk has a successor in γ(a ∧ ¬ea). Let V ′

k = {s(c) ∩ γ(a ∧ ¬ea) | c ∈ Sk}.
Note that V ′

k 6= ∅. Let Vk+1 = Vk ∪ V ′
k , and let Ek+1 = Ek ∪ {〈c, c′〉 | c ∈ Sk and

c′ ∈ s(c)∩γ(a∧¬ea)}. Thus, Gk+1 adds to Gk states in γ(a∧¬ea) that are successors
of states in sink(Gk) \ γ(xa), and it also adds the transitions from these states to the
states in sink(Gk) \ γ(xa).

Since Vk ⊆ Vk+1, and, by the induction hypothesis, γ(ea) ⊆ Vk, then γ(ea) ⊆
Vk+1, thus Gk+1 satisfies the entrance property.

We prove that Vk and V ′
k are disjoint. Since, by the induction hypothesis, Gk is a

DAG, this implies that Gk+1 is a DAG too. Also, since V ′
k 6= ∅, this implies that Vk+1

strictly contains Vk.
For the case k = 0, we have V0 = γ(ea). Since V ′

k contains only states in γ(a∧¬ea),
then clearly V0∩V ′

0 = ∅. For the case k > 0, assume by way of contradiction that there
is c ∈ V ′

k ∩Vk. Since V ′
k and γ(ea) are disjoint, the fact that c ∈ Vk implies that there is

1 ≤ j < k such that c ∈ V ′
j . That is, j is the iteration in which c has joined Gk. Hence,

there is c′ ∈ p(c) ∩ γ(a). That is, c′ ∈ γ(a) is the predecessor of c that has caused
its membership in V ′

j . Since c ∈ γ(a ∧ ¬ea), then, by Condition 2 of the theorem,
|p(c) ∩ γ(a)| ≤ 1. Therefore, it must be that c′ ∈ Sk; indeed, c′ is the only predecessor
of c in γ(a), and in order for c to be in V ′

k , its single predecessor in γ(a) has to be in
Sk. Since, however, c′ has a successor (that is c) in Gk, it is not in sink(Gk). Therefore,
c′ 6∈ Sk, and we have reached a contradiction.

It is left to prove that Gk+1 satisfies the reachability property. By definition, sink(Gk+1) =
V ′

k . Also, by the induction hypothesis, every state in Vk can reach some state in sink(Gk).
Since every state in sink(Gk) has a successor in in V ′

k , it follows that every state in Vk+1

can reach a state in sink(Gk+1).

As demonstrated in Example 1, the application of our method in a program with
multiple loops requires the “gluing” of exit and entry ports. We refer to such ports as
standard abstract states, thus gluing follows from the transitivity of must− and must+

transitions.
Formally, we have the following.

Theorem 3. Let a1 and a2 be abstract states with entry ports ea1 and ea2 , and exit ports
xa1 and xa2 , respectively. Assume that for all i ∈ {1, 2}, we have that γ(ai) is finite, for
all c ∈ γ(ai∧¬xai), we have that | s(c)∩γ(ai) |≤ 1, and must−(ai∧¬xai , ai∧¬eai),
and in addition must−

∗(xa1 , ea2). Then, must−
∗(ea1 , xa2).

Proof: By the conditions of the theorem, the conditions of Theorem 1 hold with re-
spect to a1 and a2 and their entry and exit ports. Thus, must−

∗(ea1 , xa1) and must−
∗(ea2 , xa2).

Since must−
∗(xa1 , ea2), the result follows from the transitivity of must− transitions.

9

Since must+ transitions are also transitive, Theorem 2 implies a “forward gluing”
theorem dual to Theorem 3.

Below we discuss the conditions required for the application of Theorems 1 and 2
and describe more involved examples.

3.1 The γ(a) finiteness assumption

Precondition (1) of Theorems 1 and 2 is that γ(a) is finite. To see that the finiteness
requirement is crucial, consider an abstract state over the whole numbers a = (x ≥
0 ∧ y ≥ 0), and assume that the statement executed in a is while true do if
y=0 then x:=x-1. Let ea = (x ≥ 0 ∧ y > 0) and xa = (x = y = 0). Note that
ea and xa satisfy the conditions required from entry and exit ports: γ(ea) ⊆ γ(a), and
γ(ea) may have predecessors not in γ(a). Also, γ(xa) ⊆ γ(a), and the successor of
the single concrete state in γ(xa) is not in γ(a). Conditions (2) and (3) of Theorem 1
are satisfied: Each state in γ(a) has a single successor, and all states in γ(a ∧ ¬ea) =
{〈x, y〉 : x ≥ 0 ∧ y = 0}, have a predecessor in γ(a ∧ ¬xa). Still, we do not have
must−

∗(ea, xa). Indeed, all states in γ(ea) satisfy y 6= 0 and therefore they have a self
loop.

Note that while γ(a) has to be finite, it is unbounded. Thus, for applications like
detecting errors representing extreme out of bound resources, e.g., stack overflow, our
method is applicable. Types like integers or reals have infinite domains. In practice,
however, we run software on machines, where all types have finite representations.
Thus, if for example, x is an integer and the abstract state a : (x ≥ 0) has an infinite
γ(a), we can view a as defined by the predicate (0 ≤ x ≤ max int), which is finite.
Different machines have different policies for variables that go above their maximal or
beyond their minimal values. It is possible to adjust the abstract system to account for
these policies (“wrap around”, error messages, etc.).

Another source of infiniteness are variables that the abstraction ignores. Consider
for example a concrete state space over two integer variables, x and y. The abstract
state a : (1 ≤ x ≤ n) constrains x to have one of |n| values but leaves y unconstrained,
making γ(a) infinite. Since, however, the behavior inside a is independent of y, its in-
finiteness is irrelevant to termination of a loop that traverses the values of x. This point,
of coping with an abstraction that hides part of the variables is studied in [3]. Using
partitioned-must transitions that are studied there, it is possible to apply Theorems 1
and 2 in settings in which there are finitely many equivalence classes in a partition of
γ(a) according to the value of x.

3.2 The determinization assumption

Consider the procedure less simple described in Figure 6. A statement s1|s2 de-
notes a nondeterministic choice between statements s1 and s2. Thus, for example, in
x:=x+1|y:=x+1, the procedure may either increment the value of x by 1 or assign
x+1 to y. As in the procedure simple, the value of the variable x is incremented, but
now the procedure may also assign values to the variable y, and the increments to x, as
well as the failure assertion, depend on the relation between x and y.

10

procedure less_simple (int n)
int x:=0; y:=0;
x:=1; {y:=1|skip};
while (x < n) do if x >= y+2 then y:=x else {x:=x+1|y:=x+1};
if x >= y then assert false

Fig. 6. The procedure less simple.

The behavior of the variables x and y is described in Figure 7. The figure also
contains an abstraction of the procedure according to the predicates {(x = 0), (0 <
x < n), (x ≥ n), (y ≤ x ≤ y + 2), (x < y)}. We restrict the figure to states that are
reachable along may transitions. Since the transition from a1 to a2 in the abstraction is
a may transition, we cannot conclude that failure states are reachable from the initial
state.

0,0 1,0 2,0 2,2 3,2 n-1,n-1 n,n-1

1,1 2,1 3,1 3,3 n-2,n-2 n-1,n-2 n,n-2 n,n

1,2 2,3 3,4 n-2,n-1 n-1,n

a0: x = 0
y ≤ x ≤ y+2

a1: 0 < x< n
y ≤ x ≤ y+2

a2: x = n
y ≤ x ≤ y+2

b1: 0 < x< n
x < y

Fig. 7. An abstraction of the procedure less simple.

Let us focus on the abstract state a1, where 0 < x < n and y ≤ x ≤ y + 2. The
predicate (y ≤ x = 1 ≤ y + 2) is an entry port for a1. Note that the state x = y = 2 is
not in the entry port and still has a predecessor not in γ(a1), but an entry port need not
be maximal. As an exit port, we take the predicate (y ≤ x = n− 1 ≤ y + 2). Note that
the transitions from some of the concrete states in a1 (all these for which y ≤ x ≤ y+1)
are nondeterministic. One of the nondeterministic choices, however, takes us out of a1.
Indeed, an attempt to use Theorem 1 without refining the predicate 0 < x < n to
y ≤ x ≤ y + 2, x < y, and x > y + 2 fails. Note also that all the concrete states in
γ(a1∧¬ea1) have predecessors in γ(a1∧¬xa1). Thus, must−(a1∧¬xa1 , a1∧¬ea1).
The fact that some states (these in which x = y) have two predecessors, one of which is
in b1, does not violate the conditions of Theorem 1. By the theorem, all concrete states
in the exit port are reachable from states in the entry port. Since, in addition, the error

11

states (x = n)∧ (n− 2 ≤ x ≤ n− 1) are reachable from the exit port, and all states in
the entry port are reachable from x = y = 0, we can conclude that some error states in
less simple are reachable from the initial state.

3.3 Nested loops

Proving termination is harder in the presence of nested loops. Our method, however, is
applicable also to programs with nested loops. Consider the procedure nested in in
Figure 8. Reasoning about the procedure nested with well-founded orders requires

procedure nested (int n)
int y, x:=0;
while x < n do
x++; y:=0; while y < n do y++

if y=n then assert false

Fig. 8. The procedure nested.

working with pairs in IN × IN. Using our method, we can have a single abstract state
a : (0 ≤ x, y ≤ n), define the entry and exit ports to be ea = (x = y = 0) and
xa = (x = y = n), respectively, and verify that the following conditions, of Theorem 2,
hold: (1) γ(a) is finite, (2) every concrete state in γ(a∧¬ea) has at most one predecessor
in γ(a), and (3) every concrete state in γ(a ∧ ¬xa) has a successor in γ(a ∧ ¬ea).

Now, we can conclude that must+
∗(x = y = 0, x = y = n). Note that Theorems 1

and 2 can also be applied to more complicated variants of nested in which, for exam-
ple, the increment to y depends on x. Complicated dependencies, however, may violate
Condition (3) of the theorem, and the state a has to be refined in order for the condition
to hold.

In general, our method is independent of the cause to the loop in the abstract state
and can be applied to various cases like nested loops, recursive calls, and mutual recur-
sive calls.

4 In Practice

In this section we discuss the implementation of our method and ways to use a theorem
prover in order to automate it. We assume that the abstraction was obtained by predicate
abstraction and that each abstract state is associated with a statement executed in all its
corresponding concrete states.

We consider the following application: the user provides two abstract states a and
a′ and asks whether a′ is weakly reachable from a′; that is, are there concrete states
c0, c1, . . . , cn such that c0 ∈ γ(a), cn ∈ γ(a′), and for all 0 ≤ i < n, we have

12

ci −→C ci+1. As discussed in Section 1, we have to check whether must+
∗(a, a′)

or must−
∗(a, a′)6.

We start by considering a simpler mission, where the user also provides a path
a1, a2, . . . , an in the abstract system such that a = a1 and a′ = an. Our method
enters the picture in cases there is 1 < i < n such that ai is associated with a loop,
may(ai−1, ai) or may(ai, ai+1). Then, as illustrated in Figure 3, we find entry and
exit ports for ai and check whether the conditions in Theorem 1 (or 2) are satisfied.

Below we describe how to automate both parts. We start with the detection of entry
and exit ports.

4.1 Automatic calculation of ports along a path

For two abstract states a and a′, and a statement s executed in a, we say that ea′ is an
entry port for a′ from a if γ(ea′) ⊆ γ(a′) and for all c ∈ ea′ , we have p(c) ∩ γ(a) 6= ∅.
Thus, ea′ is an entry port and all its states have predecessors in a. Likewise, we say that
xa is an exit port for a to a′ if γ(xa) ⊆ γ(a) and for all c ∈ xa, we have s(c)∩γ(a′) 6= ∅.
Thus, xa is an exit port and all its states have successors in a′.

Lemma 1. Consider two abstract states a and a′. Let s be the statement executed in a.

– ea′ is an entry port for a′ from a iff ea′ ⇒ a′ ∧ SP(s, a).
– xa is an exit port for a to a′ iff xa ⇒ a ∧ Pre(s, a′).

Proof: We start with entry ports. We start with the if direction. Let e′a be such that
ea′ ⇒ a′ ∧ SP(s, a). We show that the two conditions for e′a being an entry port are
satisfied. First, since e′a ⇒ a′, then clearly γ(e′a) ⊆ γ(a′). For the second condition,
consider a concrete state c′ ∈ γ(e′a). Since c′ satisfies SP(s, a), there is a state c ∈ γ(a)
such that c′ is obtained from c by executing s. Hence, p(c)∩γ(a) 6= ∅ and we are done.

We now prove the only-if direction. Consider an entry port ea′ for a′ from a. Since
γ(e′a) ⊆ γ(a′), then clearly e′a ⇒ a′. In order to see that e′a ⇒ SP(s, a), consider a
state c′ ∈ ea′ . Since p(c′)∩γ(a) 6= ∅, there is a state c ∈ γ(a) such that c′ is a successor
of c. Hence, c′ satisfies SP(s, a), and we are done.

We proceed to exit ports. We first prove the if direction. Let xa be such that xa ⇒
a ∧ Pre(s, a′). We show that the two conditions for xa being an exit port for a to a′

are satisfied. First, since xa ⇒ a, then clearly γ(xa) ⊆ γ(a). For the second condition,
consider a concrete state c ∈ γ(xa), Since c satisfies Pre(s, a′), it must have a successor
in a′, thus s(c) ∩ γ(a′) 6= ∅ and we are done.

We now prove the only-if direction. Consider an exit port xa for a to a′. Since
γ(xa) ⊆ γ(a), then clearly xa ⇒ a. In order to see that xa ⇒ Pre(s, a′), assume by
way of contradiction that there is c ∈ γ(xa) such that c does not satisfy WP(s, a′).
Then, however, s(c) ∩ γ(a′) = ∅, contradicting the fact that s(c) ∩ γ(a′) 6= ∅.

6 As noted in [1], if there are abstract states b and b′ such that must−
∗
(a, b), may(b, b′), and

must+
∗
(b′, a′), we can still conclude that a′ is weakly reachable from a. This “one flip trick”

is valid also in the reasoning we describe here. For the sake of simplicity, we restrict attention
to the closure of either must+ or must− transitions.

13

The lemma suggests that when we glue ai−1 to ai, we proceed with entry port
ai ∧ SP(s, ai−1) for ai. Then, when we glue state ai to ai+1, we proceed with exit port
ai ∧WP(s, ai+1) for ai.

Example 2. In Example 1, we described an application of our method to the proce-
dure simple. The entry and exit ports used in the example (see Figure 5) have been
generated automatically using the characterization in Lemma 1. Consider, for exam-
ple, the states a0 : (0 ≤ x < n) and a1 : (n ≤ x < 2n). Recall that the state-
ment s executed in a0 is while x < n do x:=x+1. The exit port of a0 is then
a0 ∧WP(s, a1) = (x = n− 1) and the entry port of a1 is a1 ∧ SP(s, a0) = (x = n).

The ports induced by the Lemma are the maximal ones. Note, however, that the
conditions in Theorem 1 and 2 are monotonic with respect to the entry port (the bigger
it is, the more likely it is for the conditions to hold), Condition (2) is monotonic and
Condition (3) is anti-monotonic with respect to the exit port. Thus, one can always take
the maximal entry port (the way we have defined it also guarantees that it is possible
to “glue” it to ai−1), start also with a maximal exit port, and search for a subset of the
maximal exit port in case Condition (3) does not hold but must−(a, a ∧ ¬ea) holds.
The search for the subset can use a theorem prover and the characterization of must−

transitions by means of weakest preconditions. Reasoning is dual for Theorem 2.

4.2 Checking the conditions

Once entry and exit ports are established, we proceed to check the conditions in Theo-
rems 1 or 2. In many cases, the program is known to be deterministic, thus the determin-
ism check in Theorem 1 is redundant. Theorem 1, however, is applicable also when the
program is nondeterministic, or not known to be deterministic, and we have to check a
weaker condition, namely for all c ∈ γ(a ∧ ¬xa), we have that | s(c) ∩ γ(a) |≤ 1. In
order to automate the check, we use the statement s that is executed in a, and the fact
that the successors of a state satisfy WP(s, a), which can be decomposed for nondeter-
ministic statements. Formally, we have the following.

Lemma 2. Let s1|s2 be a nondeterministic statement executed in a, for deterministic
statements s1 and s2. If there exists c ∈ γ(a) such that | s(c) ∩ γ(a) |> 1, then the
formula a ∧ ¬xa ∧WP(s1, a) ∧WP(s2, a) is satisfiable.

Lemma 2 refers to nondeterminism of degree two, and to a statement in which the
nondeterminism is external 7.

Similarly, to check the reverse-nondeterminism condition in Theorem 2, we have
to find c ∈ γ(a ∧ ¬ea) such that c is reachable from two states in γ(a). If the nonde-
terministic statement executed in a is s1|s2 and then there exists c ∈ γ(a) such that
| p(c) ∩ γ(a) |> 1, then the formula a ∧ ¬ea ∧ SP(s1, a) ∧ SP(s2, a) is satisfiable.

Checking the local reachability conditions in Theorems 1 and 2 can be done using
the characterization of must− and must+ transitions. Specifically, must−(a∧¬xa, a∧

7 In order for the second direction of the lemma to hold, one has to check that executing s1 and
s2 from c results in different states. If this is not the case, then the nondeterminism in a is only
syntactic, and one can apply Theorem 1 by disabling one of the nondeterministic choices (see
Section 5).

14

¬ea) iff a ∧ ¬ea ⇒ SP(s, a ∧ ¬xa) and must+(a ∧ ¬xa, a ∧ ¬ea) iff a ∧ ¬xa ⇒
WP(s, a ∧ ¬ea).

Remark 1. An advantage of forward reasoning (Theorem 2) is that the check for must+

transitions involves weakest preconditions, which are often easier to compute than
strongest postconditions, which are required for checking must− transitions. Indeed,
for an assignment statement x:=v, we have that WP(x := v, e) = e[x/v] (that is, e
with all occurrences of x replaced by v, whereas SP(x := v, e) = ∃x′.(e[x/x′] ∧ x =
v). On the other hand, an advantage of backwards reasoning (Theorem 1) is the fact that
checking that a program is deterministic is often easier than checking that it is reverse
deterministic, especially in cases the program is known to be deterministic.

4.3 Proceeding without a suggested path

So far, we assumed that weak reachability from a to a′ is checked along a path suggested
by the user. When the user does not provide such a path, one possible way to proceed is
to check all simple paths from a to a′. Since these are paths in the abstract MTS and the
cost of each check depends only on the size of the MTS, this is feasible. Alternatively,
we can check the path obtained by proceeding in a BFS from a along the MTS. Thus,
the path along which we check reachability is a0, a1, . . . , an, where a0 = a and ai

is the union of states that are reachable in the MTS from ai−1. We stop at an that
contains a′. We now try to prove that must−

∗(a0, an), which implies that a′ is weakly
reachable from a. We start with i = n and when we come across an iteration i such that
must−(ai−1, ai) does not hold, we check whether ai+1 involves a loop and Theorem 1
is applicable. If this is not the case, we refine ai+1.

5 Making the Method More General

The application of Theorem 1 requires the concrete system to be deterministic with re-
spect to γ(a). That is, every concrete state in γ(a) should have at most one successor in
γ(a). As demonstrated in Section 3.2, one way to cope with nondeterminism is to re-
fine a so that, while being nondeterministic, the program is deterministic with respect to
γ(a). In this section we discuss how generalize our method to handle cases in which the
program is nondeterministic and there is no way to refine a efficiently and make it de-
terministic with respect to a. As an example, consider the procedure jump beyond n
appearing in Figure 9. The figure also depicts the concrete state space. Abstracting it to
three abstract states according to the predicates x = 0, 0 < x < n, and x ≥ n results
in the problematic setting of Figure 3, where we cannot conclude that the error state
x ≥ n is reachable from the initial state x = 0. The procedure has a nondeterministic
choice (when x = 1 mod 1, it can be decreased by either 1 or 3) and there is no way to
refine the abstract state 0 < x < n so that the conditions of Theorem 1 hold.

Our technique is to generate programs with fewer behaviors, with a hope that we
preserve weak reachability and satisfy the conditions of the theorem. The programs we
try first are deterministic programs obtained from the original program by disabling
some of its nondeterministic choices. In our example, we try to apply Theorem 1 with

15

procedure jump_beyond_n (int n)
int x:=0
while (x < n) do case

x = 1 mod 2: x:=x-1|x:=x-3;
x = 0 mod 4: x:=x+5;
x = 2 mod 4: x:=x+1;

assert false

0 5 4 9

2 3

8 13

6 7

12 17

10 11

…

Fig. 9. The procedure jump beyond n.

respect to the two procedures obtained from jump beyond n by replacing the state-
ment x:=x-1|x:=x-3 by x:=x-1 or x:=x-3. As can be seen in the description
of the concrete state space, for this example, this would work – going always with
x:=x-1 increments x to go beyond n. Thus, in order to apply Theorem 1, we have to
disable the x:=x-3 branch and refine the abstract state to 2 ≤ x < n (the state x = 1
is unreachable).

Disabling nondeterministic branches works when reachability can be achieved by
always taking the same transition. As we discuss below, this is not always possible. A
more general approach is to determinize the program by adding predicates that “sched-
ule” the different branches. Thus, a nondeterministic choice s1|s2| · · · |sk is replaced
by case b1 : s1; . . . ; bk : sk, for mutually exclusive predicates b1, . . . , bk. The predi-
cates b1, . . . , bk can be automatically generated (for example, proceed in a round-robin
fashion among all branches) or can be obtained from the user.

Stationary strategies in weak reachability Reachability in a CTS can be checked
along simple paths. On the other hand, since each state in an MTS corresponds to several
concrete states, weak reachability may have to traverse the same abstract state several
times. Consider a nondeterministic CTS C and its abstract MTS S. Let a and a′ be two
abstract states in S, and let π = c0, . . . , cn be a path in C such that c0 ∈ γ(a) and
cn ∈ γ(a′). We say that π is stationary if for all 0 ≤ i, j < n, if γ−1(ci) = γ−1(cj)
(that is, ci and cj are in the same abstract state), then the same nondeterministic choice
was taken in ci and cj . We say that there is a stationary strategy to reach a′ from a if a′

is weakly reachable from a via a stationary path.
In concrete reachability games, if one of the players has a winning strategy, then he

also has a stationary strategy, in the sense that the next position of the game depends
only on the current position and is independent of the history of the game so far. In our
setting, the existence of stationary strategies corresponds to the existence of a deter-
ministic program via which weak reachability can be proven. The procedure flip in
Figure 10 shows that stationary strategies do not always exist.

While there is no way to disable branches in flip, we can apply Theorem 1 to
the deterministic procedure obtained from flip by replacing the nondeterministic

16

procedure flip
x:=0; t:=1
while x < n do
t:=-t;{x:=x+t|x:=x-t};

assert false

Fig. 10. The procedure flip.

statement x:=x+t|x:=x-t by the deterministic statement case t=1:x:=x+t;
t=-1: x:=x-t. Thus, while there is no stationary strategy, there is a simple two-
state strategy.

References
1. T. Ball. A theory of predicate-complete test coverage and generation. In 3rd International

Symposium on Formal Methods for Components and Objects, 2004.
2. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S.K.

Rajamani, and A. Ustuner. Thorough static analysis of device drivers. In EuroSys, 2006.
3. T. Ball and O. Kupferman. Better under-approximation of programs by hiding of variables.

Proc. 7th VMCAI, 2006.
4. J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. O’Hearn. Variance analyses from

invariance analyses Proc. 34th POPL, 2007.
5. A.R. Bradley, Z. Manna, and H. Sipma. Linear Ranking with Reachability In Proc. of 17th

CAV, LNCS 3576, pages 491–504, 2005.
6. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In Proc.

ACM PLDI, pages 415–426, 2006.
7. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static analysis

of programs by construction or approximation of fixpoints. In Proc. 4th POPL, pages 238–
252. ACM, 1977.

8. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
9. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model checking.

In Proc. 14th CAV, LNCS 2404, pages 137–150, 2002.
10. D. Kroening and G. Weissenbacher. Counterexamples with loops for predicate abstraction.

In Proc. 18th CAV, LNCS 4144, pages 152–165, 2006.
11. K.G. Larsen and G.B. Thomsen. A modal process logic. In Proc. 3th LICS, 1988.
12. K.G. Larsen and L. XinXin. Equation solving using modal transition systems. In Proc. 5th

LICS, pages 108–117, 1990.
13. A. Podelski and A. Rybalchenko. Transition invariants. In Proc. 19th LICS, pages 32–41,

2004.
14. S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. In Proc. TACAS,

LNCS 2988, pages 546–560, 2004.

17

