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Abstract. In classical LTL model checking, both the system and the specifica-
tion are over a finite set of atomic propositions. We present a natural extension
of this model, in which the atomic propositions are parameterized by variables
ranging over some (possibly infinite) domain. For example, by parameterizing
the atomic propositions send and receive by a variable x ranging over possi-
ble messages, the specification G(send .x → Freceive.x) specifies that not only
each send signal is followed by a receive signal, but also that the content of the
received message agrees with the content of the one sent.
Our extended setting consists of Variable LTL (VLTL) – a specification formal-
ism that extends LTL with atomic propositions parameterized by variables, and
abstract systems – systems in which atomic propositions may be parameterized
by variables. We study the model-checking problem in this setting. We show that
while the general setting is undecidable, some useful special cases are decidable.
In particular, for fragments of VLTL that restrict the quantification over the vari-
ables, the model checking is PSPACE-complete, and thus is not harder than the
LTL model checking problem. The latter result conveys the strength and advan-
tage of our setting.

1 Introduction

In model checking, we verify that a system has a desired behavior by checking that a
mathematical model of the system satisfies a formal specification of the desired behav-
ior. Traditionally, the system is modeled by a Kripke structure – a finite-state system
whose states are labeled by a finite set of atomic propositions. The specification is a
temporal-logic formula over the same set of atomic propositions [4].

The complexity of model checking depends on the sizes of the system and the spec-
ification [15, 12]. One source for these sizes being huge is a large or even infinite data
domain over which the system, and often also the specification, need to be defined. An-
other source for the large sizes are systems composed of many components, such as
underlying processes or communication channels, whose number may not be known in
advance. In both cases, desired specifications might be inexpressible and model check-
ing intractable.

In this work we propose a novel approach for model checking systems and spec-
ifications that suffer from the size problem described above. We do so by extending
both the specification formalism and the system model with atomic propositions that
are parameterized by variables ranging over some (possibly infinite) domain.



Let us start with a short description of the specification formalism. We introduce
and study the linear temporal logic Variable LTL (VLTL, for short). VLTL has the
syntax of LTL except that atomic propositions may be parameterized with variables
over some finite or infinite domain. The variables can be quantified and assignments to
them can be constrained by a set of inequalities. VLTL formulas are interpreted with
respect to all assignments to the variables that respect the inequalities. For example, the
VLTL formula ψ = ∀x.G(send.x→ Freceive.x) states that whenever a message with
content d, taken from the domain, is sent, then a message with content d is eventually
received. Note that if the domain of messages is infinite or unknown in advance, then ψ
does not have an equivalent LTL formula.

In order to see the usefulness of VLTL, consider the LTL specification G(req →
Fgrant), stating that every request is eventually granted. We may wish to parameter-
ize the req and grant by atomic propositions with the id of the process that invokes
the request. In LTL this can only be done by having a new set of atomic proposi-
tions req1, grant1, . . . , reqn, grantn, where n is the number of processes. This both
blows-up the specification and requires the specifier to know the number of processes
in advance. Instead, in VLTL we parameterize the atomic propositions by a variable
x ranging over the ids of the processes. Since it is natural to require that the property
holds for every assignment to x, we quantify it universally, thus obtaining the formula
ψ = ∀x;G(req .x → Fgrant .x ). 3 Note that the negation of ψ quantifies x existentially,
thus ¬ψ = ∃x;F(req .x ∧G¬grant .x ). Beyond the use of existential quantification for
identifying counterexamples as above, such quantification is useful by itself. For exam-
ple, the formula ∃x.GF¬idle.x states that in each computation, there exists at least one
process that is not idle infinitely often.

Next, consider the formula θ = ∀x1; ∀x2;G((¬send.x2)Usend.x1)→ ((¬rec.x2)
Urec.x1), stating that messages are received in the order in which they are sent. To con-
vey this, the values assigned to x1 and x2 should be different. This is handled by the set
of inequalities that VLTL formulas include. When interpreting a formula, we consider
only assignments that respect the set of inequalities. In the example above, the VLTL
formula ⟨θ, x1 ̸= x2⟩ specifies that θ holds for every assignment in which the variables
x1 and x2 are assigned different values.

As another example, consider a system with transactions interleaved in a single
computation [17]. Each transaction has an id, yet the range of ids is not known in
advance. We may wish to refer to the sequence of events associated with one trans-
action. For instance, when x stands for a transaction id, then ∀x;G(req .x → Fgrant .x )
states that whenever a request is raised in a transaction, it is eventually granted in
the same transaction. Alternatively, we may wish to specify that a request is granted
only in a different transaction. In this case we may write ⟨φ, x1 ̸= x2⟩, where φ =
∀x1; ∀x2;G(req .x1 → ((¬grant.x1)Ugrant .x2 )).

Thus, as demonstrated above, VLTL formulas are able to compactly express speci-
fications over a large, possibly infinite domain, which would otherwise be inexpressible
by LTL or lead to extremely large formulas. Moreover, VLTL is able to express proper-

3 Note that unlike the standard way of augmenting temporal logic with quantification [13, 16],
here the variables do not range over the set of atomic propositions but rather over the domain
of their parameters.
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ties for domains whose size is unknown in advance (e.g., number of different messages,
number of different channels).

We now turn to describe in detail the way we model systems. We distinguish be-
tween concrete models, in which atomic propositions are parameterized with values
from the domain, and abstract models, in which the atomic propositions are parameter-
ized with variables. For instance, in a concrete model, the proposition send .3 stands for
the atomic proposition send that carries the value 3. In an abstract model, the propo-
sition send .x indicates that send carries the value assigned to x. Assignments to vari-
ables are fixed along a computation, except when the system resets their value. More
precisely, in every transition of the system, a subset of the variables is reset, meaning
that these variables can change their value in the next step of the run 4. Also, as with
VLTL, the model includes a set of inequalities over the variables.

The concrete computations of an abstract system are obtained from system paths
by assigning values to the occurrences of the variables in a way that respects the set
of inequalities, and is consistent with the resetting along the path. That is, the value
assigned to a variable may change only when a transition in which the variable is reset
is taken. Note that a path of an abstract system may induce infinitely many different
concrete computations of the abstract system, formed by different assignments to the
occurrences of the variables. Thus, abstract systems offer a compact and simple repre-
sentation of infinite-state systems in which the control is finite and the source of infinity
is data that may be infinite or unknown in advance.

As a simple example, consider the abstract system in Figure 1. It describes a simple
stop-and-wait communication protocol. Once a message x is sent, the system waits for
an ack with identical content, confirming the arrival of the message. When this happens,
the content of the message is reset and a new cycle starts. If a timeout occurs, the same
message is sent. Note that if the message domain is infinite, standard finite systems
cannot describe this protocol, as it involves a comparison of the content of the message
in different steps of the protocol. More complex communication protocols, in which
several send-receive processes can run simulateously (e.g., sliding windows), can be
modeled by an abstract system with several variables, one for every process.

idle send.x

set_timer
wait

ack.x

timeout

reset.x

Fig. 1. A simple abstract system for the stop and wait protocol.

We study the model-checking problem for VLTL with respect to concrete and ab-
stract systems. We also consider two natural fragments of VLTL: ∀-VLTL and ∃-VLTL,
containing only ∀ and ∃ quantifiers, respectively.

4 Despite some similarity in their general description and use of resets, abstract systems have
no direct relation to timed automata [22]. In abstract systems, the variables and resets are over
domain values rather than clocks ranging over the reals.
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We start with VLTL model checking of concrete systems. We show that given a
concrete system and a VLTL formula, it is possible to reduce the infinite domain to a
finite one, and reduce the problem to LTL model checking. The reduction involves an
LTL formula that is exponential in the VLTL formula, and we prove that the problem is
indeed EXPSPACE-complete. Hardness in EXPSPACE applies already for the fragment
of ∃-VLTL. As good news, for the fragment of ∀-VLTL, a similar procedure runs in
PSPACE, and the problem is PSPACE-complete in the size of the formula, as for LTL.
We also consider the model-checking for a single concrete computation and show that
it is PSPACE-complete.

We proceed to show that for abstract systems the model-checking problem is in
general undecidable. Here too, undecidability applies already for the fragment of ∃-
VLTL. Our undecidability proof is by a reduction from Post’s Correspondence Prob-
lem, following the lines of the reduction in [14], showing that the universality problem
for register automata is undecidable. On the other hand, for systems with no resetting,
model checking is EXPSPACE-complete, and thus is not harder than model checking of
concrete systems. Moreover, for the fragment of ∀-VLTL, the model-checking problem
for abstract systems is PSPACE-complete, and thus is not harder than the LTL model-
checking problem. This latter result conveys the strength and advantage of our model:
abstract systems are able to accurately describe infinite state systems; ∀-VLTL formu-
las are able to express rich behaviors that are inexpressible by LTL, and may refer to
infinitely many values. Yet, surprisingly, model checking in that setting is not harder
than that of LTL.

Related work Researchers have studied several classes of infinite-state systems, gen-
erally differing in the source of infinity. For systems with a finite control and infinite (or
very large) data, researchers have developed heuristics such as data abstraction [3, 6].
Data abstractions are applied in order to construct a finite model and a simplified speci-
fication, and are based on mapping the large data domain into a finite and small number
of classes. Our approach, on the other hand, has the abstraction built in the system, and
is also part of the specification formalism. Finite control is used also in work on hybrid
systems [10] and systems with an unbounded memory (e.g., pushdown systems [7]),
where the underlying setting is very different from the one studied here. Closer to our
abstract systems are some of the approaches to handle systems having an unbounded
number of components (e.g., parameterized systems [8]). The solutions in these cases
are tailored for the setting in which the parameter is the number of components, and
cannot be applied, say, for parameterizing data.

Several extensions of LTL for handling infinite-state or parameterized systems have
been suggested and studied. A general such extension, with a setting similar to that
presented in this paper, is first-order LTL. First-order temporal logics are used for spec-
ifying and reasoning about temporal databases [19]. The work focuses on finding de-
cidable fragments of the logic, its expressive power and axiomatization (c.f., [21]).

In [2, 8], the authors studied an extension of temporal logic in which atomic propo-
sitions are parameterized with a variable that ranges over the set of processes ids. In
[20], the authors study a restricted fragment of first-order temporal logic that is suitable
for verifying parameterized systems. Again, these works are tailored for the setting of
parameterized systems, and are also restricted to systems in which (almost) all com-
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ponents are identical. VLTL is much richer, already in the context of parameterized
systems. For example, it can refer to both sender id and message content. In [5], the
authors introduced Constraint LTL, in which atomic propositions may be constraints
like x < y, and formulas are interpreted over sequences of assignments of variables to
values in N or Z. Thus, like our approach, Constraint LTL enables the specification to
capture all assignments to the variable. Unlike our approach, the domain is restricted to
numerical values. In [11], the author extends LTL with the freeze quantifier, which is
used for storing values from an infinite domain in a register. As discussed in our earlier
work [9], the variable-based formalism is cleaner than the register-based one, and it nat-
urally extends traditional LTL. In addition, our extension allows variables in both the
system and the specification. Finally, unlike existing work, as well as work on first order
LTL, in our setting a parameterized atomic proposition may hold with several different
parameter values in the same point in time.

In [9], we introduced VNFAs – nondeterministic finite automata augmented by vari-
ables. VNFAs can recognize languages over infinite alphabets. As in VLTL, the idea is
simple and is based on labeling some of the transitions of the automaton by variables
that range over some infinite domain. In [1], a similar use of variables was studied for
finite alphabets, allowing a compact representation of regular expressions. There, the
authors considered two semantics; in the “possibility” semantics, the language of an
expression over variables is the union of all regular languages obtained by assignments
to the variables, and in the “certainty” semantics, the language is the intersection of
all such languages. Note that in VLTL, it is possible to mix universal and existential
quantification of variables.

2 VLTL: LTL with Variables

Linear temporal logic (LTL) is a formalism for specifying on-going behaviors of reac-
tive systems. We model a finite-state system by a Kripke structure K = ⟨P, S, I, R, L⟩,
where P is a set of atomic propositions, S is a finite set of states, I ⊆ S is a set of
initial states, R ⊆ S × S is a total transitions relation, and L : S → 2P is a labeling
function. We then say that K is over P . A path inK is an infinite sequence s0, s1, s2 . . .
of states such that s0 ∈ I and ⟨si, si+1⟩ ∈ R for every i ≥ 0. A computation of K is an
infinite word π = π0π1 . . . over 2P such that there exists a path s0, s1, s2 . . . in K with
πi = L(si) for all i ≥ 0. We denote by πi the suffix πiπi+1, . . . of π.

We assume that the reader is familiar with the syntax and semantics of LTL. For a
Kripke structure K and an LTL formula φ, we say that K satisfies φ, denoted K |= φ,
if for every computation π of K, it holds that π |= φ. The model-checking problem is to
decide, given K and φ, whether K |= φ.

The logic VLTL extends LTL by allowing some of the atomic propositions to be
parameterized by variables that can take values from a finite or infinite domain. Con-
sider a finite set P of atomic propositions, a finite or infinite domain D, a finite set T
of parameterized atomic propositions, and a finite set X of variables. In VLTL, the
propositions in T are parameterized by variables in X that range over D. A VLTL for-
mula also contains guards, in the form of inequalities over X , which restrict the set of
possible assignments to the variables.
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We now define VLTL formally. An unrestricted VLTL formula over P , T , and X is
a formula ψ of the formQ1x1;Q2x2; · · ·Qkxk; θ, whereQi ∈ {∃, ∀}, xi ∈ X , and θ is
an LTL formula over P ∪T ∪ (T ×X). Variables that appear in θ and are not quantified
are free. If θ has no free variables, then ψ is closed. We say that a parameterized atomic
proposition a ∈ T is primitive in θ if there is an occurrence of a in θ that is not param-
eterized by a variable. An inequality set over X is a set E ⊆ {xi ̸= xj | xi, xj ∈ X}.

A VLTL formula over P , T , and X is a pair φ = ⟨ψ,E⟩ where ψ is an unrestricted
VLTL formula over P , T , and X , and E is an inequality set over X . The notions of
closed formulas, and of a primitive parametric atomic proposition are lifted from ψ to
φ. That is, φ is closed if ψ is closed, and a is primitive in φ if it is primitive in ψ.

We consider two fragments of VLTL. The logic ∃-VLTL is the fragment of VLTL
in which Qi = ∃ for all 1 ≤ i ≤ k. Dually, ∀-VLTL is the fragment of VLTL in which
only the ∀ quantifier is allowed.

We define the semantics for VLTL with respect to both concrete computations –
infinite words over the alphabet 2P∪(T×D), and abstract computations, defined later in
this section. A position in a concrete computation is a letter σ ∈ 2P∪(T×D). For a ∈ T ,
we say that σ satisfies a, denoted σ |= a, if there exists d ∈ D such that a.d ∈ σ. Thus,
a primitive a ∈ T is satisfied by assignments in which a holds with at least one value.

We say that a partial function f : X → D respects E if for every xi ̸= xj in E, it
holds that f(xi) ̸= f(xj).

Consider a concrete computation π, a VLTL formula φ = ⟨ψ,E⟩, with ψ =
Q1x1;Q2x2; . . . ;Qnxn; θ, and a partial function f : X → D that assigns values to
all the free variables in ψ and respects E. We use π |=f ψ to denote that π satisfies ψ
under the function f . The satisfaction relation is defined as follows.

– If n = 0 (that is, ψ = θ has no quantification and all its variables are free), then
the formula ψf obtained from ψ by replacing, for every x, every occurrence of a.x
with a.f(x), is an LTL formula over P ∪T ∪ (T ×D). Then, π |=f φ iff f respects
E and π |= ψf .

– If Q1 = ∃ (that is, ψ = ∃x1;Q2x2; . . . ;Qnxn; θ), then π |=f φ iff there exists
d ∈ D such that f [x1 ← d] respects E and π |=f [x1←d] Q2x2; . . . ;Qnxn; θ.

– If Q1 = ∀ (that is, ψ = ∀x1;Q2x2; . . . ;Qnxn; θ), then π |=f φ iff for all d ∈ D
such that f [x1 ← d] respects E, we have that π |=f [x1←d] Q2x2; . . . ;Qnxn; θ.

Example 1. Consider the concrete computation

π = {send.1}{send.2}{rec.2}{rec.1}ω

and the VLTL formula ⟨∃x; θ, ∅⟩, where θ = G(send.x → Xrec.x). Then for the
function f(x) = 2, we have that θf = G(send.2 → Xrec.2), and since π |= θf , it
holds that π |= ⟨∃x; θ, ∅⟩.

Next, consider the VLTL formula ⟨∀x; θ, ∅⟩. Then for the function g(x) = 1, we
have that π 2 θg, and therefore π 2 ⟨∀x; θ, ∅⟩.

Similarly to first order logic, when the formula ψ is closed, the satisfaction of E
does not depend on the function f , and we use the notation |=.

The extension of the definition to concrete systems (rather than computations) is
similar to that of LTL: For a Kripke structure K over P ∪ (T ×D) and a closed VLTL
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formulaφ = ⟨ψ,E⟩, we say thatK satisfiesφ, denotedK |= φ, if for every computation
π of K, it holds that π |= ⟨ψ,E⟩.

We now define abstract systems, whose computations may contain infinitely many
values. An abstract system over P , T ∪ {reset} and X is a pair ⟨K, E⟩, where K is
a Kripke structure over P ∪ (T × X) with a labeling L′ : R → 2{reset}×X for the
transitions, and E is an inequality set over X . Intuitively, a system variable is assigned
values throughout a computation of the system. If the computation traverses a transition
labeled by reset .x, then x can be assigned a new value, that will remain unchanged at
least until the next traversal of reset .x. Also, if xi ̸= xj ∈ E, then the values that are
assigned to xi and xj in a given point in the computation must be different.

An abstract computation of ⟨K, E⟩ is a pair ⟨ρ,E⟩, where ρ is an infinite word
ρ0ρ
′
0ρ1ρ

′
1 · · · over P ∪ ((T ∪ {reset})×X) such that there exists a path s0, s1, . . . in

K such that for every i ≥ 0, it holds that L(si) = ρi, and L′(⟨si, si+1⟩) = ρ′i.
A concrete computation is obtained from an abstract computation by assigning val-

ues from D to the variables in X as described next.
Consider an abstract computation ⟨ρ,E⟩ over P , T ∪ {reset} and X , where ρ =

ρ0ρ
′
0ρ1ρ

′
1 · · · and a concrete computation π = π0, π1, . . . over P , T andD. We say that

π is a concretization of ⟨ρ,E⟩ if π is obtained from ρ0ρ1ρ2 · · · by substituting every
occurrence of x ∈ X by a value in D, according to the following rules.

– For every two consecutive occurrences of reset .x in ρ′i and ρ′j , the values assigned
to occurrences of x in ρi+1(x), ρi+2(x) . . . ρj(x) are identical.

– For every xi ̸= xj ∈ E, for every position ρk that contains occurrences of xi and
xj , these occurrences are assigned different values in πi.

If π is a concretization of ⟨ρ,E⟩, then we say that ⟨ρ,E⟩ is an abstraction of π.
Note that ⟨ρ,E⟩ may have infinitely many concretizations.

Notice that for a domain D, an abstract system ⟨K, E⟩ represents a (possibly infi-
nite) concrete system over P ∪ (T ×D) whose computations are exactly all concretiza-
tions (w.r.t. D) of every abstract computation of ⟨K, E⟩.

Example 2. Consider the abstract system ⟨K, ∅⟩, where K, appearing in Figure 2, de-
scribes a protocol for two processes, a and b, that use a printer that may print a single
job at a time. A token is passed around. The atomic propositions ta and tb are valid
when processes a and b hold the token, respectively. The parameterized atomic propo-
sitions ra, rb, and p are parameterized by x1 and x2, which can get values from the
range of file names. The proposition ra.x1 is valid when process a requests to print x1,
and similarly for rb.x2 and process b. Once a file is printed, the variable that maintains
the file is reset.

Consider the path s1s2(s3s4s5s6)ω of K. It induces the abstract computation
⟨ρ, ∅⟩, where ρ =

{ta}∅{ta, ra.x1}∅({ta, ra.x1, rb.x2}∅{p.x1, rb.x2}{reset .x1}
{tb, ra.x1, rb.x2}∅{p.x2, ra.x1}{reset .x2})ω

An example for a concretization of ⟨ρ, ∅⟩ is

{ta}{ta, ra.doc1}{ta, ra.doc1, rb.data.txt}{p.doc1, rb.data.txt}
{tb, ra.doc2, rb.data.txt}{p.data.txt, ra.doc2}{ta, ra.doc2, rb.vltl.pdf} . . .
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reset.x2

reset.x1

Fig. 2. The abstract system K.

We now describe the second semantics of VLTL, for abstract computations. Con-
sider a set X ′ of variables, an abstract computation ⟨ρ,E′⟩ over P ∪ ((T ∪ {reset})×
X ′), and a closed VLTL formula φ = ⟨ψ,E⟩ over P ∪ T ∪ (T × X). 5 We say that
⟨ρ,E′⟩ satisfies φ, denoted ⟨ρ,E′⟩ |= φ, if for every concretization π of ⟨ρ,E′⟩, it
holds that π |= φ. Note that ρ and ψ are defined over different sets of variables, that are
not related to each other.

Example 3. Consider the abstract system ⟨K, ∅⟩ and the abstract computation ⟨ρ, ∅⟩ of
Example 2.

Consider the formula φ = ⟨∀z1; ∀z2;G((ra.z1 ∧ ta) → ((¬p.z2)Up.z1)), {z1 ̸=
z2}⟩ overP , T , andX = {z1, z2}. In every concretization π of ⟨ρ, ∅⟩, whenever process
a requests to print a document d and holds the token, then the next job that is printed is
d, and no other job d′ gets printed before that. This holds for all values d and d′ such
that d ̸= d′, and therefore, ⟨ρ, ∅⟩ |= φ.

For an abstract system ⟨K, E′⟩ and a closed VLTL formula ⟨ψ,E⟩, we say that
⟨K, E′⟩ satisfies ⟨ψ,E⟩, denoted ⟨K, E′⟩ |= ⟨ψ,E⟩, if for every abstract computation
⟨ρ,E′⟩ of K, it holds that ⟨ρ,E′⟩ |= ⟨ψ,E⟩.

3 Model Checking of Concrete Systems

In this section we present a model-checking algorithm for finite concrete systems and
discuss the complexity of the model-checking problem for the fragments of VLTL. We
show that the general case is EXPSPACE-complete, but is PSPACE-complete for the
fragment of ∀-VLTL and for single computations. Thus, the problem for these latter
cases is not more complex than LTL model checking.

The model-checking procedure we present for concrete systems reduces the model-
checking problem for VLTL to the model-checking problem for LTL. The key to this

5 An abstract computation represents infinitely many concrete computations. For every such
computation, a different function may be needed in order to satisfy the formula. Therefore,
the definition does not involve a specific function from the variables to the values, and so only
closed formulas are considered.
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procedure is the observation that different values that do not appear in a given com-
putation behave similarly when assigned to a formula variable. Thus, it is sufficient to
consider the finite set of values that do appear in the concrete system K, plus one ad-
ditional value for every quantifier to represent the values that do not appear in K. This
means that in case of a very large, or even infinite, domain, we can check the set of
assignments over a finite domain instead, resulting in a finite procedure.

We say that a concrete computation π and a VLTL formula φ do not distinguish
between two values d1, d2 ∈ D with respect to the variable x and a partial function
f : X → D if π |=f [x←d1] φ iff π |=f [x←d2] φ.

Lemma 1. Let π be a concrete computation and let φ be a VLTL formula over P , T
and X . Then, for every x ∈ X , every function f : X → D, and every two values d1
and d2 that do not appear in π, it holds that π and φ do not distinguish between d1 and
d2 with respect to x and f .

We now use Lemma 1 in order to reduce the VLTL model-checking problem for
concrete systems to the LTL model-checking problem. We describe two algorithms.
The first algorithm, ModelCheck, gets as input a single computation and a VLTL for-
mula and decides whether the computation satisfies the formula. The second is based
on a transformation of a given VLTL formula to an LTL formula such that the system
satisfies the VLTL formula iff it satisfies the LTL formula. The idea behind both algo-
rithms is the same – an inductive valuation of the formula, either (the first algorithm) by
recursively trying possible assignments to the variables, or (the second algorithm) by
encoding the various possible assignments using conjunctions and disjunctions in LTL.
In both cases, Lemma 1 implies that the number of calls needed in the recursion or the
number of conjuncts or disjuncts in the translation is finite.

Let us describe the first algorithm in more detail. Consider a computation π in the
concrete system. Recall that such a system is a finite state system, and therefore π
contains finitely many values from D. Let A be the set of values that appear in π.
Consider a VLTL formula φ = ⟨ψ,E⟩ and a partial function f : X → D that respects
E. Let B = Image(f).

Intuitively, each recursive call of the algorithm evaluates φ with a different assign-
ment to the variables. Lemma 1 enables checking assignments over a finite set of values
instead of the entire domain. For every quantifier, a new value is added to this set, ini-
tially assigned A ∪ B. According to Lemma 1, a value that is not in π and is different
from every other value that has been added to the set can represent every other such
value. Hence, these values are enough to cover the entire domain. 6 For the ∀ quantifier,
we require that every respecting assignment leads to satisfaction. For the ∃ quantifier,
we require that at least one respecting assignment leads to satisfaction.

Since different computations of a concrete system may satisfy the formula with dif-
ferent assignments to the same variable, ModelCheck, which checks the entire system
against a single assignment, cannot be applied for checking concrete systems instead
of computations. It can, however, be used to model check single paths in PSPACE. We

6 Note that we assume that D is sufficiently large to supply additional new values whenever the
algorithm needs them. Our algorithms can be modified to account also for a small D.
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assume, as usual for such a case, that this path is a lasso. Since we can easily reduce the
problem of TQBF to model checking of a single path, a matching lower bound follows.

Theorem 1. Let π be a lasso-shaped concrete computation, let φ = ⟨ψ,E⟩ be a VLTL
formula over P ∪ T ∪ (T ×X), and let f : X → D be a partial function that respects
E. Then deciding whether π |=f ⟨ψ,E⟩ is PSPACE-complete.

Proof: For the upper bound, using Lemma 1 we can show that forB = Image(f) and
forA, the finite set of values that occur in π, it holds that ModelCheck(π, ⟨ψ,E⟩, f, A∪
B) returns true iff π |=f ⟨ψ,E⟩. This procedure involves repeated runs of LTL model
checking for π and a formula of the same size as ψ. Since each such run can be per-
formed in PSPACE (in fact, in polynomial time), the entire procedure is run in PSPACE.

The lower bound is shown by a reduction from TQBF, the problem of deciding
whether a closed quantified Boolean formula is valid, which is known to be PSPACE-
complete. Given a quantified Boolean formula ψ, consider the single-state system K
labeled a.d, where a is a parameterized atomic proposition, and d is some value, and
the VLTL formula ⟨ψ′, ∅⟩ obtained form ψ by replacing every variable x in ψ with a.x.
Then, every truth assignment f to the variables of ψ is mapped to an assignment f ′ to
the variables in ψ′, where assigning true to x in f is equivalent to assigning d to x in
f ′, and assigning false to x in f is equivalent to assigning d′ ̸= d to x in f ′. It can be
shown that f |= ψ iff K |=f ′ ⟨ψ′, ∅⟩. Since ψ is closed, and therefore does not depend
on f , showing this suffices.

The second algorithm, VLTLtoLTL, translates the VLTL formula into an LTL for-
mula, based on the values and the assignments of the given systemK and function f . As
in ModelCheck, a new value is added to a set C ′ that is maintained by the procedure
(initially set toA∪B, whereA is the set of values inM , andB = Image(f)) for every
quantifier in the formula. This time, every ∀ quantifier is translated to a conjunction of
all of the recursively constructed formulas for these assignments, and every ∃ quantifier
is translated to a disjunction.

Hence, the formula that is constructed by VLTLtoLTL contains every LTL formula
that is checked by ModelCheck, and the conjunctions and disjunctions of VLTLtoLTL
match the logical checks that are performed by ModelCheck.

VLTLtoLTL can then be used to model check entire concrete systems (in which case
the formula is closed, and the initial function is ∅). While this leads to an exponen-
tially large formula, this is the best that can be done, as we can show that the model
checking problem for concrete systems is EXPSPACE complete, by a reduction from
the acceptance problem for EXPSPACE Turing machines.

Theorem 2. LetK be a concrete system over P ∪T×D and let φ = ⟨ψ,E⟩ be a closed
VLTL formula over P ∪ T ∪ (T ×X). Then deciding whether K |= φ is EXPSPACE-
complete.

Proof: For the upper bound, using Lemma 1 we can show that for B = Image(f)
and for A, the finite set of values that occur in K, it holds that K |=f ⟨ψ,E⟩ iff K |=
VLTLtoLTL(⟨ψ,E⟩, f, A ∪ B). The run VLTLtoLTL(⟨ψ,E⟩, f, A ∪ B) produces an
LTL formula whose size is exponential in the size of A ∪ B and X . Since LTL model
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checking can be performed in PSPACE, checking K |= VLTLtoLTL(⟨ψ,E⟩, f, A ∪
B) can be performed in EXPSPACE. Notice that if φ is closed, model checking is
performed by using VLTLtoLTL(⟨ψ,E⟩, ∅, A ∪B).

The lower bound is shown by a reduction from the acceptance problem for Turing
machines that run in EXPSPACE. We sketch the proof. We define an encoding of runs
of the Turing machine on a given input. For a Turing machine T and an input ā, we
construct a system K whose computations include all encodings of potential runs of T
on ā. We construct a VLTL formula φ that specifies computations that are not encodings
of accepting runs of T on ā. Then, there exists an accepting run of T on ā iff K 2 φ.

The formula we construct for the lower bound in the proof of Theorem 2 is in
∃-VLTL, and so the model-checking problem is EXPSPACE-complete already for this
fragment of VLTL. However, a simple variant of ModelCheck can be used for ∀-VLTL.
Together with the PSPACE lower bound for LTL model checking, we have the follow-
ing.

Theorem 3. The model-checking problem for ∀-VLTL and concrete systems is PSPACE-
complete.

4 Model Checking of Abstract Systems

In this section we consider the VLTL model-checking problem for abstract systems.
We begin by showing that the problem is undecidable, by proving undecidability for
the fragment of ∃-VLTL. Then, we show that for certain abstract systems, as well as for
∀-VLTL, model checking is not more difficult than for concrete systems.

Theorem 4. The model-checking problem for ∃-VLTL is undecidable.

Proof: We sketch the proof, which is by reduction from Post’s Correspondence Prob-
lem (PCP). A similar reduction is shown in [14]. An instance of PCP are two sets
{u1, u2, . . . un} and {v1, v2, . . . vn} of finite words over {a, b}, and the problem is to
decide whether there exists a concatenation u = ui1ui2 · · ·uik of words of the first set
that is identical to a concatenation v = vi1vi2 · · · vik of words of the second set.

We describe an encoding of a correct solution to a PCP instance given an input. For
an instance I of PCP, we construct an abstract system K whose computations include
all possible encodings of solutions to I , and an ∃-VLTL formula φ that specifies com-
putations that are not legal encodings to a solution to I . Then, we have that I has a
solution iff K 2 φ.

We now show that the VLTL model-checking problem for abstract systems is de-
cidable for certain classes of systems. For the rest of the section, we consider abstract
systems and abstract computations over P , T ∪ {reset}, and X ′, and closed VLTL
formulas over P , T , and X . We first introduce some terms.

We say that ⟨K, E′⟩ is bounded if there is no occurrence of reset in K. This means
that the value of the variables does not change throughout a computation of the system.
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We say that ⟨K, E′⟩ is strict if E′ = {x′i ̸= x′j |x′i, x′j , i ̸= j ∈ X ′}. Notice that a
concrete computation in a bounded and strict system is obtained by an injection to the
system variables.

We begin by showing that the model-checking problem for bounded systems is
essentially equivalent to the model-checking problem for concrete systems.

Theorem 5. The model-checking problem for bounded abstract systems is EXPSPACE-
complete for VLTL, and PSPACE-complete for ∀-VLTL.

Proof: Let ⟨K, E′⟩ be a bounded abstract system, and let ⟨ψ,E⟩ be a VLTL formula.
We first prove the upper bounds for the case the system is both bounded and strict.

Intuitively, assigning different values to the variables of a bounded and strict system
results in a concrete system that satisfies the same set of formulas.

Formally, let f : X ′ → D be an arbitrary injection, and let Kf be the concrete
system that is obtained from ⟨K, E′⟩ by substituting every occurrence of x ∈ X ′ with
f(x). We can show that ⟨K, E′⟩ |= ⟨ψ,E⟩ iff Kf |= ⟨ψ,E⟩.

We now turn to the general case of bounded systems, and reduce it to the case
the systems are both bounded and strict. A set of bounded and strict abstract systems is
obtained from ⟨K, E′⟩ as follows. Consider the inequality setE′. Every possible setting
of it induces a strict and bounded system: for every inequality x1 ̸= x2 that is missing
from E′, both options of x1 ̸= x2 and x1 = x2 are checked. For the former, a copy
with x1 ̸= x2 in the inequality set is constructed. For the latter, a copy with a new single
variable replacing x1 and x2 is constructed. Then, we have that ⟨K, E′⟩ |= ⟨ψ,E⟩ iff
every system in this set satisfies ⟨ψ,E⟩.

More specifically, consider a function h : X ′ → Z that respects E′, where Z is
a new set of variables of size |X ′|. For every such h, an abstract system ⟨Kh, E′h⟩ is
obtained from ⟨K, E′⟩ by substituting every occurrence of x ∈ X ′ with h(x′), and by
setting E′ to be the full inequality set. Then for x1, x2 ∈ X ′, having h(x1) ̸= h(x2)
is equivalent to setting x1 ̸= x2, and h(x1) = h(x2) is equivalent to setting x1 = x2.
Every computation of ⟨K, E′⟩ is a computation of ⟨Kh, E′h⟩ for some h, and vise versa.

Then, we have that ⟨K, E′⟩does not satisfy ⟨ψ,E⟩ iff there exists a function h such
that ⟨Kh, E′h⟩ does not satisfy ⟨ψ,E⟩. Therefore, the model-checking problem for
bounded systems can be solved by guessing an appropriate function h, constructing,
in linear time, a single copy of ⟨Kh, E′h⟩, and checking whether ⟨Kh, E′h⟩ 2 ⟨ψ,E⟩.
This procedure is then performed in PSPACE in the size of the system and the formula.
7

For the lower bounds, we reduce from the model-checking problem for concrete
systems. Given a concrete system M and a VLTL formula ⟨ψ,E⟩, we construct in
linear time a bounded (in fact, also strict) abstract system ⟨M′, E′⟩ by substituting
every value d that occurs inM by the same unique variable xd, and by setting E′ to be
the full inequality set. By a proof similar proof to the upper bound, we can show that
⟨M′, E′⟩ |= ⟨ψ,E⟩ iffM |= ⟨ψ,E⟩.

7 For LTL, model checking is PSPACE-hard only in the size of the formula. For a fixed formula,
LTL model checking can be performed in NLOGSPACE.
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Next, we show that the model-checking problem for abstract systems and ∀-VLTL
formulas is, surprisingly, not more complex than the model-checking problem for LTL.
We do this by proving that this problem can be reduced to the model-checking problem
for bounded abstract systems.

The following lemma shows that for a given assignment to the formula variables,
the values in a concrete computation that are not assigned to any formula variable can
be replaced with other such values without affecting the satisfiability.

Lemma 2. Let ⟨ψ,E⟩ be a VLTL formula such that ψ is unquantified, and let f : X →
D be a function that respects E. Let π and τ be two concretizations of some abstract
computation that agree on all values in Image(f). Then π |=f ⟨ψ,E⟩ iff τ |=f ⟨ψ,E⟩.

We now show that in order to check whether an abstract computation ρ satisfies a
∀-VLTL formula φ, it is enough to check that every concretization of ρ that contains a
bounded number of values satisfies φ.

Lemma 3. Let ⟨ρ,E′⟩ be an abstract computation, and let ⟨ψ,E⟩ be a closed ∀-VLTL
formula. Let Cρ be the set of concretizations of ⟨ρ,E′⟩ that contains at most |X ′|+ |X|
different values. Then, ⟨ρ,E′⟩ |= ⟨ψ,E⟩ iff for every π ∈ Cρ, it holds that π |= ⟨ψ,E⟩.

Proof: For the first direction, a computation in Cρ is also a concretization of ρ.
For the second direction, suppose that for every τ ∈ Cρ, it holds that τ |= ⟨ψ,E⟩.

Assume by way of contradiction that there exists a concretization π of ⟨ρ,E′⟩ such
that π 2 ⟨ψ,E⟩. Since ψ = ∀x1; . . .∀xk; θ, this means that there exists a function
f : X → D such that f respects E and π 2 θf .

If π contains at most |X ′|+ |X| different values, then it is also in Cρ. Therefore, π
contains more than |X ′|+ |X| different values. We show that there exists τ ∈ Cρ such
that τ 2 ⟨ψ,E⟩.

Let a1, a2, . . . ak be the values that are assigned to the variables of X by f . Let
b1, b2, . . . bk′ , where k′ = |X ′|, be values different from the a values.

Let π′ be the concrete computation obtained from ρ by assigning a1, a2, . . . ak to the
same occurrences of variables of X ′ that are assigned these values in π, and assigning
every other occurrence of xi ∈ X ′ the same value bi.

According to Lemma 2, we have that π′ 2 θf . By the way we have constructed π′,
we have that π′ is also a concretization of ⟨ρ,E′⟩, and that π′ contains at most |X ′|+|X|
different values. Therefore, it is also in Cρ, a contradiction.

Finally, we employ Lemma 3 in order to construct a model-checking procedure for
∀-VLTL, which runs in polynomial space.

Theorem 6. The model-checking problem for ∀-VLTL and abstract systems is PSPACE-
complete.

Proof: The lower bound follows from the lower bound for LTL model checking.
Let ⟨K, E′⟩ be an abstract system over P , T ∪ {reset}, and X ′, where |X ′| = k′,

and let ⟨ψ,E⟩ be a closed ∀-VLTL formula over k variables. Intuitively, we construct
from ⟨K, E′⟩ a bounded system that contains exactly all computations of ⟨K, E′⟩ that
contain at most k + k′ different values.
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Let λ be a set of new variables of size k + k′. Let h : λ→ X ′ be an onto function.
Intuitively, the function h partitions the variables of λ so that each set in the partition
replaces a variable in X ′ in the construction.

Let Γh = {{ξ1, ξ2 . . . ξk′}|ξi ∈ λ, h(ξi) = xi, 1 ≤ i ≤ k′}.
For ∆ ⊆ Γh, let K∆ be the bounded system that is obtained from K as follows. For

every set Γ ∈ ∆, let KΓ be the system obtained from K by replacing every occurrence
of xi with ξi for every 1 ≤ i ≤ k′, and by removing every occurrence of reset . Then,
in KΓ every variable x in K is replaced with some variable ξ such that h(ξ) = x.

Let R be the set of transitions of K. For every ⟨q, s⟩ ∈ R, we add a transition from
a copy of q in KΓ to the copies of s in every KΓ ′ such that Γ ′ and Γ agree on all
variables in λ to which h assigns variables that are not reset in ⟨q, s⟩. Intuitively, a reset
of a variable x is in a transition in K corresponds to switching from one variable in λ
representing x to another.

Let E∆ = {ξi ̸= ξj |h(ξi) ̸= h(ξj) ∈ E′, and ξi, ξj ∈ Γ for some Γ ∈ ∆}. Then
E∆ is the inequality set induced by E′ in K∆.

Note thatK∆ models a copy of the system in which every occurrence of xi between
two consecutive resets is replaced by some variable in h−1(xi). Also, for ξi and ξj
such that h(xi) ̸= h(xj), if ξi, ξj are not in the same set in ∆, then they do not appear
together in the same copy, and therefore are allowed to take the same value, even if
h(ξi) ̸= h(ξj) ∈ E.

Then, every abstract computation ρ of ⟨K, E′⟩ is replaced with a set of bounded
computations over k + k′ variables, whose set of concretizations is exactly the set of
concretizations of ρ that contain at most k + k′ different values.

According to Lemma 3, we have that ⟨K, E′⟩ |= ⟨ψ,E⟩ iff for every h, and for
every ∆ ⊆ Γh, it holds that ⟨K∆, E∆⟩ |= ⟨ψ,E⟩.

A nondeterministic procedure that runs in polynomial space guesses a function f :
X → D and a function g : λ→ D, where D ⊂ D is some arbitrary set of size 2k+ k′.
It follows from the proof of Theorem 5 and from Theorem 3 that a domain of the size
of D is sufficient.

Next, in a procedure similar to the automata-theoretic approach to LTL model check-
ing [18], the procedure constructs a violating path in the nondeterministic Büchi au-
tomaton A¬θf that accepts exactly all computations that violate θf , constructs K∆g

on the fly, and guesses a violating path that is accepted by both A¬θf and K∆g . While
guessing a violating path inK∆g , the procedure must make sure that every state respects
E′, that is, there exist no ξi and ξj such that h(ξi) ̸= h(ξj) ∈ E′, and g(ξi) = g(ξj),
and both ξi and ξj are in the same state along the path. Since the information needed to
guess a path in bothA¬θf and K∆g is polyomial, we have that the entire procedure can
be performed in PSPACE in the size of the formula and of the system.

5 Conclusions

We presented a simple, general, and natural extension to LTL and Kripke structures.
Our extension allows to augment atomic propositions with variables that range over
some (possibly infinite) domain. In VLTL, our extension of LTL, the extension enables
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the specification to refer to the domain values. In abstract systems, our extension of
Kripke structures, the extension enables a compact description of infinite and complex
concrete systems whose control is finite, and for which the source of infinity is the data.

We studied the model-checking problem in this setting, for both finite concrete sys-
tems and for abstract systems. We presented a model-checking procedure for VLTL
and concrete systems. We showed that the general problem is EXPSPACE-complete for
concrete systems and undecidable for abstract systems. As good news, we showed that
even for abstract systems, the model-checking problem for the rich fragment of ∀-VLTL
is not only decidable, but is of the same complexity as LTL model checking.
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