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Abstract. Much is known about the differences in expressiveness and succinctness be-

tween nondeterministic and deterministic automata on infinite words. Much less is known

about the relative succinctness of the different classes of nondeterministic automata. For

example, while the best translation from a nondeterministic Büchi automaton to a nondeter-

ministic co-Büchi automaton is exponential, and involves determinization, no super-linear

lower bound is known. This annoying situation, of not being able to use the power of non-

determinism, nor to show that it is powerless, is shared by more problems, with direct ap-

plications in formal verification.

In this paper we study a family of problems of this class. The problems originate from the

study of the expressive power of deterministic Büchi automata: Landweber characterizes

languages L ⊆ Σω that are recognizable by deterministic Büchi automata as those for

which there is a regular language R ⊆ Σ∗ such that L is the limit of R; that is, w ∈ L

iff w has infinitely many prefixes in R. Two other operators that induce a language of

infinite words from a language of finite words are co-limit, where w ∈ L iff w has only

finitely many prefixes in R, and persistent-limit, where w ∈ L iff almost all the prefixes

of w are in R. Both co-limit and persistent-limit define languages that are recognizable by

deterministic co-Büchi automata. They define them, however, by means of nondeterministic

automata. While co-limit is associated with complementation, persistent-limit is associated

with universality. For the three limit operators, the deterministic automata for R and L

share the same structure. It is not clear, however, whether and how it is possible to relate

nondeterministic automata for R and L, or to relate nondeterministic automata to which

different limit operators are applied. In the paper, we show that the situation is involved: in

some cases we are able to describe a polynomial translation, whereas in some we present an

exponential lower bound. For example, going from a nondeterministic automaton for R to a

nondeterministic automaton for its limit is polynomial, whereas going to a nondeterministic

automaton for its persistent limit is exponential. Our results show that the contribution of

nondeterminism to the succinctness of an automaton does depend upon its semantics.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were the key

to the solution of several fundamental decision problems in mathematics and logic [5,

17, 21]. Today, automata on infinite objects are used for specification and verification of

nonterminating systems. The automata-theoretic approach to verification reduces ques-

tions about systems and their specifications to questions about automata [13, 26]. Recent

industrial-strength property-specification languages such as Sugar [3], ForSpec [2], and

PSL 1.01 [7] include regular expressions and/or automata, making specification and

verification tools that are based on automata even more essential and popular.

There are many ways to classify an automaton on infinite words. One is the class of

its acceptance condition. For example, in Büchi automata, some of the states are desig-

nated as accepting states, and a run is accepting iff it visits states from the accepting set

infinitely often [5]. Dually, in co-Büchi automata, a run is accepting iff it visits states



from the accepting set only finitely often. Another way to classify an automaton is by

the type of its branching mode. In a deterministic automaton, the transition function

maps the current state and input letter to a single successor state. When the branching

mode is nondeterministic, the transition function maps the current state and letter to

a set of possible successor states. Thus, while a deterministic automaton has a single

run on an input word, a nondeterministic automaton may have several runs on an input

word, and the word is accepted by the automaton if at least one of the runs is accepting.

The different classes of automata have different expressive power. For example, un-

like automata on finite words, where deterministic and nondeterministic automata have

the same expressive power, deterministic Büchi automata (DBW) are strictly less ex-

pressive than nondeterministic Büchi automata (NBW). That is, there exists a language

L over infinite words such that L can be recognized by a nondeterministic Büchi au-

tomaton but cannot be recognized by a deterministic Büchi automaton. It also turns

out that some classes of automata may be more succinct than other classes. For ex-

ample, translating a nondeterministic co-Büchi automaton (NCW) into a deterministic

co-Büchi automaton (DCW) is possible [20], but involves an exponential blow up.

There has been extensive research on the expressiveness and succinctness of au-

tomata on infinite words [25]. In particular, since reasoning about deterministic au-

tomata is simpler than reasoning about nondeterministic ones, questions like deciding

whether a nondeterministic automaton has an equivalent deterministic one, and the blow

up involved in determinization, are of particular interest [8, 16, 12]. These questions get

further motivation with the discovery that many natural specifications correspond to

the deterministic fragments. In particular, it is shown in [12] that given a linear tem-

poral logic (LTL) formula ψ, there is an alternation-free µ-calculus (AFMC) formula

equivalent to ∀ψ iff ψ can be recognized by a DBW. Evaluating specifications in the

alternation-free fragment of µ-calculus can be done with linearly many symbolic steps,

so coming up with an optimal translation of LTL to AFMC is a problem of great prac-

tical importance.

Let us elaborate on the LTL to AFMC example, as it highlights the open problems

that have led to our research. Current translations translate the LTL formula ψ to a

DBW, which can be linearly translated to an AFMC formula for ∀ψ. The translation

of LTL to DBW, however, is doubly exponential, thus the overall translation is doubly-

exponential, with only an exponential matching lower bound. A promising direction

for tightening the upper bound was suggested in [12]: instead of translating an LTL

formula ψ to a DBW, one can translate ¬ψ to an NCW. Then, the NCW can be linearly

translated to an AFMC formula for ∃¬ψ, whose negation is equivalent to ∀ψ. The

fact that the translation can go through a nondeterministic rather than a deterministic

automaton is very promising, as nondeterministic automata are typically exponentially

more succinct than deterministic ones. Nevertheless, the problem of translating LTL

formulas to NCWs of exponential size1 is still open. The best translation that is known

today involves a doubly-exponential blow up, and it actually results in a DCW, giving

up the idea that the translation of LTL to AFMC can be exponentially more efficient by

using intermediate nondeterministic automata.

1 As mentioned above, not all LTL formulas can be translated to NCWs. When we talk about

the blow up in a translation, we refer to formulas for which a translation exists.
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This unfortunate situation of not being able to use the power of nondeterminism

is shared by more problems. One that is strongly related to the LTL to AFMC prob-

lem described above is the open problem of translating NBWs to NCWs (when pos-

sible). Despite continuous efforts, the best translation that is known first determinizes

the NBW. Accordingly, starting with an NBW with n states, we end up with an NCW

with 2O(n logn) states [22]. This is particularly annoying as even no super-linear lower

bound is known, and in fact, only recently were we able to come up with an example

that an NCW cannot be defined on top of the state space and transitions of the NBW

[9]. The class of open problems of this nature expands also to the branching setting. For

a language L of infinite words, let der(L) be the language of infinite trees that contain

exactly all trees all of whose paths are in L. It is known that der(L) can be recognized

by a nondeterministic Büchi tree automaton (NBT) iff L can be recognized by a DBW

[10]. Given an NBT for der(L), the most efficient construction that is known for gener-

ating from it an NBW for L is exponential, and it actually constructs a DBW for L. Also

here, no super-linear lower bound is known, and yet it is not clear how nondeterminism,

and its succinctness with respect to the deterministic model, can be used.

In this paper we study a family of problems in this class. Recall that DBWs are

less expressive than NBWs. Landweber characterizes languages L ⊆ Σω that can be

recognized by a DBW as those for which there is a regular language R ⊆ Σ∗ such that

L is the limit of R. Formally, w is in the limit of R iff w has infinitely many prefixes

in R [14]. It is not hard to see that a DBW for L, when viewed as a deterministic finite

automaton (DFW), recognizes a language whose limit is L, and vice versa – a DFW

for R, when viewed as a DBW, recognizes the language that is the limit of R. What

about the case in which R and L are given by nondeterministic automata? It is not hard

to see that the simple transformation between the two formalisms no longer holds. For

example, the NBW A in Figure 1 recognizes the language L of all words with infinitely

many 1s, yet when viewed as a nondeteministic finite automaton (NFW), it recognizes

(0 + 1)+, whose limit is (0 + 1)ω . As another example, the language of the NBW A′

is empty, yet when viewed as an NFW, it recognizes the language (0 + 1)∗ · 1, whose

limit is L. As demonstrated by the examples, the difficulty of the nondeterministic case

originates from the fact that different prefixes of the infinite word may follow different

accepting runs of the NFW, and there is no guarantee that these runs can be merged

into a single run of the NBW. Accordingly, the best translation that is known for going

from an NFW to an NBW accepting its limit, or from an NBW to a limit NFW, is to

first determinize the given automaton. This involves a 2O(n logn) blow up and gives up

the potential succinctness of the nondeterministic model. On the other hand, no lower

bound above Ω(n log n) is known.

0, 1

1

A′ :A :
1

0, 1 0, 1

Fig. 1. Relating NBWs and limit NFWs.

In addition to the limit operator introduced by Landweber, we introduce and study

two more ways to induce a language of infinite words from a language of finite words:
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the co-limit of R is the set of all infinite words that have only finitely many prefixes in

R. Thus, co-limit is dual to Landweber’s limit. Also, the persistent limit of R is the set

of all infinite words that have only finitely many prefixes not in R. Thus, eventually all

the prefixes are in R.

We study the succinctness of NFWs for R with respect to DBWs, DCWs, NBWs,

and NCWs recognizing languages induced by each of the three limit operators, and

the succinctness of the Büchi and co-Büchi automata with respect to the NFWs. In

particular, we prove that while the translation from an NFW to an NBW for its limit is

cubic (thus, nondeterminism is helpful, and the traditional “determinize first” approach

is beaten!), the translations from an NFW to an NCW for its co-limit or its persistent

limit are exponential, thus determinization is legitimate. We also study succinctness

among NFWs to which different limit operators are applied. For example, we prove

that going from a persistent limit NFW to a limit NFW involves an exponential blow up.

In other words, given an NFW A whose persistent limit is L, translating A to an NFW

whose limit isLmay involve an exponential blow up. Note that persistent limit and limit

are very similar – both require the infinite word to have infinitely many prefixes inL(A),
only that the persistent limit requires, in addition, that only finitely many prefixes are not

in L(A). This difference, which is similar to the difference between NBW and NCW,

makes persistent limit exponentially more succinct. Technically, it follows from the

fact that persistent limit NFWs inherit the power of alternating automata. In a similar,

though less surprising way, co-limit NFWs inherit the power of complementation, and

are also exponentially more succinct. In cases where we are not able to describe a lower

bound, we prove that the translations are not type [8, 9], namely that an equivalent NFW

cannot be defined on top of the same transition structure.

The study of the limit operators checks behaviors in the limit. We examine how our

results are affected by limiting attention to safety, co-safety, and bounded languages [1,

24, 11]. In these languages, the behavior in the limit is not restricted. In particular, in

bounded languages, membership in the language depends on a bounded prefix of the

word. We show that most of our lower bounds apply even in the restricted setting of the

limited fragments, yet for some cases we are able to describe upper bounds that do not

hold in the general case. Finally, recall that the difficulty of the nondeterministic case

originates from the fact that the accepting runs on different prefixes of the infinite word

may not be merged into one infinite accepting run of the NBW. We describe a sufficient

structural condition on NFWs that guarantees that accepting runs can be merged. We

call NFWs that satisfy this condition continuous NFWs. We show that while the limit of

a continuous NFW A is the language of A when viewed as an NBW, continuous NFWs

are exponentially more succinct than DBWs.

2 Preliminaries

2.1 Automata on finite and infinite words

Given an alphabet Σ, a word over Σ is a sequence w = σ1 · σ2 · σ3 · · · of letters in Σ.

A word may be either finite or infinite. An automaton is a tuple A = 〈Σ,Q, δ,Q0, α〉,
where Σ is the input alphabet, Q is a finite set of states, δ : Q×Σ → 2Q is a transition

function, Q0 ⊆ Q is a set of initial states, and α ⊆ Q is an acceptance condition. We
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define several acceptance conditions below. The automaton A may have several initial

states and the transition function may specify many possible transitions for each state

and letter, and hence we say that A is nondeterministic. In the case where |Q0| = 1 and

for every q ∈ Q and σ ∈ Σ, we have that |δ(q, σ)| = 1, we say that A is deterministic.

The automaton may run on finite or infinite words. A run of A on a finite word

w = σ1 · σ2 · · ·σk ∈ Σ∗ is a function r : {0, . . . , k} → Q where r(0) ∈ Q0, and

for every 0 ≤ i < k, we have that r(i + 1) ∈ δ(r(i), σi+1). The run is accepting iff

r(k) ∈ α. Otherwise, it is rejecting. When the input word is infinite, and thus w =
σ0 · σ1 · · · ∈ Σω, a run of A on w is a function r : IN → Q with r(0) ∈ Q0, and for

every i ≥ 0, we have that r(i+ 1) ∈ δ(r(i), σi+1). Acceptance is defined with respect

to the set of states inf(r) that the run r visits infinitely often. Formally, inf (r) = {q ∈
Q : for infinitely many i ∈ IN, we have r(i) = q}. As Q is finite, it is guaranteed that

inf (r) 6= ∅. The run r is accepting iff the set inf (r) satisfies the acceptance condition

α. We consider here the Büchi and the co-büchi acceptance conditions. A set S satisfies

a Büchi acceptance condition α ⊆ Q if and only if S ∩ α 6= ∅. Dually, S satisfies a

co-Büchi acceptance condition α ⊆ Q if and only if S ∩ α = ∅.

We sometimes view a run r as a (finite or infinite) word over the alphabet Q. For

example, r = q0, q5, q5 indicates that r(0) = q0 whereas r(1) = r(2) = q5. Note that

while a deterministic automaton has a single run on an input word, a nondeterministic

automaton may have several runs on w or none at all. An automaton accepts a word iff

it has an accepting run on it. The language of an automaton A, denoted L(A), is the set

of words that A accepts. For a language L, the complement of L, denoted comp(L),
is the set of words not in L. Thus, for L ⊆ Σ∗ we have comp(L) = Σ∗ \ L, and for

L ⊆ Σω we have comp(L) = Σω \ L.

We denote the different classes of automata by three letter acronyms in {D,N} ×
{F, B, C} × {W}. The first letter stands for the branching mode of the automaton (de-

terministic or nondeterministic); the second letter stands for the acceptance-condition

type (finite, Büchi, or co-Büchi). The third letter indicates that the automaton runs on

words.

For two automata A and A′, we say that A and A′ are equivalent if L(A) = L(A′).
For a class γ of automata, we say that an automaton A is γ realizable iff A has an

equivalent automaton in the class γ. Similarly, a language L is γ realizable iff there

is an automaton A in the class γ whose language is L. In the case of finite words,

NFWs can be determinized, thus all NFWs are DFW realizable. In the case of infi-

nite words, different classes of automata have different expressive power. In particular,

while NBWs recognize all ω-regular language [17], DBWs are strictly less expressive

than NBW, and so are DCW [14]. In fact, a language L is DBW-realizable iff comp(L)
is DCW-realizable. Indeed, by viewing a DBW as a DCW, we get an automaton for the

complementing language, and vice versa. The expressiveness superiority of the nonde-

terministic model with respect to the deterministic one does not apply to the co-Büchi

acceptance condition. There, NCWs can be determinized2, thus all NCWs are DCW

realizable.

2 When applied to universal Büchi automata, the translation in [20], of alternating Büchi au-

tomata into NBW, results in DBW. By dualizing it, one gets a translation of NCW to DCW.
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2.2 Limits of Languages of Finite Words

Studying the expressive power of DBWs, Landweber characterizes languages L ⊆ Σω

that are DBW-realizable as those for which there is a regular language R ⊆ Σ∗ such

that w ∈ L iff w has infinitely many prefixes in R. Thus, each language of finite words

induces a language of infinite words. In Definition 1 below, we introduce two additional

ways to induce a language of infinite words from a language on finite words. Given a

word w = σ1, σ2, · · · ∈ Σω , we denote the i-th letter of w by w[i], the sub-word

σi, · · · , σj by w[i, j] and the sub-word σi, · · · , σj−1 by w[i, j).

Definition 1. Consider a language R ⊆ Σ∗. We define three languages of infinite

words induced by R.

1. [limit] lim(R) ⊆ Σω is the set of all words that have infinitely many prefixes in R.

I.e., lim(R) = {w | w[1, i] ∈ R for infinitely many i’s} [14].

2. [co-limit] co-lim(R) ⊆ Σω is the set of all words that have only finitely many

prefixes in R. I.e., co-lim(R) = {w | w[1, i] ∈ R for finitely many i’s}.

3. [persistent limit] plim(R) ⊆ Σω is the set of all words that have only finitely many

prefixes not in R. I.e., plim(R) = {w | w[1, i] ∈ R for almost all i’s}.

For example, forR = (a+b)∗b, the language lim(R) consists of all words that have

infinitely many b’s, co-lim(R) is the language of words that have finitely many b’s, and

plim(R) is the language of words that have finitely many a’s. For an NFW A, we use

lim(A), co-lim(A), and plim(A), to denote lim(L(A)), co-lim(L(A)), and plim(L(A)),
respectively.

The three limit operators are dual in the following sense:

Lemma 1. For everyR ⊆ Σ∗, we have comp(lim(R)) = co-lim(R) = plim(comp(R)).

Recall that a language L ⊆ Σω is DBW realizable iff L = lim(R) for some regular

R ⊆ Σ∗ [14]. By Lemma 1 and the duality between DBW and DCW, it follows that

L is DCW realizable iff L = co-lim(R) for some regular R ⊆ Σ∗, or, equivalently,

L = plim(R) for some regularR ⊆ Σ∗. A direct way to prove the above expressiveness

results is to consider the deterministic Büchi or co-Büchi automaton A for L. Let Afin

be A when viewed as a DFW, and let Ãfin be Afin with a dualized accepting set. In

case A is a DBW, then L(A) = lim(Afin). Similarly, if A is a DCW, then L(A) =

co-lim(Afin) = plim(Ãfin). Thus, in the deterministic setting, the transitions among

the automata for L and R involve no blow up, and are even done on top of the same

structure. Our goal in this paper is to study the blow up between the automata in the

nondeterministic setting. In order to avoid lower bounds that are inherited directly from

the exponential blow up of complementation, we study both co-limit and persistent-

limit. Note that only the former has the flavor of complementation.

Finally, note that for all of the three limit operators, different regular languages may

induce the same limit language. For example, if L is the language of all finite words of

length at least 7, L′ the language of all finite words of length at least 20, and L′′ the

language of all finite words of even length, then L 6= L′ and yet lim(L) = lim(L′) =
plim(L) = plim(L′) = Σω , and co-lim(L) = co-lim(L′) = ∅. Also, even though

L′′ 6= comp(L), we still have that co-lim(L) = plim(L′′).
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3 Succinctness of NFW with respect to Büchi and co-

Büchi Automata

In this section we study the succinctness of the NFW for R with respect to the Büchi

and co-Büchi automata that recognize the ω-regular languages induced by applying

each of the three limit operators to R. We start with the case the Büchi and co-Büchi

automata are deterministic, and show that then, the succinctness of the nondeterministic

model in the case of finite words carries over to the limit setting. We then proceed to

the case the Büchi and co-Büchi automata are nondeterministic and show that there, the

situation is more involved. First, the exponential blow up in NFW complementation is

carried over to an exponential blow up in a translation of co-limit NFW to an NCW.

More surprising are the results for limit and persistent limit NFW: by analyzing the

structure of an NFW, we are able to translate an NFW to an NBW for its limit with only

a cubic blow up. On the other hand, while persistent limit involves no complementation,

it enables a universal reference to the prefixes of the input word. Consequently, we are

able to prove that the exponential succinctness of alternating automata on finite words

with respect to NFW carries over to an exponential lower bound on the translation of

an NFW to a NCW for its persistent limit.

We start with DBW and DCW. Recall that limit is associated with DBW whereas

co-limit and persistent limit are associated with DCW. We are still able to describe a

bound for the translation to both DBW and DCW.

Theorem 1. [lim NFW → DBW, plim NFW → DCW, clim NFW → DCW]

– For every n ≥ 1, there is Ln ⊆ Σω such that there is an NFW A with O(n) states

such that lim(A) = plim(A) = Ln, but Ln cannot be recognized by a DBW or a

DCW with less than 2n states.

– For every n ≥ 1, there is Ln ⊆ Σω such that there is an NFW A with O(n) states

such that co-lim(A) = Ln, but Ln cannot be recognized by a DBW or a DCW with

less than 2n states.

Proof: We start with limit and persistent limit. For n ≥ 1, let Rn ⊆ Σ∗ be such that

an NFW for Rn has O(n) states, whereas a DFW for it must have at least 2n states. By

[18], suchRn exist. Let # be a letter not inΣ, and let Ln = Rn ·#
ω . In the full version,

we show that there is an NFW A with O(n) states such that lim(A) = plim(A) = Ln,

but a DBW or a DCW for Ln must have at least 2n states.

We now turn to co-limit. For n ≥ 1, let Rn ⊆ Σ∗ be such that an NFW for Rn has

O(n) states whereas a DFW for comp(Rn) must have at least 2n states. By [18], such

Rn exist. In the full version, we show that there is an NFW A with O(n) states such

that co-lim(A) = Ln, but there is no DBW or DCW for Ln with less than 2n states.

The results proved in Theorem 1 are not surprising, as they meet our expectation

from the finite-word case. We now turn to study the succinctness of NFWs with respect

to NBWs and NCWs. Here, we can no longer apply the known succinctness of NFWs.

We first show that in the case of the limit operator, it is possible to translate an NFW

A to an NBW A′ of cubic size such that lim(A) = L(A′). Thus, while the limit operator

enables each prefix of the run to be accepted by following different nondeterministic

choices, this flexibility does not lead to an exponential succinctness.

7



We first need some notations. Given an NFW A = 〈Σ,Q, δ,Q0, α〉 and two sets of

states P, S ⊆ Q, we denote by LP,S the language of A with initial set P and accepting

set S. Formally, LP,S is the language accepted by the NFW 〈Σ,Q, δ, P, S〉. If S or P

are singletons we omit the curly braces; so instead of L{p},S we simply write Lp,S , etc.

Theorem 2. For every NFW A = 〈Σ,Q, δ,Q0, α〉,

lim(A) =
⋃

p∈Q

LQ0,p · (Lp,p ∩ Lp,α)
ω.

Proof: Assume first that w can be partitioned into sub-words w = u0 ·u1 ·u2 · · · such

that for some p ∈ Q, we have u0 ∈ LQ0,p, and for every i ≥ 1, the word ui is in

Lp,p ∩ Lp,α. It follows that there is a run r0 of A on u0 that starts in Q0 and ends in

p, and that for every i ≥ 1 there are runs ri and r′i of A on ui such that ri starts in p

and ends in p while r′i starts in p and ends in some state in α. Then, for every i ≥ 1 the

run r0 · r1 · · · ri−1 · r
′
i is an accepting run of A on the prefix u0 · u1 · · ·ui of w, thus

w ∈ lim(A).
For the other direction, assume that w ∈ lim(A). For technical simplicity assume

first that A has a single initial state q0. We construct a tree T in which each node is

labeled by a state in Q. For a node x of T , let |x| denote the level of x in the tree, and

let state(x) be the state with which x is labeled. The tree T embodies all the possible

accepting runs of A on prefixes of w. The root of T is labeled by q0. Consider a node

x in the tree. All the successors of x have different labels, and y is a successor of x iff

|y| = |x|+ 1, and there is an accepting run r of A on a prefix of w of length at least |y|
such that r(|x|) = state(x) and r(|y|) = state(y). Observe that every node in the tree

has at most |Q| successors and that the tree is infinite since A accepts infinitely many

prefixes of w. Also note that every node in the tree is part of at least one accepting run

of A on some prefix of w.

By König’s Lemma the tree has an infinite path π. We associate with every node πi
on this path two nodes yi and zi such that yi is some node labeled by an accepting state

that is reachable in zero or more steps from πi, and zi is the node on π that is at the same

level as yi. Since Q is finite, there are two states p ∈ Q, q ∈ α such that state(yj) = q

and state(zj) = p for infinitely many indices j. By taking a sub-sequence of these

indices we can get an infinite set of indices 0 < j0 < j1 < . . . such that for every

k ≥ 0 not only state(yjk) = q and state(zjk) = p, but also |zjk | < |πjk+1
|. It follows

that w[0, |zj0 |) is a word in Lq0,p. Also, for every k ≥ 0 the tree has a path from zjk to

πjk+1
and from there to yjk+1

implying that w[|zjk |, |yjk+1
|) is in Lp,α. Similarly, the

tree has a path from zjk to zjk+1
implying that w[|zjk |, |zjk+1

|) is in Lp,p. Recalling that

|yjk+1
| = |zjk+1

| we obtain that w ∈ Lq0,p · (Lp,p ∩ Lp,α)
ω .

WhenQ0 is not a singleton, we may have instead of a single tree T , a forest of trees,

with one tree for each state in Q0. Since Q0 is finite, one of the trees in the forest is

infinite, and the proof proceeds with that tree.

Given A = 〈Σ,Q, δ,Q0, α〉 with n states, constructing an NBW accepting
⋃

p∈Q LQ0,p·
(Lp,p ∩ Lp,α)

ω , involves n intersections of NFWs, n applications of the ω operation to

an NFW, n concatenations of an NFW to an NBW, and finally, obtaining the union

of the resulting n NBWs. Accordingly, the characterization in Theorem 2 implies the

following upper bound.
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Corollary 1. [lim NFW → NBW] Given an NFW A with n states, there is an NBW

A′ with O(n3) states such that L(A′) = lim(A).

We now turn to study co-limit and persistent limit. In the first case, the exponential

blow up in NFW complementation and the complementing nature of the co-limit op-

erator hint that an exponential lower bound is likely to exist also for the translation of

NFW to an NCW or an NBW for its co-limit. In the case of persistent limit, however,

we expect the translation to be similar to the one for limit: the NFW enables the pre-

fixes to be accepted each by following a different nondeterministic choice, and, as with

the limit operator, an NCW that is polynomially larger should be able to merge these

choices into a single nondeterministic choice. This expectation is refuted: the persis-

tence of the plim operator adds to the NFW the power of universal branching, which

makes it exponentially more succinct.

Theorem 3. [co-lim NFW → NCW / NBW, plim NFW → NCW/ NBW] For every

n ≥ 1, there is a language Ln ∈ Σω such that there are NFW A and A′, both with

O(n) states, such that plim(A) = co-lim(A′) = Ln, but Ln cannot be accepted by an

NCW or an NBW with less than 2n states.

Proof: Let Σ = {0, 1}. Every word w over Σ can be viewed as a word in (Σn)ω ,

that is, as an infinite sequence of n-bit vectors. The language Ln is the language of

sequences that are almost everywhere identical. Formally, Ln = {w | there is u ∈
(Σn)∗ and v ∈ Σn such that w = uvω}.

In the full version, we describe an NFW A with O(n) states such that plim(A) =
Ln. On the other hand, by [23], the language Ln cannot be accepted by a nondetermin-

istic Streett automaton with less than 2n states. Since NBWs and NCWs are a special

case of nondeterministic Streett automata, we are done.

4 Succinctness Among the Different Limit Operators

In the previous section, we related NFWs with Büchi and co-Büchi automata. In this

section we study the blow ups involved in translating an NFW that induces a language

of infinite words by a limit operator (lim, co-lim, or plim) to an NFW that induces the

same language by a different limit operator.

We first show that the exponential blow up in NFW complementation can be lifted

to an exponential blow up in the translation of a lim or a plim NFW to a co-lim NFW.

Theorem 4. [lim NFW → co-lim NFW, plim NFW → co-lim NFW] For every n ≥
1, there is Ln ⊆ Σω such that there is an NFW A with O(n) states such that lim(A) =
plim(A) = Ln, but an NFW A′ such that co-lim(A′) = Ln, must have at least 2n

states.

Proof: For n ≥ 1, letRn ⊆ Σ∗ be such that an NFW forRn hasO(n) states, whereas

an NFW for comp(Rn) must have at least 2n states. By [18], such Rn exist. We can

construct from an NFW A for Rn, an NFW A′ with one extra state for Rn ·#+. Then,

lim(A′) = plim(A′) = Rn ·#ω . In the full version, we prove that there is no NFW A
with less than 2n states, such that co-lim(A) = Rn ·#ω .
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We note that similar arguments can be used to show that NCWs (and thus also

NBWs, as NCWs are linearly translatable to NBWs) are exponentially more succinct

than co-lim NFWs. To see this, note that the NCW obtained from the NFW A′ for

Rn ·#+ by letting all states but the #-sink to be in α, accepts Rn ·#ω .

Theorem 5. [co-lim NFW → lim NFW, plim NFW → lim NFW] For every n ≥ 1,

there is a language Ln ⊆ Σω such that there are NFWs A with O(n) states, and A′

with O(n2) states, such that co-lim(A) = plim(A′) = Ln but an NFW A′′ such that

lim(A′′) = Ln must have at least 2n states.

Proof: Consider the language Ln ⊆ {0, 1}ω of all words w such that w = uuz, with

|u| = n. In the full version, we prove that an NFW A′′ such that lim(A′′) = Ln must

remember subsets of size n, and thus must have at least 2n states.

In order to construct small NFW for the co-limit and persistent limit operators, we

observe that a word w is in Ln iff
∧n

i=1(w[i] = w[n + i]). In the case of co-limit,

we can check that only finitely many (in fact, 0) prefixes h of an input word are such

that h[i] 6= h[i + n] for some 1 ≤ i ≤ n. This is done by letting A guess a position

1 ≤ i ≤ n, remember h[i], and accept a word iff the letter that comes n positions after

it (that is, in h[i + n]) is different. It is easy to see that A requires only O(n) states. A

word w has finitely many prefixes in L(A) iff w ∈ Ln. Hence, co-lim(A′) = Ln.

The case of persistent limit is much harder, as we cannot use the implicit comple-

mentation used in the co-limit case. Instead, we use the universal nature of persistence.

We define the NFW A′ as a union of n gadgets A′
1, . . . ,A

′
n. The gadget A′

i is respon-

sible for checking that w[i] = w[n + i]. In order to make sure that the conjunction on

all 1 ≤ i ≤ n is satisfied, we further limit A′
i to accept only words of length i mod n.

Hence, A′
i accepts a word u ∈ Σ∗ iff u[i] = u[n + i] ∧ |u| = i mod n. Consequently,

if w[i] 6= w[n + i], then all the prefixes of w of length i mod n are rejected by A′. On

the other hand, if only a finite number of prefixes of an infinite word are not accepted

by A′, then for all 1 ≤ i ≤ n, only a finite number of prefixes of length i mod n are

not accepted by A′
i. Thus, a word w is in plim(A′) iff for every 1 ≤ i ≤ n, almost all

the prefixes of w of length i mod n are accepted by A′
i. Hence, w ∈ plim(A′) iff for all

1 ≤ i ≤ n we have that w[i] = w[n + i], and we are done. Since each of the gadgets

has O(n) states, and A′ needs n gadgets, it has O(n2) states.

The notion of typeness for automata was introduced in [8] in the context of DBW.

It is shown there that if a deterministic Rabin automaton A recognizes a language that

is DBW realizable, then A has an equivalent DBW on the same structure. Typeness in

general was studied in [9]. For example, it is shown in [9] that an NBW that is NCW

realizable need not have an NCW on the same structure. Here, we study typeness for

NFWs to which the limit operators are applied. For two limit operators β and γ (lim,

co-lim, or plim) we say that an NFW A = 〈Σ,Q, δ,Q0, α〉 is (β, γ)-type if there is

α′ ⊆ Q such that the NFW A′ = 〈Σ,Q, δ,Q0, α
′〉 satisfies γ(A′) = β(A). Thus,

we can apply the limit operator γ to an NFW obtained by only modifying the set of

accepting states of A, and get the same language obtained by applying to A the limit

operator β. Finally, we say that β is γ-type if all NFWs A are (β, γ)-type.

The exponential lower bounds in Theorems 4 and 5 imply that lim and plim are not

co-lim-type, and that co-lim and plim are not lim-type. Two lower bounds that we miss
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are from co-lim and lim to plim. Below we show that polynomial translations to a plim

NFW, even if exist, cannot be done in general on the same structure.

Theorem 6. lim and co-lim are not plim-type.

Proof: We start with limit. Consider the NFW A in Figure 2. Note that lim(A) =
a+bω . As such, abω ∈ lim(A). It is not hard to see that if we change the set of accepting

states in such a way that only a finite number of prefixes of abω are rejected, then all

prefixes of the word aω are accepted. Hence, no NFW A′ with plim(A′) = a+bω can

be defined on the same structure as A.

a

b

a

a, b

bb a

a

Fig. 2. An NFW A with lim(A) = a+bω and co-lim(A) = Σω \ a+bω .

We now turn to co-limit. Consider again the NFW A. Note that co-lim(A) = Σω \
a+bω . As such, bω ∈ co-lim(A). Thus, an NFW A′ with plim(A′) = co-lim(A) should

reject only finitely many prefixes of bω . The only way for A′ with the same structure

as A to do so, is to let the sink be accepting. Then, however, all but two prefixes of the

word aabω are also accepted, contradicting the fact that aabω 6∈ co-lim(A).

5 Succinctness in Safety, co-Safety, and Bounded Prop-

erties

The study of limit operators checks behaviors in the limit. In this section we restrict

attention to properties that refer to a bounded prefix of the computation. We show that

even though such properties can be recognized by automata of very restricted type,

almost all the lower bounds that hold in the general case, hold also in this restricted case.

We consider safety, co-safety, and bounded properties. We start with some definitions.

Let L be a language of infinite words over Σ. A finite word x ∈ Σ∗ is a bad prefix for

L if for all infinite words y ∈ Σω , the concatenation x · y of x and y is not in L. Thus,

a bad prefix for L is a finite word that cannot be extended into an infinite word in L. In

a similar fashion, a finite word x ∈ Σ∗ is a good prefix for L, if for all infinite words

y ∈ Σω , the concatenation x · y of x and y is in L.

Definition 2. A language L is

– a safety language if every word not in L has a bad prefix,

– a co-safety language if every word in L has a good prefix,

– a bounded language if it is both safety and co-safety.

Note that a language L is bounded iff every wordw ∈ Σω has either a good or a bad

prefix [11]. Accordingly, evaluation of bounded properties can be done by traversing a
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bounded prefix of the computation, making bounded properties suitable for bounded

model checking [6].

From an automata-theoretic point of view [24, 11], safety properties correspond to

looping automata (Büchi automata where all states are accepting), co-safety properties

to co-looping automata (Büchi automata with a single accepting state that is a loop), and

bounded properties to cycle-free automata (automata whose transition function contains

no cycle, except possibly a self loop in an accepting sink). Accordingly, we expect the

differences between the limit operators to vanish.

Examining the results in the previous sections, however, we see that most of the suc-

cinctness results established for the general case were actually proven with a bounded

language, making them valid also for the bounded fragment. An exception is Theo-

rem 3, which makes a heavy use of the unbounded nature of the language Ln. Never-

theless, the language we have used in Theorem 5 is bounded and cannot be recognized

by a sub-exponential NCW or NBW. Hence, we also have exponential lower bounds for

the co-lim NFW → NCW/NBW and plim NFW → NCW/NBW transformations in the

bounded case.

In some cases, however, safetyness (and hence also boundedness) makes things

simpler. We start with the plim-typeness of lim NFWs:

Lemma 2. When restricted to safety properties, lim is plim-type.

Proof: Consider an NFW A = 〈Σ,Q, δ,Q0, α〉 such that lim(A) is a safety language.

We prove that there is A′ = 〈Σ,Q, δ,Q0, α
′〉 such that plim(A′) = lim(A).

By Theorem 2, we have that lim(A) =
⋃

p∈Q LQ0,p · (Lp,p∩Lp,α)
ω . Let S ⊆ Q be

the set of states in A that are not reachable from Q0 or from which no state p such that

Lp,p∩Lp,α 6= ∅ is reachable. The NFW A′ is obtained from A by defining the accepting

set to be α′ = Q \ S. In the full version, we prove that lim(A) = lim(A′) = plim(A′).

Note that, in the construction above, removing all the states in S from A′ does not

change the language lim(A′), and results in an NFW in which all the states are accept-

ing. It is not hard to prove that if A is an NFW in which all states are accepting, then

it is always the case that lim(A) = L(Ainf ), where Ainf is A when viewed as a Büchi

automaton. Thus, in the case of safety properties, the above simple linear construction

gives a transformation from lim NFWs to NBWs, and the cubic construction in Sec-

tion 3 can be circumvented. In addition, if A is a looping NBW, then it is always the

case that L(A) = lim(Afin), where Afin is A when viewed as an NFW. Hence, we have

the following.

Theorem 7. When restricted to safety properties, the transformations from an NBW to

a limit NFW and from a limit NFW to an NBW are linear.

It is not hard to see that co-lim is not plim type also in the context of bounded

properties. Indeed, the non-typeness there has to do with the non-typeness of NFW

complementation (that is, the fact that NFW complementation cannot always be done

on top of the same structure). More difficult is to show that lim is not plim type for

co-safety properties:

Lemma 3. lim is not plim-type, even for co-safety properties.
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Proof: Consider the NFW A in Figure 3. Note that lim(A) = Σω \{aω, bω}. Observe

that there is no way to define the accepting states in such a way that only a finite number

of prefixes of abω are rejected, while maintaining the requirement that infinitely many

prefixes of aω and bω are rejected.

a

b

b

a

a, ba

b a, b

Fig. 3. An NFW A with lim(A) = Σω \ {aω, bω}.

6 Discussion

In Figure 4, we summarize most of our results. All the lower bounds in the table, with

the exception of plim NFW → co-lim NFW, are tight.

lim NFW co-lim NFW plim NFW

DBW 2Ω(n) [Theorem 1]

DCW 2Ω(n) [Theorem 1]

NBW O(n3) [Corollary 1] 2Ω(n) [Theorem 3]

NCW ? 2Ω(n) [Theorem 3]

lim NFW - 2Ω(n) [Theorem 5] 2Ω(
√
n) [Theorem 5]

co-lim NFW 2Ω(n) Theorem 4 - 2Ω(n) [Theorem 4]

plim ? (not type [Theorem 6], ? (not type [Theorem 6]) -

type for safety [Lemma 2])

Fig. 4. Main Results Summary.

Below we discuss the cases that were left open and our efforts to solve them. In

addition to the results described in Figure 4, Theorem 4 describes an exponential lower

bound for the translation of NBW and NCW to co-lim NFW. A translation of an NBW

to a lim NFW was left open (the considerations for the NCW to plim NFW case are sim-

ilar). Recall that an NBW A can be transformed to an NFW A′ with L(A) = lim(A′)
iff L(A) can be accepted by a DBW. As demonstrated in Section 1, even in cases where

the transformation is possible, the NFW A′ may not be defined on the same structure

as A. This follows from the fact that different prefixes of an infinite word may follow

different accepting runs, and there is no guarantee that these runs can be merged into

a single infinite accepting run. Since a deterministic automaton has a single run on ev-

ery input, it does not suffer from this problem, and indeed the transformation from a

DBW to a lim DFW can be done on the same structure. This suggests an exponential

upper bound for the NBW to lim NFW transformation, and also hints that an exponen-

tial lower bound may follow from the exponential lower bound on determinization. On

the other hand, similar considerations apply to the reverse transformation — of a lim

NFW to an NBW, and there, as we have seen in Section 3, we are able to avoid deter-

minization and have a polynomial transformation. Another related observation is that
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an exponential lower bound, if exists, cannot follow easily from the exponential lower

bound on NFW determinization. Indeed, as we have noted in Section 5, the transfor-

mation from an NBW to a lim NFW is linear for safety languages (and hence also for

ω-regular languages that are based on regular languages).

It follows that the most promising direction for obtaining an exponential lower

bound in the NBW to lim NFW case is one that makes use of the combinatorial prop-

erties of the Büchi condition and relies on the 2O(n logn) lower bound for NBW deter-

minization. A natural candidate for a family of languages with which a lower bound can

be proved is therefore the family Ln defined by Michel in the context of NBW comple-

mentation and later used by Löding in the context of NBW determinization [19, 15]. As

we show, however, in the full version, even though there is no DFW A with less than

2Ω(n logn) states such that lim(A) = Ln, there is an NFW A with only O(n2) states,

such that lim(A) = Ln. The NFW A belongs to a special class of NFWs we call con-

tinuous NFWs. The main property of continuous NFW is that the language they accept

as NBWs coincides with their limit. I.e., for a continuous NFW, the different accepting

runs over prefixes of an infinite word do merge into an accepting run on the infinite

word. Formally, we have the following. Consider an NFW A = 〈Σ,Q, δ,Q0, α〉. For

sets P, S ⊆ Q, we use L¬α
P,S to denotes the language of all words that A can read along

a run disjoint from α that start in P and ends in S (the runs may start and/or end in a

state in α, but states of α are not allowed in the middle of the run).

Definition 3. An NFW A = 〈Σ,Q, δ,Q0, α〉 is continuous if the languages lim(L¬α
Q0,α

)
and lim(L¬α

α,α) are both empty.

In the full version, we show that all DFWs are continuous and that if A is a contin-

uous NFW, then L(A) = lim(Ainf ), when Ainf is A viewed as an NBW. As detailed

in the full version, the proof makes use of the characterization described for limit lan-

guages in Theorem 2 — the characterization that was the key to the polynomial lim

NFW to NBW transformation. Our conjecture is that a polynomial translation from

NBW to lim NFW is possible also in the general case.

We now discuss another problem that was left open: the transformation from a lim

NFW to a plim NFW. Note that a “lim to plim” transformation is possible only for lan-

guages that are recognizable by both DBW and DCW, and hence are also recognizable

by a deterministic weak automaton [4] (a similar challenge is the “lim to NCW” trans-

formation, which was also left open). Our initial conjecture was that lim is plim type.

The examples in Theorem 6 and Lemma 3 have made us realize that the fact a lim NFW

does not have to eventually accept all prefixes enables it to classify states that are the

only destination of some prefixes as rejecting ones. As demonstrated in the examples,

this enables the NFW to use these states in cycles that are traversed along runs of words

that are not in the limit. On the one hand, this points to an advantage of lim NFWs

over plim NFWs. Note that a dual advantage enabled us to prove an exponential lower

bound in the reverse “plim to lim” transformation. On the other hand, this advantage of

lim seems to help it only with a bounded number of prefixes. Technically, it may be (and

this is the case in both examples), that by unwinding the graph of the NFW some fixed

number of times, we get a new NFW that is plim type. Thus, here too, our conjecture is

that a polynomial transformation exists.
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15. C. Löding. Optimal bounds for the transformation of omega-automata. In Proc. 19th

FSTTCS, LNCS 1738, pages 97–109, 1999.
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