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ABSTRACT

The complementation problem for nondeterministic word automata has numerous
applications in formal verification. In particular, the language-containment problem, to
which many verification problems is reduced, involves complementation. For automata
on finite words, which correspond to safety properties, complementation involves deter-
minization. The 2n blow-up that is caused by the subset construction is justified by a
tight lower bound. For Büchi automata on infinite words, which are required for the
modeling of liveness properties, optimal complementation constructions are quite com-
plicated, as the subset construction is not sufficient. From a theoretical point of view,

the problem is considered solved since 1988, when Safra came up with a determinization
construction for Büchi automata, leading to a 2O(nlogn) complementation construction,
and Michel came up with a matching lower bound. A careful analysis, however, of the
exact blow-up in Safra’s and Michel’s bounds reveals an exponential gap in the constants
hiding in the O() notations: while the upper bound on the number of states in Safra’s
complementary automaton is n2n, Michel’s lower bound involves only an n! blow up,
which is roughly (n/e)n . The exponential gap exists also in more recent complemen-
tation constructions. In particular, the upper bound on the number of states in the
complementation construction of Kupferman and Vardi, which avoids determinization,
is (6n)n . This is in contrast with the case of automata on finite words, where the upper
and lower bounds coincides. In this work we describe an improved complementation con-
struction for nondeterministic Büchi automata and analyze its complexity. We show that
the new construction results in an automaton with at most (0.96n)n states. While this
leaves the problem about the exact blow up open, the gap is now exponentially smaller.
From a practical point of view, our solution enjoys the simplicity of the construction of
Kupferman and Vardi, and results in much smaller automata.
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1. Introduction

The complementation problem for nondeterministic word automata has numer-

ous applications in formal verification. In order to check that the language of an

automaton A1 is contained in the language of a second automaton A2, one checks

that the intersection of A1 with an automaton that complements A2 is empty.

Many problems in verification and design are reduced to language containment. In

model checking, the automaton A1 corresponds to the system, and the automa-

ton A2 corresponds to the property we wish to verify [13, 23]. While it is easy to

complement properties given in terms of formulas in temporal logic, complementa-

tion of properties given in terms of automata is not simple. Indeed, a word w is

rejected by a nondeterministic automaton A if all the runs of A on w rejects the

word. Thus, the complementary automaton has to consider all possible runs, and

complementation has the flavor of determinization. For automata on finite words,

determinization, and hence also complementation, is done via the subset construc-

tion [17]. Accordingly, if we start with a nondeterministic automaton with n states,

the complementary automaton may have 2n states. The exponential blow-up that

is caused by the subset construction is justified by a tight lower bound: it is proved

in [19] that for every n > 1, there exists a language Ln that is recognized by a

nondeterministic automaton with n states, yet a nondeterministic automaton for

the complement of Ln has at least 2n states (see also [2], for a similar result, in

which the languages Ln are over an alphabet of size 4).

For Büchi automata on infinite words, which are required for the modeling of

liveness properties, optimal complementation constructions are quite complicated,

as the subset construction is not sufficient. Due to the lack of a simple comple-

mentation construction, the user is typically required to specify the property by

a deterministic Büchi automaton [13] (it is easy to complement a deterministic

Büchi automaton), or to supply the automaton for the negation of the property [9].

Similarly, specification formalisms like ETL [24], which have automata within the

logic, involve complementation of automata, and the difficulty of complementing

Büchi automata is an obstacle to practical use [1]. In fact, even when the prop-

erties are specified in LTL, complementation is useful: the translators from LTL

into automata have reached a remarkable level of sophistication (c.f., [4, 21, 5, 6]).

Even though complementation of the automata is not explicitly required, the trans-

lations are so involved that it is useful to checks their correctness, which involves

complementationa. Complementation is interesting in practice also because it en-

ables refinement and optimization techniques that are based on language contain-

ment rather than simulationb. Thus, an effective algorithm for the complementation

of Büchi automata would be of significant practical value.

aFor an LTL formula ψ, one typically checks that both the intersection of Aψ with A
¬ψ and the

intersection of their complementary automata are empty. As shown in [7], the complementation
construction in [12] is feasible for automata obtained from LTL formulas.

bSince complementation of Büchi automata is complicated, current research is focused on ways
in which fair simulation can approximate language containment [8], and ways in which the comple-
mentation construction can be circumvented by manually bridging the gap between fair simulation
and language containment [10].
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Efforts to develop simple complementation constructions for nondeterministic

automata started early in the 60s, motivated by decision problems of second-

order logics. Büchi suggested a complementation construction for nondeterministic

Büchi automata that involved a complicated combinatorial argument and a doubly-

exponential blow-up in the state space [3]. Thus, complementing an automaton

with n states resulted in an automaton with 22O(n)

states. In [20], Sistla et al. sug-

gested an improved construction, with only 2O(n2) states, which is still, however,

not optimal. Only in [18], Safra introduced a determinization construction, which

also enabled a 2O(n log n) complementation construction, matching a lower bound

described by Michel [15]. Thus, from a theoretical point of view, the problem is

considered solved since 1988. A careful analysis, however, of the exact blow-up in

Safra’s and Michel’s bounds reveals an exponential gap in the constants hiding in

the O() notations: while the upper bound on the number of states in the comple-

mentary automaton constructed by Safra is n2n, Michel’s lower bound involves only

an n! blow up, which is roughly (n/e)n. The exponential gap exists also in more re-

cent complementation constructions. In particular, the upper bound on the number

of states in the complementation construction in [12], which avoids determinization,

is (6n)n. A similar bound was given in [14], which uses the analysis in [12]. This is

in contrast with the case of automata on finite words, where, as mentioned above,

the upper and lower bounds coincide.

In this work we describe an improved complementation construction for nonde-

terministic Büchi automata and analyze its complexity. The construction is based

on new observations on runs of nondeterministic Büchi automata: a run of a nonde-

terministic Büchi automaton A is accepting if it visits the set α of accepting states

infinitely often. Accordingly, A rejects a word w if every run of A visits α only

finitely often. The runs of A can be arranged in a dag (directed acyclic graph). It

is shown in [12] that A rejects w iff it is possible to label the vertices of the dag by

ranks in 0, . . . , 2n so that some local conditions on the ranks of vertices and their

successors are met. Intuitively, as in the progress measure of [11], the ranks mea-

sure the distance to a position from which no states in α are visited. We show here

that the ranks that label vertices of the same level in the dag have an additional

property: starting from some limit level llim ≥ 0, if a vertex in level l ≥ llim is

labeled by an odd rank j, then all the odd ranks in 1, . . . , j label vertices in level l.

It follows that the complementary automaton, which considers all the possible level

rankings (i.e., ranks that vertices of some level in the dag are labeled with), may

restrict attention to a special class of level rankings. Using some estimates on the

asymptotics of Stirling numbers of the second kind we are able to bound the size of

this class and describe a complementation construction with only (3cn)n states, for

c < 0.76. We then tighten the analysis further and show that our complementary

automaton has at most (0.96n)n states. While this leaves the problem about the

exact blow up that complementation involves open, the gap is now exponentially

smaller: instead of an upper bound of (6n)n states, we now have at most (0.96n)n

states. From a practical point of view, our solution enjoys the simplicity of [12],

and results in much smaller automata. Moreover, the optimization constructions
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described in [7] for the construction of [12] can be applied also in our new construc-

tion, leading in practice to further reduction of the state space. Finally, for the

application of the complementation construction to language containment, we show

how the complementing automaton can be optimized further – an optimization that

depends on both arguments of the complementation problem.

2. Preliminaries

Given an alphabet Σ, an infinite word over Σ is an infinite sequence w = σ0·σ1 · · ·
of letters in Σ. An automaton on infinite words is A = 〈Σ, Q,Qin, ρ, α〉, where Σ

is the input alphabet, Q is a finite set of states, ρ : Q × Σ → 2Q is a transition

function, Qin ⊆ Q is a set of initial states, and α is an acceptance condition (a

condition that defines a subset of Qω). Intuitively, ρ(q, σ) is the set of states that

A can move into when it is in state q and it reads the letter σ. Since the transition

function of A may specify many possible transitions for each state and letter, A is

in general not deterministic. If |Qin| = 1 and ρ is such that for every q ∈ Q and

σ ∈ Σ, we have that |ρ(q, σ)| = 1, then A is a deterministic automaton.

A run of A on w is a function r : IN → Q where r(0) ∈ Qin (i.e., the run starts

in an initial state) and for every l ≥ 0, we have r(l + 1) ∈ ρ(r(l), σl) (i.e., the run

obeys the transition function). In automata over finite words, acceptance is defined

according to the last state visited by the run. When the words are infinite, there is

no “last state”, and acceptance is defined according to the set Inf (r) of states that

r visits infinitely often, i.e.,

Inf (r) = {q ∈ Q : for infinitely many l ∈ IN,we have r(l) = q}.

As Q is finite, it is guaranteed that Inf (r) 6= ∅. The way we refer to Inf (r) depends

on the acceptance condition of A. In Büchi automata, α ⊆ Q, and r is accepting

iff Inf (r) ∩ α 6= ∅. Dually, in co-Büchi automata, α ⊆ Q, and r is accepting iff

Inf (r) ∩ α = ∅.
Since A is not necessarily deterministic, it may have many runs on w. In con-

trast, a deterministic automaton has a single run on w. There are two dual ways

in which we can refer to the many runs. When A is an existential automaton (or

simply a nondeterministic automaton, as we shall call it in the sequel), it accepts

an input word w iff there exists an accepting run of A on w. When A is a universal

automaton, it accepts an input word w iff all the runs of A on w are accepting.

We use three-letter acronyms to describe types of automata. The first letter

describes the transition structure and is one of “D” (deterministic), “N” (non-

deterministic), and “U” (universal). The second letter describes the acceptance

condition; in this paper we only consider “B” (Büchi) and “C” (co-Büchi). The

third letter describes the objects on which the automata run; in this paper we are

only concerned with “W” (infinite words). Thus, for example, NBW designates a

nondeterministic Büchi word automaton and UCW designates a universal co-Büchi

word automaton.

In [12], we suggested the following approach for NBW complementation: in or-

der to complement an NBW, first dualize the transition function and the acceptance

4



condition, and then translate the resulting UCW automaton back to a nondeter-

ministic one. By [16], the dual automaton accepts the complementary language,

and so does the nondeterministic automaton we end up with. Thus, rather than

determinization, complementation is based on a translation of universal automata

to nondeterministic ones, which turned out to be much simpler.

Consider a UCW A = 〈Σ, Q,Qin, δ, α〉. The runs of A on a word w = σ0 · σ1 · · ·
can be arranged in an infinite dag (directed acyclic graph) G = 〈V,E〉, where

• V ⊆ Q× IN is such that 〈q, l〉 ∈ V iff some run r of A on w has r(l) = q. For

example, the first level of G contains the vertices Qin × {0}.

• E ⊆ ⋃

l≥0(Q×{l})× (Q×{l+1}) is such that E(〈q, l〉, 〈q′, l+1〉) iff 〈q, l〉 ∈ V

and q′ ∈ δ(q, σl).

Thus, G embodies exactly all the runs of A on w. We call G the run dag of A on

w, and we say that G is accepting if all its paths satisfy the acceptance condition α.

Note that A accepts w iff G is accepting. We say that a vertex 〈q′, l′〉 is a successor

of a vertex 〈q, l〉 iff E(〈q, l〉, 〈q′, l′〉). We say that 〈q′, l′〉 is reachable from 〈q, l〉 iff

there exists a sequence 〈q0, l0〉, 〈q1, l1〉, 〈q2, l2〉, . . . of successive vertices such that

〈q, l〉 = 〈q0, l0〉, and there exists i ≥ 0 such that 〈q′, l′〉 = 〈qi, li〉. For a set S ⊆ Q,

we say that a vertex 〈q, l〉 of G is an S-vertex if q ∈ S.

Consider a (possibly finite) dag G ⊆ G. We say that a vertex 〈q, l〉 is finite in G
if only finitely many vertices in G are reachable from 〈q, l〉. For a set S ⊆ Q, we say

that a vertex 〈q, l〉 is S-free in G if all the vertices in G that are reachable from 〈q, l〉
are not S-vertices. Note that, in particular, an S-free vertex is not an S-vertex. We

say that a level l of G is of width d ≥ 0 if there are d vertices of the form 〈q, l〉 in

G. Finally, the width of G is the maximal d ≥ 0 such that there are infinitely many

levels l of width d. The α-less width of a level of G is defined similarly, restricted

to vertices 〈q, l〉 for which q 6∈ α. Note that the width of G is at most n and the

α-less width of G is at most n− |α|.
Runs of UCW were studied in [12]. For x ∈ IN, let [x] denote the set {0, 1, . . . , x},

and let [x]odd and [x]even denote the set of odd and even members of [x], respectively.

A co-Büchi-ranking for G (C-ranking , for short) is a function f : V → [2n] that

satisfies the following two conditions:

1. For all vertices 〈q, l〉 ∈ V , if f(〈q, l〉) is odd, then q 6∈ α.

2. For all edges 〈〈q, l〉, 〈q′, l+ 1〉〉 ∈ E, we have f(〈q′, l + 1〉) ≤ f(〈q, l〉).

Thus, a C-ranking associates with each vertex in G a rank in [2n] so that the ranks

along paths do not increase, and α-vertices get only even ranks. We say that a

vertex 〈q, l〉 is an odd vertex if f(〈q, l〉) is odd. Note that each path in G eventually

gets trapped in some rank. We say that the C-ranking f is an odd C-ranking if all

the paths of G eventually get trapped in an odd rank. Formally, f is odd iff for all

paths 〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in G, there is l ≥ 0 such that f(〈ql, l〉) is odd, and for

all l′ ≥ l, we have f(〈ql′ , l′〉) = f(〈ql, l〉). Note that, equivalently, f is odd if every

path of G has infinitely many odd vertices.
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Lemma 1 [12] The following are equivalent.

1. All the paths of G have only finitely many α-vertices.

2. There is an odd C-ranking for G.

Proof. Assume first that there is an odd C-ranking for G. Then, every path in

G eventually gets trapped in an odd rank. Hence, as α-vertices get only even ranks,

all the paths of G visit α only finitely often, and we are done.

For the other direction, given an accepting run dag G, we define an infinite

sequence G0 ⊇ G1 ⊇ G2 ⊇ . . . of dags inductively as follows.

• G0 = G.

• G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is finite in G2i}.

• G2i+2 = G2i+1 \ {〈q, l〉 | 〈q, l〉 is α-free in G2i+1}.

It is shown in [12] that for every i ≥ 0, the transition from G2i+1 to G2i+2 involves

the removal of an infinite path from G2i+1. Intuitively, it follows from the fact that

as long as G2i+1 is not empty, it contains a at least one α-free vertex, from which

an infinite path of α-free vertices start. Since the width of G0 is bounded by n, it

follows that the width of G2i is at most n − i. Hence, G2n is finite, and G2n+1 is

empty. In fact, as argued in [7], the α-less width of G2i is at most n − (|α| + i),

implying that G2(n−|α|)+1 is already empty. Since |α| ≥ 1, we can therefore assume

that G2n−1 is empty.

Each vertex 〈q, l〉 in G has a unique index i ≥ 1 such that 〈q, l〉 is either finite in

G2i or α-free in G2i+1. Thus, the sequence of dags induces a function rank : V →
[2n− 2], defined as follows.

rank(q, l) =

[

2i If 〈q, l〉 is finite in G2i.
2i+ 1 If 〈q, l〉 is α-free in G2i+1.

It is shown in [12] that the function rank is an odd C-ranking. 2

We now use C-ranking in order to translate UCW to NBW:

Theorem 1 [12, 7] Let A be a UCW with n states. There is an NBW A′ with at

most 3n · (2n− 1)n states such that L(A′) = L(A).

Proof. Let A = 〈Σ, Q,Qin, δ, α〉. When A′ reads a word w, it guesses an odd

C-ranking for the run dag G of A on w. At a given point of a run of A′, it keeps in

its memory a whole level of G and a guess for the rank of the vertices at this level.

In order to make sure that all the paths of G visit infinitely many odd vertices, A′

remembers the set of states that owe a visit to an odd vertex.

Before we define A′, we need some notations. A level ranking for A is a function

g : Q → [2n− 2], such that if g(q) is odd, then q 6∈ α. Let R be the set of all level

rankings. For a subset S of Q and a letter σ, let δ(S, σ) =
⋃

s∈S δ(s, σ). Note that

if level l in G, for l ≥ 0, contains the states in S, and the (l+ 1)-th letter in w is σ,

then level l+ 1 of G contains the states in δ(S, σ).

For two level rankings g and g′ in R, a set S ⊆ Q, and a letter σ, we say that g′

covers 〈g, S, σ〉 if for all q ∈ S and q′ ∈ δ(q, σ), we have g′(q′) ≤ g(q). Thus, if the
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vertices of level l contain exactly all the states in S, g describes the ranks of these

vertices, and the (l + 1)-th letter in w is σ, then g′ is a possible level ranking for

level l + 1. Finally, for g ∈ R, let odd(g) = {q : g(q) ∈ [2n− 2]odd}. Thus, a state

of Q is in odd(g) if it has an odd rank.

Now, A′ = 〈Σ, Q′, Q′
in, δ

′, α′〉, where

• Q′ ⊆ 2Q×2Q×R, where a state 〈S,O, g〉 ∈ Q′ indicates that the current level

of the dag contains the states in S, the set O ⊆ S contains states along paths

that have not visited an odd vertex since the last time O has been empty, and

g is the guessed level ranking for the current level.

• Q′
in = {Qin} × {∅} ×R.

• δ′ is defined, for all 〈S,O, g〉 ∈ Q′ and σ ∈ Σ, as follows.

– If O 6= ∅, then

δ′(〈S,O, g〉, σ) = {〈δ(S, σ), δ(O, σ) \ odd (g′), g′〉 : g′ covers 〈g, S, σ〉}.

– If O = ∅, then

δ′(〈S,O, g〉, σ) = {〈δ(S, σ), δ(S, σ) \ odd(g′), g′〉 : g′ covers 〈g, S, σ〉}.

• α′ = 2Q × {∅} ×R.

Consider a state 〈S,O, g〉 ∈ Q′. Since O ⊆ S, there are at most 3n pairs S and

O that can be members of the same state. In addition, since there are at most

(2n− 1)n level rankings, the number of states in A′ is at most 3n · (2n− 1)n. 2

Corollary 1 Let A be an NBW with n states. There is an NBW Ã with at most

3n · (2n− 1)n states such that L(Ã) = Σω \ L(A).

3. An Improved Upper Bound

In this section we show how the 3n · (2n− 1)n bound described in Section 2 can

be improved.

Consider a UCW A and a word w ∈ Σω accepted by A. For the run r of A on

w, let max rank(r) be the maximal rank that a vertex in G gets.

We now prove that there is a level l in G such that all the odd ranks below

max rank(r) appear in all the levels after l. Intuitively, it follows from the fact that

odd ranks correspond to vertices that are α-free, and there is a level l that has an

α-free vertex in all the intermediate dags Gi, for an add i below max rank(r).

Lemma 2 There is a level l ≥ 0 such that for each level l′ > l, and for all ranks

j ∈ [max rank(r)]odd , there is a vertex 〈q, l′〉 such that rank(q, l′) = j.

Proof. Let k be the minimal index for which G2k is finite. For every 0 ≤ i ≤
k−1, the dag G2i+1 contains an α-free vertex. Let li be the minimal level such that

G2i+1 has an α-free vertex 〈q, li〉. Since 〈q, li〉 is in G2i+1, it is not finite in G2i. Thus,

there are infinitely many vertices in G2i that are reachable from 〈q, li〉. Hence, by
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König’s Lemma, G2i contains an infinite path 〈q, li〉, 〈q1, li + 1〉, 〈q2, li + 2〉, . . .. For

all j ≥ 1, the vertex 〈qj , li + j〉 has infinitely many vertices reachable from it in G2i

and thus, it is not finite in G2i. Therefore, the path 〈q, li〉, 〈q1, li + 1〉, 〈q2, li + 2〉, . . .
exists also in G2i+1. Recall that 〈q, li〉 is α-free. Hence, being reachable from 〈q, li〉,
all the vertices 〈qj , li + j〉 in the path are α-free as well. It follows that for every

0 ≤ i ≤ k − 1 there exists a level li such that for all l′ ≥ li, there is a vertex 〈q, l′〉
that is α-free in G2i+1, and for which rank(q, l′) would therefore be 2i + 1. Since

the maximal odd member in [max rank(r)]odd is 2k−1, taking l = max0≤i≤k−1{li}
satisfies the lemma’s requirements. 2

Recall that a level ranking for A is a function g : Q→ [2n− 2], such that if g(q)

is odd, then q 6∈ α. Let max odd (g) be the maximal odd number in the range of g.

Definition 1 We say that a level ranking g is tight if

1. the maximal rank in the range of g is odd, and

2. for all j ∈ [max odd (g)]odd , there is a state q ∈ Q with g(q) = j.

Lemma 3 There is a level l ≥ 0 such that for each level l′ > l, the level ranking

that corresponds to l′ is tight.

Proof. Lemma 2 implies that for all the levels l′ beyond some level l1, the

level ranking that corresponds to l′ satisfies the second condition in Definition 1.

Let g be the level ranking in level l1. Since even ranks label finite vertices, only

a finite number of levels l′ ≥ l1 have even ranks greater than max odd (g) in their

range. The level l required in the lemma is then the level beyond l1 in which these

even ranks “evaporate”. 2

We refer to the minimal level l that satisfies the conditions in Lemma 3 as the

limit level of r, denoted limit(r).

It follows that we can improve the construction described in the proof of The-

orem 1 and restrict the set R of possible level rankings to the set of tight level

rankings. Since, however, the tightness of the level ranking is guaranteed only be-

yond the limit level of r, we also need to guess this level, and proceed with the usual

subset construction until we reach it. Formally, we suggest the following modified

construction.

Theorem 2 Let A be a UCW with n states. Let tight(n) be the number of tight

level rankings. There is an NBW A′ with at most 3n · tight(n) states such that

L(A′) = L(A).

Proof. Let A = 〈Σ, Q,Qin, δ, α〉, and let Rtight be the set of tight level

rankings for A. Then, A′ = 〈Σ, Q′, Q′
in, δ

′, α′〉, where

• Q′ ⊆ 2Q ∪ (2Q × 2Q ×Rtight ), where a state S ∈ Q′ indicates that the current

level of the dag contains the states in S (and is relevant for levels before the

limit of r), and a state 〈S,O, g〉 ∈ Q′ is similar to the states in the construction

in the proof of Theorem 1 (and is relevant for levels beyond the limit of r).

In particular, O ⊆ S.

• Q′
in = {Qin}. Thus, the run starts in a “subset mode”, corresponding to a

guess that the limit level has not been reached yet.
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• For all states in Q′ of the form S ∈ 2Q and σ ∈ Σ, we have that

δ′(S, σ) = {δ(S, σ)} ∪ {〈δ(S, σ), O, g〉 : O ⊆ δ(S, σ) and g ∈ Rtight}.

Thus, at each point in the subset mode, A′ may guess that the current level

is the limit level, and move to a “subset+ranks” mode, where it proceeds as

the NBW constructed in the proof of Theorem 1. Thus, for states of the form

〈S,O, g〉, the transition function is as described there, only that rank levels

are restricted to tight ones.

• α′ = 2Q ×{∅}×Rtight . Thus, as in the proof of Theorem 1, A′ is required to

visit infinitely many states in which the O component is empty. In particular,

this force A′ to eventually switch from the subset mode to the subset+ranks

mode.

We prove that L(A′) = L(A). In order to prove that L(A) ⊆ L(A′), we prove

that L(A′′) ⊆ L(A′), for the NBW A′′ constructed in Theorem 1, and for which

we know that L(A′′) = L(A). Consider a word w ∈ Σω accepted by A′′. Let r′′ be

the accepting run of A′′ on w. By Lemma 3, the point limit(r) exists, and all the

level rankings beyond limit(r) are tight. Therefore, the run r′ obtained from r′′ by

projecting the states corresponding to levels up to limit(r) on their S component

is a legal and accepting run of A′ on w.

It is left to prove that L(A′) ⊆ L(A). Consider a word w ∈ Σω accepted by

A′. Let G be the run dag of A on w. We prove that there is an odd C-ranking

f : V → [2n] for G. Then, by Lemma 1, A accepts w. Let r′ be the accepting run

of A′ on w. By the definition of δ, the projection of the states of r′ on the first S

component corresponds to the structure of G. Since the initial state of A′ is {Qin}
whereas α′ contains only states in 2Q×2Q×Rtight , there must be a level l in which

r′ switches from a state mode to a state+ranks mode, and from which, according

to the definition of δ′, it stayed forever in that mode. The tight level rankings that

r′ describes for levels beyond l induce the C-ranking for vertices in these levels. For

levels l′ < l, we can define f(〈q, l′〉) = 2n for all q ∈ Q. Note that the ranks of

all vertices in levels up to l is even, and f does not increase up to this point. In

addition, since the maximal element in the range of a level ranking g ∈ Rtight is

at most 2n− 1, the ranking f does not increase also in level l. Finally, since each

path eventually reaches the point l, from which the level rankings induce an odd

C-ranking, f is odd. 2

Corollary 2 Let A be an NBW with n states. There is an NBW Ã with at most

3n · tight(n) states such that L(Ã) = Σω \ L(A).

While the improved construction involves an extra copy of 2Q in the state space,

the restriction to tight rank assignments is significant. Indeed, as we show now,

tight(n) is bounded by (cn)n, for c ≤ 0.76, which gives a (3cn)n bound, for c ≤ 0.76,

on the number of states of the complementary automaton.

The general idea is roughly as follows. Recall that we wish to bound from above

the number of tight level rankings – functions f : Q → [2n − 2] that are onto

[2l − 1]odd , with 2l − 1 being the maximal number in the range of f . As a first
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step we need a bound on the number of functions from the set {1, . . . , n} onto the

set {1, . . . ,m}. This is nothing else but m! times the Stirling number of the second

kind, S(n,m). The asymptotics of these numbers is known, e.g. in [22], where the

following is implicitc.

Lemma 4 (Temme) For 0 ≤ β ≤ 1, let x be the unique positive real number

satisfying βx = 1−e−x, and let a = − lnx+β ln(ex−1)− (1−β)+(1−β) ln( 1−β
β ).

The number of functions from {1, . . . , n} onto {1, . . . , βn} is at most

[(1 + o(1))(M [β]n)]n,

where

M [β] = (
β

1 − β
)1−βea−β .

Now, let

p(`, n) = max
r

{

M

[

r + `

n

] (

`

r

)
r
n

(

`

`− r

)

`−r

n

}

, (∗)

where the maximum is over all r ≤ `, n − `. The value of p(`, n) depends only on

the ratio `
n . To see this, note that if we allow r to assume a real value rather than

only integer values, we still get an upper bound. Thus, we can assume that r = αn

and ` = γn for some α and γ. Then, all the terms in the bound are functions of

α and γ, where we are maximizing on α. Therefore, the bound we get is only a

function of γ = `
n . Let h( `

n ) = p(`, n). Then:

Theorem 3 The number of functions from {1, . . . , n} to {0, . . . , 2` − 1} that are

onto the ` odds is no more than n
[

(1 + o(1))h( `
n )n

]n
.

Proof. Fixing r, one chooses which r evens are going to be hit (
(

`
r

)

possibilities)

and then chooses a function from {1, . . . , n} onto the set of the ` odds union with

the set of the r chosen evens. Clearly, the number of such functions is equal to the

number of functions from {1, . . . , n} onto {1, . . . , `+r}. By Lemma 4 and Stirling’s

approximation we get the expression that appears in (*). Choosing the “worst” r

gives us the upper bound. 2

Recall that a tight level ranking is a function g : Q→ {0, . . . , 2n− 2} such that

the maximal rank in the range of g is some odd 2` − 1, and g is onto the ` odds

{1, 3, . . . , 2` − 1}. Thus, the expression in Theorem 3 counts the number of tight

level rankings as a function of `
n .

In Figure 1 we describe the behavior of h( `
n ) for 0 < `

n < 1, as plotted by

Matlab. A simple analysis shows that the maximal value that h( `
n ) can get is at

most 0.76, for `
n = 0.574, implying an upper bound of (0.76n)n to the number of

tight level rankingsd

cThe version of this lemma that appears in the preliminary version of this paper ignores the
eα factor in the definition of M [β], and hence results in a weaker bound. This was pointed out to
us by Qiqi Yan.

dIn general, sampling may not be sufficient for bounding the maximal value of a function.
When, however, it is possible to bound the derivative of the function, a bound on its maximal
value does follow from sampling at close enough intervals, which is the case with the function h
and the analysis in Figure 1.
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Figure 1: The function h( `
n ), for 0 < `

n < 1.

4. A Tighter Analysis

In Section 3, we described an improved complementation construction and showed

that the state space of the complementary automaton is bounded by (3cn)n, for

c ≤ 0.76. Our analysis was based on the observation that the state space of the

complementary automaton consists of triples 〈S,O, g〉 in which S and O are subsets

of the state space of the original automaton, with O ⊆ S, and g is a tight level

ranking. Accordingly, we multiplied 3n – the number of pairs 〈S,O〉 as above with

tight(n) – the number of tight level rankings. This analysis, while significantly im-

proving the known 3n(2n−1)n upper bound, ignores possible relations between the

pair 〈S,O〉 and the tight level ranking g associated with it. In this section we point

to such relations and show that, indeed, they lead to a tighter analysis.

Consider a state 〈S,O, g〉 of the NBW A′ constructed in Theorem 2. Note that

while g : Q → [2n − 2] has Q as its domain, we can, given S, restrict attention to

level rankings in which all states not in S are mapped to 0. To see this, note that the

requirement about g being a tight level ranking stays valid for g with g(s) = 0 for

all g 6∈ S. Also, the definition of when a level ranking covers another level ranking

is parametrized with S. In addition, as O maintains the set of states that have not

been visited an odd vertex, g maps all the states in O to an even rank.

Let tighter (n) be the number of triples 〈S,O, f〉, with O ⊆ S ⊆ {1, . . . , n}, such

that there exists ` so that f : S → {1, . . . , 2`+ 1} is onto the odds and f(x) is even

for x ∈ O. By the above discussion, we have the following.

Corollary 3 Let A be an NBW with n states. There is an NBW Ã with at most

tighter (n) states such that L(Ã) = Σω \ L(A).

We now calculate tighter(n) and conclude that the more careful analysis is sig-

nificant – the bound on the state space that follows from Corollary 3 is better than

11



the one that follows from Corollary 2.

For a triple 〈S,O, f〉 as above, let T ⊆ S be the inverse image of the odd integers

under f , and let O′ = S \ T . Let α, β, and γ be such that |S| = αn, |T | = βn,

and ` = γn. Also, let Ψn(α, β, γ) denote the number of triples 〈S,O, f〉 for a fixed

triple 〈α, β, γ〉. We are interested in
∑

α,β,γ Ψn(α, β, γ), where 0 ≤ γ ≤ β ≤ α ≤
1, and all three numbers are integer multiples of 1/n. Clearly, this is at most

n3 maxα,β,γ Ψn(α, β, γ). Let us therefore compute Ψn for a fixed 〈α, β, γ〉.
In order to count, we start by choosing S, then choose T , next we choose the

value of `, then define f , and finally choose O ⊆ O′.

The number of ways to choose S is
(

n
αn

)

which, using Stirling’s factorial approx-

imation formula, is

[(1 + o(1))α−α(1 − α)α−1]n.

Note that in the above calculation we should use the convention 00 = 1. The

number of ways to choose T inside S is
(

αn
βn

)

, which is approximately

[(1 + o(1))(β/α)−β/α(1 − β

α
)

β

α
−1]αn.

The number of ways to choose the values of f on T , according to Lemma 4, is

(M [γ/β]βn)βn.

The number of ways to choose the values of f for the elements of O′ is `|O
′|, which

is

(γn)(α−β)n.

The number of choices for O is

2|O
′| = 2(α−β)n.

Using the notation ψn(α, β, γ) = n
√

Ψn(α, β, γ) and multiplying all of the above,

we get ψn(α, β, γ) =

((1 + o(1))α−α(1 − α)α−1)((β/α)−β/α(1 − β

α
)

β

α
−1)α(M [γ/β]β)β(2γ)α−βnα.

For fixed values of β and γ, the asymptotic maximum of the above is achieved for

α = 1. It see this, recall that α ≤ 1 and note that all the terms in ψn(α, β, γ),

except for nα are bounded (as n goes to infinity). Therefore, for any α < 1, we have

that ψn(α, β, γ) behaves like O(nα), which is smaller than n1, which is the order of

magnitude when α = 1. Setting α = 1, we get

max
α

ψn(α, β, γ)

n
= h′(β, γ) = (1 + o(1))β−β(1 − β)β−1(M [γ/β]β)β(2γ)1−β .

Since
n
√
n3 → 1 this is also the asymptotic value of 1

n
n

√

∑

α,β,γ Ψn(α, β, γ).

In Figure 2 we describe the behavior of h′(β, γ) for 0 ≤ γ ≤ β ≤ 1, as plotted

by Matlab. A simple analysis shows that the maximal value that h′(β, γ) can get

is at most 0.9624, for β ≈ 0.6115 and γ ≈ 0.5082, implying an upper bound of

(0.9624n)n for tighter (n).
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Figure 2: Contour lines of h′(β, γ), for 0 ≤ γ ≤ β ≤ 1.

5. Language Containment

Recall that a primary application of complementation constructions is language

containment: in order to check that the language of an automaton A1 is contained

in the language of a second automaton A2, one checks that the intersection of A1

with an automaton that complements A2 is empty. In this section we demonstrate

the simplicity and advantage of our construction with respect to this application

and show how an automaton that complements A2, when constructed using our

construction, can be optimized in the process of its intersection with A1.

Consider a language-containment problem L(A1) ⊆ L(A2). The solution that

follows from our approach is to start by dualizing A2, translate the result (a univer-

sal automaton Ã2) to a nondeterministic automaton Ñ2, which complements A2,

and check the emptiness of the product A1 × Ñ2. Consider the universal automa-

ton Ã2. Our translation of Ã2 to Ñ2 is based on ranks we associate with vertices

that appear in run dags of Ã2. For A2 with n states, the range of the ranks is

0, . . . , 2n − 2, where the bound 2n − 2 on the maximal rank follows from the fact

that the width of the run dag G is bounded by n.

In fact, we can tighten the width of G further. Indeed, the structure of A2 may

guarantee that some states may not appear together in the same level. For example,

if q0 and q1 are reachable only after reading even-length and odd-length prefixes

of w, respectively, then q0 and q1 cannot appear together in the same level in the

run dag of A2 on w, which enables us to bound its width by n − 1. In general,

since the construction of Ñ2 takes into an account all words w ∈ Σω, we need to

check the “mutual exclusiveness” of q0 and q1 with respect to all words. This can
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be done using the subset construction [17]: let A2 = 〈Σ, Q2, Q
2
in, δ2, α2〉, and let

Ad
2 = 〈Σ, 2Q2 , {Q2

in}, δd
2〉 be the automaton without acceptance condition obtained

by applying the subset construction to A2. Thus, for all S ∈ 2Q2 , we have that

δd
2(S, σ) =

⋃

s∈S δ2(s, σ). Now, let reach(A2) ⊆ 2Q2 be the set of states reachable

in Ad
2 from {Q2

in}. Thus, S ⊆ Q2 is in reach(A2) iff there is a finite word w ∈ Σ∗

such that δd
2({Q2

in}, w) = S. Then, reach(A2) contains exactly all sets S of states

such that all the states in S may appear in the same level of some run dag of

A2. Accordingly, we can tighten our bound on the maximal width a run dag may

have to rmax = maxS∈reach(A2) |S|, and tighten our bound on the maximal rank to

2rmax − 2. If Q2 ∈ reach(A2), then rmax = n, and we do not optimize. Often,

however, the structure of A2 does prevent some states from appearing together on

the same level. As we shall explain now, the presence of A1 can make the above

optimization even more effective.

It is easy to see that some states may be mutual exclusive (i.e., cannot appear

in the same level in the run dag) with respect to some words and not be mutual

exclusive with respect to other words. The definition of rmax requires mutual exclu-

siveness with respect to all words. On the other hand, checking L(A1) ⊆ L(A2), we

only have to consider mutual exclusiveness with respect to words in L(A1). Note

that the fewer words we have to consider, the more likely we are to get mutual

exclusiveness, and then tighten the bound further. Checking mutual exclusiveness

with respect to L(A1) can be done by taking the product of A1 with Ad
2. Formally,

let A1 = 〈Σ, Q1, Q
1
in, δ1, α1〉, and let reach(A2|A1

) ⊆ 2Q2 be the set of states that

are reachable in the product of A1 with Ad
2, projected on the state space of Ad

2.

Thus, S ⊆ Q2 is in reach(A2|A1
) iff there is a finite word w ∈ Σ∗ and a state s′ ∈ Q1

such that s′ ∈ δ1(Q
1
in, w) and δd

2({Q2
in}, w) = S. Note that reach(A2|A1

) excludes

from reach(A2) sets that are reachable in A2 only via words that are not reachable

in A1. Accordingly, we can tighten our bound on the maximal width a run dag of

A2 on a word in L(A1) may have to rmax
A1

= maxS∈reach(A2|A1
) |S|, and tighten our

bound on the maximal rank in the construction of Ñ2, which is needed for checking

the containment of L(A1) in L(A2), to 2rmax
A1

− 2.

Note that since we actually need to consider only accepting run dags, we can

optimize further by removal of empty states from the participating automata. For

example, if a state s ∈ Q2 is such that L(As
2) = ∅, we can remove s from the range of

δ2 without changing the language accepted by A2. In particular, it follows that A2

has no rejecting sinks, and the range of δ2 may contain the empty set. This removes

from reach(A2) sets S that may appear in the same level in a rejecting run dag of A2

but cannot appear in the same level in an accepting run dag. Consequently, rmax

may become smaller. Similarly, by removing (in addition) empty states from A1, we

restrict reach(A2|A1
) to sets S of states such that all the states in S may appear in

the same level of some (accepting) run dag of A2 on a word in L(A1). Finally, we

can also remove from reach(A2|A1
) sets S induced only by pairs 〈s, S〉 ∈ Q1 × 2Q2

for which the product of A1 and Ad
2 with initial state 〈s, S〉 is empty. Indeed, such

sets cannot appear in the same level of an accepting run dag of A2 on a word in

L(A1).
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Finally, recall that the bound on the maximal rank that a vertex can get ac-

tually depends on the α-less width of G, which we have approximated from above

thoughout the paper by n−1. The considerations that enables us to take the α-less

width (see [7] for details) are orthogonal to the considerations that enable us to

ignore mutually exclusive states, thus we can tighten our bound on the maximal

rank in the construction of Ñ2 to 2rmax
A1

− |α2| − 1.
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