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Sn is a discrete memoryless source with PMFPS

d : S × Ŝ 7→ R+ a bounded distortion measure

f : X n 7→ Yn is a deterministic channel (NOT memoryless in
general)
Example: Memory block with some cells stuck at 0 or 1, some
cells that flip bits and some good cells

f(X n) ⊆ Yn is the image off

E andD are the encoder and decoder
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m ∈ {1, . . . , |f(X n)|}

D(m) Ŝn

CSI@Both

The channel becomes a bit pipe of ratenR = log |f(X n)|

Separation is optimal

Smallest achievable distortion isDPS

(

1
n
log |f(X n)|

)

, where

DPS
(R) , min

P
Ŝ|S :I(S;Ŝ)≤R

∑

s∈S,ŝ∈Ŝ

PS(s)PŜ|S(ŝ|s)d(s, ŝ).
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CSI@Tx Only
Channels from a limited class

In some cases it is possible to learn the channel with small
overhead

f(Xn) = [h(X1), h(X2), . . . , h(Xn)]
f may have some other “sparse” structure

Separation (+training) is optimal and achieves
DPS

(

1
n
log |f(X n)|

)
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CSI@Tx Only
Gelfand-Pinsker

If the channel is memoryless with state

f(Xn) = [hT1
(X1), hT2

(X2), . . . , hTn(Xn)],

where{Ti} is an i.i.d. state process, separation (Gelfand-Pinsker +
source coding) is optimal (Merhav-Shamai 03) and achieves
DPS

(

1
n
log |f(X n)|

)
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CSI@Tx Only
What if f is an arbitrary mapping fromX n toYn?

Compound capacity is zero
Separationcannot achieve distortion≤ DPS

(0) even iff happens
to be good

Is DPS
(0) the best we can do?

No! Joint Source-Channel Coding can do better
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D : Yn 7→ Ŝn maps each possible output to a reconstruction
sequence

let C =
{
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}

⊆ Ŝn be the set of all possible
reconstructions.C is a source code forPS , whereR = 1

n
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CSI@Tx Only - Joint Source-Channel Coding

D : Yn 7→ Ŝn maps each possible output to a reconstruction
sequence

let C =
{

ŝ1, . . . , ŝ|Y|n
}

⊆ Ŝn be the set of all possible
reconstructions.C is a source code forPS , whereR = 1

n
log |Y|

The effect of the channel is dilutingC to the source code

Cf
diluted , D (f(X n)) ⊆ C

The channel chooses a subset of codewords from the source code
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CSI@Tx Only - Joint Source-Channel Coding

Cf
diluted , D (f(X n)) ⊆ C ; R

f
diluted =

1

n
log |f(X n)|

The encoder knowsf and can induce any codeword inCf
diluted

The obtained distortion is therefore

D
(

Cf
diluted

)

= ESn min
c∈Cf

diluted

d (Sn, c)

ClearlyD
(

Cf
diluted

)

≥ DPS

(

R
f
diluted

)
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CSI@Tx Only - Joint Source-Channel Coding

Cf
diluted , D (f(X n)) ⊆ C ; R

f
diluted =

1

n
log |f(Yn)|

Can we findC such that for almost everyf

D
(

Cf
diluted

)

≈ DPS

(

R
f
diluted

)

?
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Definition: Subset–Universal Source Code
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distortion measured if for every 0 < R′ < R almost every subset∗ of
2nR

′
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∗ The fraction of subsets for which this does not hold vanisheswith n
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Definition: Subset–Universal Source Code

A source codeC with rateR is calledsubset–universalw.r.t. PS and
distortion measured if for every 0 < R′ < R almost every subset∗ of
2nR

′
of its codewords achieve average distortion close toDPS

(R′)

∗ The fraction of subsets for which this does not hold vanisheswith n

Main Result

For every DMSPS , bounded distortion measured : S × Ŝ 7→ R+ and
rateR > 0, there exist a subset–universal source code

Extension

For every bounded distortion measured : S×Ŝ 7→ R+ and rateR > 0,
there exist a codeC that is subset–universal w.r.t. all PMFs onS



BACK TO THE MOTIVATING EXAMPLE

Sn E(Sn) Xn
f(Xn) Y n

D(Y n) Ŝn
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Corollary

There exists a JSCC scheme that achieves average distortion
DPS

(

1
n
log |f(X n)|

)

for almost every deterministic channelf

Remarks:
There is no loss due to the receiver’s ignorance
The scheme does not need to depend onPS

The result holds for any deterministic channel if common
randomness is allowed
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RELATED WORK

Ziv 72

There exists a codebook with rateR that universally achieves the
distortion-rate functionD(R) for any stationary source, and even for a
certain class of nonstationary sources.

“Proof”:

Split a source sequence of lengthn = kℓ to ℓ consecutive
subsequences of lengthk, whereℓ ≫ k

Find the source code with2kR codewords of lengthk that achieves
the smallest empirical distortion

Send the codebook first, and then compress each of theℓ blocks
using it

For ℓ ≫ k the overhead becomes negligible

Although more general than our result w.r.t. source statistics, this
construction is not subset–universal
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LetP |Ŝ| denote the simplex containing all PMFs on̂S

Forθ ∈ P |Ŝ|, letPθ(ŝ) be the corresponding pmf evaluated atŝ

Letw(θ) be the uniform probability density function onP |Ŝ|

Define the mixture distribution

Q(̂sn) =

∫

θ∈P|Ŝ|

w(θ)
n
∏

i=1

Pθ(ŝi)dθ

Joint Typicality Lemma for Mixture Distribution

Let Ŝn ∼ Q(̂sn). Let P
SŜ

be some pmf onS × Ŝ, and letsn ∈

T
(n)
ε′ (PS), for someε′ < ε. Forn large enough

Pr

(

Ŝ
n ∈ T (n)

ε (P
SŜ

|sn)

)

≥ 2−n(I(S;Ŝ)+δ(ε)),

whereδ(ǫ) → 0 for ǫ → 0.
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Codebook Generation:Draw2nR codewordsC = {ŝn1 , . . . , ŝ
n
2nR}

independently fromQ(̂sn)
Encoding: Given ŝn, C, and an index setI ⊆ [2nR] with
|I| = 2nR

′
, send

m = argmin
m∈I

d (s, ŝn(m))

Analyze a suboptimal encoder:

For some smallδ > 0, find

PR′

Ŝ|S
= argmin

P
Ŝ|S :I(S;Ŝ)≤R′−δ

∑

s∈S,ŝ∈Ŝ

PS(s)PŜ|S(ŝ|s)d(s, ŝ)

and setPR′

SŜ
= PSP

R′

Ŝ|S
. Send the smallest indexm ∈ I such that

(sn, ŝn(m)) ∈ T (n)
ε (PR′

SŜ
).

Note: If such an index is found the distortion is≈ DPS
(R′)
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Fix I andR′. We will show that the average probability that no index
is found is small

With high probabilitysn ∈ T
(n)
ε′ (PS)

We have2nR
′
codewords drawn fromQ(̂sn)

Assumingsn ∈ T
(n)
ε′ (PS), for each one of them

Pr

(

Ŝ
n ∈ T (n)

ε (PR′

SŜ
|sn)

)

≥ 2
−n

(

I(S;ŜR′
)+δ(ε)

)

,

The probability that none of them is inT (n)
ε (P

SŜ
|sn) is upper

bounded by

exp
{

−2n(R
′−I(S;ŜR′

)−δ(ǫ))
}

= exp
{

−2n(δ−δ(ǫ))
}

This is true for anyI andR′. By Markov’s inequality and continuity
of DPS

(R) this is true for anyR′ < R and almost anyI with
cardinality2nR

′



SUMMARY

We defined the notion of subset–universal lossy source codes

We proved that for any PMF andd such codes exist

We further showed that there exist a code that is simultaneously
subset–universal for all PMFs on the same alphabet

Our motivation was JSCC for an unknown deterministic channels

There should be more applications...


