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Oversampled Data Conversion

@ X(t) is a stationary Gaussian process with Sx(f) =0, V|f| > fmax
@ Sampling X(t) at Nyquist’s rate gives the discrete process X,
@ Sampling X(t) at L x Nyquist's rate gives the discrete process Xt
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Oversampled Data Conversion

@ X(t) is a stationary Gaussian process with Sx(f) =0, V|f| > fyax
@ Sampling X(t) at Nyquist’s rate gives the discrete process X,
@ Sampling X(t) at L x Nyquist's rate gives the discrete process Xt

Rate-Distortion 101

@ The number of bits per second for describing both processes with
distortion D is equal

@ Normalizing by the number of samples per second gives

Re(D) = 1 Rx(D)
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Oversampled Data Conversion

@ X(t) is a stationary Gaussian process with Sx(f) =0, V|f| > fyax
@ Sampling X(t) at Nyquist’s rate gives the discrete process X,
@ Sampling X(t) at L x Nyquist's rate gives the discrete process Xt

Rate-Distortion 101

@ The number of bits per second for describing both processes with
distortion D is equal

@ Normalizing by the number of samples per second gives

Re(D) = 1 Rx(D)

In data conversion fast low-resolution ADCs are often preferable
over slow high-resolution ADCs
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> A Modulation

Standard Data Conversion

X(t)ﬁ Q0

Ts = 1/2fmax

3><>
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> A Modulation

Standard Data Conversion

o —Em S {0

Ts = 1/2fmax

Oversampled Data Conversion

H(w)
x(o)—Famoe X400 }— [T (%,
T L L

s = L2 ey
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> A Modulation

Standard Data Conversion

o —Em S {0

Ts = 1/2fmax

Oversampled Data Conversion

H(w)
(o) —fFamee X Q0 }—| LT (—%
T L L

s = L2 ey
@ Oversampling reduces the MSE distortion by 1/L
= Not good enough, want exponential decay with L

4
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> A Modulation

Standard Data Conversion

o —Em S {0

Ts = 1/2fmax

> A Modulation
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> A Modulation

Standard Data Conversion

o —Em {0

Ig = L2

> A Modulation

H(w)

U U 1 N

X—@© i QO L L =%
LT

C(Z —(x
2—©

@ Our goal is to analyze the performance of ¥ A:
Quantization rate vs. MSE distortion

4
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> A Modulation

Standard Data Conversion

x(0—fampief %
Ts = 1/2fmax
> A Modulation
H(w)
U 0, 1 .
X”L_:® - Q() T i — XnL
(L A
Cc(Z —(=
O—®
@ We will model the XA modulator by a test-channel

4
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> A Modulation

Standard Data Conversion

o —Em {0

Ig = L2

> A Modulation
Np ~ N (0,0%,)

A NS B I
(L _T T W
L L
C(2) Nn@

o Will study thei tradeoff between /(Uy; U, + N,) and the MSE
distortion E(X: — X5)?

XL—:Z

n
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Relevance of Gaussian Test Channel

Uniform Scalar Quantization

Xo X,
Q(x):
1 | 5 | 3 L oR

|
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Relevance of Gaussian Test Channel

Uniform Scalar Quantization

Xn

X,

Qx):

-_l : 2 : 3 : - : %R—-
I @ } L I ;
I:;120.2|:;120.2| |

No Overload Region
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Relevance of Gaussian Test Channel

Uniform Scalar Quantization

Xn

X,

Qx):

-_l : 2 : 3 : - : %R—-
I @ } L I ;
I:;120.2|:;120.2| |

No Overload Region

@ High-resolution/dithered quantization assumption + no overload

X, = X, + Ny: N, ~ Uniform (——V12202, —V12202) . X, LN,
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Relevance of Gaussian Test Channel

Uniform Scalar Quantization

Xn

| Q0 ——%,

Qx):

-_l : 2 : 3 : - : %R—-
I @ } L I ;
I:;120.2|:;120.2| |

No Overload Region

X + Np| < 201222
@ High-resolution/dithered quantization assumption + no overload

2 2

)A<,7 = X,+ N,; N, ~ Uniform (— V120° —VIM) , XN,
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Relevance of Gaussian Test Channel

Uniform Scalar Quantization

X T
<_

120
2 2

N,, ~ Uniform

S X
g
N—
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Relevance of Gaussian Test Channel

Uniform Scalar Quantization

X T
<_

120
2 2

N,, ~ Uniform

S X
g
N—

@ Recalling X,, ~ N(0,0%), it is easy to show

2
2R\/1202 2( R—3log( 1+
PoléPI’ (‘Xn+Nn|>72 7 > SQeXp{—SQ ( 205( 02))}
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Relevance of Gaussian Test Channel

Uniform Scalar Quantization

X, ? X, E()A(,,—X,,>2 = g2
N(0,0?)

N, ~

@ Recalling X,, ~ N(0,0%), it is easy to show

Po < 2exp {—222(R—’(Xn:xn+/vn))}
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Relevance of Gaussian Test Channel

Uniform Scalar Quantization

X, ? X, E()A(,,—X,,>2 = g2
N(0,0?)

N, ~

@ Recalling X,, ~ N(0,0%), it is easy to show

Po < 2exp {—222(R—’(Xn:xn+/vn))}

Conclusion: the quantizer can be replaced by an AWGN test-channel J
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Back to the XA Test Channel

Np ~ N (0,0¢,)

l H(w)
Un Un + Np 1 o
K@ O L1 s
L L
C(—©

n
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Back to the XA Test Channel

Np ~ N (0,0¢,)

l H(w)
Un Un + Np 1 o
K@ O L1 s
L L
C(—©

n

U,,ZX,?ZA—CH*N,7

Up+ Np = X2 + (6, — cn) * N,

I(Un; Un + Nn) = % log (1 + —E(gn)2>
A

lox

Xn = X2 4 hys (6, — cp) % N,y
o XXA _ XA — h % (8, — cp) * N,

(]
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Back to the XA Test Channel

Np ~ N (0,0¢,)

H(w)
U U,+N 1 .
X): n ) n n - SA
/L & T T W X
L T
(Z—©

Proposition - ¥ A Rate-Distortion Tradeoff

For any stationary Gaussian process with variance ai sampled L times

above Nyquist’s rate

1 1 s 2
I(Un;Un—l—Nn):EIog(l—i—Z/ |C(w )|2dw—|-—>,

— U):A

2 1 m/t 2
D:UZA'E /L|1—C(w)| dw

v
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Back to the XA Test Channel

Np ~ N (0,0¢,)

Un Un+ N, 1 .
XEA_:® l @ I — L XA
L T
¢4 —©
Np
Not clear how to choose C(Z) ]
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Detour: DPCM

Np ~ /lv (0, oBpcm) H(w)
Un Un + N, v, 1 .
@) [ ] e
| | B
c(2)
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Detour: DPCM

Np ~ /lv (0, 7Bpcwm) H(w)
U U+ N % 1 o
XDPCM__ N WL~ n DPCM
L 1

@ Popular for compression of stationary processes (rather than A/D)
@ Design depends on 2,4-order statistics of {XPPCMY (in contrast to TA)

@ Rate-Distortion tradeoff of DPCM is well understood (McDonald66,
JIN84, ZKE0S)
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Detour: DPCM

No ~ N (0’ U2DPCM)

H(w)
U U+ N V 1 -
DPCM /2 n n =\ n DPCM
X T %) e
| | S
¢4
DPCM Rate-Distortion Tradeoff for Flat Low-Pass Process
Let {XPPCMY be a stationary Gaussian process with PSD
SDPCM () — Lok for jw| < /L
X 0 for m/L < |w| < 7’
then D = 03pcp/L and
H(Uns Un+Np) = ~ 1o 1+i/w Clo)Pdwt -5 L [ o)
m T =58 T 2r )L TBpem 27 e/

v
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Main Results: X A-DPCM Duality

Comparing the two rate-distortion characterizations we get
> A-DPCM Duality

o Let {X2} be any Gaussian stationary process with variance 0%
whose PSD is zero for all w ¢ [—7/L, 7/L]

o Let {XPPCM1 be a flat stationary Gaussian process with PSD
SDPCM (1) — Lo% for |w| <m/L
0 for /L < |w| <

o Let 0')2:A and UzDPCM satisfy

2 /L

1

UD2PCM :L-—/ \l—C(w)|2dw
T A 2T — i

For any choice of C(Z), the XA and DPCM test-channels achieve
the same rate-distortion tradeoff )
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Main Results: Characterization of Optimal C(Z2)

@ For DPCM the optimal C(Z) should minimize the MSE prediction
error of {XPPM 1 N} from its past (ZKE0S)

@ For data-converters the filter C(Z) cannot be too complex

@ To model this, assume C(Z) must belong to a family C
e.g., all FIR filters with 5-taps satisfying |¢;| < 1/2
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Main Results: Characterization of Optimal C(Z2)

The 2A-DPCM Duality gives
Optimal XA Filter

o Let {X>2} be any Gaussian stationary process with variance ox
whose PSD is zero for all w ¢ [—7/L, 7/L]

The optimal constrained C(Z) € C for *A modulation with target
distortion D is the optimal one-step MSE predictor for {S, + W,},
where W, ~ N/(0, LD) i.i.d., and {S,} is a flat stationary Gaussian
low-pass process with PSD

Lo  for |w| < 7/L
55(w) — X | ‘ /
0 for m/L < |w| <7
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Main Results: Characterization of Optimal C(Z2)

The 2A-DPCM Duality gives
Optimal XA Filter

o Let {X2} be any Gaussian stationary process with variance 0%
whose PSD is zero for all w ¢ [—7/L, 7/L]

The optimal constrained C(Z) € C for XA modulation with target
distortion D is the optimal one-step MSE predictor for {S, + W,},
where W, ~ N(0,LD) i.i.d., and {S,} is a flat stationary Gaussian
low-pass process with PSD

Lo2 for |w| < 7/L
55(w): X | ‘— /
0 for m/L < |w| <7

The corresponding scalar Ml is

D

I(Un; Un + Nn) = % log <E((5n - Cn) * (Sn L Wn))2>
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Main Results: Minimax Optimality of Unconstrained XA

Unconstrained DPCM is Rate-Distortion Optimal

If C consists of all causal filters, the DPCM architecture attains the
optimal rate-distortion function for stationary Gaussian sources (ZKEO08)
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Main Results: Minimax Optimality of Unconstrained XA

For flat stationary Gaussian process {S,} with PSD
{chf( for |w| < 7/L

Ss(w) =
s(w) 0 for m/L < |w| <

unconstrained DPCM attains Rs(D) = 5 Iog(%)
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Main Results: Minimax Optimality of Unconstrained XA

For flat stationary Gaussian process {S,} with PSD

Lo2  for |w| < «/L
Ss(w) —_ X ‘ | /
0 for m/L < |w| <

O |><qm

unconstrained DPCM attains Rs(D) = 5 log(

)

The 2A-DPCM Duality gives

Minimax Optimality of XA Architecture

o Let {X2} be any Gaussian stationary process with variance o%
whose PSD is zero for all w ¢ [—7/L, 7/L]

2
Unconstrained A attains Rysa(D) = 5 log(%) universally for all
{X>2}
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Main Results: Minimax Optimality of Unconstrained XA

For flat stationary Gaussian process {S,} with PSD

Lo2  for |w| < «/L
55(0.)) — X ‘ | /
0 for m/L < |w| <

2
unconstrained DPCM attains Rs(D) = 5 log( %)

The XA-DPCM Duality gives
Minimax Optimality of XA Architecture

o Let {X*2} be any Gaussian stationary process with variance 0%
whose PSD is zero for all w ¢ [—7/L, 7/L]

2
Unconstrained A attains Rysa(D) = 5 log(%) universally for all
{X32}

4

For {XZ2} = {S,} this is the optimal RD-function = minimax optimalityJ




High-Resolution in A Modulation?

Prediction in high-resolution quantization

If the PSD of {A,} is positive for all w, the optimal predictor of {A,+ W,}
from its past approaches the optimal predictor of {A,} from its past
Same is true for the MSE prediction error
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High-Resolution in XA Modulation?

Prediction in high-resolution quantization

If the PSD of {A,} is positive for all w, the optimal predictor of {A,+ W,}
from its past approaches the optimal predictor of {A,} from its past
Same is true for the MSE prediction error

Prediction in XA
Ss(w) = Lok for |w| < T and 0 otherwise, W, ~ N(0,LD) i.i.d.

@ We showed that C(Z) should predict {S, + W,} from its past

E((é,,—cn)*(s,,+w,,))2)
D

. . . 1
The quantization rate is 5 log (
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High-Resolution in XA Modulation?

Prediction in high-resolution quantization

If the PSD of {A,} is positive for all w, the optimal predictor of {A,+ W,}
from its past approaches the optimal predictor of {A,} from its past
Same is true for the MSE prediction error

Prediction in XA
Ss(w) = Lok for |w| < T and 0 otherwise, W, ~ N(0,LD) i.i.d.

@ We showed that C(Z) should predict {S, + W,} from its past

E((5n—cn)*(5,,+Wn))2)
D

. . . 1
The quantization rate is 5 log (

@ For L > 1 the prediction error of {S,} from its past can be made
arbitrarily small by increasing the filter length
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High-Resolution in XA Modulation?

Prediction in high-resolution quantization

If the PSD of {A,} is positive for all w, the optimal predictor of {A,+ W,}
from its past approaches the optimal predictor of {A,} from its past
Same is true for the MSE prediction error

Prediction in XA
Ss(w) = Lok for |w| < T and 0 otherwise, W, ~ N(0,LD) i.i.d.
@ We showed that C(Z) should predict {S, + W,} from its past

2
The quantization rate is %Iog (E((‘S"_C")E(S”W")) )

@ For L > 1 the prediction error of {S,} from its past can be made
arbitrarily small by increasing the filter length

@ High resolution assumption never holds
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High-Resolution in XA Modulation?

Prediction in high-resolution quantization

If the PSD of {A,} is positive for all w, the optimal predictor of {A, + W,}
from its past approaches the optimal predictor of {A,} from its past
Same is true for the MSE prediction error

Prediction in A
Ss(w) = Lok for |w| < T and 0 otherwise, W, ~ N(0, LD) i.i.d.
@ We showed that C(Z) should predict {S, + W,} from its past

2
The quantization rate is %Iog (E((é”_c”)’gsﬁw”)) )

@ For L > 1 the prediction error of {S,} from its past can be made
arbitrarily small by increasing the filter length

@ High resolution assumption never holds

@ Nevertheless... this assumption is sometimes erroneously made,
leading to inaccurate results
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High-Resolution in A Modulation?

55((.0) Ss(w) + Sw(w)
I bw f bw
R T
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High-Resolution in A Modulation?
55((.0) Ss(w) + Sw(w)

I W t W
11— H(w)? 11— H(w)[?
w

Sigma-Delta/DPCM Duality
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High-Resolution in A Modulation?
Sg(w)—i-SW(w)

™

| | - ]
I I | I
s s
-T 1 I 7 -T I
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Ss(w)
W 1 W
R I
11— H(w)]? 11— H(w)]?
1 w i i w
11— H(w)[*Ss(w) 1= H(W)[? (S5x(w) + Sw(w))
! T i ! w
T T




High-Resolution in A Modulation?
Sg(w)—i-SW(w)

Ss(w) + Sw(w)

I I
- f i o
1= H@)P (Sx(w) + Sw(w)) 1= H(w)? (Sx(w) + Sw(w))
f P~ | —4 bw f f I bw
- P oa o -F F o
Sigma-Delta/DPCM Duality
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High-Resolution in A Modulation?
w Ss(w) + Sw(w)

Ss(w) + Sw(w)
] i w { 1 w
i e A T
11— H(w)? 11— H(w)P
'\ / w | —t-w
i A T
1= H(W)P (Sc(w) + Sw(w)) 1= H(w) (Sx(w) + Sw(w))
\ | / ! | } Lw
S I T
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High-Resolution in A Modulation?
Sg(w)—i-SW(w)

Ss(w) + Sw(w)

-r -7 T m -T =T T m
11— H(w)P? 11— H(w)P
N /. il
i T 1 1 W I I w
-r -7 T m -r =T T m
1 — H(w)P? (Sx(w) + Sw(w))

1= H(w)? (Sx(w) + Sw(w))

N1/ b

—T I

~= 1

v~|>\
~2
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From Test-Channel Back to a Data Converter

Np~ N (0,0%,)

Un Un+ N, 1 .
XHL_:® @ T i — Xn
l e
O—©

Performance of XA Modulator
o Let 0 < Pe <1, and R=1(Uy; Uy + N,) + 0(Pe) where

T — S —— S —
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From Test-Channel Back to a Data Converter

H(w)

U, 0, 1 .
Xr—©) l Q) . X,

W
L

~I3

Performance of XA Modulator
o Let 0 < Pe <1, and R=1(Uy; Uy + N,) + 0(Pe) where

@ With probability > 1 — P, no overload occurs within the block

@ If no overload occurs within the block the MSE distortion is smaller
than DH%I\;)(EU

S — T —
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We established a duality between DPCM for flat low-pass processes
and XA modulation for the compound class of oversampled processes

@ Using this duality we found the optimal feedback filter for XA

@ We showed that the XA architecture is robust and minimax optimal
for this compound class

@ DPCM with unconstrained filter is robust. For constrained filters it
isn't

@ Our analysis was information-theoretic, but remains relevant for *A
modulators with scalar quantizers
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