Performance Analysis and Optimal Filter Design for Sigma-Delta Modulation via Duality with DPCM

Or Ordentlich Joint work with Uri Erez

ISIT 2015, Hong Kong June 15, 2015

Oversampled Data Conversion

- ullet X(t) is a stationary Gaussian process with $S_X(f)=0$, $orall |f|>f_{\sf max}$
- Sampling X(t) at Nyquist's rate gives the discrete process X_n
- Sampling X(t) at $L \times Nyquist's$ rate gives the discrete process X_n^L

Oversampled Data Conversion

- ullet X(t) is a stationary Gaussian process with $S_X(f)=0$, $orall |f|>f_{\sf max}$
- Sampling X(t) at Nyquist's rate gives the discrete process X_n
- Sampling X(t) at $L \times Nyquist's$ rate gives the discrete process X_n^L

Rate-Distortion 101

- The number of bits per second for describing both processes with distortion D is equal
- Normalizing by the number of samples per second gives

$$R_{X^L}(D) = \frac{1}{L} \cdot R_X(D)$$

Oversampled Data Conversion

- ullet X(t) is a stationary Gaussian process with $S_X(f)=0$, $orall |f|>f_{\sf max}$
- Sampling X(t) at Nyquist's rate gives the discrete process X_n
- Sampling X(t) at $L \times Nyquist's$ rate gives the discrete process X_n^L

Rate-Distortion 101

- The number of bits per second for describing both processes with distortion D is equal
- Normalizing by the number of samples per second gives

$$R_{X^L}(D) = \frac{1}{L} \cdot R_X(D)$$

In data conversion fast low-resolution ADCs are often preferable over slow high-resolution ADCs

$\Sigma\Delta$ Modulation

Standard Data Conversion

Standard Data Conversion

Oversampled Data Conversion

$\Sigma\Delta$ Modulation

Standard Data Conversion

Oversampled Data Conversion

- Oversampling reduces the MSE distortion by 1/L
 ⇒ Not good enough, want exponential decay with L
 - (□) (部) (差) (差) (差) (3)

Standard Data Conversion

$\Sigma\Delta$ Modulation

Standard Data Conversion

$\Sigma\Delta$ Modulation

• Our goal is to analyze the **performance** of $\Sigma\Delta$: **Quantization rate vs. MSE distortion**

Standard Data Conversion

$\Sigma\Delta$ Modulation

ullet We will model the $\Sigma\Delta$ modulator by a test-channel

ΣΔ Modulation

Standard Data Conversion

$\Sigma\Delta$ Modulation

• Will study the tradeoff between $I(U_n; U_n + N_n)$ and the MSE distortion $\mathbb{E}(\hat{X}_n^L - X_n^L)^2$

Uniform Scalar Quantization

ullet High-resolution/dithered quantization assumption + no overload

$$\hat{X}_n = X_n + N_n; \quad N_n \sim \mathrm{Uniform}\left(-\frac{\sqrt{12\sigma^2}}{2}, \frac{\sqrt{12\sigma^2}}{2}\right), \quad X_n \bot \!\!\! \bot N_n$$

Uniform Scalar Quantization

Q(x):

$$|X_n + N_n| < \tfrac{2^R \sqrt{12\sigma^2}}{2}$$

 $\bullet \ \, \mathsf{High-resolution}/\mathsf{dithered} \,\, \mathsf{quantization} \,\, \mathsf{assumption} \,\, + \,\, \mathsf{no} \,\, \mathsf{overload} \\$

$$\hat{X}_n = X_n + N_n; \quad N_n \sim \text{Uniform}\left(-\frac{\sqrt{12\sigma^2}}{2}, \frac{\sqrt{12\sigma^2}}{2}\right), \quad X_n \perp N_n$$

Uniform Scalar Quantization

$$X_n \xrightarrow{\Phi} \hat{X}_n \quad \mathbb{E}\left(\hat{X}_n - X_n\right)^2 = \sigma^2$$

$$N_n \sim \text{Uniform}\left(-\frac{\sqrt{12\sigma^2}}{2}, \frac{\sqrt{12\sigma^2}}{2}\right)$$

Uniform Scalar Quantization

$$X_{n} \xrightarrow{\Phi} \hat{X}_{n} \quad \mathbb{E}\left(\hat{X}_{n} - X_{n}\right)^{2} = \sigma^{2}$$

$$N_{n} \sim \text{Uniform}\left(-\frac{\sqrt{12\sigma^{2}}}{2}, \frac{\sqrt{12\sigma^{2}}}{2}\right)$$

• Recalling $X_n \sim \mathcal{N}(0, \sigma_X^2)$, it is easy to show

$$P_{ol} \triangleq \Pr\left(|X_n + N_n| > \frac{2^R \sqrt{12\sigma^2}}{2}\right) \leq 2\exp\left\{-\frac{3}{2}2^{2\left(R - \frac{1}{2}\log\left(1 + \frac{\sigma_X^2}{\sigma^2}\right)\right)}\right\}$$

Uniform Scalar Quantization

• Recalling $X_n \sim \mathcal{N}(0, \sigma_X^2)$, it is easy to show

$$P_{ol} \le 2 \exp \left\{ -\frac{3}{2} 2^{2(R-I(X_n; X_n + N_n))} \right\}$$

Uniform Scalar Quantization

$$X_n \xrightarrow{\Phi} \hat{X}_n \quad \mathbb{E}\left(\hat{X}_n - X_n\right)^2 = \sigma^2$$

$$N_n \sim \mathcal{N}(0, \sigma^2)$$

• Recalling $X_n \sim \mathcal{N}(0, \sigma_X^2)$, it is easy to show

$$P_{ol} \le 2 \exp \left\{ -\frac{3}{2} 2^{2(R-I(X_n; X_n + N_n))} \right\}$$

Conclusion: the quantizer can be replaced by an AWGN test-channel

$$U_n = X_n^{\Sigma\Delta} - c_n * N_n$$

•
$$U_n + N_n = X_n^{\Sigma\Delta} + (\delta_n - c_n) * N_n$$

•
$$I(U_n; U_n + N_n) = \frac{1}{2} \log \left(1 + \frac{\mathbb{E}(U_n)^2}{\sigma_{\Sigma\Delta}^2}\right)$$

$$\bullet \hat{X}_n = X_n^{\Sigma\Delta} + h_n * (\delta_n - c_n) * N_n$$

$$\bullet \ X_n^{\Sigma\Delta} - \hat{X}_n^{\Sigma\Delta} = h_n * (\delta_n - c_n) * N_n$$

Proposition - ΣΔ Rate-Distortion Tradeoff

For ${\bf any}$ stationary Gaussian process with variance σ_X^2 sampled L times above Nyquist's rate

$$I(U_n; U_n + N_n) = \frac{1}{2} \log \left(1 + \frac{1}{2\pi} \int_{-\pi}^{\pi} |C(\omega)|^2 d\omega + \frac{\sigma_X^2}{\sigma_{\Sigma\Delta}^2} \right),$$

$$D = \sigma_{\Sigma\Delta}^2 \cdot \frac{1}{2\pi} \int_{-\pi/L}^{\pi/L} |1 - C(\omega)|^2 d\omega$$

Not clear how to choose C(Z)

Detour: DPCM

Detour: DPCM

- ullet Popular for compression of stationary processes (rather than A/D)
- Design depends on 2_{nd} -order statistics of $\{X_n^{\mathsf{DPCM}}\}$ (in contrast to $\Sigma\Delta$)
- Rate-Distortion tradeoff of DPCM is well understood (McDonald66, JN84, ZKE08)

Detour: DPCM

DPCM Rate-Distortion Tradeoff for Flat Low-Pass Process

Let $\{X_n^{DPCM}\}$ be a stationary Gaussian process with PSD

$$S_X^{ ext{DPCM}}(\omega) = egin{cases} L\sigma_X^2 & ext{for } |\omega| \leq \pi/L \ 0 & ext{for } \pi/L < |\omega| < \pi \end{cases},$$

then $D = \sigma_{\rm DPCM}^2/L$ and

$$I(U_n; U_n + N_n) = \frac{1}{2} \log \left(1 + \frac{1}{2\pi} \int_{-\pi}^{\pi} |C(\omega)|^2 d\omega + \frac{L\sigma_X^2}{\sigma_{\mathsf{DPCM}}^2} \frac{1}{2\pi} \int_{-\pi/L}^{\pi/L} |1 - C(\omega)|^2 d\omega \right)$$

Main Results: $\Sigma\Delta$ -DPCM Duality

Comparing the two rate-distortion characterizations we get

ΣΔ-DPCM Duality

- Let $\{X_n^{\Sigma\Delta}\}$ be **any** Gaussian stationary process with variance σ_X^2 whose PSD is zero for all $\omega \notin [-\pi/L, \pi/L]$
- Let $\{X_n^{\mathsf{DPCM}}\}$ be a flat stationary Gaussian process with PSD

$$S_X^{\mathsf{DPCM}}(\omega) = egin{cases} L\sigma_X^2 & \mathsf{for} \ |\omega| \leq \pi/L \\ 0 & \mathsf{for} \ \pi/L < |\omega| < \pi \end{cases}$$

 \bullet Let $\sigma_{\Sigma\Delta}^2$ and σ_{DPCM}^2 satisfy

$$\frac{\sigma_{\mathsf{DPCM}}^2}{\sigma_{\Sigma \Lambda}^2} = L \cdot \frac{1}{2\pi} \int_{-\pi/L}^{\pi/L} |1 - C(\omega)|^2 d\omega$$

For any choice of C(Z), the $\Sigma\Delta$ and DPCM test-channels achieve the same rate-distortion tradeoff

Main Results: Characterization of Optimal C(Z)

- For DPCM the optimal C(Z) should minimize the MSE prediction error of $\{X_n^{\text{DPCM}} + N_n\}$ from its past (ZKE08)
- For data-converters the filter C(Z) cannot be too complex
- To model this, assume C(Z) must belong to a family \mathcal{C} e.g., all FIR filters with 5-taps satisfying $|c_i| < 1/2$

Main Results: Characterization of Optimal C(Z)

The $\Sigma\Delta$ -DPCM Duality gives

Optimal $\Sigma\Delta$ Filter

• Let $\{X_n^{\Sigma\Delta}\}$ be **any** Gaussian stationary process with variance σ_X^2 whose PSD is zero for all $\omega \notin [-\pi/L, \pi/L]$

The optimal constrained $C(Z) \in \mathcal{C}$ for $\Sigma\Delta$ modulation with target distortion D is the optimal one-step MSE predictor for $\{S_n + W_n\}$, where $W_n \sim \mathcal{N}(0, LD)$ i.i.d., and $\{S_n\}$ is a flat stationary Gaussian low-pass process with PSD

$$S_{S}(\omega) = \begin{cases} L\sigma_{X}^{2} & \text{for } |\omega| \leq \pi/L \\ 0 & \text{for } \pi/L < |\omega| < \pi \end{cases}$$

Main Results: Characterization of Optimal C(Z)

The $\Sigma\Delta$ -DPCM Duality gives

Optimal $\Sigma\Delta$ Filter

• Let $\{X_n^{\Sigma\Delta}\}$ be **any** Gaussian stationary process with variance σ_X^2 whose PSD is zero for all $\omega \notin [-\pi/L, \pi/L]$

The optimal constrained $C(Z) \in \mathcal{C}$ for $\Sigma\Delta$ modulation with target distortion D is the optimal one-step MSE predictor for $\{S_n + W_n\}$, where $W_n \sim \mathcal{N}(0, LD)$ i.i.d., and $\{S_n\}$ is a flat stationary Gaussian low-pass process with PSD

$$S_S(\omega) = egin{cases} L\sigma_X^2 & ext{for } |\omega| \leq \pi/L \\ 0 & ext{for } \pi/L < |\omega| < \pi \end{cases}$$

The corresponding scalar MI is

$$I(U_n; U_n + N_n) = \frac{1}{2} \log \left(\frac{\mathbb{E} \left(\left(\delta_n - c_n \right) * \left(S_n + W_n \right) \right)^2}{D} \right)$$

Unconstrained DPCM is Rate-Distortion Optimal

If $\mathcal C$ consists of all causal filters, the DPCM architecture attains the optimal rate-distortion function for stationary Gaussian sources (ZKE08)

For flat stationary Gaussian process $\{S_n\}$ with PSD

$$S_S(\omega) = \begin{cases} L\sigma_X^2 & \text{for } |\omega| \le \pi/L \\ 0 & \text{for } \pi/L < |\omega| < \pi \end{cases}$$

unconstrained DPCM attains $R_S(D) = \frac{1}{2L} \log(\frac{\sigma_X^2}{D})$

For flat stationary Gaussian process $\{S_n\}$ with PSD

$$S_S(\omega) = \begin{cases} L\sigma_X^2 & \text{for } |\omega| \le \pi/L \\ 0 & \text{for } \pi/L < |\omega| < \pi \end{cases}$$

unconstrained DPCM attains $R_S(D) = \frac{1}{2L} \log(\frac{\sigma_X^2}{D})$

The $\Sigma\Delta$ -DPCM Duality gives

Minimax Optimality of $\Sigma\Delta$ Architecture

• Let $\{X_n^{\Sigma\Delta}\}$ be **any** Gaussian stationary process with variance σ_X^2 whose PSD is zero for all $\omega \notin [-\pi/L, \pi/L]$

Unconstrained $\Sigma\Delta$ attains $R_{X\Sigma\Delta}(D) = \frac{1}{2L}\log(\frac{\sigma_X^2}{D})$ universally for all $\{X_n^{\Sigma\Delta}\}$

For flat stationary Gaussian process $\{S_n\}$ with PSD

$$S_S(\omega) = \begin{cases} L\sigma_X^2 & \text{for } |\omega| \le \pi/L \\ 0 & \text{for } \pi/L < |\omega| < \pi \end{cases}$$

unconstrained DPCM attains $R_S(D) = \frac{1}{2L} \log(\frac{\sigma_X^2}{D})$

The $\Sigma\Delta$ -DPCM Duality gives

Minimax Optimality of $\Sigma\Delta$ Architecture

• Let $\{X_n^{\Sigma\Delta}\}$ be **any** Gaussian stationary process with variance σ_X^2 whose PSD is zero for all $\omega \notin [-\pi/L, \pi/L]$

Unconstrained $\Sigma\Delta$ attains $R_{X^{\Sigma\Delta}}(D)=\frac{1}{2L}\log(\frac{\sigma_X^2}{D})$ universally for all $\{X_n^{\Sigma\Delta}\}$

For $\{X_n^{\Sigma\Delta}\}=\{S_n\}$ this is the optimal RD-function \Rightarrow minimax optimality

High-Resolution in $\Sigma\Delta$ Modulation?

Prediction in high-resolution quantization

If the PSD of $\{A_n\}$ is positive for all ω , the optimal predictor of $\{A_n+W_n\}$ from its past approaches the optimal predictor of $\{A_n\}$ from its past Same is true for the MSE prediction error

High-Resolution in $\Sigma\Delta$ Modulation?

Prediction in high-resolution quantization

If the PSD of $\{A_n\}$ is positive for all ω , the optimal predictor of $\{A_n+W_n\}$ from its past approaches the optimal predictor of $\{A_n\}$ from its past Same is true for the MSE prediction error

Prediction in $\Sigma\Delta$

 $S_S(\omega) = L\sigma_X^2$ for $|\omega| < \frac{\pi}{L}$ and 0 otherwise, $W_n \sim \mathcal{N}(0, LD)$ i.i.d.

• We showed that C(Z) should predict $\{S_n + W_n\}$ from its past The quantization rate is $\frac{1}{2}\log\left(\frac{\mathbb{E}((\delta_n-c_n)*(S_n+W_n))^2}{D}\right)$

Prediction in high-resolution quantization

If the PSD of $\{A_n\}$ is positive for all ω , the optimal predictor of $\{A_n+W_n\}$ from its past approaches the optimal predictor of $\{A_n\}$ from its past Same is true for the MSE prediction error

Prediction in $\Sigma\Delta$

 $S_S(\omega) = L\sigma_X^2$ for $|\omega| < \frac{\pi}{L}$ and 0 otherwise, $W_n \sim \mathcal{N}(0, LD)$ i.i.d.

- We showed that C(Z) should predict $\{S_n + W_n\}$ from its past The quantization rate is $\frac{1}{2} \log \left(\frac{\mathbb{E}((\delta_n c_n) * (S_n + W_n))^2}{D} \right)$
- For L>1 the prediction error of $\{S_n\}$ from its past can be made arbitrarily small by increasing the filter length

Prediction in high-resolution quantization

If the PSD of $\{A_n\}$ is positive for all ω , the optimal predictor of $\{A_n + W_n\}$ from its past approaches the optimal predictor of $\{A_n\}$ from its past Same is true for the MSE prediction error

Prediction in $\Sigma\Delta$

 $S_S(\omega) = L\sigma_X^2$ for $|\omega| < \frac{\pi}{L}$ and 0 otherwise, $W_n \sim \mathcal{N}(0, LD)$ i.i.d.

- We showed that C(Z) should predict $\{S_n + W_n\}$ from its past The quantization rate is $\frac{1}{2} \log \left(\frac{\mathbb{E}((\delta_n c_n) * (S_n + W_n))^2}{D} \right)$
- For L > 1 the prediction error of $\{S_n\}$ from its past can be made arbitrarily small by increasing the filter length
- High resolution assumption never holds

Prediction in high-resolution quantization

If the PSD of $\{A_n\}$ is positive for all ω , the optimal predictor of $\{A_n+W_n\}$ from its past approaches the optimal predictor of $\{A_n\}$ from its past Same is true for the MSE prediction error

Prediction in $\Sigma\Delta$

 $S_S(\omega) = L\sigma_X^2$ for $|\omega| < \frac{\pi}{L}$ and 0 otherwise, $W_n \sim \mathcal{N}(0, LD)$ i.i.d.

- We showed that C(Z) should predict $\{S_n + W_n\}$ from its past The quantization rate is $\frac{1}{2} \log \left(\frac{\mathbb{E}((\delta_n c_n)*(S_n + W_n))^2}{D} \right)$
- For L > 1 the prediction error of $\{S_n\}$ from its past can be made arbitrarily small by increasing the filter length
- High resolution assumption never holds
- Nevertheless... this assumption is sometimes erroneously made, leading to inaccurate results

From Test-Channel Back to a Data Converter

Performance of $\Sigma\Delta$ Modulator

• Let $0 < P_e < 1$, and $R = I(U_n; U_n + N_n) + \delta(P_e)$ where

$$\delta(P_e) \triangleq \frac{1}{2} \log \left(-\frac{2}{3} \ln \frac{P_e}{2N} \right)$$

From Test-Channel Back to a Data Converter

Performance of $\Sigma\Delta$ Modulator

• Let $0 < P_e < 1$, and $R = I(U_n; U_n + N_n) + \delta(P_e)$ where

$$\delta(P_e) \triangleq \frac{1}{2} \log \left(-\frac{2}{3} \ln \frac{P_e}{2N} \right)$$

- ullet With probability $\geq 1-P_e$ no overload occurs within the block
- If no overload occurs within the block the MSE distortion is smaller than $D_{1-D}^{1+o_N(1)}$

Summary

- We established a duality between DPCM for flat low-pass processes and $\Sigma\Delta$ modulation for the compound class of oversampled processes
- ullet Using this duality we found the optimal feedback filter for $\Sigma\Delta$
- \bullet We showed that the $\Sigma\Delta$ architecture is robust and minimax optimal for this compound class
- DPCM with unconstrained filter is robust. For constrained filters it isn't
- \bullet Our analysis was information-theoretic, but remains relevant for $\Sigma\Delta$ modulators with scalar quantizers

