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The linear Gaussian network
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K distributed users.
K relays. Can cooperate only through a centralized decoder.
Clean bit pipes of rate R0 between the relays and the decoder.
Each relay sees a linear combination of all signals plus AWGN.
Same power constraint for all users: 1

n

∑n
t=1

X 2

l [t] ≤ SNR, ∀l .
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Compute-and-Forward

There are several approaches: Decode-and-Forward,
Compress-and-Forward...

Compute-and-Forward [Nazer and Gastpar 2011]

I Each relay decodes a linear combination of the transmitted signals.

I The decoded linear combination is passed to the centralized decoder.

I Upon receiving a full-rank set of equations, the centralized decoder recovers
the original messages.

I The scheme crucially depends on using linear codes.

The scheme of [Nazer and Gastpar 2011] uses infinite dimensional
nested lattice codebooks. Not possible for implementation...

How can we approach the theoretical results with practical schemes?
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Compute-and-Forward - practical implementation

Previous work

Feng et al. (ISIT 2010) took an algebraic approach and showed
promising simulation results with signal codes of block length 100.

Hern and Narayanan (ISIT 2011) used multilevel codes, and decoded
non-linear functions of the transmitted layers.

In this work we seek a practical implementation that utilizes
“off-the-shelf” encoders and decoders.

Our scheme is essentially based on using linear q-ary codes with a
“twist”.
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Compute-and-Forward with q-ary linear codes

The received signal at relay k is

yk =

K
∑

l=1

hklxl + zk .

All users {xl}
K
l=1

encode their messages using the same linear
codebook C over Zq.

For c1, c2 ∈ C the linearity of C implies

[a1c1 + a2c2] mod q ∈ C, ∀a1, a2 ∈ Z .

Relay k chooses a vector of integer coefficients
ak = [ak1 ak2 . . . akK ]

T ∈ Z
L, and attempts to decode

uk =

[

K
∑

l=1

aklxl

]

mod q ∈ C .
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Compute-and-Forward with q-ary linear codes

Before decoding, relay k computes

ỹk = [αkyk ] mod q

=

[

K
∑

l=1

aklxl +

K
∑

l=1

(αkhkl − akl) xl + αkzk

]

mod q

= [uk + z̃k ] mod q.

αk is chosen such as to optimize the tradeoff between decreasing the
residual “self” noise and increasing the Gaussian noise.

The decoded codeword ûk is passed to the centralized unit along with
the coefficients ak .
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Compute-and-Forward with q-ary linear codes

The centralized decoder gets a decoded equation and its coefficients
from each relay.

The centralized decoder has to solve

U = AX mod q.

A has to be invertible over Zq.

A is likely to be invertible if q is large, but large q means high
complexity...

Need to use small q, but than A is likely to be non-invertible.

What should we do?
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q-ary linear codes - Naive solution

Decode the linear combinations over the reals, i.e. decode

λk =

L
∑

l=1

aklxl

rather than

uk =

[

K
∑

l=1

aklxl

]

mod q.

Now A only has to be invertible over R - an easier restriction.

Can be done in a two-step procedure - first decode uk and than use it
for estimating λk .

Results in the same error floor as in TCM.
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q-ary linear codes - Naive solution

Example: An 11-ary linear code
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q-ary linear codes - Naive solution

Example: An 11-ary linear code
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q-ary linear codes - Naive solution

λ = x1 + x2

x1
x2

λ
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q-ary linear codes - Naive solution

u = [λ] mod 11

x1
x2

λ

u
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q-ary linear codes - Naive solution

Detecting the “uncoded bits” - An error floor is inevitible
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q-ary linear codes - Preventing the error floor

The centralized decoder has a set of equations over the reals, with
some errors that result from the “uncoded bits”
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mod q = [X + N] mod q

We have a set of K DMCs.
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q-ary linear codes - Preventing the error floor

x̂k = [xk + nk ] mod q

nk is not zero only at locations where there was a detection error of
the “uncoded bits” in one of the K relays.

Should rarely happen if the “coded layer” was successfully decoded,
the rate is not too small and the number of relays is not too big.
⇒ The entropy of Nk is small.

The q-ary linear codebook C should be good enough for the DMC.
⇒ The error floor is prevented
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Simulation results

2× 2 Gaussian network. h1 = [2/3 1/3], and h2 = [0 1/3].
Low SNR, binary LDPC code (q = 2).
The relays decode the equations a1 = [2 1], a2 = [0 1].
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Summary and conclusions

We have proposed a simple q-ary implementation of
Compute-and-Forward.

Our implementation allows for small q while maintaining the weakest
possible constraint on the invertibility of the set of integer coefficients.

In the proposed scheme each relay decodes a linear combination over
the reals.

The crucial element in our scheme is an additional decode step which
occurs at the centralized decoder.
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