Practical Code Design for Compute-and-Forward

Or Ordentlich
Joint work with Jiening Zhan, Uri Erez, Michael Gastpar and Bobak Nazer

ISIT 2011
St. Petersburg
Russia

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

The linear Gaussian network

elay 2 Ro .
g Centralized

Decoder

X1, X2, ..., XK
—

ZK
|
@W,

K distributed users.

K relays. Can cooperate only through a centralized decoder.
Clean bit pipes of rate Ry between the relays and the decoder.
Each relay sees a linear combination of all signals plus AWGN.
Same power constraint for all users: 1 3°7 | X2[t] < SNR, V/.

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

Compute-and-Forward

@ There are several approaches: Decode-and-Forward,
Compress-and-Forward...
Compute-and-Forward [Nazer and Gastpar 2011]
Each relay decodes a linear combination of the transmitted signals.
The decoded linear combination is passed to the centralized decoder.

Upon receiving a full-rank set of equations, the centralized decoder recovers
the original messages.

The scheme crucially depends on using linear codes.

@ The scheme of [Nazer and Gastpar 2011] uses infinite dimensional
nested lattice codebooks. Not possible for implementation...

@ How can we approach the theoretical results with practical schemes?

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

Compute-and-Forward - practical implementation

Previous work

@ Feng et al. (ISIT 2010) took an algebraic approach and showed
promising simulation results with signal codes of block length 100.

@ Hern and Narayanan (ISIT 2011) used multilevel codes, and decoded
non-linear functions of the transmitted layers.

@ In this work we seek a practical implementation that utilizes
“off-the-shelf” encoders and decoders.

@ Our scheme is essentially based on using linear g-ary codes with a
“twist” .

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

Compute-and-Forward with g-ary linear codes

@ The received signal at relay k is
K
Vi =Y huxi + 2.
I=1

@ All users {x,},K:1 encode their messages using the same linear
codebook C over Zg.

@ For c1,cy € C the linearity of C implies
[aic1 + axco]) mod g € C, Vaj,ax € Z .

@ Relay k chooses a vector of integer coefficients
ay = [ak1 a2 - - akK]T € Z%, and attempts to decode

K
uy, = [Z ak/x/] mod g € C .

=1

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

Compute-and-Forward with g-ary linear codes

@ Before decoding, relay k computes

Vi = [akyk] mod g

K K
= [Z awxi + > (uhi — aw) X + auzi

I=1 I=1
= [uk + 2] mod gq.

mod g

@ «y is chosen such as to optimize the tradeoff between decreasing the
residual “self” noise and increasing the Gaussian noise.

@ The decoded codeword (i, is passed to the centralized unit along with
the coefficients ay.

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

Compute-and-Forward with g-ary linear codes

The centralized decoder gets a decoded equation and its coefficients
from each relay.

(]

@ The centralized decoder has to solve

U= AX maod q.

A has to be invertible over Zg.

@ A is likely to be invertible if g is large, but large g means high
complexity...
@ Need to use small g, but than A is likely to be non-invertible.

What should we do?

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

g-ary linear codes - Naive solution

@ Decode the linear combinations over the reals, i.e. decode

L
Ak = E aIX|
=1

rather than

mod q.

K
Uy = E ag/Xy

=1

@ Now A only has to be invertible over R - an easier restriction.

@ Can be done in a two-step procedure - first decode uj, and than use it
for estimating Ag.

@ Results in the same error floor as in TCM.

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

g-ary linear codes - Naive solution

Example: An 11-ary linear code

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

g-ary linear codes - Naive solution

Example: An 11-ary linear code

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

g-ary linear codes - Naive solution

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

g-ary linear codes - Naive solution

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

g-ary linear codes - Naive solution

Detecting the “uncoded bits” - An error floor is inevitible

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

g-ary linear codes - Preventing the error floor

@ The centralized decoder has a set of equations over the reals, with
some errors that result from the “uncoded bits"”

A1 A1 e;
A2 A2 e
S\K)\K ek

@ Inverting the matrix A, rounding and reducing modulo g we have
€1
~ 1 (=)
X=X+ |A _ mod g | mod g = [X + N] mod ¢

ek

@ We have a set of K DMCs.

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

g-ary linear codes - Preventing the error floor

X = [Xk + nk] mod q

@ ny is not zero only at locations where there was a detection error of
the “uncoded bits” in one of the K relays.

@ Should rarely happen if the “coded layer” was successfully decoded,
the rate is not too small and the number of relays is not too big.
= The entropy of N, is small.

@ The g-ary linear codebook C should be good enough for the DMC.
= The error floor is prevented

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

Simulation results

@ 2 x 2 Gaussian network. h; =[2/3 1/3], and hy = [0 1/3].
@ Low SNR, binary LDPC code (g = 2).
@ The relays decode the equations a; = [2 1], ax = [0 1].

Bit Error Rate

-1
L | —e— DEFID E
—— Without last Decode step
-3| | —#%— modulo-decoding 4
—+— AWGN
-4
|
y Shannon lo.61dB
°k limit for | 0.97dB E
BPSK :
o[1-D
lattice
bound|
=
8 L L L L L L L
10 11 12 13 14 15 16 17 18
SNR[dB]

Ordentlich, Zhan, Erez, Gastpar, Nazer

Practical Code Design for Compute-and-Forward

Summary and conclusions

@ We have proposed a simple g-ary implementation of
Compute-and-Forward.

@ Our implementation allows for small g while maintaining the weakest
possible constraint on the invertibility of the set of integer coefficients.

@ In the proposed scheme each relay decodes a linear combination over
the reals.

@ The crucial element in our scheme is an additional decode step which
occurs at the centralized decoder.

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward

