
Practical Code Design for Compute-and-Forward

Or Ordentlich
Joint work with Jiening Zhan, Uri Erez, Michael Gastpar and Bobak Nazer

ISIT 2011
St. Petersburg

Russia

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



The linear Gaussian network

x1

x2

xK

h11

h21

hK1
h12

h22

hK2

h1K
h2K

hKK
Σ

Σ

Σ

z1

z2

zK

relay 1

relay 2

relay K R0

R0

R0

Centralized

Decoder

x̂1, x̂2, . . . , x̂K...
...

...

K distributed users.
K relays. Can cooperate only through a centralized decoder.
Clean bit pipes of rate R0 between the relays and the decoder.
Each relay sees a linear combination of all signals plus AWGN.
Same power constraint for all users: 1

n

∑n
t=1

X 2

l [t] ≤ SNR, ∀l .

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



Compute-and-Forward

There are several approaches: Decode-and-Forward,
Compress-and-Forward...

Compute-and-Forward [Nazer and Gastpar 2011]

I Each relay decodes a linear combination of the transmitted signals.

I The decoded linear combination is passed to the centralized decoder.

I Upon receiving a full-rank set of equations, the centralized decoder recovers
the original messages.

I The scheme crucially depends on using linear codes.

The scheme of [Nazer and Gastpar 2011] uses infinite dimensional
nested lattice codebooks. Not possible for implementation...

How can we approach the theoretical results with practical schemes?

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



Compute-and-Forward - practical implementation

Previous work

Feng et al. (ISIT 2010) took an algebraic approach and showed
promising simulation results with signal codes of block length 100.

Hern and Narayanan (ISIT 2011) used multilevel codes, and decoded
non-linear functions of the transmitted layers.

In this work we seek a practical implementation that utilizes
“off-the-shelf” encoders and decoders.

Our scheme is essentially based on using linear q-ary codes with a
“twist”.

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



Compute-and-Forward with q-ary linear codes

The received signal at relay k is

yk =

K
∑

l=1

hklxl + zk .

All users {xl}
K
l=1

encode their messages using the same linear
codebook C over Zq.

For c1, c2 ∈ C the linearity of C implies

[a1c1 + a2c2] mod q ∈ C, ∀a1, a2 ∈ Z .

Relay k chooses a vector of integer coefficients
ak = [ak1 ak2 . . . akK ]

T ∈ Z
L, and attempts to decode

uk =

[

K
∑

l=1

aklxl

]

mod q ∈ C .

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



Compute-and-Forward with q-ary linear codes

Before decoding, relay k computes

ỹk = [αkyk ] mod q

=

[

K
∑

l=1

aklxl +

K
∑

l=1

(αkhkl − akl) xl + αkzk

]

mod q

= [uk + z̃k ] mod q.

αk is chosen such as to optimize the tradeoff between decreasing the
residual “self” noise and increasing the Gaussian noise.

The decoded codeword ûk is passed to the centralized unit along with
the coefficients ak .

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



Compute-and-Forward with q-ary linear codes

The centralized decoder gets a decoded equation and its coefficients
from each relay.

The centralized decoder has to solve

U = AX mod q.

A has to be invertible over Zq.

A is likely to be invertible if q is large, but large q means high
complexity...

Need to use small q, but than A is likely to be non-invertible.

What should we do?

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



q-ary linear codes - Naive solution

Decode the linear combinations over the reals, i.e. decode

λk =

L
∑

l=1

aklxl

rather than

uk =

[

K
∑

l=1

aklxl

]

mod q.

Now A only has to be invertible over R - an easier restriction.

Can be done in a two-step procedure - first decode uk and than use it
for estimating λk .

Results in the same error floor as in TCM.

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



q-ary linear codes - Naive solution

Example: An 11-ary linear code

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



q-ary linear codes - Naive solution

Example: An 11-ary linear code

x1

x2

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



q-ary linear codes - Naive solution

λ = x1 + x2

x1
x2

λ

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



q-ary linear codes - Naive solution

u = [λ] mod 11

x1
x2

λ

u

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



q-ary linear codes - Naive solution

Detecting the “uncoded bits” - An error floor is inevitible

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



q-ary linear codes - Preventing the error floor

The centralized decoder has a set of equations over the reals, with
some errors that result from the “uncoded bits”











λ̂1

λ̂2

...

λ̂K











=











λ1

λ2

...
λK











+











e1
e2
...
eK











= AX

Inverting the matrix A, rounding and reducing modulo q we have

X̂ =











X +















A−1











e1
e2
...
eK

























mod q











mod q = [X + N] mod q

We have a set of K DMCs.

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



q-ary linear codes - Preventing the error floor

x̂k = [xk + nk ] mod q

nk is not zero only at locations where there was a detection error of
the “uncoded bits” in one of the K relays.

Should rarely happen if the “coded layer” was successfully decoded,
the rate is not too small and the number of relays is not too big.
⇒ The entropy of Nk is small.

The q-ary linear codebook C should be good enough for the DMC.
⇒ The error floor is prevented

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



Simulation results

2× 2 Gaussian network. h1 = [2/3 1/3], and h2 = [0 1/3].
Low SNR, binary LDPC code (q = 2).
The relays decode the equations a1 = [2 1], a2 = [0 1].

10 11 12 13 14 15 16 17 18
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR[dB]

B
it 

E
rr

or
 R

at
e

 

 

DEFID
Without last Decode step
modulo−decoding
AWGN

0.97dB
0.61dBShannon

limit for
 BPSK

1−D
lattice
bound

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward



Summary and conclusions

We have proposed a simple q-ary implementation of
Compute-and-Forward.

Our implementation allows for small q while maintaining the weakest
possible constraint on the invertibility of the set of integer coefficients.

In the proposed scheme each relay decodes a linear combination over
the reals.

The crucial element in our scheme is an additional decode step which
occurs at the centralized decoder.

Ordentlich, Zhan, Erez, Gastpar, Nazer Practical Code Design for Compute-and-Forward


