Bounding Techniques for the Intrinsic Uncertainty of Channels

Or Ordentlich Joint work with Ofer Shayevitz

July 4th, 2014 ISIT, Honolulu, HI, USA

Or Ordentlich and Ofer Shayevitz Bounding Techniques for the Intrinsic Uncertainty of Channels

向下 イヨト イヨト

DMC

• For DMCs
$$C = \max_{P(X)} I(X; Y)$$

• Calculating I(X; Y) is easy

DMC

• For DMCs
$$C = \max_{P(X)} I(X; Y)$$

• Calculating I(X; Y) is easy

Channels with memory

• Assuming information stability [Dobrushin 1973]

$$C = \lim_{n \to \infty} \max_{P_{\mathbf{X}}} \frac{1}{n} I(\mathbf{X}; \mathbf{Y})$$

• Calculating *I*(**X**; **Y**) may be difficult

★週 ▶ ★ 注 ▶ ★ 注 ▶

DMC

• For DMCs
$$C = \max_{P(X)} I(X; Y)$$

• Calculating I(X; Y) is easy

Channels with memory

• Assuming information stability [Dobrushin 1973]

$$C = \lim_{n \to \infty} \max_{P_{\mathbf{X}}} \frac{1}{n} I(\mathbf{X}; \mathbf{Y})$$

• Calculating *I*(**X**; **Y**) may be difficult

• For many interesting channels *P*_{XY} has sparse support: -deletion, insertion, trapdoor,...

DMC

• For DMCs
$$C = \max_{P(X)} I(X; Y)$$

• Calculating I(X; Y) is easy

Channels with memory

• Assuming information stability [Dobrushin 1973]

$$C = \lim_{n \to \infty} \max_{P_{\mathbf{X}}} \frac{1}{n} I(\mathbf{X}; \mathbf{Y})$$

• Calculating *I*(**X**; **Y**) may be difficult

• For many interesting channels *P*_{XY} has sparse support: -deletion, insertion, trapdoor,...

Want lower bounds on I(X; Y) that are useful for such channels

X, Y are random vectors with joint distribution P_{XY}
X ~ P_X, Y ~ P_Y, X <u>L</u>Y

★ (□) ★ (□) ★ (□) ★ (□) ★ (□)

X, Y are random vectors with joint distribution P_{XY}
X ~ P_X, Y ~ P_Y, X <u>L</u>Y

• AEP:

$$I(\mathbf{X};\mathbf{Y})pprox -\log\left(\mathsf{Pr}\left((ar{\mathbf{X}},ar{\mathbf{Y}})\in\mathcal{T}
ight)
ight)$$

(ロ) (四) (三) (三) (三)

- AEP:

$$I(\mathbf{X};\mathbf{Y})pprox -\log\left(\mathsf{Pr}\left((ar{\mathbf{X}},ar{\mathbf{Y}})\in\mathcal{T}
ight)
ight)$$

- Computing $\mathsf{Pr}\left((\bar{\bm{X}},\bar{\bm{Y}})\in\mathcal{T}
 ight)$ may be difficult
- Lower bound by replacing ${\mathcal T}$ with some ${\boldsymbol {\mathcal S}}\supseteq {\mathcal T}$

· < @ > < 문 > < 문 > · · 문

- AEP:

$$I(\mathbf{X}; \mathbf{Y}) \geq -\log\left(\mathsf{Pr}\left((\mathbf{ar{X}}, \mathbf{ar{Y}}) \in \mathbf{\mathcal{S}}
ight)
ight)$$

- Computing $\mathsf{Pr}\left((\bar{\bm{X}},\bar{\bm{Y}})\in\mathcal{T}
 ight)$ may be difficult
- Lower bound by replacing ${\mathcal T}$ with some ${\boldsymbol {\mathcal S}}\supseteq {\mathcal T}$

· < @ > < 문 > < 문 > · · 문

- AEP:

$$I(\mathbf{X}; \mathbf{Y}) \geq -\log \left(\mathbb{E}_{\mathbf{X}} \mathbb{E}_{\mathbf{Y}} \mathbb{1}_{\{(\mathbf{X}, \mathbf{Y}) \in \mathcal{S}\}} \right)$$

- Computing $\mathsf{Pr}\left((\bar{\bm{X}},\bar{\bm{Y}})\in\mathcal{T}
 ight)$ may be difficult
- Lower bound by replacing \mathcal{T} with some $\mathcal{S} \supseteq \mathcal{T}$

(本部) (문) (문) (문

- X, Y are random vectors with joint distribution P_{XY}
 X ~ P_X, Y ~ P_Y, X <u>T</u>
- AEP:

$$I(\mathbf{X}; \mathbf{Y}) \geq -\log \left(\mathbb{E}_{\mathbf{X}} \mathbb{E}_{\mathbf{Y}} \mathbb{1}_{\{(\mathbf{X}, \mathbf{Y}) \in \mathcal{S}\}} \right)$$

- Computing $\mathsf{Pr}\left((ar{\mathbf{X}},ar{\mathbf{Y}})\in\mathcal{T}
 ight)$ may be difficult
- Lower bound by replacing \mathcal{T} with some $\mathcal{S} \supseteq \mathcal{T}$
- A simple choice is the support $S \triangleq \{(x, y) : P_{XY}(x, y) > 0\}$

· < @ > < 문 > < 문 > · · 문

$$I(\mathbf{X}; \mathbf{Y}) \geq -\log \left(\mathbb{E}_{\mathbf{X}} \mathbb{E}_{\mathbf{Y}} \mathbb{1}_{\{(\mathbf{X}, \mathbf{Y}) \in \mathcal{S}\}} \right)$$

- Bound relatively easy to compute: involves only marginals and support
- Gives reasonable results for certain "sparse" distributions

向下 イヨト イヨト

$$I(\mathbf{X};\mathbf{Y}) \geq -\log\left(\mathbb{E}_{\mathbf{X}}\mathbb{E}_{\mathbf{Y}}\mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}
ight)$$

- Bound relatively easy to compute: involves only marginals and support
- Gives reasonable results for certain "sparse" distributions

Can we find better bounds that only involve marginals and support?

• Yes - replace S with $\bar{S} \triangleq \{ \mathbf{x} \in \mathcal{T}_{\mathbf{X}}, \mathbf{y} \in \mathcal{T}_{\mathbf{Y}} : P_{\mathbf{X}\mathbf{Y}}(\mathbf{x}, \mathbf{y}) > 0 \}$

$$I(\mathbf{X};\mathbf{Y}) \geq -\log\left(\mathbb{E}_{\mathbf{X}|\mathcal{T}_{\mathbf{X}}}\mathbb{E}_{\mathbf{Y}|\mathcal{T}_{\mathbf{Y}}}\mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}\right)$$

[Diggavi & Grossglauser '01] [Drinea & Mitzenmacher '07]...

→ 同 → → 目 → → 目 →

$$I(\mathbf{X};\mathbf{Y}) \geq -\log\left(\mathbb{E}_{\mathbf{X}}\mathbb{E}_{\mathbf{Y}}\mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}
ight)$$

- Bound relatively easy to compute: involves only marginals and support
- Gives reasonable results for certain "sparse" distributions

Can we find better bounds that only involve marginals and support?

• Yes - replace S with $\bar{S} \triangleq \{ \mathbf{x} \in \mathcal{T}_{\mathbf{X}}, \mathbf{y} \in \mathcal{T}_{\mathbf{Y}} : P_{\mathbf{X}\mathbf{Y}}(\mathbf{x}, \mathbf{y}) > 0 \}$

$$I(\mathbf{X};\mathbf{Y}) \geq -\log\left(\mathbb{E}_{\mathbf{X}|\mathcal{T}_{\mathbf{X}}}\mathbb{E}_{\mathbf{Y}|\mathcal{T}_{\mathbf{Y}}}\mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}\right)$$

[Diggavi & Grossglauser '01] [Drinea & Mitzenmacher '07]...

Main Result

$$I(\mathbf{X};\mathbf{Y}) \geq -\mathbb{E}_{\mathbf{Y}} \log \mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y}) \in \mathcal{S}\}} - \mathbb{E}_{\mathbf{X}} \log \mathbb{E}_{\mathbf{Y}} \frac{\mathbb{1}_{\{(\mathbf{X},\mathbf{Y}) \in \mathcal{S}\}}}{\mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y}) \in \mathcal{S}\}}}$$

$$I(\mathbf{X};\mathbf{Y}) \geq -\mathbb{E}_{\mathbf{Y}} \log \mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}} - \mathbb{E}_{\mathbf{X}} \log \mathbb{E}_{\mathbf{Y}} \frac{\mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}}{\mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}}$$

$$I(\mathbf{X};\mathbf{Y}) \geq -\mathbb{E}_{\mathbf{Y}} \log \mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}} - \mathbb{E}_{\mathbf{X}} \log \mathbb{E}_{\mathbf{Y}} \frac{\mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}}{\mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}}$$

When is this bound useful?

$$I(\mathbf{X};\mathbf{Y}) \geq -\mathbb{E}_{\mathbf{Y}} \log \mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}} - \mathbb{E}_{\mathbf{X}} \log \mathbb{E}_{\mathbf{Y}} \frac{\mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}}{\mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}}$$

When is this bound useful?

- Not for "fully-connected" channels: All pairs $(\mathbf{x}, \mathbf{y}) \in S$ - the bound gives $I(\mathbf{X}; \mathbf{Y}) \ge 0$
- Can be pretty good for channels with "low-connectivity"

Example: Z-Channel

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Example: Z-Channel

Bounds for IID Ber(p) Input

• Mutual information: $I(X; Y) = H\left(\frac{1}{2}(1+p)\right) - (1-p)$

• Naive bound:

$$I(X,Y) \geq \log \left(\mathbb{E}_X \mathbb{E}_Y \mathbb{1}_{\{(X,Y) \in \mathcal{S}\}}\right) = -\frac{1}{2} \log \left(1 - \frac{p}{2}(1-p)\right)$$

• Our bound:

$$I(X, Y) \ge -\frac{1}{2}(1-p)\log(1-p) - p\log\left(\frac{1}{2}(1+p)\right) - (1-p)\log\left(\frac{1}{2}(2+p)\right)$$

Bounding Techniques for the Intrinsic Uncertainty of Channels

Example: Z-Channel

Bounding Techniques for the Intrinsic Uncertainty of Channels

э

Channels via Conditional Probability

- Channel \Leftrightarrow Conditional distribution $P_{\mathbf{Y}|\mathbf{X}}$
- Input alphabet \mathcal{X}^n
- Output alphabet \mathcal{Y}^*

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

Channels via Conditional Probability

- Channel \Leftrightarrow Conditional distribution $P_{\mathbf{Y}|\mathbf{X}}$
- Input alphabet Xⁿ
- Output alphabet \mathcal{Y}^*

Channels via Actions (Functional Representation Lemma)

- $P_{\mathbf{A}}$ a distribution over mappings $\mathcal{X}^n\mapsto\mathcal{Y}^*$
- Channel \Leftrightarrow Action $\mathbf{A} \sim P_{\mathbf{A}}$, $\mathbf{A} \perp\!\!\!\perp \mathbf{X}$

$$\mathbf{Y} = \mathbf{A}(\mathbf{X})$$

• The choice of $P_{\mathbf{A}}$ is not unique

イロン イヨン イヨン ・ ヨン

The Intrinsic Uncertainty

- Input distribution P_X
- $H(\mathbf{A}|\mathbf{X},\mathbf{Y})$ is the intrinsic uncertainty

- 4 回 2 - 4 □ 2 - 4 □

The Intrinsic Uncertainty

- Input distribution P_X
- $H(\mathbf{A}|\mathbf{X},\mathbf{Y})$ is the intrinsic uncertainty

Capacity

$$I(\mathbf{X}; \mathbf{Y}) = H(\mathbf{Y}) - H(\mathbf{Y}|\mathbf{X})$$

= $H(\mathbf{Y}) - (H(\mathbf{Y}, \mathbf{A}|\mathbf{X}) - H(\mathbf{A}|\mathbf{X}, \mathbf{Y}))$
= $H(\mathbf{Y}) - H(\mathbf{A}|\mathbf{X}) - H(\mathbf{Y}|\mathbf{A}, \mathbf{X}) + H(\mathbf{A}|\mathbf{X}, \mathbf{Y})$
= $H(\mathbf{Y}) - H(\mathbf{A}) + H(\mathbf{A}|\mathbf{X}, \mathbf{Y})$

• Lower bounding the intrinsic uncertainty = lower bounding MI

(4回) (1日) (日)

The Binary Symmetric Channel

• Action \Leftrightarrow IID Noise sequence $\mathbf{W} \sim \operatorname{Ber}(p)$

•
$$\mathbf{Y} = \mathbf{A}(\mathbf{X}) = \mathbf{X} \oplus \mathbf{W}$$

• $H(\mathbf{A}|\mathbf{X},\mathbf{Y}) = 0$

・ 回 と ・ ヨ と ・ ヨ と

The Binary Symmetric Channel

• Action \Leftrightarrow IID Noise sequence $\mathbf{W} \sim \operatorname{Ber}(p)$

•
$$\mathbf{Y} = \mathbf{A}(\mathbf{X}) = \mathbf{X} \oplus \mathbf{W}$$

• $H(\mathbf{A}|\mathbf{X},\mathbf{Y}) = 0$

The Z-Channel

• Action \Leftrightarrow IID Noise sequence $\mathbf{W} \sim \operatorname{Ber}(\frac{1}{2})$

•
$$Y_i = \{\mathbf{A}(\mathbf{X})\}_i = \begin{cases} X_i & X_i = 0\\ X_i \oplus W_i & X_i = 1 \end{cases}$$

• Action masked when $X_i = 0 \Rightarrow H(\mathbf{A}|\mathbf{X}, \mathbf{Y}) > 0$

The Binary Deletion Channel

- Deletes bits independently with probability d
- Action \Leftrightarrow IID deletion pattern $\mathbf{W} \sim \operatorname{Ber}(d)$
- $\mathbf{X} \mapsto \mathbf{Y}$ via many different actions $\Rightarrow H(\mathbf{A}|\mathbf{X},\mathbf{Y}) > 0$
- For example: $\mathbf{x} = 01100$ and $\mathbf{y} = 110$

The Binary Deletion Channel

- Deletes bits independently with probability d
- Action \Leftrightarrow IID deletion pattern $\mathbf{W} \sim \operatorname{Ber}(d)$
- $\mathbf{X} \mapsto \mathbf{Y}$ via many different actions $\Rightarrow H(\mathbf{A}|\mathbf{X},\mathbf{Y}) > 0$
- For example: $\mathbf{x} = \emptyset 11 \emptyset 0$ and $\mathbf{y} = 110$

The Binary Deletion Channel

- Deletes bits independently with probability d
- Action \Leftrightarrow IID deletion pattern $\mathbf{W} \sim \operatorname{Ber}(d)$
- $\mathbf{X} \mapsto \mathbf{Y}$ via many different actions $\Rightarrow H(\mathbf{A}|\mathbf{X},\mathbf{Y}) > 0$
- For example: $\mathbf{x} = \emptyset 110\emptyset$ and $\mathbf{y} = 110$

The Binary Deletion Channel

- Deletes bits independently with probability d
- Action \Leftrightarrow IID deletion pattern $\mathbf{W} \sim \operatorname{Ber}(d)$
- $\mathbf{X} \mapsto \mathbf{Y}$ via many different actions $\Rightarrow H(\mathbf{A}|\mathbf{X},\mathbf{Y}) > 0$
- For example: $\mathbf{x} = \emptyset 110\emptyset$ and $\mathbf{y} = 110$

Other Channels with memory and positive intrinsic uncertainty

- Insertion channel
- Trapdoor channel
- Permutation channels

Main Tool

We would like to lower bound the intrinsic uncertainty

$$H(\mathbf{A}|\mathbf{X},\mathbf{Y}) = \mathbb{E}\log\left(rac{1}{P(\mathbf{A}|\mathbf{X},\mathbf{Y})}
ight)$$

Main Tool

We would like to lower bound the intrinsic uncertainty

$$H(\mathbf{A}|\mathbf{X},\mathbf{Y}) = \mathbb{E}\log\left(rac{1}{P(\mathbf{A}|\mathbf{X},\mathbf{Y})}
ight)$$

Variational Principle [Dupuis & Ellis]

For any distribution P and function f(x) s.t. $|\mathbb{E}_P \log f(X)| < \infty$,

$$\mathbb{E}_P \log f(X) = \min_Q \left(\log \mathbb{E}_Q f(X) + D(P||Q) \right)$$

The minimum is uniquely attained by

$$Q^*(x) = \frac{P(x)/f(x)}{\mathbb{E}_P(1/f(x))}$$

Main Tool

We would like to lower bound the intrinsic uncertainty

$$H(\mathbf{A}|\mathbf{X},\mathbf{Y}) = \mathbb{E}\log\left(rac{1}{P(\mathbf{A}|\mathbf{X},\mathbf{Y})}
ight)$$

Variational Principle [Dupuis & Ellis]

For any distribution P and function f(x) s.t. $|\mathbb{E}_P \log f(X)| < \infty$,

$$\mathbb{E}_P \log f(X) = \min_Q \ (\log \mathbb{E}_Q f(X) + D(P||Q))$$

The minimum is uniquely attained by

$$Q^*(x) = \frac{P(x)/f(x)}{\mathbb{E}_P(1/f(x))}$$

In our case $f = 1/P(\mathbf{A}|\mathbf{X}, \mathbf{Y})$

Theorem

The intrinsic uncertainty is lower bounded by

$$egin{aligned} & \mathcal{H}(\mathbf{A}|\mathbf{X},\mathbf{Y}) \geq -\mathcal{H}(\mathbf{Y}) - \mathbb{E}_{\mathbf{Y}} \log \mathbb{E}_{\mathbf{X},\mathbf{A}} P(\mathbf{A}|\mathbf{X},\mathbf{Y}) \ & - \mathbb{E}_{\mathbf{X},\mathbf{A}} \log \mathbb{E}_{\mathbf{Y}} rac{P(\mathbf{A}|\mathbf{X},\mathbf{Y})}{E_{\mathbf{X},\mathbf{A}} P(\mathbf{A}|\mathbf{X},\mathbf{Y})} \end{aligned}$$

個 と く き と く き と

Theorem

The intrinsic uncertainty is lower bounded by

$$egin{aligned} &I(\mathbf{X};\mathbf{Y}) \geq -H(\mathbf{A}) - \mathbb{E}_{\mathbf{Y}} \log \mathbb{E}_{\mathbf{X},\mathbf{A}} P(\mathbf{A}|\mathbf{X},\mathbf{Y}) \ &- \mathbb{E}_{\mathbf{X},\mathbf{A}} \log \mathbb{E}_{\mathbf{Y}} rac{P(\mathbf{A}|\mathbf{X},\mathbf{Y})}{E_{\mathbf{X},\mathbf{A}} P(\mathbf{A}|\mathbf{X},\mathbf{Y})} \end{aligned}$$

<回> < 回> < 回> < 回>

Theorem

The intrinsic uncertainty is lower bounded by

$$egin{aligned} I(\mathbf{X};\mathbf{Y}) \geq -H(\mathbf{A}) - \mathbb{E}_{\mathbf{Y}} \log \mathbb{E}_{\mathbf{X},\mathbf{A}} P(\mathbf{A}|\mathbf{X},\mathbf{Y}) \ - \mathbb{E}_{\mathbf{X},\mathbf{A}} \log \mathbb{E}_{\mathbf{Y}} rac{P(\mathbf{A}|\mathbf{X},\mathbf{Y})}{E_{\mathbf{X},\mathbf{A}} P(\mathbf{A}|\mathbf{X},\mathbf{Y})} \end{aligned}$$

- Bound's tightness depends on the choice of P_A
- For BSC certain choices of P_A yield tight bounds and other choices yield I(X; Y) ≥ 0

Theorem

The intrinsic uncertainty is lower bounded by

$$egin{aligned} I(\mathbf{X};\mathbf{Y}) \geq -H(\mathbf{A}) - \mathbb{E}_{\mathbf{Y}} \log \mathbb{E}_{\mathbf{X},\mathbf{A}} P(\mathbf{A}|\mathbf{X},\mathbf{Y}) \ - \mathbb{E}_{\mathbf{X},\mathbf{A}} \log \mathbb{E}_{\mathbf{Y}} rac{P(\mathbf{A}|\mathbf{X},\mathbf{Y})}{E_{\mathbf{X},\mathbf{A}} P(\mathbf{A}|\mathbf{X},\mathbf{Y})} \end{aligned}$$

- Bound's tightness depends on the choice of P_A
- For BSC certain choices of P_A yield tight bounds and other choices yield I(X; Y) ≥ 0

For a certain choice of P_A the bound becomes much simpler..., \mathbb{R} ,

Definition

A channel has a uniform action set if

$\boldsymbol{A} \sim \mathrm{Uniform}(\mathcal{A})$

Or Ordentlich and Ofer Shayevitz Bounding Techniques for the Intrinsic Uncertainty of Channels

・ロト ・回ト ・ヨト ・ヨト

Definition

A channel has a uniform action set if

 $\boldsymbol{A} \sim \mathrm{Uniform}(\mathcal{A})$

Theorem

For channels with uniform action set:

$$I(\mathbf{X};\mathbf{Y}) \geq -\mathbb{E}_{\mathbf{Y}} \log \mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}} - \mathbb{E}_{\mathbf{X}} \log \mathbb{E}_{\mathbf{Y}} \frac{\mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}}{\mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}}$$

where

$$\mathcal{S} \triangleq \{ (\mathbf{x}, \mathbf{y}) \ : \ \exists \mathbf{a} \in \mathcal{A} \text{ s.t. } \mathbf{a}(\mathbf{x}) = \mathbf{y} \} = \{ (\mathbf{x}, \mathbf{y}) \ : \ P_{\mathbf{X}\mathbf{Y}}(\mathbf{x}, \mathbf{y}) > 0 \}$$

Proposition

For each channel $P_{\mathbf{Y}|\mathbf{X}}$ there exist a uniform action set

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Proposition

For each channel $P_{\mathbf{Y}|\mathbf{X}}$ there exist a uniform action set

Proof

- $\bullet~$ Let $\mathcal{A} = \{\textbf{a}_1, \ldots, \textbf{a}_{|\mathcal{A}|}\}$ be some action set
- $P_{\mathbf{A}}$ is a probability assignment on \mathcal{A} consistent with $P_{\mathbf{Y}|\mathbf{X}}$
- Duplicate each action a_i to M_i identical actions with equal probabilities P_A(a_i) M_i
- Choose the *M*_is such that all actions in the extended set are equiprobable

▲圖 ▶ ★ 国 ▶ ★ 国 ▶

Proposition

For each channel $P_{\mathbf{Y}|\mathbf{X}}$ there exist a uniform action set

Corollary (Our Main Result)

For any joint distribution $P_{\mathbf{XY}}$

$$I(\mathbf{X};\mathbf{Y}) \geq -\mathbb{E}_{\mathbf{Y}} \log \mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}} - \mathbb{E}_{\mathbf{X}} \log \mathbb{E}_{\mathbf{Y}} \frac{\mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}}{\mathbb{E}_{\mathbf{X}} \mathbb{1}_{\{(\mathbf{X},\mathbf{Y})\in\mathcal{S}\}}}$$

where $S \triangleq \{(\mathbf{x}, \mathbf{y}) : P_{\mathbf{X}\mathbf{Y}}(\mathbf{x}, \mathbf{y}) > 0\}.$

(4回) (注) (注) (注) (注)

Capacity

- Only bounds are known
- Best lower bounds use input with memory [Diggavi & Grossglauser '01] [Drinea & Mitzenmacher '07] [Kirsch & Drinea '10] ...
- Some implicitly analyze the first summand in our bound

(1日) (日) (日)

Capacity

- Only bounds are known
- Best lower bounds use input with memory [Diggavi & Grossglauser '01]
 [Drinea & Mitzenmacher '07] [Kirsch & Drinea '10] ...
- Some implicitly analyze the first summand in our bound

Rates for a memoryless input

- Only bounds are known
- $1 H_2(d)$ achievable for $d \in [0, rac{1}{2})$ [Gallager '61]
- Recently improved for
 - Small d [Rahmati & Duman '13]
 - d
 ightarrow 0 [Kanoria & Montanari '13] [Drmota et al '12]
- And our bound?

・ロン ・回 と ・ ヨ と ・ ヨ と

New Bound (Memoryless Input)

$$\lim_{n\to\infty}\frac{1}{n}I(\mathbf{X};\mathbf{Y})\geq 1-H_2(d)+g(d)$$

where g(d) > 0 for all $d \in (0, \frac{1}{2})$, and is given by

$$g(d) = \min_{\alpha \in [0,1]} \left(D_2(\alpha || 1 - d) - (1 - H_2(\langle \alpha \rangle)) + \Lambda^*(\alpha) \right)$$
$$\Lambda^*(\alpha) = \max_{t>0} \left(\alpha t - \frac{1}{5} \sum_{k_1} \sum_{k_2} 2^{-(k_1 + k_2 - 1)} \log \lambda_{Z_{k_1, k_2}}(t) \right)$$
$$\lambda_{Z_i}^{k_1, k_2}(t) = 2^{k_1(t-1)} + 2^{t-1} \frac{1 - 2^{k_1(t-1)}}{1 - 2^{t-1}} \left(2^{t-1} \frac{1 - 2^{k_2(t-1)}}{1 - 2^{t-1}} + 2^{k_2(t-1) - t} \right)$$

Example: Binary Deletion Channel

% improvement over Gallager's bound $1 - H_2(d)$ (IID input):

- **□** ► < **□** ►

Concluding Remarks

Summary

- Novel lower bound on I(X; Y) that depends only on P_X, P_Y and the support of P_{XY}
- Bound is useful for channels with memory and low-connectivity
- Main tool: The Variational Principle
- For the deletion channel with IID input our bound improves best existing bounds (for some regime of *d*)

(日本) (日本) (日本)

Concluding Remarks

Summary

- Novel lower bound on I(X; Y) that depends only on P_X, P_Y and the support of P_{XY}
- Bound is useful for channels with memory and low-connectivity
- Main tool: The Variational Principle
- For the deletion channel with IID input our bound improves best existing bounds (for some regime of *d*)

Future Research

- Evaluate bound for different inputs and different channels, e.g., deletion with Markov input, trapdoor channels, etc...
- Can improve the bound to better trade-off complexity and accuracy: Replace S with a subset of the support whose probability approaches 1

イロン イヨン イヨン

э

Thanks for your attention!

(人間) (人) (人) (人) (人)