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The MIMO channel
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@ Power constraint is E|x,[|? <SNR for m=1,..., M
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The MIMO channel
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@ We only consider BLAST schemes
= All results are also valid for multiple access channels
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Sum rate optimality of SIC (via noise prediction)

@ Assume each encoder uses an i.i.d. Gaussian codebook, such that x
looks like A/(0,SNRI)
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Sum rate optimality of SIC (via noise prediction)

@ Assume each encoder uses an i.i.d. Gaussian codebook, such that x
looks like A/(0,SNRI)

@ The receiver first performs linear MMSE estimation of x from
y = Hx +z. The LMMSE filter is B = HT izl + HHT) .
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Sum rate optimality of SIC (via noise prediction)

@ Assume each encoder uses an i.i.d. Gaussian codebook, such that x
looks like A/(0,SNRI)

@ The receiver first performs linear MMSE estimation of x from
y = Hx +z. The LMMSE filter is B = HT izl + HHT) .

@ Resulting effective channel is
Yeif = By = x + e,
where e = By — x = (BH — I)x + Bz is a Gaussian vector with

Kee = SNR(1 + SNR HTH)™! = SNRGG’
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Sum rate optimality of SIC (via noise prediction)

@ Assume each encoder uses an i.i.d. Gaussian codebook, such that x
looks like A/(0,SNRI)

@ The receiver first performs linear MMSE estimation of x from
y = Hx 4 z. The LMMSE filteris B=H" (SNRI + HHT)

@ Resulting effective channel is
Yeif = By = x + e,
where e = By — x = (BH — I)x + Bz is a Gaussian vector with

Kee = SNR(1 + SNR HTH)™! = SNRGG’

@ e can be written as e = VSNRGw where w ~ A/ (0,1) and G is lower
triangular matrix satisfying (I + SNR H'H)~! = GG”
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Successive cancelation decoding via noise prediction

Equivalent channel after LMMSE estimation is
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Successive cancelation decoding via noise prediction

Equivalent channel after LMMSE estimation is

X1 811 0 T 0 wy

Yeff = 2 L VSNR| & &2 0 : w2
(S - . .
: : S 0 :

xm gv1 8m2 ' MM WM

@ Decoding first stream from yer1 = x1 + VSNRg11wy is possible if

1 SNR 1
Ry < =1 1+ — 1) =—21 2
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Successive cancelation decoding via noise prediction

After decoding first stream, w; is also known and can be canceled from
remaining streams

Xt gn 0 .- 0 Wi

X2 . Wo

y@=| 7 |+venr| 0 &2 O |
: : E 0

XM 0 gw2 - 8uwm WM
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Successive cancelation decoding via noise prediction

After decoding first stream, w; is also known and can be canceled from
remaining streams

Xt gn 0 .- 0 Wi
X2 . Wo
y@=| 7 |+venr| 0 &2 O |
: : : E 0
XM 0 gw2 - 8uwm WM

@ Decoding second stream from y(fzf)2 = x2 + VSNRgows is possible if

€

1 SNR 1
Ry < =1 1 —1)=-21 2
2 < 5 og< + SNRZ, ) 5 10g(822)
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Successive cancelation decoding via noise prediction

@ Continuing in the same manner, each stream can be decoded if

1
Rm < —Elog(g,znm), m=1,....M
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Successive cancelation decoding via noise prediction

@ Continuing in the same manner, each stream can be decoded if

1
Rm < —Elog(g,znm), m=1,....M

@ Achievable sum-rate is

M 1 M
D Rm==352 log (gnm)
m=1 m=1
1 M
= _5 Iog (H gr%qm)
m=1

- —% log det (GGT)

_ % log det (1+ SNRHTH)
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Integer-forcing - background
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@ Proposed by Zhan et al. ISIT2010
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Integer-forcing - background
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@ Antennas transmit independent

@ All streams are codewords from

streams (BLAST).
the same linear code with rate R.
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Integer-forcing - background
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@ Rather than estimating x from y as in standard linear equalizers, in IF
Ax is estimated for some full-rank A € ZM*M | MMSE filter is

B—AH" (SNR—ll + HHT>_1
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Integer-forcing - background

e
V] € C | ~ M
x; €C— —’EB_’YefF,l = Zmzl AmXm + €1
A :
ey
Vy € C | . M
xy € C— —’EB_’YefF,M = m—1 aMmXm + ey

Effective channel is yoif = Ax + €

@ A linear combination of codewords with integer coefficients is a
codeword
— Can decode the linear combinations - remove noise
= Can solve noiseless linear combinations for transmitted streams
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Effective channel is yof = Ax + €

@ A linear combination of codewords with integer coefficients is a

codeword

— Can decode the linear combinations - remove noise
— Can solve noiseless linear combinations for transmitted streams
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Integer-forcing - background

€

vieC ! ~ M
x1 € C— —’EB_’Yeff,l = Zmzl aimXm + €1

€v
vy €C ! - M
xy € C— —’EB_)YefF,M = Zm:l AMmXm + em
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Integer-forcing - background

€1
vieC ! ~ M
x1 € C— —’EB_’Yeff,l = Zmzl aimXm + €1
A :
em
vy €C | - M
Xy € C— —’EB_’yefﬁM = Zm:l AMmXm + em

@ For capacity achieving codebooks, the estimation errors behave like
i.i.d. (in time) Gaussian RVs. The spatial covariance matrix is

Kee = SNRA(1 +SNR HTH)!AT
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Integer-forcing - background

€1
vieC | ~ M
x1 € C— —’EB_’Yeff,l = Zmzl aimXm + €1
A :
ey
vy €C | - M
Xy € C— —’EB_’yefﬁM = Zm:l AMmXm + em

@ For capacity achieving codebooks, the estimation errors behave like
i.i.d. (in time) Gaussian RVs. The spatial covariance matrix is

Kee = SNRA(1 +SNR HTH)!AT

Standard IF equalizer ignores the spatial correlations between estimation
errors. Successive |IF equalizer exploits them to increase rates
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Integer-forcing - background

€

x; €C—

Xy € C—

vieC ! ~ M
EB Yeff,1 = Zm:l AmXm + €1

€v
vy €C ! - M
—)EB_)YefF,M = Zm:l AMmXm + em

Theorem (Nazer-GastparlllT)

Each v,,, can be decoded if R < %Iog (ﬁ)

Kee(m,m)
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Integer-forcing - background

€

x; €C—

Xy € C—

vieC | ~ M
EB Yeff,1 = Zm:l AmXm + €1

em
vy €C ! - M
———— Vet = 2 1 AMmXm + €M

Theorem (Nazer-GastparlllT)
Each v, can be decoded if R < %Iog( SNR )

Kee(m,m)

Theorem (Zhan et al. ISIT2010)

All messages can be decoded if R < % log (L)

maxm Kee(m,m)
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Successive integer-forcing

€

vieC ! ~ M
x1 € C— —’EB_’Yeff,l = Zmzl aimXm + €1

€v
vy €C ! - M
xy € C— —’EB_)YefF,M = Zm:l AMmXm + em

Or Ordentlich, Uri Erez and Bobak Nazer Successive Integer-Forcing and its Sum-Rate Optimality



Successive integer-forcing

€

x; €C—

Xy € C—

vieC ! ~ M
EB Yeff,1 = Zm:l AmXm + €1

€v
vy €C ! - M
—)EB_)YefF,M = Zm:l AMmXm + em

Let L be a lower triangular matrix such that SNRLLT = Kee. Using suc-
cessive decoding we reduce the variance of e,, to SNR(2, .

SNRZ2,

Each v, can be decoded if R < %Iog( LUK ) = —21log(¢2,,) J
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Successive integer-forcing

€1
vieC | ~ M
x1 € C— —’EB_’Yeff,l = Zmzl aimXm + €1
A :
ey
vy €C | - M
Xy € C— —’EB_’yefﬁM = Zm:l AMmXm + em

Let L be a lower triangular matrix such that SNRLLT = Kee. Using suc-
cessive decoding we reduce the variance of e,, to SNR(2, .

Each v,,, can be decoded if R < 1 log (%) = —21log(¢2,,) J
All messages can be decoded if R < —% log (maxm @nm) J
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Optimality of KZ reduction

All messages can be decoded if R < —% log (maxym, £2,,,,), where

LL” = A(I +SNRHTH)*AT
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Optimality of KZ reduction

All messages can be decoded if R < —% log (maxym, £2,,,,), where

LL” = A(I +SNRHTH)*AT

How should we choose A for maximizing R? J
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Optimality of KZ reduction

All messages can be decoded if R < —% log (maxym, £2,,,,), where

LL" = A(1+SNRH"H)!AT

How should we choose A for maximizing R? J

Theorem

The optimal A for successive integer-forcing can be found using
Korkin-Zolotarev lattice basis reduction

== The optimal A always satisfies |A| = 1 (unlike standard IF)
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Asymmetric rates

For standard SIC, if H is known at the transmitter, it can appropriately
allocate the rate for each stream.
Can this also be done for integer-forcing?
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Asymmetric rates

For standard SIC, if H is known at the transmitter, it can appropriately
allocate the rate for each stream.
Can this also be done for integer-forcing?

Assume that M = 2 (only two streams)

First stream is taken from a linear code C; with rate R;

°
°
@ Second stream is taken from a linear code C> C C; such that R» < Ry
@ Both codes are over Zg

°

Assume that a; = [2 3]7 and ap = [1 3]7
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Asymmetric rates

For standard SIC, if H is known at the transmitter, it can appropriately
allocate the rate for each stream.
Can this also be done for integer-forcing?

Assume that M = 2 (only two streams)

First stream is taken from a linear code C; with rate R;

Both codes are over Zs

°
°
@ Second stream is taken from a linear code C> C C; such that R» < Ry
°
@ Assume that a; = [2 3]7 and a, = [1 3]"

The effective outputs after equalization are

Yeff,1 = 2X1 + 3x2 + €1
Yeff2 = 1x1 + 3x2 + €3
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Asymmetric rates

For standard SIC, if H is known at the transmitter, it can appropriately
allocate the rate for each stream.
Can this also be done for integer-forcing?

Assume that M = 2 (only two streams)

First stream is taken from a linear code C; with rate R;

Second stream is taken from a linear code C> C C; such that R» < Ry
Both codes are over Zs

@ Assume that a; = [2 3]7 and a, = [1 3]"

Reducing Y. modulo 5 we get

Yeff1 = [2X1 +3x2 +e1] mod 5 =[vi +e;] mod5
Yefr2 = [Lx1 + 3x2 + €] mod 5 = [vp + €] mod 5
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Asymmetric rates

Yeff1 = [2X1 +3x2 +e1] mod 5 =[vi +e;] mod5
Yefi2 = [1x1 + 3x2 + €] mod 5 = [vo +ep] mod 5

@ vi = [2x; + 3xp] mod 5 € (Cq
== Can be decoded if R; sufficiently small w.r.t. 1/¢2; J
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Asymmetric rates

Yeff1 = [2X1 +3x2 +e1] mod 5 =[vi +e;] mod5
Yefi2 = [1x1 + 3x2 + €] mod 5 = [vo +ep] mod 5

@ vi = [2x; + 3xp] mod 5 € (Cq
= Can be decoded if Ry sufficiently small w.r.t. 1/¢3,

@ vy = [1x; + 3xp] mod 5 is also in Cy
@ Using the decoded v; we can make it belong to C;

@ C, is sparser than C;
— Easier to decode
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Asymmetric rates

Yeff1 = [2X1 +3x2 +e1] mod 5 =[vi +e;] mod5
Yefi2 = [1x1 + 3x2 + €] mod 5 = [vo +ep] mod 5

@ vi = [2x; + 3xp] mod 5 € (Cq
= Can be decoded if Ry sufficiently small w.r.t. 1/¢3,

After decoding v; the receiver can add 2v; to yes> and reduce mod 5

952,2 = [1x1 + 3x2 + e + 2v;] mod 5
=[(1+2-2)x1+(3+2-3)x2 + €] mod5
= [4x2 + €] mod 5
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Asymmetric rates

Yeff1 = [2X1 +3x2 +e1] mod 5 =[vi +e;] mod5
Yefi2 = [1x1 + 3x2 + €] mod 5 = [vo +ep] mod 5

@ vi = [2x; + 3xp] mod 5 € (Cq
= Can be decoded if Ry sufficiently small w.r.t. 1/¢3,

After decoding v; the receiver can add 2v; to yes> and reduce mod 5

952,2 = [1x1 + 3x2 + e + 2v;] mod 5
=[(1+2-2)x1+(3+2-3)x2 + €] mod5
= [4x2 + €] mod 5

In addition e; can be used to estimate e,
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Asymmetric rates

[va +2vi] mod 5 =4x; € Cy
= Can be decoded if R, sufficiently small w.r.t. 1/¢3, J
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Asymmetric rates

[va +2vi] mod 5 =4x; € Cy
= Can be decoded if R, sufficiently small w.r.t. 1/¢3, }

We also assumed R, < R;
= R, also needs to be sufficiently small w.r.t. 1/¢2, }

If £3, < (3, this requirement is redundant
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Asymmetric rates

[va +2vi] mod 5 =4x; € Cy
= Can be decoded if R, sufficiently small w.r.t. 1/¢3, J

We also assumed R, < R;
= R, also needs to be sufficiently small w.r.t. 1/¢2, J

If £3, < (3, this requirement is redundant

If €3, < £3, we can encode one stream with rate R, < —3 log (¢2;) and
the other stream with rate Ry < —% log (¢3,)
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Sum-rate optimality of successive integer-forcing

If /3, < --- < (3,,, the achievable sum-rate for successive integer-forcing is

M

M
> Rm= 5 > 108 (6)
m=1

m=1 =

] M

= _5 Iog (H g%nm)
m=1

1 T
=3 log det (LL )

1 Tt T
~ — logdet (A (1+SNRHTH) A

1
= 5 log det (l + SNRHTH) ~ log | det(A))]
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Sum-rate optimality of successive integer-forcing

If /3, < --- < (3,,, the achievable sum-rate for successive integer-forcing is

M

M
> Rm= 5 > 108 (6)
m=1

m=1 =

] M

= _5 Iog (H g%nm)
m=1

1 T
=3 log det (LL )

1 Tt T
~ — logdet (A (1+SNRHTH) A

1
= 5 log det (l + SNRHTH) ~ log | det(A))]

There is always an optimal A with | det(A)| = 1, so the sum-rate is optimal
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Sum-rate optimality of successive integer-forcing

So what? Standard SIC is also sum-rate optimal...

The attained rate-tuples with successive IF tend to be more symmetric
than with standard SIC
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Sum-rate optimality of successive integer-forcing

So what? Standard SIC is also sum-rate optimal...

The attained rate-tuples with successive IF tend to be more symmetric
than with standard SIC

Why is this important in closed-loop?

For MIMO it is not very important

For MAC each stream belongs to a different user and symmetry is often
desired
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Gaussian MAC with nested linear codes - IF rate region

Gaussian two-user MAC y = 1x; + v/2x5 4+ z at SNR = 15dB
R>

0.77 1.44 1.85 3.00 Ry
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