On Compute-and-Forward with Feedback

Or Ordentlich
Joint work with Uri Erez and Bobak Nazer

Information Theory Workshop
Jerusalem, lsrael
April 27, 2015

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian Multiple-Access Channel

Z ~ N(0,1)
X
Wy &1 P —hy
y PO
o D —in W,
Wy & |X2—"h

Y=mXi+mhXs+Z

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian Multiple-Access Channel

Z ~ N(0,1)
X
Wy &1 P —hy
Y PO
a D Wi, Ws
W2 52 X2 h2

Y=mXi+mhXs+Z
Capacity Region
1
R < 5 log(1+ h?SNR)

1
Rp < 5 log(1 + h3SNR)

1
Rit R <3 log(1 + ||h[|*SNR)

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian Multiple-Access Channel

Z ~ N(0,1)
X
Wy &1 P —hy
y PO
o D —in W,
Wy & |X2—"h

Y=mXi+mhXs+Z

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian Multiple-Access Channel

Z ~ N(0,1)
X
Wy &1 P —hy
Y PO
a D Wi, Ws
W2 52 X2 h2

Y=mXi+mhXs+Z
Feedback Capacity Region (Ozarow 84)

1
Ry < 5 log(1+ (1~ p?)h2SNR)

1
Ro < 5 log(1 + (1 — p?)h3SNR)

1
Rit R <3 log(1 + (||h||? 4 2p|h1h2|)SNR)

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

Ri=Ry=R={logp Z ~N(0,1)
wlng & X1 hy
© Y D w1 O Wo
wo e Pkl &, K2 h

Y=mXi+mhXs+Z

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

R1:R2:R:%|ogp Z ~N(0,1)
wi e Fi— & P
© Y D w1 T Wy
Wy € IF’I; & X ho

Y =mhXi+hXo+Z

@ We assume full CSI everywhere

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

Ri=R,=R=%logp

Z ~ N(0,1)
wi e Fi— & P

© Y D w1 T Wy
Wy € IF’,; & X hy

Y=mX1+hXs+Z7
@ We assume full CSI everywhere

@ Only lower and upper bounds are known (Nazer & Gastpar 11)

1 1 1
5 log <§ + min{h?, hg}SNR) < Ceomp < 5 log (1+ min{h3, K3}SNR)

@ At high SNR the bounds coincide. At low SNR separation is optimal

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

Z ~ N(0,1)
wp € F,’; &1 X hy
© Y D w1 O Wo
wo e Pkl &, K2 h

Y=mXi+mhXs+Z

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

Z ~ N(0,1)
wp € F,’; &1 X hy
© Y D w1 O Wo
wo e Pkl &, K2 h

Y=mXi+mhXs+Z

How Much Does Feedback Help?

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

W)
| Z~NO1) |,
wp € F,’; &1 X1 hy l
O Y D w1 T Wy
wo e Pkl &, K2 h

Y=mXi+mhXs+Z

How Much Does Feedback Help?
@ Upper bound remains the same Ceomp < % log (1 + min{h3, h%}SNR)

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

Z ~ N(0,1)
wp € F,’; &1 X hy
© Y D w1 O Wo
wo e Pkl &, K2 h

Y=mXi+mhXs+Z

How Much Does Feedback Help?
@ Upper bound remains the same Ceomp < % log (1 + min{h3, h%}SNR)

@ No non-trivial lower bounds are known

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

Z ~ N(0,1)
wp € F,’; &1 X hy
© Y D w1 O Wo
wo e Pkl &, K2 h

Y=mXi+mhXs+Z

How Much Does Feedback Help?
@ Upper bound remains the same Ceomp < % log (1 + min{h3, h%}SNR)

@ No non-trivial lower bounds are known

@ In this work we derive a novel lower bound

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

Main Result
Forany 0 < p <1 let

p=1—(1-p) (Z—j)z

1 1
Rczzibg+<§—+(1—pﬂ@SNR>,

h h 2SNR
R’:llog 1+(1\/p_1+ 2\/52) .
2 1+2(1 — p)h3SNR

Any computation rate satisfying

: 1 5
R<d$%mm<RWJ%§bgu+ﬂ—pM§Nm>

is achievable with feedback.

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

h1=1, SNR=2

0.8 T

0.7r b

0.2 Upper bound

0 1 1 1
0 0.5 1 15 2

h2

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

h1=1, SNR=2

0.8

0.7r

Upper bound
Computation rate - full CSI

0 0.5 1 15 2

h2

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

h1=1, SNR=2

0.8

0.7r

Upper bound
Computation rate - full CSI
Separartion with feedback i

0 0.5 1 15 2

h2

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Gaussian MAC - Compute-and-Forward

h 1=l, SNR=2
0.8 T
0.7 b
0.6 b
051 b
L
5 L 4
s 0.4
0.3 b
02r Upper bound)
Computation rate - full CSI
01l Separartion with feedback i
= Feedback computation rate
0 1 1 1
0 0.5 1 1.5 2
hz

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Lattice List Decoder (Song & Devroye 13)

Fine lattice A, coarse lattice AC A,

C=A.NV

Lattice List Decoder (Song & Devroye 13)

Fine lattice A, coarse lattice A, intermediate lattice As, A C As C A,

C=A.NV

Lattice List Decoder (Song & Devroye 13)

AWGN channel y = x + z, R>C

Lattice List Decoder (Song & Devroye 13)

AWGN channel y = x + z, R>C

Lattice List Decoder (Song & Devroye 13)

AWGN channel y = x + z, R>C

Lattice List Decoder (Song & Devroye 13)

AWGN channel y = x + z, R>C

Lattice List Decoder (Song & Devroye 13)

AWGN channel y = x + z, R>C
Decode a list of codewords: L = {c € C :c& [y+ V| mod A}

Lattice List Decoder (Song & Devroye 13)

AWGN channely =x+2z, R>C
Decode a list of codewords: L = {cc(C :ce [y + Vs mod A}

1] = log (Y2133

Lattice List Decoder (Song & Devroye 13)

It is possible to decode a list with size 2"(R=C) that contains the true
codeword w.h.p. using a lattice list decoder

Theorem (Song & Devroye 13) J

Compute-and-Forward with Feedback - High-Level

High-level overview of our coding scheme

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback - High-Level

High-level overview of our coding scheme

@ Block Markov coding

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback - High-Level

High-level overview of our coding scheme

@ Block Markov coding

@ In the end of each block user i can decode w; using the feedback link

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback - High-Level

High-level overview of our coding scheme

@ Block Markov coding
@ In the end of each block user i can decode w; using the feedback link

@ In each block, each user superimposes encoding of a new message
and encoding of the sum of messages from the last block

@ The encoding of the sum is transmitted coherently

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback - High-Level

High-level overview of our coding scheme

@ Block Markov coding
@ In the end of each block user i can decode w; using the feedback link

@ In each block, each user superimposes encoding of a new message
and encoding of the sum of messages from the last block

@ The encoding of the sum is transmitted coherently

@ The receiver decodes the coherent part first, and then a list of
candidates for the new sum

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback - High-Level

High-level overview of our coding scheme

@ Block Markov coding
@ In the end of each block user i can decode w; using the feedback link

@ In each block, each user superimposes encoding of a new message
and encoding of the sum of messages from the last block

@ The encoding of the sum is transmitted coherently

@ The receiver decodes the coherent part first, and then a list of
candidates for the new sum

A compute-and-forward variant of Cover-Leung 81

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

For simplicity assume hy = h, =1

@ Decoding ng) &) wgk), k=1,...,N over N 4 1 blocks

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

For simplicity assume hy = h, =1
@ Decoding ng) &) wgk), k=1,...,N over N 4 1 blocks

@ Both users encode their messages using the same lattice code C, such
that %X = f (w,(.k)) ec

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

For simplicity assume hy = h, =1
@ Decoding ng) &) wgk), k=1,...,N over N 4 1 blocks

@ Both users encode their messages using the same lattice code C, such
that %X = f (w,(.k)) ec

@ First block: xl(.l) = migl)

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

For simplicity assume hy = h, =1
@ Decoding w() &) wgk), k=1,...,N over N 4 1 blocks

@ Both users encode their messages using the same lattice code C, such
that x() f (w,(.k)> eC

@ First block: xl(.l) =41- px(l)

@ Receiver sees

y(l) = \/lTp< %1 +x(1)) + 2.

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

For simplicity assume hy = h, =1
@ Decoding w() &) wgk), k=1,...,N over N 4 1 blocks

@ Both users encode their messages using the same lattice code C, such
that x() f (w,(.k)> eC

@ First block: xl(.l) =41- px(l)
@ Receiver sees

y(l) = \/lTp< %1 +x(1)) + 2.

® R < Reomp = % log (% + (1 — p)SNR) is needed for decoding

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

For simplicity assume hy = h, =1
@ Decoding w() &) wgk), k=1,...,N over N 4 1 blocks
@ Both users encode their messages using the same lattice code C, such
that x() f (w,(.k)> eC
@ First block: x,(.l) =41- px(l)

@ Receiver sees

y(l) = \/lTp< %1 +x(1)) + 2.

® R < Reomp = % log (% + (1 — p)SNR) is needed for decoding
wi® & wld
1 2

@ In our case R > Rcomp and the receiver can decode a list LD of
candidates for w(l) a5 wg) with size |L(1 | = 2n(R—Reomp)

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

1)

i

@ Using the feedback link, user i can decode w

R < % log(1 + (1 — p)SNR)

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

1)

i

@ Using the feedback link, user i can decode w
1
R < 5 log(1 4+ (1 — p)SNR)

o Both users can compute v(}) = wgl) S ng)

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

1)

i

@ Using the feedback link, user i can decode w
1
R < 5 log(1 4+ (1 — p)SNR)

o Both users can compute v(}) = wgl) S ng)

@ Both users apply the same binning function B : [2"R] — [27F],
R' < R, to obtain B (v(1))

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

@ Using the feedback link, user i can decode wl(Tl) if

R < % log(1 + (1 — p)SNR)

o Both users can compute v(}) = wgl) S ng)

@ Both users apply the same binning function B : [2”R] — [2”R’],
R’ < R, to obtain B (v(l))
(1)

@ Each user encodes B(<)) to X_.p,, using the same codebook C’ with
rate R’ and average power SNR

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

@ Using the feedback link, user i can decode wl(Tl) if

R < % log(1 + (1 — p)SNR)

o Both users can compute v(}) = wgl) S ng)

@ Both users apply the same binning function B : [2”R] — [2”R’],
R’ < R, to obtain B (v(l))
(1)

@ Each user encodes B(<)) to X_.p,, using the same codebook C’ with

rate R’ and average power SNR
(2)

@ In addition, each user encodes a new message w;
~(2
32

to the codeword

and transmits

xl('2) cohr + \% on(z

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

@ Channel output is

= 2\/_Xcohr v1 (+ %) +202

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

@ Channel output is

= 2\/_Xcohr v1 (+ %) +202

1) ¢

@ Can decode Xcohr

R <

log <1 + 4pSNR >

1+2(1— p)SNR

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

@ Channel output is

= 2\/_Xcohr v1 (+ %) +202

1) ¢

@ Can decode Xcohr

R <

log <1 + 4pSNR >

1
2 1+2(1 - p)SNR

@ The decoder looks for a unique w € F in LD B~ (vV)

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

@ Channel output is

= 2\/_Xcohr v1 (+ %) +202

1) ¢

@ Can decode Xcohr

R <

log <1 + 4pSNR >

1
2 1+2(1 - p)SNR

@ The decoder looks for a unique w € F in LD B~ (vV)
® If R" > R — Reomp such a w € IF,’; will be found with probability 1

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback

@ Channel output is

= 2\/_Xcohr v1 (+ %) +202

1) ¢

cohr

1 4pSNR
R <=1 1
=72 °g< * 1—|—2(1—p)SNR>

@ Can decode x

@ The decoder looks for a unique w € F in LD B~ (vV)
® If R" > R — Reomp such a w € IFk will be found with probability 1

@ Next, the decoder subtracts x()
candidates for v(?) = Wgz) &) gz)

from y and decodes a list L(of

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback - Rate Constraints

@ Correct decoding through feedback link

R < % log(1 + (1 — p)SNR)

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback - Rate Constraints

@ Correct decoding through feedback link

R < % log(1 + (1 — p)SNR)

@ Correct decoding of Xconr

1 4pSNR
R <21 1
=73 °g< * 1—|—2(1—p)SNR)

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback - Rate Constraints

@ Correct decoding through feedback link

R < % log(1 + (1 — p)SNR)

@ Correct decoding of Xconr

1 4pSNR
R <21 1
=73 °g< * 1—|—2(1—p)SNR)

@ Unique element in intersection of list and bin

1 1
R > R—Elog <§+(1—p)SNR>

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback - Rate Constraints

Achievable Rate

R < min {% log(1+ (1 — p)SNR),
1 4pSNR 1 1
3 log <1 +q ol = p)SNR) t3 log (5 +(1- p)SNR) }

v

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback - Rate Constraints

Achievable Rate
. 1
R < min {5 log(1+ (1 — p)SNR),

% log (% +(1+ p)SNR) }

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Compute-and-Forward with Feedback - Rate Constraints

Achievable Rate
. 1
R < min {5 log(1+ (1 — p)SNR),

% log (% +(1+ p)SNR) }

Setting p = ﬁ we get

R < % log (3 4+ SNR)

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

Summary and Conclusions

We studied the problem of computing a linear function from the
output of a Gaussian MAC with feedback

We derived a new coding scheme for this scenario
For a symmetric setting our scheme achieves R = % log (% + SNR)

The scheme can be extended to noisy feedback and more than 2 users

Our scheme works in blocks. Can we find a scalar, a la
Schalkwijk-Kailath 66 scheme?

Ordentlich, Erez, Nazer On compute-and-Forward with Feedback

