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Courtade-Kumar Conjecture [IT’14]

for all boolean functions f : {0, 1}n 7→ {−1, 1}

I (f (X);Y) ≤ 1− h(α)

Despite considerable effort, conjecture still open

This work:

New upper bound I (f (X);Y) ≤ g(α) that holds for all
balanced functions

limα→1/2
g(α)

1−h(α) = 1
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Main Result

Theorem

For any balanced function f : {0, 1}n 7→ {−1, 1} and any
1
2

(

1− 1√
3

)

≤ α ≤ 1
2 , we have that

I (f (X);Y) ≤ log2(e)

2
(1− 2α)2 + 9

(

1− log2(e)

2

)

(1− 2α)4.
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Simple Attempts: SDPI

Let

ηKL(PY |X ,Q) , sup
P:0<D(P||Q)<1

D(PY |X ◦ P ||PY |X ◦ Q)

D(P ||Q)

ηKL(PY |X ,Q) tensorizes: ηKL(P
n
Y |X ,Q

n) = ηKL(PY |X ,Q)
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PXY=Q×PY |X

I (U;Y )
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Weakness: the approximation h(p) ≥ 4p(1− p) is loose
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Our Approach

We will first find tighter bounds on h(p)
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√

1
p−1

)

, then for any g : {0, 1}n 7→ R
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Degraded Channels
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Main result

We have found:
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Properties of the Bound

Our bound (with t = 2) has the optimal slope at α = 1/2 and
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For all 1
2(1− 2−(n+2)) ≤ α ≤ 1

2 and all balanced functions
f : {0, 1}n 7→ {−1, 1}

I (f (X);Y) ≤ 1− h(α) (∗)

It is now known that (*) holds for all boolean functions and
1
2(1− δ) < α ≤ 1

2 (δ > 0 and indep. of n) [Samorodnitsky’15]
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Summary

We have studied the most informative boolean function
conjecture

Derived a new upper bound on I (f (X);Y)) for balanced f

Bound becomes tight as channel becomes noisier

Main ingredient was to bound high moments of Tαf

This was done by

Markov operator for degraded channels
hypercontractivity
maximal correlation
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