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Remark: The Lemma is tight for a Hamming Ball of radiusd

h(p) = −p log p− (1− p) log (1− p)

Corollary

If |C| = 2n(R+ε) then there is a shattered setS with |S| ≥ nh−1(R).
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Corollary

If (R1, R2) is achievable then

R2 ≤ (1− h−1(R1)) log 3

Unfortunately, for anyR1 ∈ [0, 1]

R1 + (1− h−1(R1)) log 3 > 1.5

Weaknesses:
We assumed only oneS-complement for eachc2 ∈ C2
Weak lower bound on# of S-complement pairs (2nR2)
We disregarded the sumset structure outsideS
Weak upper bound on# of S-complement pairs (3|S̄|)
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wheret∗ is the smallest integert satisfying
(

n−d
t−d

)

≥ k if such an inte-
ger exists, andt∗ = n otherwise.

O(n/d)-tight for a Hamming Ball of radiust∗

Corollary

If |C| = 2n(R+ε) then for any0 ≤ α ≤ h−1(R) there existsS with
|S| ≥ nα that is2nβ-shattered byC, where

β = (1− α) · h

(

h−1(R)− α

1− α

)
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1010010
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...

C1,a

C2:
1000110
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THE BAC WITH A COMMON MESSAGE

A reduction lemma

If (R1, R2) are in the BAC zero-error capacity region, then for any
0 < α < h−1(R1)

r0 =
α

1− α
, r1 =

β(α,R1)

1− α
, r2 =

R2 − α

1− α

is in the zero-error capacity region of the BAC with common message.
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THE BINARY ADDER WITH A COMMON MESSAGE

Theorem[Slepian-Wolf 1973], [Willems 1982]

The Shannon capacity region of the BAC with a common message,is
the closure of the union of all rate triplets satisfying

r1 ≤ H(X1|U)

r2 ≤ H(X2|U)

r1 + r2 ≤ H(X1 +X2|U)

rΣ = r0 + r1 + r2 ≤ H(X1 +X2)

for somePUPX1|UPX2|U , where|U| ≤ 4.
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for somePUPX1|UPX2|U , where|U| ≤ 3.

Still difficult - 7 parameters to optimize...

Need to upper boundrΣ(r0, r1) analytically!
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THE BINARY ADDER WITH A COMMON MESSAGE

Lemma (Sum-Rate Bound)

If (r0, r1, r2) is achievable then there is someη ∈ [0, 12 ] s.t.

rΣ ≤ max
h−1(r1)≤η≤ 1

2

min
(

L(η), J(h−1(r1), η) + r0
)

where

L(η)
def
= h(η) + 1− η

J(p, η)
def
=























2h
(

1
2

(

1−
√
1− 2η

))

− η η ≥ p ⋆ p

2h

(

1
2

(

1− 1−η−p⋆p√
1−2(p⋆p)

))

− 1
2

(

1− (1−η−p⋆p)2

1−2(p⋆p)

)

η < p ⋆ p
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THE BINARY ADDER WITH A COMMON MESSAGE

r
0

0 0.1 0.2 0.3 0.4 0.5

r Σ

1.5

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

r
1
= 0.8

r
1
= 0.95

r
1
= 0.99
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TYING THE LOOSEENDS

Theorem (Outer bound for the Zero-error Capacity Region)

Let

rΣ(r0, r1) , max
h−1(r1)≤η≤ 1

2

min{L(η), J(h−1(r1), η) + r0}

Then any zero-error achievable rate pair(R1, R2) satisfies

R2 < min
0≤α≤h−1(R1)

(1− α)

(

rΣ

(

α

1− α
, Γ(R1, α)

)

− Γ(R1, α)

)

where

Γ(R1, α) , h

(

h−1(R1)− α

1− α

)

15 / 16



TYING THE LOOSEENDS

R
2

0.48 0.485 0.49 0.495 0.5 0.505 0.51 0.515 0.52

R
1

0.98

0.985

0.99

0.995

1

1.005

Best inner bound
Shannon capacity region
Urbanke and Li UB
New UB
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SUMMARY AND DISCUSSION

New outer bound on BAC zero-error capacity region

We introduced the notion ofkth order VC-dimension and proved
an analog of Sauer’s Lemma

Our bounding technique combined this combinatorial notionwith
network information theoretic arguments

Weaknesses of our bound
The lower bound on# of S-complement pairs is valid for any pair
(C1, C2) (not just zero-error pairs)
We lower bounded the number ofS-complement pairs forany
k-shattered set inC1, but there aremany such sets.

Our technique may be applicable to other zero-error problems
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