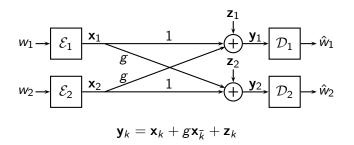
The Approximate Sum Capacity of the Symmetric Gaussian K-User Interference Channel

Or Ordentlich Joint work with Uri Erez and Bobak Nazer

> July 5th, ISIT 2012 MIT, Cambridge, Massachusetts

The symmetric Gaussian 2-user IC: channel model



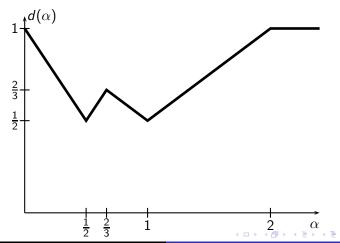
- Channel is static and real valued.
- Gaussian noises \mathbf{z}_k are of zero mean and variance 1.
- All users are subject to the power constraint $\|\mathbf{x}_k\|^2 \leq n \mathsf{SNR}$.
- Define INR $\triangleq g^2$ SNR and $\alpha \triangleq \frac{\log(INR)}{\log(SNR)}$.

Channel is symmetric:

sum capacity $= 2 \times \text{symmetric capacity}$

GDoF of symmetric Gaussian 2-user IC

- Symmetric capacity is known to within 1/2 bit (Etkin et al. 08).
- DoF for each user is 1/2.
- GDoF gives more refined view



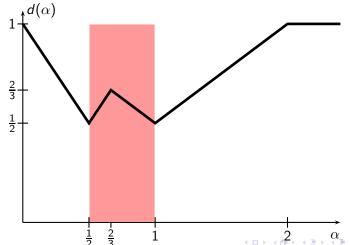
Noisy interference regime

• Treat interference as noise



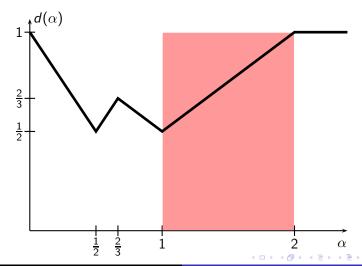
Weak interference regime

 Jointly decode intended message and part of interference (Han-Kobayashi).



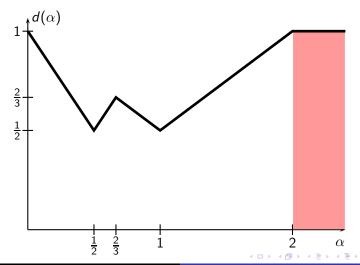
Strong interference regime

Jointly decode intended message and interference

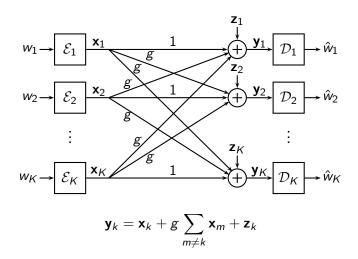


Very strong interference regime

Decode interference and then successively decode intended message

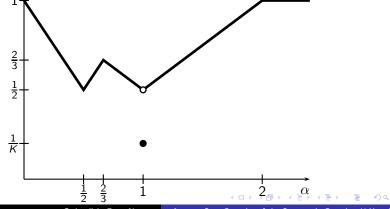


The symmetric Gaussian K-user IC : channel model



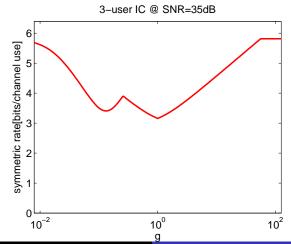
• INR $\triangleq g^2$ SNR and $\alpha \triangleq \frac{\log(INR)}{\log(SNR)}$.

- DoF is discontinuous at the rationals (Etkin and E. Ordentlich 09, Wu et al. 11).
- GDoF of the symmetric K-user IC is independent of K, except for discontinuity at $\alpha = 1$ (Jafar and Vishwanath 10).



What about finite SNR?

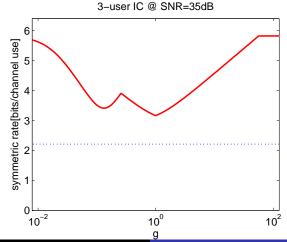
- Adding interference cannot increase capacity
 - \rightarrow Outer bounds for K=2 remain valid for K>2.



What about finite SNR?

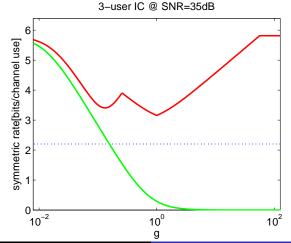
Can always use time-sharing

$$\rightarrow C_{\mathsf{SYM}} > \frac{1}{2K} \log(1 + K\mathsf{SNR}).$$



What about finite SNR?

- Can treat interference as noise
 - ightarrow achieves the approximate capacity for noisy interference regime



- For the other regimes lattice codes are useful.
- Closed under addition $\implies K-1$ interferers folded to one effective interferer.
- Each receiver sees a K-user MAC

$$\mathbf{y}_k = \mathbf{x}_k + g \sum_{m \neq k} \mathbf{x}_m + \mathbf{z}_k,$$

- For the other regimes lattice codes are useful.
- Closed under addition $\implies K-1$ interferers folded to one effective interferer.
- Assume x₁,...,x_K ∈ Λ.
 ⇒ Effective 2-user MAC at each receiver

$$\mathbf{y}_k = \mathbf{x}_k + g\mathbf{x}_{\mathsf{int},k} + \mathbf{z}_k,$$

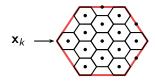
where
$$\mathbf{x}_{\text{int},k} = \sum_{m \neq k} \mathbf{x}_m \in \Lambda$$
.

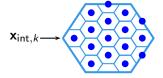
- For the other regimes lattice codes are useful.
- Closed under addition $\implies K-1$ interferers folded to one effective interferer.
- Assume $\mathbf{x}_1, \dots, \mathbf{x}_K \in \Lambda$. \Longrightarrow Effective 2-user MAC at each receiver

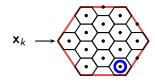
$$\mathbf{y}_k = \mathbf{x}_k + g\mathbf{x}_{\mathsf{int},k} + \mathbf{z}_k,$$

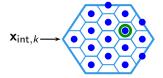
where
$$\mathbf{x}_{\text{int},k} = \sum_{m \neq k} \mathbf{x}_m \in \Lambda$$
.

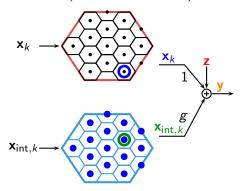
How to decode \mathbf{x}_k ?

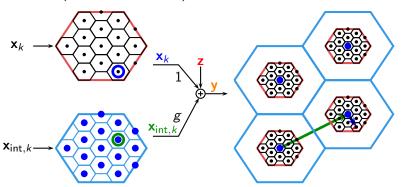




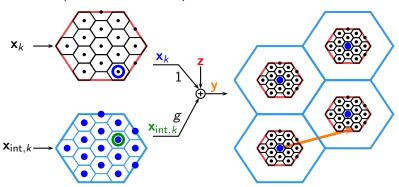






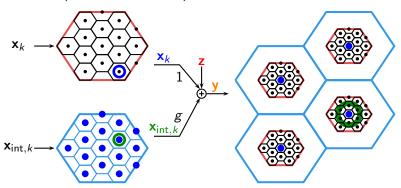


For large g, can decode sum of interferences, subtract and decode desired codeword (Sridharan *et al.* 08)



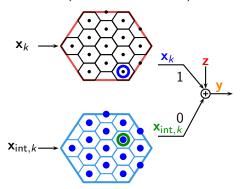
Decode **x**_{int,k}

For large g, can decode sum of interferences, subtract and decode desired codeword (Sridharan *et al.* 08)



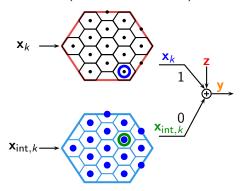
Decode $\mathbf{x}_{int,k}$

For large g, can decode sum of interferences, subtract and decode desired codeword (Sridharan *et al.* 08)

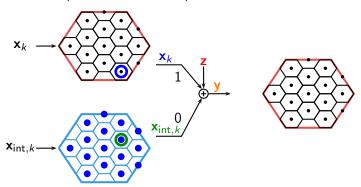


Cancel $\mathbf{x}_{\text{int},k}$

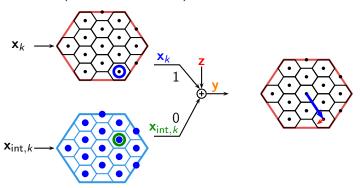
For large g, can decode sum of interferences, subtract and decode desired codeword (Sridharan *et al.* 08)



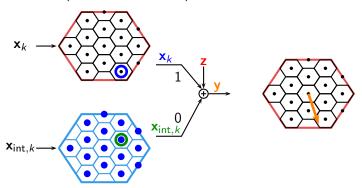
For large g, can decode sum of interferences, subtract and decode desired codeword (Sridharan *et al.* 08)



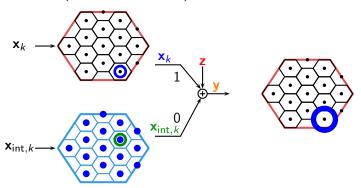
For large g, can decode sum of interferences, subtract and decode desired codeword (Sridharan *et al.* 08)



For large g, can decode sum of interferences, subtract and decode desired codeword (Sridharan *et al.* 08)

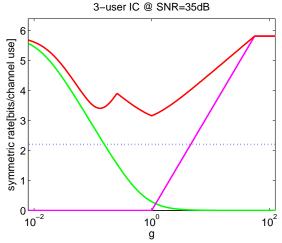


For large g, can decode sum of interferences, subtract and decode desired codeword (Sridharan *et al.* 08)



What about finite SNR?

• Successive decoding is optimal in the very strong interference regime.



The symmetric Gaussian K-user IC: strong interference

$$\mathbf{y}_k = \mathbf{x}_k + g\mathbf{x}_{\text{int},k} + \mathbf{z}_k, \quad \mathbf{x}_k, \mathbf{x}_{\text{int},k} \in \Lambda$$

- Assume strong interference: g > 1 but not $\gg 1$.
- For 2-user IC jointly decoding intended message and interference is optimal.
- For K-user IC jointly decoding \mathbf{x}_k , $\mathbf{x}_{\text{int},k}$ seems like a good idea.

Question

What rates are achievable?

The symmetric Gaussian K-user IC: strong interference

$$\mathbf{y}_k = \mathbf{x}_k + g\mathbf{x}_{\text{int},k} + \mathbf{z}_k, \quad \mathbf{x}_k, \mathbf{x}_{\text{int},k} \in \Lambda$$

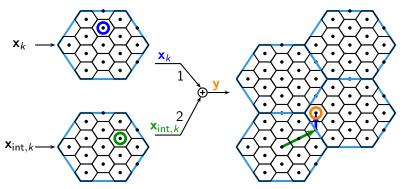
- Assume strong interference: g > 1 but not $\gg 1$.
- For 2-user IC jointly decoding intended message and interference is optimal.
- For K-user IC jointly decoding \mathbf{x}_k , $\mathbf{x}_{\text{int},k}$ seems like a good idea.

MAC capacity theorem does not hold when both transmitters use the same lattice codebook

 \Longrightarrow Need a new coding theorem.

MAC with same lattice code

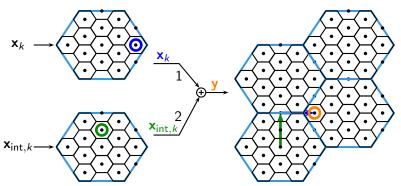
What's the problem with using the same lattice code?



Assume there is no noise at all

MAC with same lattice code

What's the problem with using the same lattice code?



AMBIGUITY!

MAC with same lattice code: new decoder

Decoding the two lattice points directly is difficult. Instead...

New decoder based on compute-and-forward

Decode two equations with integer coefficients and solve for desired codeword.

$$\mathbf{y}_k = \mathbf{x}_k + g\mathbf{x}_{\mathsf{int},k} + \mathbf{z}_k,$$

MAC with same lattice code: new decoder

Decoding the two lattice points directly is difficult. Instead...

New decoder based on compute-and-forward

Decode two equations with integer coefficients and solve for desired codeword.

$$\left[\begin{array}{c} \tilde{\mathbf{y}}_k^1 \\ \tilde{\mathbf{y}}_k^2 \end{array}\right] = \left[\begin{array}{c} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right] \left[\begin{array}{c} \mathbf{x}_k \\ \mathbf{x}_{\mathsf{int},k} \end{array}\right] + \left[\begin{array}{c} \mathbf{z}_{\mathsf{eff},1} \\ \mathbf{z}_{\mathsf{eff},2} \end{array}\right]$$

MAC with same lattice code: new decoder

Decoding the two lattice points directly is difficult. Instead...

New decoder based on compute-and-forward

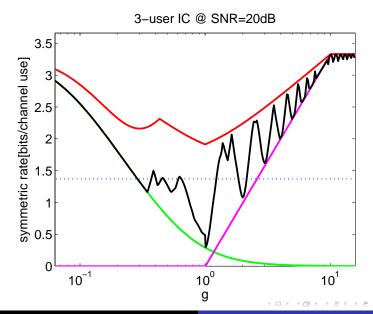
Decode two equations with integer coefficients and solve for desired codeword.

$$\left[\begin{array}{c} \tilde{\mathbf{y}}_k^1 \\ \tilde{\mathbf{y}}_k^2 \end{array}\right] = \left[\begin{array}{c} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right] \left[\begin{array}{c} \mathbf{x}_k \\ \mathbf{x}_{\mathsf{int},k} \end{array}\right] + \left[\begin{array}{c} \mathbf{z}_{\mathsf{eff},1} \\ \mathbf{z}_{\mathsf{eff},2} \end{array}\right]$$

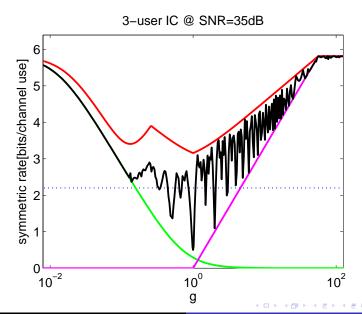
Main result

We use this approach to obtain the approximate symmetric capacity region of the K-user symmetric IC up to an outage set.

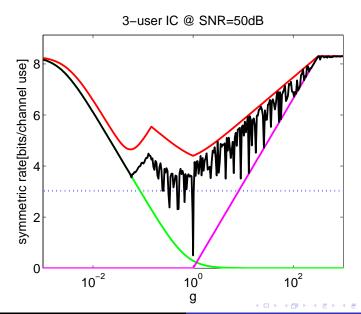
The symmetric Gaussian K-user IC: new inner bounds



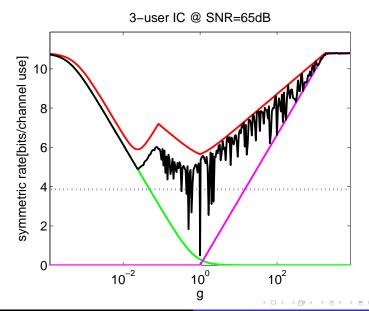
The symmetric Gaussian K-user IC: new inner bounds



The symmetric Gaussian K-user IC: new inner bounds



The symmetric Gaussian K-user IC: new inner bounds



Theorem - Nazer-Gastpar 11

For the channel $\mathbf{y} = \sum_{k=1}^{K} h_k \mathbf{x}_k + \mathbf{z}$ the equation $\sum_{k=1}^{K} a_k \mathbf{x}_k$ with

 $\mathbf{a} = [a_1 \ \cdots \ a_K] \in \mathbb{Z}^K$ can be decoded reliably as long as the rates of all users satisfy

$$R < rac{1}{2} \log \left(rac{\mathsf{SNR}}{\mathsf{SNR} \|eta \mathbf{h} - \mathbf{a}\|^2 + eta^2}
ight)$$

for some $\beta \in \mathbb{R}$.

Theorem - Nazer-Gastpar 11

For the channel $\mathbf{y} = \sum_{k=1}^{K} h_k \mathbf{x}_k + \mathbf{z}$ the equation $\sum_{k=1}^{K} a_k \mathbf{x}_k$ with

 $\mathbf{a}=[a_1\ \cdots\ a_K]\in\mathbb{Z}^K$ can be decoded reliably as long as the rates of all users satisfy

$$R < rac{1}{2} \log \left(rac{\mathsf{SNR}}{\mathsf{SNR} \|eta \mathbf{h} - \mathbf{a}\|^2 + eta^2}
ight)$$

for some $\beta \in \mathbb{R}$.

Use one channel output to decode two equations

$$\mathbf{y}_k = \mathbf{x}_k + g\mathbf{x}_{\mathsf{int},k} + \mathbf{z}_k,$$

Theorem - Nazer-Gastpar 11

For the channel
$$\mathbf{y} = \sum_{k=1}^{K} h_k \mathbf{x}_k + \mathbf{z}$$
 the equation $\sum_{k=1}^{K} a_k \mathbf{x}_k$ with

 $\mathbf{a} = [a_1 \ \cdots \ a_K] \in \mathbb{Z}^K$ can be decoded reliably as long as the rates of all users satisfy

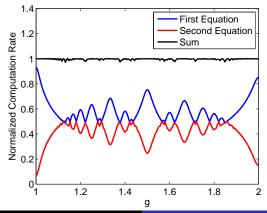
$$R < \frac{1}{2} \log \left(\frac{\mathsf{SNR}}{\mathsf{SNR} \|\beta \mathbf{h} - \mathbf{a}\|^2 + \beta^2} \right)$$

for some $\beta \in \mathbb{R}$.

Use one channel output to decode two equations

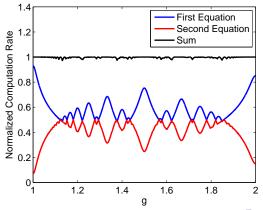
$$\left[\begin{array}{c} \tilde{\mathbf{y}}_k^1 \\ \tilde{\mathbf{y}}_k^2 \end{array}\right] = \left[\begin{array}{c} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right] \left[\begin{array}{c} \mathbf{x}_k \\ \mathbf{x}_{\mathsf{int},k} \end{array}\right] + \left[\begin{array}{c} \mathbf{z}_{\mathsf{eff},1} \\ \mathbf{z}_{\mathsf{eff},2} \end{array}\right]$$

- Decoding two equations is not very effective when channel gains are close to integers.
- This causes the notches in the achievable rate region.
- Fortunately, this rarely happens...



PROMO

To hear more about this come to "The Compute-and-Forward Transform" tomorrow at 15:20.



Compute-and-forward for the symmetric K-user IC

Transmit Equations Decoded by Receivers
$$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_1 \end{bmatrix} \begin{bmatrix} \mathbf{a}_{11}\mathbf{x}_1 + a_{12} \sum_{\ell \neq 1} \mathbf{x}_\ell \\ a_{21}\mathbf{x}_1 + a_{22} \sum_{\ell \neq 1} \mathbf{x}_\ell \end{bmatrix}$$
$$\mathbf{x}_2 \begin{bmatrix} \mathbf{a}_{11}\mathbf{x}_2 + a_{12} \sum_{\ell \neq 2} \mathbf{x}_\ell \\ \vdots \\ \mathbf{x}_K \end{bmatrix} \begin{bmatrix} a_{21}\mathbf{x}_2 + a_{22} \sum_{\ell \neq 2} \mathbf{x}_\ell \\ a_{21}\mathbf{x}_2 + a_{22} \sum_{\ell \neq 2} \mathbf{x}_\ell \end{bmatrix}$$
$$\vdots \qquad \vdots$$
$$\mathbf{x}_K \begin{bmatrix} \mathbf{a}_{11}\mathbf{x}_K + a_{12} \sum_{\ell \neq 1} \mathbf{x}_\ell \\ a_{21}\mathbf{x}_K + a_{22} \sum_{\ell \neq 1} \mathbf{x}_\ell \end{bmatrix}$$

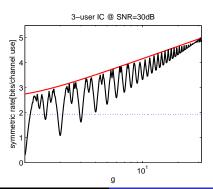
- From one real equation decode two linearly independent equations with integer coefficients.
- Corresponding computation rates are $R_{comp,1}$, $R_{comp,2}$.

$$C_{\text{SYM}} \geq R_{\text{comp},2}$$

- R_{comp,2} is the solution to an integer-least squares optimization problem.
- Inner bound can be found numerically and plotted.

$$C_{\text{SYM}} \geq R_{\text{comp},2}$$

- R_{comp,2} is the solution to an integer-least squares optimization problem.
- Inner bound can be found numerically and plotted.



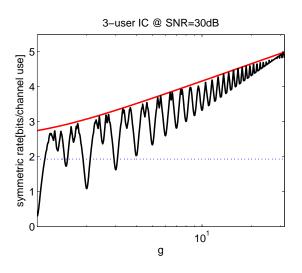
$$C_{\text{SYM}} \geq R_{\text{comp},2}$$

- R_{comp,2} is the solution to an integer-least squares optimization problem.
- Inner bound can be found numerically and plotted.

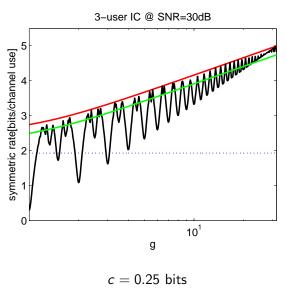
Question

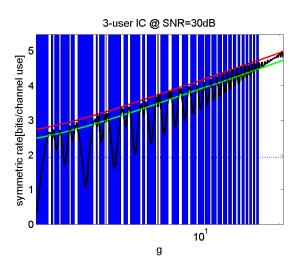
For c > 0 bits, what is the fraction of channel gains g for which

outer bound – inner bound > c bits?

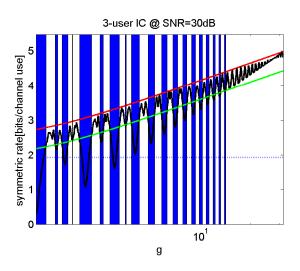


Strong interference regime

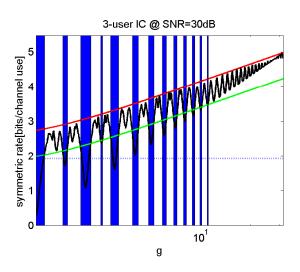




• 48% outage for c = 0.25 bits



• 22% outage for c = 0.5 bits



• 11% outage for c = 0.75 bits

Theorem - inner bound for the strong interference regime

The symmetric capacity of the symmetric Gaussian K-user IC is lower bounded by

$$C_{\mathsf{SYM}} \geq \frac{1}{4} \log^+(\mathsf{INR}) - \frac{c}{2} - 3$$

for all values of $1 \le g^2 < \mathsf{SNR}$ except for an outage set whose measure is a fraction of 2^{-c} of the interval $1 \le |g| < \sqrt{\mathsf{SNR}}$, for any c > 0.

Theorem - inner bound for the strong interference regime

The symmetric capacity of the symmetric Gaussian K-user IC is lower bounded by

$$C_{\mathsf{SYM}} \geq \frac{1}{4} \log^+(\mathsf{INR}) - \frac{c}{2} - 3$$

for all values of $1 \le g^2 < \mathsf{SNR}$ except for an outage set whose measure is a fraction of 2^{-c} of the interval $1 \le |g| < \sqrt{\mathsf{SNR}}$, for any c > 0.

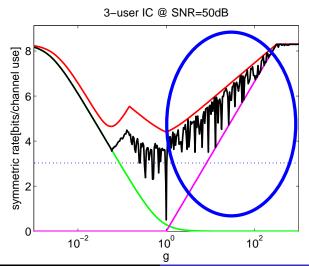
- Outage set approach appeared first in Niesen and Maddah-Ali 11 (next talk)
- The outage set phenomena seems inherent to the problem (Etkin and E. Ordentlich 09).

Weak interference regime: Lattice Han-Kobayshi

- Similar approach works for the weak interference regime.
- Just choose public and private codewords from lattice codebooks.
- Decoding is done using compute-and-forward.
- Achievable rate is the solution to integer least-squares optimization problem.
- Can be shown to be within a constant gap from outer bound (except for an outage set).

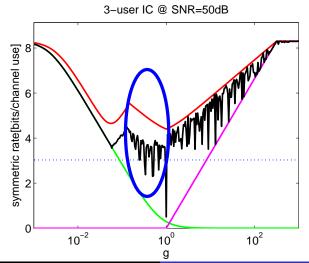
Summary: new inner bounds

- New inner bound for strong interference regime.
 - Constant gap from outer bound except for outage set.



Summary: new inner bounds

- New inner bound for moderately weak interference regime.
 - Constant gap from outer bound except for outage set.



Summary: new inner bounds

- New inner bound for weak interference regime.
 - Constant gap from outer bound for all channel gains.

