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A Simple Proof for the Existence of
“Good” Pairs of Nested Lattices

Or Ordentlich and Uri Erez, Member, IEEE

Abstract— This paper provides a simplified proof for the
existence of nested lattice codebooks allowing to achieve the
capacity of the additive white Gaussian noise channel, as well
as the optimal rate-distortion tradeoff for a Gaussian source.
The proof is self-contained and relies only on basic probabilistic
and geometrical arguments. An ensemble of nested lattices that
is different, and more elementary, than the one used in the
previous proofs is introduced. This ensemble is based on lifting
different subcodes of a linear code to the Euclidean space using
Construction A. In addition to being simpler, the analysis is less
sensitive to the assumption that the additive noise is Gaussian.
In particular, for additive ergodic noise channels, it is shown
that the achievable rates of the nested lattice coding scheme
depend on the noise distribution only via its power. Similarly,
the nested lattice source coding scheme attains the same rate-
distortion tradeoff for all ergodic sources with the same second
moment.

Index Terms— Lattice codes, linear codes, additive noise
channels.

I. INTRODUCTION

WHILE lattices are the Euclidean space counterpart of
linear codes in Hamming space, the two fields histori-

cally developed along quite different paths. From the onset of
coding theory, linear codes were treated both using algebraic
tools as well as via probabilistic methods. The history of the
theory of lattices began much earlier, and with the exception
of the Minkowski-Hlawka theorem, its development leaned
heavily on purely algebraic constructions until quite recently.
This has led to a rather convoluted path for arriving at basic
proofs for the existence of lattices possessing “goodness”
properties that are central to communication problems. The
goal of this work is to provide a simple proof for the existence
of lattices with the minimal “goodness” requirements neces-
sary for achieving the capacity of the AWGN channel, as well
as the optimal rate-distortion tradeoff for a white Gaussian
source.

A major difference between linear codes and lattices is
that the former are finite, while the latter are unbounded.
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As a result, the application of linear codes to communication
settings is more straightforward. The application of lattices
for communication problems requires intersecting the (infinite)
lattice with a finite shaping region, in order to construct a
codebook.

For the problem of source coding, it has been recognized
early on [1] that the significance of the shaping region becomes
less crucial as the quantization resolution grows. Indeed, high
resolution is the natural operating point in practical systems,
and thus neglecting the shaping region and studying the quan-
tization performance of the lattice is sufficient. Namely, the
performance of a lattice quantizer at high resolution, is dictated
by its normalized second moment. The asymptotic optimality
of lattice quantizers in the latter sense, was established in [2],
where the existence of sequences of lattices whose normalized
second moment approaches that of a high-dimensional ball,
was demonstrated. Such sequences of lattices are called good
for MSE quantization. A stronger requirement is that the worst-
case squared error distortion attained by a sequence of lattices
approaches its average. Sequences of lattices that satisfy this
property are called good for covering and were shown to exist
by Rogers [3]. In fact, [2] relied on the result of [3] to establish
the existence of lattices that are good for MSE quantization.

When it comes to channel coding, the equivalent of the high
resolution regime is that of high transmission rate. However,
communication systems supporting a very large number of
information bits per dimension are seldom encountered. As a
consequence, it was not until the 1970s that lattice codes
were considered for the channel coding problem, starting with
the works of Blake [4] and de Buda [5], and continuing
with [6]–[8]. In these works, the shaping region was naturally
taken to be a ball (or a thin spherical shell), which is efficient
in terms of power, but results in a codebook with weaker
symmetry than the original lattice. Poltyrev [9] bypassed this
obstacle, by adopting a path analogous to high resolution
quantization, and studied the performance of lattices for the
unrestricted additive white Gaussian noise (AWGN) channel.
In particular, Poltyrev established the existence of sequences
of lattices for which the probability of erroneous detection
approaches (in an exponential sense) that of AWGN leaving
an effective ball whose volume matches the density of the
lattice. Such sequences of lattices are called Poltyrev good.
As a corollary, it follows that there exist sequences of lattices
for which the probability of erroneous detection approaches
zero as long as the variance of the AWGN is no greater than
the squared radius of the effective ball. Such lattices are called
good for channel coding. We refer the reader to [10, Ch. 7] for
a more comprehensive definition and treatment of asymptotic
goodness properties of lattices.
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An alternative approach [11], [12] to using a spherical
shaping region, is using a nested lattice pair �c ⊂ � f ,
where the Voronoi region Vc of the lattice �c is used for
shaping, such that the codebook is L = � f ∩Vc. This approach
has the advantage of retaining the lattice symmetry structure.
In particular, it was shown [13] that there exist sequences of
such codebooks that can attain any rate below 1

2 log(SNR)
with lattice decoding, i.e., nearest neighbor decoding over the
infinite lattice � f . See also [10].

Finally, [14] introduced a coding scheme using nested lattice
pairs in conjunction with MMSE estimation and dithering.
This scheme was shown to attain capacity, as well as the
Poltyrev error exponent, with lattice decoding. This was later
modified to achieve a better error exponent in [15]. It is
worthwhile noting, that the proof of [14] hinged on the coarse
lattice being good for covering, and the fine lattice being
Poltyrev good. A similar MMSE estimation approach for
the source coding problem, was shown to achieve the rate-
distortion function of a Gaussian source [16].

The nested lattice coding scheme of [14], which is described
in detail in Section III, transformed the AWGN to a modulo-
additive channel, where the additive noise is a linear mixture
of AWGN and a dither uniformly distributed over the Voronoi
region of the coarse lattice. In order to establish that this
scheme achieves the capacity of the AWGN channel, the
authors first derived its error exponent, and then obtained the
capacity result as a corollary. Their error exponent analysis
required showing that the probability density function of the
mixture noise is upper bounded by that of AWGN with
the same second moment, times some term that becomes
insignificant as the dimension increases. This in turn, imposed
the requirement that the coarse lattice be good for covering.
Furthermore, the interest in error exponents led to the require-
ment that the fine lattice be Poltyrev good.

Consequently, the proof of the error exponent and capacity
results in [14] required showing the existence of a sequence
of nested lattice pairs where the fine lattice is Poltyrev
good, and the coarse lattice is Rogers good. To this end, an
ensemble of random Construction A lattices, rotated by the
generating matrix of a lattice good for covering, was defined
and analyzed. The proof therefore relied on the existence of
lattices that are good for covering, which made it indirect,
complicated, and overly stringent.

In the last decade lattice codes were found to play a new
role in network information theory allowing to obtain new
achievable rate regions, that are not achievable using the best
known random coding schemes, for many problems [17]–[22].
See [10, Chapter 12], for a comprehensive survey. The scheme
of [14], or its variations, plays an important role in many of
these new techniques. However, since the capacity region is
not known for the majority of problems in network information
theory, determining the optimal error exponents is far out of
scope. Therefore, it is the capacity result from [14], rather than
the error exponent one, that is often used in this context.

This paper relaxes the goodness properties required by a
nested lattice pair in order to be capacity achieving. Namely,
we show that a pair of nested lattices where the fine lattice
is good for coding and the coarse lattice good for MSE

quantization, suffices to achieve the capacity of the AWGN
channel under the scheme from [14]. In fact we prove a more
general result, showing that the scheme from [14] applied with
such nested lattice pairs can reliably achieve any rate smaller
than 1

2 log(1+SNR) over all additive semi norm-ergodic noise
channels. An analogous result holds for quantization.

The class of semi norm-ergodic processes includes all
processes whose empirical variance is with high probability
not much greater than the variance. In [23] Lapidoth showed
that i.i.d. Gaussian codebooks with nearest neighbor decoding
can achieve any rate smaller than 1

2 log(1 + SNR) over the
same class of channels. Our result is therefore the lattice codes
analogue of [23]. Moreover, it immediately implies that many
nested lattice based coding schemes for Gaussian networks are
in fact robust to the exact statistics of the noise, and merely
require it to be semi norm-ergodic.

A key result we obtain, is that a dither uniformly distributed
over the Voronoi region of a lattice that is good for MSE
quantization is semi norm-ergodic, and moreover, any linear
combination of such a dither and semi norm-ergodic noise, is
itself semi norm-ergodic. This enables to relax the goodness
for covering requirement of the coarse lattice, to goodness for
MSE quantization.

Our analysis also naturally extends to the more practical
case, where the coarse lattice is the simple one-dimensional
cubic lattice, whereas the fine lattice is a Construction A lattice
based on some p-ary linear code. We show that for large p,
the scheme from [14] can reliably achieve any rate smaller
than 1

2 (1 + SNR) − 1
2 log(2πe/12) with such a coarse lattice.

We further explicitly upper bound the loss incurred by using
any finite value of p.

Most importantly, we provide a simple, self-contained proof
for the existence of nested lattice chains �

(n)
1 ⊂ · · · ⊂ �

(n)
L ,

for any finite L, where all lattice sequences �
(n)
1 , · · · ,�

(n)
L

are good for MSE quantization and for coding. Although
this result is not new, and can be obtained as a simple
corollary of [24], our proof techniques are quite different
and considerably simpler. In particular, we define a novel
ensemble of nested lattice chains, based on drawing a random
linear p-ary code and using Construction A to lift L of its
sub-codes to the Euclidean space. This ensemble, which is a
direct extension of the ensemble of nested linear binary codes
proposed by Zamir and Shamai in [25], allows for a direct
analysis of the goodness figures of merit of its members.
Consequently, our existence proof requires only elementary
probabilistic and geometrical arguments.

II. PRELIMINARIES ON LATTICE CODES

A lattice � is a discrete subgroup of R
n which is closed

under reflection and real addition. Any lattice � in R
n is

spanned by some n × n matrix F such that

� = {t = Fa : a ∈ Z
n}.

We denote the nearest neighbor quantizer associated with the
lattice � by

Q�(x) � arg min
t∈�

‖x − t‖. (1)
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The basic Voronoi region of �, denoted by V , is the set of
all points in R

n which are quantized to the zero vector, where
ties in (1) are broken in a systematic manner. The modulo
operation returns the quantization error w.r.t. the lattice,

[x] mod � � x − Q�(x),

and satisfies the distributive law,
[[x] mod � + y

]
mod � = [

x + y
]

mod �.

Let V (�) be the volume of a fundamental cell of �, i.e., the
volume of V , and let U be a random variable uniformly dis-
tributed over V . We define the second moment per dimension
associated with � as

σ 2(�) � 1

n
E‖U‖2 = 1

n

∫
V ‖x‖2dx

V (�)
.

The normalized second moment (NSM) of a lattice � is
defined by

G(�) � σ 2(�)

V
2
n (�)

.

Note that this quantity is invariant to scaling of the lattice �.
It is often useful to compare the properties of the Voronoi

region V with those of a ball.
Definition 1: Let

B(s, r) �
{
x ∈ R

n : ‖x − s‖ ≤ r
}
,

denote the closed n-dimensional ball with radius r centered
at s. We denote the volume of an n-dimensional ball with unit

radius by Vn . In general V (B(s, r)) = Vnrn . Note that nV
2
n

n is

monotonically increasing in n, and satisfies 4 ≤ nV
2
n

n < 2πe
for all n [26], and

lim
n→∞ nV

2
n

n = 2πe. (2)

By the isoperimetric inequality, the ball B(0, r) has the
smallest second moment per dimension out of all (measurable)
sets in R

n with volume Vnrn , and it is given by

σ 2 (B(0, r)) = 1

n

1

Vnrn

∫

x∈B(0,r)
‖x‖2dx

= 1

n

1

Vnrn

∫ r

0
r ′2d(Vnr ′n)

= 1

n

1

Vnrn

nVnrn+2

n + 2

= r2

n + 2
. (3)

It follows that B(0, r) has the smallest possible NSM

G (B(0, r)) = σ 2 (B(0, r))

V
2
n (B(0, r))

= 1

n + 2
V

− 2
n

n , (4)

which approaches 1/(2πe) from above as n → ∞.
Thus, the NSM of any lattice in any dimension satisfies
G(�) ≥ 1/(2πe).

We define the effective radius reff(�) as the radius of a ball
which has the same volume as �, i.e.,

r2
eff(�) � V

2
n (�)

V
2
n

n

. (5)

Since B(0, reff(�)) has the smallest second moment of all sets
in R

n with volume V (�), we have

σ 2(�) ≥ σ 2 (B(0, reff(�))) = r2
eff(�)

n + 2
. (6)

Thus,

reff(�) ≤
√

(n + 2)σ 2(�). (7)

Note that for large n we have

r2
eff(�)

n
≈ V

2
n (�)

2πe
.

Definition 2: We say that a sequence in n of random
noise vectors Z(n) of length n with (finite) effective variance
σ 2

Z � 1
n E‖Z(n)‖2, is semi norm-ergodic if for any ε, δ > 0 and

n large enough

Pr

(
Z(n) /∈ B(0,

√
(1 + δ)nσ 2

Z

)
≤ ε. (8)

Note that by the law of large numbers, any i.i.d. noise is
semi norm-ergodic. However, even for non i.i.d. noise, the
requirement (8) is not very restrictive. We will show in
Lemma 3 that a vector U uniformly distributed over the
Voronoi region of a lattice that is goof for MSE quantization
is semi norm- ergodic. In the sequel we omit the dimension
index, and denote the sequence Z(n) simply by Z.

Definition 3: The nearest neighbor decoder with respect to
the lattice � outputs for every y ∈ R

n the lattice point Q�(y).
The following definition is analogous to

[10, Definition 7.7.1], where the only difference is that
we do not restrict ourselves to AWGN, and consider the more
general family of semi norm-ergodic noise.

Definition 4: A sequence of lattices �(n) with growing
dimension, satisfying

lim
n→∞ V

2
n (�(n)) = �

for some � > 0, is called good for channel coding in the
presence of semi norm-ergodic noise if for any lattice point
t ∈ �(n), and additive semi norm-ergodic noise Z with
effective variance1 σ 2

Z = 1
n E‖Z‖2 < �/2πe

lim
n→∞ Pr

(
Q�(n) (t + Z) �= t

) = 0,

That is, the error probability under nearest neighbor decoding
in the presence of semi norm-ergodic additive noise Z vanishes
with n if limn→∞ r2

eff(�
(n))/n > σ 2

Z. For brevity, we simply
call such sequences of lattices good for coding in the sequel.

1In [14] the volume-to-noise ratio (VNR) was defined as

μ = lim
n→∞ V

2
n (�(n))/2πeσ 2

Z.

Thus, the condition � > 2πeσ 2
Z is equivalent to VNR > 1.
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Definition 5: A sequence of lattices �(n) with growing
dimension is called good for mean squared error (MSE)
quantization if

lim
n→∞ G

(
�(n)

)
= 1

2πe
.

A lattice �c is said to be nested in � f if �c ⊂ � f . The
lattice �c is referred to as the coarse lattice and � f as the fine
lattice. The nesting ratio is defined as

(
V (�c)/V (� f )

)1/n .
Next, we define “good” pairs of nested lattices. Our defini-

tion for the “goodness” of nested lattice pairs is different from
the one used in [14].

Definition 6: A sequence of pairs of nested lattices
�

(n)
c ⊂ �

(n)
f is called “good” if the sequence of lattices �

(n)
c

and �
(n)
f are good for both MSE quantization and for coding.

Remark 1: As we shall see in Section III, for the problem
of coding over the AWGN channel (or more generally, any
additive semi norm-ergodic noise channel), it suffices that �

(n)
f

is good for coding and �
(n)
c is good for MSE quantization.

In order to achieve the optimal rate-distortion function of a
white Gaussian source, the roles are reversed and �

(n)
f should

be good for MSE quantization while �
(n)
c is good for coding.

A sequence of pairs �
(n)
c ⊂ �

(n)
f that is good according to

Definition 6 is therefore adequate for both problems.
Our existence proofs are based on Construction A [26], as

defined next.
Definition 7 (p-Ary Construction A): Let p be a prime

number, and let G ∈ Z
k×n
p be a k ×n matrix whose entries are

all members of the finite field Zp . The matrix G generates a
linear p-ary code

C(G) �
{

x ∈ Z
n
p : x = [wT G] mod p w ∈ Z

k
p

}
.

The p-ary Construction A lattice induced by the matrix G is
defined as

�(G) � p−1C(G) + Z
n.

III. MAIN RESULTS

Our main result is the following.
Theorem 1: For any finite L, 0 < α1 < . . . < αL < ∞,

there exists a sequence of nested lattice chains �
(n)
1 ⊂ · · · ⊂

�
(n)
L for which

1) �
(n)
	 is good for MSE quantization and for coding for

all 	 = 1, . . . , L;

2) limn→∞ V
2
n
(
�

(n)
	

)
= 2πe2−α	 for all 	 = 1, . . . , L.

For the proof of Theorem 1, as given in Section IV, we
define a novel ensemble of nested lattice chains. This ensemble
is defined in Section IV and is based on drawing a random
linear p-ary code and using Construction A to lift L of its sub-
codes to the Euclidean space. Theorem 6, stated in Section IV
and proved in Section V, shows that with high probability each
of these lifted sub-codes possesses the goodness properties.
The existence of a sequence of good nested lattice chains then
follows from a simple union bound argument.

An immediate corollary of Theorem 1 is the following.

Theorem 2: For any P1 > P2 > · · · > PL > 0 there exists
a sequence of nested lattice chains �

(n)
1 ⊂ · · · ⊂ �

(n)
L with

the following properties

1) �
(n)
	 is good for MSE quantization and for coding for

all 	 = 1, . . . , L;
2) limn→∞ σ 2

(
�

(n)
	

)
= P	 for all 	 = 1, . . . , L;

3) For any 1 ≤ k < m ≤ L the sequence of
nested lattice codebooks L(n)

km � �
(n)
m ∩ V (n)

k has rate

R(n)
km � 1

n log
∣
∣
∣L(n)

km

∣
∣
∣ that satisfy2

lim
n→∞ R(n)

km = 1

2
log

(
Pk

Pm

)
.

Proof: Fix α1 > 0 and, for any 1 < 	 ≤ L, set
α	 = α1 + log

(
P1
P	

)
. By Theorem 1 there exists a sequence

�
(n)
1 ⊂ · · · ⊂ �

(n)
L , where all lattices are good for MSE quan-

tization and for coding, and in addition, limn→∞ V
2
n

(
�

(n)
	

)
=

2πe2−α1

(
P	
P1

)
. Scaling all lattices in the sequence by P12α1 ,

we get a sequence of lattices that are good for MSE
quantization and coding for which limn→∞ V

2
n

(
�

(n)
	

)
=

2πeP	. Since σ 2(�) = G(�)V
2
n (�), the above implies that

limn→∞ σ 2
(
�

(n)
	

)
= P	 for all 	. In addition,

lim
n→∞ R(n)

km = 1

2
log

⎛

⎝ limn→∞ V
2
n (�

(n)
k )

limn→∞ V
2
n (�

(n)
m )

⎞

⎠

= 1

2
log

(
Pk

Pm

)
,

as desired.
It is important to note that Theorem 1 and Theorem 2 can be

obtained as a special case of the more general results proved
in [18], [24], and [27]. These results showed the existence of
chains of nested lattices where all latices in the chain are both
good for coding and good for covering. Goodness for covering
implies goodness for MSE quantization [2], [10], and is
therefore a stronger property. However the existence proofs of
such chains are quite complicated, and are not self-contained.
In particular, these proofs involve starting with a lattice that is
good for covering, whose existence is difficult to establish, and
rotating a random Construction A lattice using it. Our main
contribution in this paper is in providing a relatively simple,
and self-contained proof for Theorem 1, from first principles.

In [14] it was shown that if � is good for covering,
U is an independent random vector uniformly distributed over
the Voronoi region of �, and Z is AWGN with variance σ 2,
then a linear combination αZ + βU is close in distribution
to an AWGN with variance α2σ 2 + β2σ 2(�). This property
played an important role in the analysis of the AWGN capacity
achieving nested lattice scheme of [14], namely, the mod-�
scheme.

In order to show that pairs of nested lattices that are good
according to Definition 6 achieve the AWGN capacity under

2All logarithms in this paper are to the base 2, and therefore all rates are
expressed in bits per (real) channel use.
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the mod-� coding scheme introduced in [14], we need the
following theorem that states that any linear combination of
semi norm-ergodic noise and a dither from a lattice that is
good for MSE quantization is itself semi norm-ergodic.

Theorem 3: Let Z = αN + βU, where α, β ∈ R, N is semi
norm-ergodic noise, and U is a dither statistically independent
of N, uniformly distributed over the Voronoi region V of a
lattice � that is good for MSE quantization. Then, the random
vector Z is semi norm-ergodic.

The proof is given in Section VI. In [14] it was shown
that a nested lattice codebook L = � f ∩ Vc, based on a
pair �c ⊂ � f where both lattices are good for covering
and Poltyrev good can achieve the capacity (as well as the
Poltyrev error exponent) of the AWGN channel under the
mod-� scheme. Theorem 4, stated below, shows that
the capacity result continues to hold even if the two lattices
�c ⊂ � f are only good for MSE quantization and for
coding, i.e., good according to Definition 6. The existence of
such good nested lattice pairs is guaranteed by Theorem 2.
Theorem 4 further extends the main result of [14] to any
additive semi norm-ergodic noise channel.

Theorem 4: Consider an additive noise channel Y = X +N ,
where N is a semi norm-ergodic noise process with effective
variance σ 2

N = 1 and the input is subject to the power

constraint 1
n ‖X‖2 < SNR. For any R < 1

2 log(1 + SNR)
there exists a sequence of nested lattice codebooks
L(n) = �

(n)
f ∩V (n)

c based on a sequence of good nested lattice

pairs �
(n)
c ⊂ �

(n)
f , whose rate approaches R and attains a

vanishing error probability under the mod-� scheme.
Proof: Fix 0 < ε < 1 and let �

(n)
c ⊂ �

(n)
f be a sequence

of good nested lattice pairs with

lim
n→∞ σ 2

(
�(n)

c

)
= (1 − ε)SNR,

lim
n→∞ σ 2

(
�

(n)
f

)
= (1 + ε) SNR

1+SNR ,

such that the rate of the sequence of codebooks
L(n) = �

(n)
f ∩ V (n)

c satisfies

lim
n→∞ R(n) = 1

2
log

(
1 − ε

1 + ε
(1 + SNR)

)
.

The existence of such a sequence of nested lattice pairs is
guaranteed by Theorem 2. For brevity, we omit the sequence
superscripts in the remainder of the proof, and simply use
�c,Vc,� f ,L and R.

Next, apply the mod-� scheme of [14] with the codebook L.
Let U is a random dither statistically independent of t, known
to both the transmitter and the receiver, uniformly distributed
over Vc. Each of the 2nR messages is mapped to a codeword
in L. To send the message w, corresponding to the codeword
t ∈ L, the encoder transmits

X = [t − U] mod �c,

if 1
n ‖X‖2 ≤ SNR, and the all-zeros vector otherwise. Due

to the Crypto Lemma [14, Lemma 1], X is also uniformly
distributed over Vc and is statistically independent of t. Since
�c is good for MSE quantization, by Theorem 3, we have
that X is semi norm-ergodic. Using this fact, and recalling

that 1
n E‖X‖2 = σ 2(�c) = (1 − ε)SNR, it follows that

1
n ‖X‖2 ≤ SNR with high probability. Thus, the additional
error probability incurred by replacing X (whenever necessary)
with the zero-codeword vanishes with n.

The receiver scales its observation by a factor α > 0 to be
specified later, adds back the dither U and reduces the result
modulo the coarse lattice

Yeff = [αY + U] mod �c

= [X + U + (α − 1)X + αN] mod �c

= [t + (α − 1)X + αN] mod �c

= [t + Zeff] mod �c, (9)

where

Zeff = (α − 1)X + αN (10)

is effective noise, that is statistically independent of t, with
effective variance

σ 2
eff(α) � 1

n
E‖Zeff‖2 < α2 + (1 − α)2SNR. (11)

Since N is semi norm-ergodic, and X is uniformly distributed3

over the Voronoi region of a lattice that is good for MSE
quantization, Theorem 3 implies that Zeff is semi norm-ergodic
with effective variance σ 2

eff(α). Setting α = SNR/(1 + SNR),
such as to minimize the r.h.s. of (11) results in effective
variance σ 2

eff < SNR/(1 + SNR).
The receiver next computes

t̂ = [
Q� f (Yeff)

]
mod �c

= [
Q� f ([t + Zeff] mod �c)

]
mod �c

= [
Q� f (t + Zeff)

]
mod �c, (12)

and outputs the message corresponding to t̂ as its estimate.
Since � f is good for coding, Zeff is semi norm-ergodic, and

lim
n→∞

V
2
n (� f )

2πe
= (1 + ε)

SNR
1 + SNR

> σ 2
eff,

we have that Pr(t̂ �= t) → 0 as n → ∞. Taking ε → 0
completes the proof.

Remark 2: We remark that Theorem 4 is analogous to the
results of [23] where it is shown that a Gaussian i.i.d. codebook
ensemble with nearest neighbor decoding can attain any rate
smaller than 1

2 log(1 + SNR) over an additive semi norm-
ergodic noise channel. Our result show that the same rate can
be attained using nested lattice codes and the mod-� scheme.

Remark 3: We have shown that nested lattice pairs that
are good according to Definition 6 suffice to achieve the
capacity of the AWGN channel. Similarly, it can be shown
that such pairs can attain the optimal rate-distortion tradeoff
for the a Gaussian source, as well as the optimal rate-distortion
trade-off for the Wyner-Ziv problem, under the scheme
from [16] and [25].

Remark 4: In certain applications, chains of nested lattice
codes are used in order to convert a Gaussian multiple access

3Strictly speaking, X is not uniform over Vc due to the possible replacement
by the zero-vector. However, since this event has a vanishing probability, it
cannot significantly increase Pr(‖(α − 1)X + αN‖2 < (1 + δ)nσ 2

eff(α)).
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channel (MAC) into an effective modulo-lattice channel whose
output is a fine lattice point plus effective noise reduced
modulo a coarse lattice. Such a situation arises for example in
the compute-and-forward framework [18], where a receiver is
interested in decoding linear combinations with integer valued
coefficients of the codewords transmitted by the different
users of the MAC. In such applications, the effective noise is
often a linear combination of AWGN and multiple statistically
independent dithers uniformly distributed over the Voronoi
region of the coarse lattice. Corollary 2, stated in Section VI,
shows that such an effective noise is semi norm-ergodic
regardless of the number of dithers contributing to it, as long
as they are all independent and are induced by lattices that
are good for MSE quantization. Consequently, nested lattice
chains where all lattices are good for MSE quantization and
coding, whose existence is guaranteed by Theorem 2, suffice
to recover all results from [17]–[22] as well as many other
achievable rate regions based on nested lattice coding schemes.
Moreover, the analysis in the proof of Theorem 4 assumes that
the additive noise is semi norm-ergodic, and not necessarily
AWGN. Consequently, using a similar analysis it is possible
to extend all the results from [17]–[22] to networks with any
semi norm-ergodic additive noise.

Remark 5: The mod-� scheme uses common randomness
in the form of a random dither vector U, which is known
to the encoder and the decoder. A consequence of the use of
dither is that the effective noise Zeff is statistically independent
of the transmitted point t, and therefore the decoding error
probability does not depend on the message w that was
chosen. Standard arguments show that the random dither can
be replaced with a fixed one, without degrading the average
error probability of the resulting codebook. However, without
common randomness the error probability will not be the same
for all messages. In [28] it was shown that if SNR > 1, then
the mod-� scheme can attain the AWGN channel capacity
even without using a dither (i.e., U = 0), and in [29] it was
shown that a scheme based on a single lattice and probabilistic
shaping can attain the AWGN capacity without dithering for
all SNR > e. In both cases, however, the error probability is
message-dependant.

As evident from the proof of Theorem 4, the main role
of the coarse lattice �c in the mod-� scheme is to perform
shaping. More specifically, the input to the channel is uni-
formly distributed on Vc and in order to approach capacity,
such distribution must approach an AWGN as the dimension
grows.

In practice, shaping is often avoided in order to reduce
the implementation complexity. However, one can always
use a nested lattice codebook where the coarse lattice is
the simple one-dimensional cubic (integer) lattice, which is
of course, not good for MSE quantization. In fact, many
practical communication systems apply a p-ary linear code,
e.g. turbo or LDPC, mapped to a PAM/QAM constellation.
The induced constellation in the Euclidean space can be
thought of as a nested lattice codebook γ� f ∩ γVc, where
� f is a Construction A lattice based on the chosen linear
code, whereas �c is the integer lattice Z

n .

Fig. 1. An illustration of the coset nearest neighbor decoding process. The
lattice point t was transmitted. The output of the induced channel when
the mod-� transmission scheme is applied is Yeff = [t + Zeff] mod γ Z

n .
The decoder quantizes Yeff to the nearest lattice point in � and
reduces the quantized output modulo γ Z

n .

The scaling parameter γ , in this case, is dictated by the
power constraint. For example, if the power constraint is
E(X2) ≤ SNR the scaling parameter would be γ = √

12SNR.
Since γ�c = γ Z

n ⊂ γ� f , the minimum distance in γ� f

cannot exceed
√

12SNR, and in particular does not grow with
the dimension. Thus, Pr(Qγ� f (t + Zeff) �= t) cannot vanish
with the lattice dimension, and consequently γ� f is not good
for coding.4

Nevertheless, as evident from (12), an error occurs if and
only if the lattice point Qγ� f (t+Zeff) is not in the same coset
of γ� f /γ�c as t.5

Definition 8: The coset nearest neighbor decoder with
respect to the nested lattice pair �c ⊂ � f outputs for every
y ∈ R

n the lattice point
[
Q� f (y)

]
mod �c.

It follows that the mod-� scheme succeeds if the coset
nearest neighbor decoder finds the correct coset. For the
case where the coarse lattice is γ Z

n this corresponds to
Qγ� f (t + Zeff) = t mod γ . See Figure 1 for an illustration.
Note that under coset nearest neighbor decoding, the afore-
mentioned pairs of points in γ� f , whose distance is γ , do
not incur an error. Thus, it may be possible to attain an error
probability that vanishes with the dimension using the mod-�
scheme.

The next theorem, proved in Section VII, shows that this is
indeed the case. More specifically, it shows that the mod-�
scheme with nested lattice codes where �c = √

12SNRZ
n can

attain any rate smaller than 1
2 log(1 + SNR) − 1

2 log(2πe/12)
with a vanishing error probability, if p is large. For finite p, an
explicit upper bound on the additional loss is also specified.

4In the next section we specify the ensemble of nested lattices used for the
proof of Theorem 1, in which γ grows as

√
n in order to avoid this problem.

5The coset of γ�c to which t belongs is the discrete set of points t +γ�c.
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Let CUBE � [−1/2, 1/2)n denote the unit cube centered at
the origin.

Theorem 5: Consider an additive noise channel Y = X +N ,
where N is an i.i.d. noise process with unit variance and the
input is subject to the power constraint 1

n E|| X||2 ≤ SNR. Let

�(p, SNR) � log

(

1 +
√

3SNR
p2

)

.

For any

R <
1

2
log(1 + SNR) − 1

2
log

(
2πe

12

)
− �(p, SNR),

there exists a sequence of nested lattice codebooks
L(n) = �

(n)
f ∩ √

12SNR · CUBE with rate R, where �
(n)
f is a

sequence of scaled p-ary Construction A lattices, that attains
a vanishing error probability under the mod-� scheme.

Note that �(p, SNR) → 0 as p → ∞, and the gap
to capacity is in this case just the standard shaping loss of
1
2 log(2πe/12). We further note that for any ε > 0 the choice

log p >
1

2
log(SNR) + 1

2
log(3) − 1

2
log

(
2ε − 1

)
, (13)

guarantees that �(p, SNR) < ε.

IV. AN ENSEMBLE FOR NESTED LATTICE CHAINS

Previous proofs for the existence of capacity achieving pairs
of nested lattices used random Construction A, introduced by
Loeliger [8], for creating a fine lattice, and then rotated it using
a lattice that is good for covering. Here, we take a different
approach that is a direct extension of the original approach
of [25] to creating nested binary linear codes. We use random
Construction A to simultaneously create both the fine and the
coarse lattice. Namely, we randomly draw a linear code and
lift it to the Euclidean space in order to obtain the fine lattice.
The coarse lattice is obtained by lifting a subcode from the
same linear code to the Euclidean space.

Let G ∈ Z
k×n
p . For any natural number m ≤ k we denote

by Gm the m × n matrix obtained by taking only the first m
rows of G. The linear code C (Gm) and the lattice � (Gm) are
defined as in Definition 7.

Clearly, for any G ∈ Z
k×n
p , and k1 < k we have that

�
(
Gk1

) ⊂ � (Gk). Thus, we can define an ensemble of nested
lattice pairs by fixing k1, k, n, p and drawing the entries of the
matrix G according to the i.i.d. uniform distribution on Zp .

Remark 6: We have chosen to specify our ensemble in
terms of the linear codes’ generating matrices

G =
⎡

⎣
Gk1

− − −
G′

⎤

⎦.

We could have equally defined the ensemble using the linear
codes’ parity check matrices

Hn−k1 =
⎡

⎣
Hn−k

− − −
H′

⎤

⎦,

as done in [16] and [25] for ensembles of nested binary linear
codes.

More generally, for any choice of L natural numbers
k1 < k2 < · · · < kL < n we can define a similar ensemble for
a chain of L nested lattices

�
(
Gk1

) ⊂ �
(
Gk2

) ⊂ · · · ⊂ �
(
GkL

)
.

We now formally define the ensemble of nested lattices we
will use in our existence proof.

Definition 9 (Ensemble of Nested Lattice Chains): Let n
be a natural number and 0 < α1 < . . . < αL < log n.
An (n, α1, . . . , αL ) ensemble for a chain of L nested lattices
is defined as follows. Let γ = 2

√
n, and p = ξn

3
2 , where ξ is

chosen as the smallest number in the interval [1, 2) such that
p is prime. Let

k	 � n

2 log p

⎛

⎝log

⎛

⎝ 4

V
2
n

n

⎞

⎠+ α	

⎞

⎠, 	 = 1, . . . , L .

Draw a matrix G ∈ Z
kL ×n
p whose entries are i.i.d. uniformly

distributed over Zp , and construct the chain �1 ⊂ · · · ⊂ �L

by setting

�	 = γ�
(
Gk	

)
, 	 = 1, . . . , L .

Theorem 1 will follow as a straightforward corollary of the
following result.

Theorem 6: Let n be a large natural number, γ = 2
√

n, and
p = ξn

3
2 , where ξ is chosen as the smallest number in the

interval [1, 2) such that p is prime. Further, let 0 < α < log n
and set

k � n

2 log p

⎛

⎝log

⎛

⎝ 4

V
2
n

n

⎞

⎠+ α

⎞

⎠. (14)

Let G ∈ Z
k×n
p be a random matrix whose entries are i.i.d.

uniformly distributed over Zp . For any ε, δ > 0, there is an
integer N(ε, δ) such that if n > N(ε, δ)

1) Pr (rank(G) < k) < ε;
2) Pr

(
σ 2 (γ�(G)) > (1 + δ)2−α

)
< ε;

3) For any additive semi norm-ergodic noise Z with effec-
tive variance σ 2

Z = 1
n E‖Z‖2 ≤ (1 − δ)2−α and any

t ∈ γ�(G), the following holds

Pr
(
Pr
(
Qγ�(G)(t + Z) �= t | G

)
> δ

)
< ε.

Remark 7: No attempt was made to minimize the value of

p that is used, and it was chosen as �

(
n

3
2

)
for computational

and notational convenience within the proofs to follow. It can
be easily verified that all our proceeding arguments remain

valid for p = �

(
n

1
2 +ε

)
for any ε > 0, if one restricts α to be

smaller that log log n (α dictates the range of rates our nested
lattice ensemble can support, and therefore upper bounding it
by any function of n that grows to infinity is sufficient).

The proof of Theorem 6 is given in Section V. We now
prove Theorem 1.

Proof of Theorem 1: Let �1 ⊂ · · · ⊂ �L be a random
lattice chain drawn from the (n, α1, . . . , αL) ensemble and
let Gk1 , . . . , GkL be the corresponding linear codes generating
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matrices. Set ε, δ > 0 and for all 	 = 1, . . . , L define the
following error events

1) E1	 is the event that rank
(
Gk	

)
< k	;

2) E2	 is the event that σ 2 (�	) > (1 + δ)2−α	

3) E3	 is the event that Pr
(
Q�	(t + Z) �= t

)
> δ for some

t ∈ �	 and some additive semi norm-ergodic noise Z
with effective variance σ 2

Z = 1
n E‖Z‖2 ≤ (1 − δ)2−α.

Further, let

E �
3⋃

i=1

L⋃

	=1

Ei	.

By the union bound we have that

Pr(E) ≤
3∑

i=1

Pr

(
L⋃

	=1

Ei	

)

= Pr(E1L) + Pr

(
L⋃

	=1

E2	

)

+ Pr

(
L⋃

	=1

E3	

)

≤ Pr(E1L) +
L∑

	=1

Pr(E2	) +
L∑

	=1

Pr(E3	), (15)

where (15) follows from the fact that if GkL has full row rank
over Zp , then so are all the matrices obtained by removing
rows from it. Further, since Gk	 satisfies the conditions of
Theorem 6 for all 	 = 1, . . . , L, then for n large enough
Pr(E1L) < ε, Pr(E2	) < ε and Pr(E3	) < ε. Thus,
Pr(E) < (2L +1)ε, and consequently Pr(E) > 1− (2L +1)ε,
where E is the event that E did not occur. Since this holds
for any ε > 0, we have that for n large enough, the event E
does not occur for almost all members in the ensemble.

We now show that any member in the ensemble for which
E does not occur, has lattices �1 ⊂ · · · ⊂ �L whose volumes
are close to 2πe2−α	 , whose normalized second moments are
close to 1/2πe, and whose error probabilities are small as long
as the volume-to-noise ratio is greater than 1.

In particular, if E does not occur, all matrices Gk1 , . . . , GkL

have full row rank over Zp . In this case, we have that
V (�	) = γ n p−k	 and therefore

V
2
n (�	) = γ 2 p− 2k	

n

= 4n
V

2
n

n

4
2−α	 . (16)

Since limn→∞ nV
2
n

n = 2πe, we have that limn→∞ V
2
n (�	) =

2πe2−α	 , as desired. In particular, for n large enough

(1 − δ/2)2πe2−α	 < V
2
n (�	) < 2πe2−α	. (17)

Now, by Theorem 6

G(�	) = σ 2(�	)

V
2
n (�	)

≤ (1 + δ)2−α	

(1 − δ/2)2πe2−α	

= (1 + δ′) 1

2πe
,

Fig. 2. An illustration of Lemma 1. The solid circle is the boundary of
B(s, r), and the points inside the small bright circles are the members of the
set Z

n ∩B(s, r). The set = Z
n ∩B(s, r)+CUBE is the shaded area, and as the

lemma indicates, it contains B(s, r −
√

n
2 ) and is contained in B(s, r +

√
n

2 ),
whose boundaries are plotted in dashed circles.

where δ′ = (1 + δ)/(1 − δ/2) can be made as small as desired
by increasing n. Thus, the sequence �

(n)
	 is good for MSE

quantization.
In addition (again by Theorem 6, part 3, and (17)), we

have that for any semi norm-ergodic noise Z	 with effective
variance σ 2

Z	
≤ (1 − δ)2−α	 , the probability of error in nearest

neighbor decoding is smaller than δ. Thus, for n large enough

we have that as long as the ratio V
2
n (�	)/(2πeσ 2

Z	
) is greater

than (1 − δ/2)/(1 − δ), the error probability in decoding a
point from �	 in the presence of additive noise Z	 is smaller
than δ. Thus, the sequence �

(n)
	 is good for coding. �

V. PROOF OF THEOREM 6

Before going into the proof we need to introduce some more
notation. Denote the operation of reducing each component
of x ∈ R

n modulo γ by x∗ � [x] mod γ Z
n . If S is a

set of points in R
n , S∗ is the set obtained by reducing all

points in S modulo γ Z
n . If S and T are sets, S + T is

their Minkowski sum. In the sequel, we use the following
lemma, which follows from simple geometric arguments and
is illustrated in Figure 2.

Lemma 1: For any s ∈ R
n and r > 0, the number of points

of Z
n inside B(s, r) can be bounded as

(
max

{
r −

√
n

2
, 0

})n

Vn ≤ ∣
∣Zn ∩ B(s, r)

∣
∣

≤
(

r +
√

n

2

)n

Vn.

Proof: Let S � (Zn ∩ B(s, r)) + CUBE, and note that
|Zn ∩ B(s, r)| = Vol(S). We have

B
(

s, r −
√

n

2

)
⊂ S. (18)
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To see this, note that any x ∈ B
(

s, r −
√

n
2

)
lies inside

a + CUBE for some a ∈ Z
n , and for this a the inequality

‖a − x‖ ≤ √
n/2 holds. Applying the triangle inequality gives

‖a − s‖ = ‖(a − x) + (x − s)‖ ≤ ‖(a − x)‖ + ‖(x − s)‖ ≤ r.

Thus, a ∈ (Zn ∩ B(s, r)), and hence x ∈ S, which
implies (18). On the other hand,

S ⊂ B(s, r) + CUBE

⊂ B(s, r) + B
(

0,

√
n

2

)

= B
(

s, r +
√

n

2

)
.

Thus,

Vol

(
B
(

s, r −
√

n

2

))
≤ Vol (S) ≤ Vol

(
B
(

s, r +
√

n

2

))
.

A. The Matrix G Is Full Rank With High Probability

The probability that G is not full-rank was bounded in [30].
We repeat the proof for completeness. The matrix G is not full
rank if and only if there exist some nonzero vector w ∈ Z

k
p

such that wT G = 0. Thus,

Pr (rank(G) < k) = Pr

⎛

⎜
⎝

⋃

w∈Zk
p\0

(wT G = 0)

⎞

⎟
⎠

≤
∑

w∈Zk
p\0

Pr(wT G = 0) (19)

= (pk − 1)p−n (20)

< p−(n−k),

where (19) follows from the union bound, and (20) since wT G
is uniformly distributed over Z

n
p for any w �= 0.

By our definition of p and k, and using the fact that V
2
n

n ≥ 4
n

for all n, we have

k ≤ n

2 log ξ + 3 log n
(log n + α)

≤ n

(
1

3
+ α

3 log n

)

<
2n

3
,

where the last inequality follows from the assumption

α < log n. Thus, Pr (rank(G) < k) < p− n
3 , and can therefore

be made smaller than any ε > 0, by taking n large enough.

B. Goodness for MSE Quantization

In this subsection we show that for any δ, ε > 0 and n large
enough

Pr
(
σ 2 (γ�(G)) > (1 + δ)2−α

)
< ε.

Our proof follows the derivation from [31], which dealt
with the NSM of Construction A lattices with finite p.

In our case p grows with the lattice dimension, and the
derivation can be significantly simplified.

We begin by bounding the average MSE distortion attained
by the random lattice γ�(G) for a source uniformly dis-
tributed over γ [0, 1)n . As we shall see, this average MSE
distortion is equal to E(σ 2(γ�(G))). We then apply Markov’s
inequality to show that this implies that almost all lattices in
the ensemble have a small σ 2(γ�(G)).

For any (fixed) x ∈ R
n , define

d(x, γ�(G)) � 1

n
min

λ∈γ�(G)
‖x − λ‖2

= 1

n
min

a∈Zn,c∈C(G)
‖x − γ p−1c − γ a‖2

= 1

n
min

c∈C(G)
‖(x − γ p−1c)∗‖2.

Recall that γ Z
n ⊂ γ�(G) and therefore d (x, γ�(G)) ≤

γ 2/4 for any x ∈ R
n , regardless of G.

Let 0 < ρ < α. For any w ∈ Z
k
p \ 0, define the

random vector C(w) = [
wT G

]
mod p, and note that C(w) is

uniformly distributed over Z
n
p . For all w ∈ Z

k
p \ 0 and x ∈ R

n ,
we have

ε � Pr

(
1

n

∥
∥∥
(

x − γ p−1C(w)
)∗∥∥∥

2 ≤ 2−ρ

)

= p−n
∣
∣
∣(γ p−1

Z
n
p)
⋂

B∗(x,
√

n2−ρ)
∣
∣
∣

= p−n
∣
∣
∣(γ p−1

Z
n)
⋂

B(x,
√

n2−ρ)
∣
∣
∣ (21)

≥ p−nVn

(
pγ −1

√
n2−ρ −

√
n

2

)n

(22)

= Vn(γ
−2n2−ρ)

n
2

(

1 − γ
√

2ρ

2 p

)n

= Vn

(
1

4

) n
2

2−ρn
2

(

1 −
√

n2ρ

p

)n

, (23)

where (21) follows since γ = 2
√

n, and hence, for any two
distinct points b1, b2 ∈ B(x,

√
n2−ρ)) we have b∗

1 �= b∗
2 (that

is, the ball B(x,
√

n2−ρ)) is contained in a cube with side γ ),
and (22) follows from Lemma 1. Substituting p = ξn

3
2 and

recalling that ρ < α < log n gives

ε > 2
− n

2

(
log

(
4

V
n/2
n

)
+ρ

) ⎛

⎝1 − 2
ρ
2

ξn

⎞

⎠

n

= 2
− n

2

(
log

(
4

V
n/2
n

)
+ρ+o(1)

)

, (24)

where o(1) → 0 as n → ∞.
Let M � pk −1. Label each of the vectors w ∈ Z

k
p \0 by an

index i = 1, . . . , M , and refer to its corresponding codeword
as Ci . Define the indicator random variable related to the point
x ∈ R

n

χi =
⎧
⎨

⎩
1 if 1

n

∣
∣
∣
(
x − γ p−1Ci

)∗∣∣
∣
2 ≤ 2−ρ

0 otherwise.
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Since each χi occurs with probability ε, we have

Pr

( M∑

i=1

χi = 0

)
= Pr

(
1

M

M∑

i=1

χi − ε = −ε

)

≤ Pr

(∣∣
∣
∣
∣

1

M

M∑

i=1

χi − ε

∣∣
∣
∣
∣
≥ ε

)

≤
Var

(
1
M

∑M
i=1 χi

)

ε2 , (25)

where the last inequality follows from Chebyshev’s inequality.
In order to further bound the variance term from (25), we
note that C(w1) and C(w2) are statistically independent unless
w1 = [aw2] mod p for some a ∈ Zp . Therefore, each χi is
statistically independent of all but p different χ j ’s. Thus,

Var

(
1

M

M∑

i=1

χi

)

= 1

M2

M∑

i=1

M∑

j=1

Cov(χi , χ j )

≤ Mpε

M2 .

Substituting into (25) and using (24), we see that for any
x ∈ R

n

Pr

(
d(x, γ�(G)) > 2−ρ

)
≤ Pr

( M∑

i=1

χi = 0

)

<
p

Mε

< 2n
3
2

1

pk − 1
2

n
2

(
log

(
4

V
n/2
n

)
+ρ+o(1)

)

< p−k2
n
2

(
log

(
4

V
n/2
n

)
+ρ+o(1)

)

= 2− n
2 (α−ρ+o(1)),

where we have used

p−k = 2
− n

2

(
log

(
4

V
n/2
n

)
+α

)

in the last equality.
It follows that for any distribution on X we have

EX,G (d(X, γ�(G))) ≤ 2−ρ Pr
(
d(X, γ�(G)) ≤ 2−ρ

)

+ γ 2

4
Pr
(
d(X, γ�(G)) > 2−ρ

)

≤ 2−ρ
(

1 + 2− n
2 (α−ρ+o(1))

)
.

Thus, for any 0 < ρ < α the upper bound on the distortion
averaged over X and over the ensemble of lattices γ�(G)
becomes arbitrary close to 2−ρ as n increases. Since this is true
for all distributions on X, we may take X ∼ Unif (γ [0, 1)n).
Let U be a random variable uniformly distributed over the
Voronoi region VG of a lattice γ�(G) randomly drawn from
the ensemble. By construction, for any lattice γ�(G) in the
defined ensemble

[
γ p−1C(G) + VG

]∗ = γ [0, 1)n . Moreover,
reducing the set γ p−1C(G) + VG modulo γ Z

n does not

change its volume. Therefore,

EG

(
σ 2(γ�(G))

)
= EU,G

(
1

n
‖U‖2

)

= EX,G (d(X, γ�(G))).

It follows that, for any 0 < ρ < α,

EG

(
σ 2(γ�(G))

)
≤ 2−ρ

(
1 + 2− n

2 (α−ρ+o(1))
)
.

Now, define the random variable T � σ 2(γ�(G)) −
n

n+2 2−α . We show that the r.v. T is non-negative, or equiva-
lently, that for every G in the ensemble

σ 2(γ�(G)) ≥ n

n + 2
2−α. (26)

To see this, note that V (γ�(G)) ≥ γ n p−k for all G, with
equality if and only if G has full row rank. Thus, by (16) we

have V
2
n (γ�(G)) ≥ nV

2
n

n 2−α , which implies r2
eff(γ�(G)) =

V
2
n (γ�(G))/V

2
n

n ≥ n2−α by (5). Using the isoperimetric
inequality (6), we get (26).

Since T is non-negative, we can apply Markov’s inequality

Pr(T > δ2−α) ≤ E(T )

δ
2α

= E(σ 2(γ�(G))) − n
n+2 2−α

δ
2α

≤
2α−ρ

(
1 + 2− n

2 (α−ρ+o(1))
)

− n
n+2

δ

Setting ρ = α − log
(

n
n+2 + εδ

2

)
we get that for n

large enough Pr(T > δ2−α) < ε, and therefore
Pr
(
σ 2(γ�(G)) > (1 + δ)2−α

)
< ε as desired.

C. Goodness for Coding

In this subsection we show that for any δ, ε > 0, and any
additive semi norm-ergodic noise Z with effective variance
σ 2

Z = 1
n E‖Z‖2 ≤ (1 − δ)2−α , we have that

Pr
(
Pr
(
Qγ�(G)(t + Z) �= t | G

)
> δ

)
< ε

for any t ∈ γ�(G), provided that n is large enough.
For any G, we upper bound the error probability of the

nearest neighbor decoder Qγ�(G)(·) using the bounded dis-
tance decoder, which is inferior. More precisely, we analyze
the performance of a decoder that finds all lattice points of
γ�(G) within Euclidean distance r from t + Z. If there is
a unique codeword in this set, this is the decoded codeword.
Otherwise, the decoder declares an error. It is easy to see that
regardless of the choice of r , the nearest neighbor decoder
makes the correct decision whenever the bounded distance
decoder does. Therefore, the error probability of the nearest
neighbor decoder is upper bounded by that of the bounded
distance decoder.

Given G, an error event E for the bounded distance decoder
can be expressed as the union of three events:

1) E1 - The noise vector Z falls outside a ball of radius r ;
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2) E2 - The ball B (t + Z, r) contains a point t + γ a
for some a ∈ Z

n \ 0. This is equivalent to the event
(B (t + Z, r) ∩ (t + γ Z

n)) \ t �= ∅;
3) E3 - The ball B (t + Z, r) contains a point from γ�(G)

that does not belong to γ Z
n . This is equivalent to the

event B (t + Z, r) ∩ (t + (γ�(G) \ γ Z
n)) �= ∅;

Note that the first two events E1 and E2 depend only on Z,
but not on G. Moreover,

E1 = {Z /∈ B(0, r)}
and for r < γ we can write

E2 = {
(Z + B(0, r)) ∩ (

γ Z
n \ 0

) �= ∅}
⊂ {‖Z‖ + r ≥ γ }
= {Z /∈ B(0, γ − r)} .

In particular, if γ > 2r we have E2 ⊂ E1. We choose
r2 = n

√
1 − δ2−α such that this condition indeed holds, and

we can write

Pr(E | G) = Pr(E1 ∪ E3 | G) ≤ Pr(E1) + Pr(E3 | G). (27)

Thus,

Pr (Pr(E | G) ≥ δ) ≤ Pr (Pr(E1) + Pr(E3 | G) ≥ δ)

= Pr (Pr(E3 | G) ≥ δ − Pr(E1)) .

Let δ′ =
√

1
1−δ − 1 > 0. We have for σ 2

Z ≤ (1 − δ)2−α

Pr(E1) = Pr (Z /∈ B(0, r))

= Pr

(

Z /∈ B
(

0,

√
r2

nσ 2
Z

√
nσ 2

Z

))

≤ Pr

(

Z /∈ B
(

0,

√
1√

1 − δ

√
nσ 2

Z

))

= Pr

(
Z /∈ B

(
0,

√
(1 + δ′)nσ 2

Z

))
.

Since Z is semi norm-ergodic, it follows that Pr(E1) < δ/2
for n large enough.

Next, we turn to upper bounding Pr(E3 | G). Note that
in contrast to E1 and E2, this event does depend on G.
We therefore first show that EG (Pr(E3|G)) is small, and then
apply Markov’s inequality to show that the probability of
drawing a matrix G for which Pr(E3|G) > δ/2 is smaller
than ε.

Let 1(A) be the indicator function of the event A.

EG (Pr(E3|G))

= EG

(
Pr
((

γ�(G) \ γ Z
n)⋂B(Z, r) �= ∅

))

= EGEZ

(
1
((

γ p−1C(G) \ 0
)⋂

B∗(Z, r) �= ∅
) ∣
∣ G

)

= EZEG

(
1
((

γ p−1C(G) \ 0
)⋂

B∗(Z, r) �= ∅
) ∣
∣ Z

)

= EZ Pr
((

γ p−1C(G) \ 0
)⋂

B∗(Z, r) �= ∅ ∣∣ Z
)

. (28)

Since each codeword in C(G)\0 is uniformly distributed over
Z

n
p , and there are less than pk such codewords (i.e., pk − 1),

applying the union bound gives

EG (Pr(E3|G)) ≤ EZ

(
pk−n ·

∣
∣
∣γ p−1

Z
n
p

⋂
B∗(Z, r)

∣
∣
∣
∣∣
∣
∣ Z

)

≤ EZ

(
pk−n ·

∣∣
∣γ p−1

Z
n
⋂

B(Z, r)
∣∣
∣
∣
∣∣
∣ Z

)

≤ pk−n Vn

(
p

γ
r +

√
n

2

)n

(29)

= pkγ −nVnrn
(

1 + γ
√

n

2 p r

)n

(30)

=
⎛

⎝ V
2
n

n

γ 2 p− 2k
n

r2

⎞

⎠

n
2 (

1 + 1

2 p

γ 2α/2

(1 − δ)1/4

)n

=
(

r2

n2−α

) n
2
(

1 + 1

2 p

γ 2α/2

(1 − δ)1/4

)n

(31)

≤ (1 − δ)
n
4

(
1 + 2α/2(1 − δ)−1/4

n

)n

≤ 2
n
(

1
4 log(1−δ)+o(1)

)

, (32)

where (29) follows from Lemma 1 and (31) follows
from (16) and since γ = 2

√
n. Now, by (32) we have

that EG (Pr(E3|G)) < δε/2 for n large enough. Applying
Markov’s inequality gives that Pr (Pr(E3|G) > δ/2) < ε as
desired.

VI. MIXTURE NOISE IS SEMI NORM-ERGODIC

FOR MSE-GOOD COARSE LATTICES

Our aim is to prove Theorem 3 that states that a mixture
noise composed of semi norm-ergodic noise and a dither from
a lattice that is good for MSE quantization, is semi norm-
ergodic. First, we show that if the sequence �(n) is good
for MSE quantization, i.e., its normalized second moment
approaches 1/2πe, then a sequence of random dithers uni-
formly distributed over V (n) is semi norm-ergodic. To that
end, we first prove the following lemma, which is a simple
extension of [32].

Lemma 2: Let S ∈ R
n be a set of points with volume V (S)

and normalized second moment

G(S) = 1

nV (S)

∫
S ‖x‖2dx

V (S)
2
n

.

Let reff be the radius of an n-dimensional ball with the same
volume as V (S), i.e., V (S) = Vnrn

eff. For any 0 < ε < 1
define

rε �

√
2πeG(S) − n

n+2 (1 − ε)1+ 2
n

ε
reff.

Then, the probability that a random variable U ∼ Unif(S)
leaves a ball with radius rε is upper bounded by

Pr (U /∈ B(0, rε)) ≤ ε.
Proof: Let r̃ε be the radius of a ball that contains exactly

a fraction of 1 − ε of the volume of S, i.e.,

Vol
(
S
⋂

B(0, r̃ε)
)

= (1 − ε)V (S).
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Clearly, Pr (U /∈ B(0, r̃ε)) = ε. In order to establish the lemma
we have to show that r̃ε ≤ rε . To that end, we write

nG(S)V
2
n (S) = 1

V (S)

∫

x∈S
‖x‖2dx

= 1

V (S)

(∫

x∈(S∩B(0,r̃ε))
‖x‖2dx

+
∫

x∈(S∩(Rn\B(0,r̃ε)
‖x‖2dx

)
. (33)

The first integral in (33) may be lower bounded by replacing
its integration boundaries with an n-dimensional ball B(0, ρε),
where

ρ2
ε = V

− 2
n

n (1 − ε)
2
n V

2
n (S) (34)

is chosen such that Vnρ
n
ε = (1 − ε)V (S). Thus

∫

x∈(S∩B(0,r̃ε)
‖x‖2dx ≥

∫

x∈B(0,ρε)
‖x‖2dx

= nVnρ
n
ε σ 2 (B(0, ρε))

= n

n + 2
Vnρ

n
ε ρ2

ε (35)

= n

n + 2

V 1+ 2
n (S)(1 − ε)1+ 2

n

V
2
n

n

= n

n + 2
V (S)(1 − ε)1+ 2

n r2
eff, (36)

where we have used (3) to get (35). The second integral in (33)
is over a set of points with volume εV (S) which are all at
distance greater than r̃ε from the origin. Therefore, it can be
bounded as

∫

x∈(S∩(Rn\B(0,r̃ε)))
‖x‖2dx ≥ εV (S)r̃2

ε . (37)

Substituting (36) and (37) into (33) gives

nG(S)V
2
n (S) ≥

(
n

n + 2
(1 − ε)1+ 2

n r2
eff + εr̃2

ε

)
. (38)

Using the fact that V
2
n (S) = V

2
n

n r2
eff, (38) reduces to

r̃2
ε ≤ nV

2
n

n G(S) − n
n+2 (1 − ε)1+ 2

n

ε
r2

eff

≤ 2πeG(S) − n
n+2 (1 − ε)1+ 2

n

ε
r2

eff,

as desired.
Using Lemma 2 we can prove the following.
Lemma 3: Let �(n) be a sequence of lattices that is good

for MSE quantization. Then the sequence of random dither
vectors U(n) ∼ Unif(V (n)) is semi norm-ergodic.

Proof: We need to show that for any ε, δ > 0 and n large
enough

Pr

(
U(n) /∈ B(0,

√
(1 + δ)nσ 2

(
�(n)

)
)

≤ ε.

By Lemma 2, it suffices to show that
√

2πeG
(
�(n)

)− n
n+2 (1 − ε)1+ 2

n

ε
reff (�(n))

≤
√

(1 + δ)nσ 2
(
�(n)

)
. (39)

From (7), we have

reff

(
�(n)

)
≤
√

(n + 2)σ 2
(
�(n)

)
. (40)

and the l.h.s. of (39) can be therefore upper bounded by

√
nσ 2

(
�(n)

)
√

n+2
n 2πeG

(
�(n)

)− (1 − ε)1+ 2
n

ε
(41)

The sequence of lattices �(n) is good for MSE quantization,
and therefore for any δ1 > 0 and n large enough

G(�(n)) < (1 + δ1)
1

2πe
.

Setting δ1 = δε/3, we have that for n large enough

n + 2

n
2πeG

(
�(n)

)
− (1 − ε)1+ 2

n

≤ n + 2

n

(
1 + δε

3

)
− (1 − ε)1+ 2

n

≤ ε + δε, (42)

where the last inequality follows since for n large enough
n+2

n (1 + δε
3 ) < 1 + 2δε

3 and (1 − ε)1+ 2
n > 1 − ε − δε

3 .
Combining (41) and (42) establishes (39).

We are now ready to prove Theorem 3.
Proof of Theorem 3: Since N and U are statistically inde-

pendent, the effective variance of Z is

σ 2
Z = 1

n
E‖Z‖2 = α2σ 2

N + β2σ 2
U.

We have to prove that for any ε > 0, δ > 0 and n large enough

Pr

(
Z /∈ B(0,

√
(1 + δ)nσ 2

Z

)
< ε.

For any ε > 0, δ > 0 and n large enough we have

Pr

(
Z /∈ B(0,

√
(1 + δ)nσ 2

Z)

)

= Pr
(
‖Z‖2 > (1 + δ)nσ 2

Z

)

= Pr
(
‖N‖2 > (1 + δ)nσ 2

N

)

· Pr
(
‖Z‖2 > (1 + δ)nσ 2

Z

∣
∣ ‖N‖2 > (1 + δ)nσ 2

N

)

+ Pr
(
‖N‖2 ≤ (1 + δ)nσ 2

N

)

· Pr
(
‖Z‖2 > (1 + δ)nσ 2

Z

∣
∣ ‖N‖2 ≤ (1 + δ)nσ 2

N

)

≤ ε

3
+ Pr

(
β2‖U‖2 + 2αβNT U

> (1 + δ)nβ2σ 2
U

∣
∣ ‖N‖2 ≤ (1+ δ)nσ 2

N

)
(43)



ORDENTLICH AND EREZ: SIMPLE PROOF FOR THE EXISTENCE OF “GOOD” PAIRS OF NESTED LATTICES 4451

≤ ε

3
+ Pr

(
β2‖U‖2 > nβ2σ 2

U(1 + δ/2)
)

+ Pr
(

2αβNT U > nβ2σ 2
Uδ/2

∣∣ ‖N‖2 ≤ (1 + δ)nσ 2
N

)

(44)

≤ 2ε

3
+ Pr

(
2αβNT U > nβ2σ 2

Uδ/2
∣
∣ ‖N‖2 ≤ (1 + δ)nσ 2

N

)
,

(45)

where (43) follows from the fact that N is semi norm-
ergodic, (44) from the union bound and (45) from the fact
that U is semi norm-ergodic due to Lemma 3. We are left
with the task of showing that the last probability in (45) can
be made smaller than ε/3 for n large enough. This requires
some more work.

Since U is semi norm-ergodic noise, then for any ε2 > 0,
δ2 > 0 and n large enough

Pr

(
‖U‖ >

√
(1 + δ2)nσ 2

U

)
< ε2.

Let rU =
√

(1 + δ2)nσ 2
U, and fU(u) be the probability density

function (pdf) of U. For any r > 0 we have

Pr
(

NT U > r
∣
∣N = n

)

=
∫

|u|≤ru

fU(u)1(nT u > r)du

+
∫

|u|>ru

fU(u)1(nT u > r)du

≤
∫

|u|≤ru

1

V (�)
1(nT u > r)du + ε2

= V (B(0, rU))

V (�)

∫

|u|≤ru

1

V (B(0, rU))
1(nT u > r)du + ε2.

Using the fact that � is good for MSE quantization we have
V (�)

2
n → 2πeσ 2

U, and hence, for n large enough,

(
V (B(0, rU))

V (�)

) 2
n

< (1 + 2δ2).

Let Ũ be a random vector uniformly distributed over B(0, rU).
We have

Pr
(
NT U > r

∣
∣N = n

)
< ε2 + (1 + 2δ2)

n
2 Pr(nT Ũ > r).

(46)

Let Z̃ be AWGN with zero mean and variance r2
U/n. Using a

similar approach to that taken in [14, Lemma 11], we would
now like to upper bound the pdf of Ũ using that of Z̃. For any
x ∈ R

n we have

fŨ(x)

fZ̃(x)
= fŨ(‖x‖)

fZ̃(‖x‖) ≤ fŨ(rU)

fZ̃(rU)
=
⎛

⎝ 2πe

nV
2
n

n

⎞

⎠

n
2

.

Thus, for any x ∈ R
n

fŨ(x) ≤ 2
n
2 log

(
2πe

n V
− 2

n
n

)

fZ̃(x).

We can further bound (46) for large enough n as

Pr
(

NT U > r
∣
∣N = n

)

≤ ε2 + 2
n
2 log

(
(1+2δ2)

2πe
n V

− 2
n

n

)

Pr(nT Z̃ > r)

= ε2 + 2
n
2 log

(
(1+2δ2)

2πe
n V

− 2
n

n

)

Q

( √
nr

‖n‖rU

)
,

where Q(·) is the standard Q-function, which satisfies
Q(x) < e−x2/2. It follows that

Pr
(

2αβNT U > nβ2σ 2
Uδ/2

∣
∣ ‖N‖2 ≤ (1 + δ)nσ 2

N

)

≤ ε2 + 2
n
2 log

(
(1+2δ2)

2πe
n V

− 2
n

n

)

Q

( √
nβσUδ/2

2ασN
√

(1 + δ)(1 + 2δ2)

)
.

Taking δ2 sufficiently smaller than δ and ε2 < ε/6, for n large
enough we have

Pr
(

2αβNT U > nβ2σ 2
Uδ/2

∣
∣ ‖N‖2 ≤ (1 + δ)nσ 2

N

)
<

ε

3
.

�
We end this section with two simple corollaries of

Theorem 3. The first follows since any i.i.d. noise is semi
norm-ergodic, and the second follows by iterating over
Theorem 3.

Corollary 1: Let Z = αN + βU, where α, β ∈ R, N is an
i.i.d. noise vector, and U is a dither statistically independent
of N, uniformly distributed over the Voronoi region V of a
lattice � that is good for MSE quantization. Then, the random
vector Z is semi norm-ergodic.

Corollary 2: Let U1, · · · , UK be statistically independent
dither random vectors, each uniformly distributed over the
Voronoi region Vk of �k , k = 1, . . . , K , that are all good
for MSE quantization. Let N be a semi norm-ergodic random
vector statistically independent of {U1, · · · , UK }. For any
α, β1, · · · , βK ∈ R the random vector Z = αN +∑K

k=1 βkUk

is semi norm-ergodic.

VII. NESTED LATTICE CODES WITH

A CUBIC COARSE LATTICE

In this section we prove Theorem 5. As before, we consider
an ensemble of p-ary random Construction A lattices. More
precisely, we draw a matrix G ∈ Z

k×n
p with i.i.d. entries

uniformly distributed over Zp , and construct the (random)
lattice γ�(G) as in Definition 7, with γ = √

12SNR.
We take γ�(G) as a fine lattice and γ Z

n ⊂ γ�(G) as
a coarse lattice, to construct the nested lattice codebook
L = γ�(G) ∩ γ CUBE. Clearly, σ 2 (γ Z

n) = SNR and the
rate of all codebooks in the ensemble is R = k

n log p.
Applying the mod-� scheme with the codebook L, as

described in the proof of Theorem 4, gives rise to the effective
channel (9), where Zeff is as defined in (10). Note that for the
coarse lattice γ Z

n which is used, the random vector X is i.i.d.
with each component uniformly distributed over [−γ /2, γ /2).
Thus, Zeff is i.i.d., and in particular semi norm-ergodic, with
variance σ 2

Zeff
(α) = α2 + (1 − α)2SNR. As in the proof of

Theorem 4, we choose α = SNR/(1 + SNR) such as to
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minimize σ 2
Zeff

(α), which gives σ 2
Zeff

= SNR/(1 + SNR).
As in (12), the decoder finds

t̂ = [
Qγ�(G)(Yeff)

]
mod �c = [

Qγ�(G)(t + Zeff)
]

mod γ Z
n,

and outputs the message corresponding to t̂. In order to
complete the proof we will need the following lemma.

Lemma 4: Let n be a natural number, p a prime number,
R > 0, k = n R/ log p and γ > 0. Let G ∈ Z

k×n
p be a random

matrix with i.i.d. entries uniformly distributed over Zp , and
�(G) be constructed as in Definition 7. Let Z be an addi-
tive semi norm-ergodic noise with effective variance σ 2

Z =
1
n E‖Z‖2 and define �(p, γ 2/σ 2

Z) � log

(
1 +

√
γ 2

4p2σ 2
Z

)
. For

any ε, δ > 0 and n large enough, if R < 1
2 log

(
γ 2

(1+δ)2πeσ 2
Z

)
−

�(p, γ 2/σ 2
Z), then

Pr
(
Pr
(
Qγ�(G)(t + Z) �= t mod γ Z

n | G
)

> δ
)

< ε. (47)

for any t ∈ γ�(G).
Note that in (47), the error probability in coset nearest

neighbor decoding is required to be smaller than δ. In other
words, the decoder is only required to find the correct coset
γ�(G)/γ Z

n to which t belongs, and not the exact point t
that was transmitted. See Figure 1 for an illustration of coset
nearest neighbor decoding.

Theorem 5 now follows by applying Lemma 4 with
γ = √

12SNR, σ 2
Z = SNR/(1 + SNR) and taking δ to zero.

This shows that for every δ > 0, for almost every G and n
large enough, the error probability of the mod-� scheme with
codebook L = γ�(G) ∩ √

12SNR · CUBE is smaller than δ.
In particular, there exists a sequence of such codebooks with
vanishing error probability.

It now only remains to prove Lemma 4.
Proof of Lemma 4: The proof is similar to that of Theorem 6,

part 3, with a few differences we now specify.
We upper bound the error probability of the coset near-

est neighbor decoder with that of a bounded distance coset
decoder. The latter finds all points of γ�(G) in a ball of
radius r around the output t + Zeff and outputs the list of all
these points reduced modulo γ Z

n . If the list of cosets does
not contain exactly one point, an error is declared. It can be
verified that an error event E of this decoder is the union of
E1 and E3, defined in Section V-C. The event E2 that was
defined there, corresponds to decoding a point different than
t inside the same coset as t. This event does not incur an
error for coset nearest neighbor decoding. Thus, equation (27)
continues to hold here.

We take the decoding radius as r2 = n(1 + δ)σ 2
Z, such that

by the semi norm-ergodicity of Zeff, it follows that for n large
enough Pr(E1) < δ/2. In order to upper bound Pr(Pr(E3 | G))
we upper bound EG(Pr(E3 | G)) and then apply Markov’s
inequality. By (30) we have

EG(Pr(E3 | G))

≤ pkγ −n Vnrn
(

1 + γ
√

n

2 p r

)n

= 2
n

(
R+ 1

2 log
(

V
2
n

n
r2

γ 2

)
+log

(
1+

√
n

4p2
γ 2

r2

))

≤ 2
n

(
R+ 1

2 log

(
2πe

n
n(1+δ)σ2

Z
γ 2

)
+log

(
1+

√
n

4p2
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−n
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(
γ 2

2πe(1+δ)σ2
Z

)
−log

(
1+

√
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,

Thus, for any R < 1
2 log

(
γ 2

2πe(1+δ)σ 2
Z

)
− �(p, γ 2/σ 2), we

have that EG (Pr(E3|G) < δε/2), for n large enough. Apply-
ing Markov’s inequality gives that Pr (Pr(E3|G) > δ/2) < ε
as desired. �

VIII. DISCUSSION

We have presented a novel proof for the existence of chains
of nested lattices, where all lattices in the chain are good
for coding and for MSE quantization. Our analysis of the
coding schemes based on such chains revealed that these
relaxed “goodness” requirements are sufficient for achieving
the capacity of the AWGN channel (and the rate-distortion
function of a white Gaussian source). In fact, our analysis
did not require the assumption that the additive noise (or the
source) is AWGN. Instead, it was only assumed that the addi-
tive noise (or source) is semi norm-ergodic. Consequently, our
results show that lattice-based coding schemes are robust to
variations in the distribution of the additive noise (or source),
and their (first-order) performance, essentially depend only on
its second moment.

Our analysis required the cardinality p of the finite-field
over which the underlying linear codes are constructed to grow
with n. In order to achieve capacity, the density of the grid
from which the lattice points are chosen must be small. When
using Construction A for lifting a p-ary linear code to a cube
of side γ , this density is given by γ p−1. Thus, the size of γ in
our construction, formed the main constraint on the minimal
possible size of p. We took γ = �(

√
n) for two reasons.

The first was to justify equation (21), which requires that a
cube of side γ contains an n-dimensional ball with radius
�(

√
n). The second, was to ensure that the corresponding

lattice has a low error probability under lattice decoding,
and not only under coset nearest neighbor decoding. For
channel coding problems, it suffices to ensure that the latter
decoding rule has a small error probability. For source coding
applications, however, the lattice decoder must succeed with
high probability. An interesting direction for future research
is to quantify the performance loss of nested lattice codes
based on linear p-ary code with a finite value of p. The
results of [31] (see also [10, Sec. 7.9.5]) show that for the
quantization problem the loss decreases rather fast with p. Our
analysis in Section VII reveals a similar phenomenon for the
coding problem. It is thus expected that nested lattice codes
constructed from our ensemble with finite values for p and γ
would also perform well.
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