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Abstract—An open-loop single-user multiple-input multiple- Beyond the low rate regime, the multiple degrees of free-

output communication scheme is considered where a transntér, dom offered by the channel need to be utilized in order to
equipped with multiple antennas, encodes the data into indeen- approach capacity. For this reason, despite consideraie w

dent streams all taken from the same linear code. The coded d th bl f desiani tical |
streams are then linearly precoded using the encoding mati 2Nd Progress, the probiem o designing a practical opep-1oo

of a perfect linear dispersion space-time code. At the receer Scheme that simultaneously approactigg for all channels
side, integer-forcing equalization is applied, followed lg standard H with the same white-input mutual information remains
single-stream decoding. It is shown that this communicatio ynsolved. As a consequence, less demanding benchmarks
arch_necture achieves the capacity of any Gaussian multigrinput became widely accepted in the literature. First, sincésicl
multiple-output channel up to a gap that depends only on the deli f irel ication link i 'ft bl
number of transmit antennas. modeling of a wireless communication link is often avaigy
one may be content with guaranteeing good performance only
|. INTRODUCTION for channel realizations that have a “high” probabilityrther,

The Gaussian Multiple-Input Multiple-Output (MIMO) tq simplify analysis and design, the asymptotic criteribthe

channel has been the focus of extensive research efforts dJ¥ersity-multiplexing tradeoff (DMT) [1] has broadly bee

the last two decades. Here, we consider the open-loop sin opted. . i . .
user complex MIMO channel In [2], Tavildar and Vishwanath introduced the notion of

approximately universal ST codesd derived a necessary
y=Hx+z (1) and sufficient criterion for a code to be approximately uni-
versal. This criterion is closely related to the nonvamighi
determinant criterion and is met by several known coding
schemes [3], [4]. Roughly speaking, approximate-univiysa
; . . ) ) uarantees that a scheme is DMT optimal for any statistical
complex Gaussian entries with zero mean and un't.v"?‘”angﬁannel model. Approximately universal schemes still esuff
Throughout the paper we assume the channel matrix is S_t ivever, from the asymptotic nature of the DMT criterion.
and perfectly knoyvn o the receiver, W.hereas t-he transmitte \\ i designing a practical communication scheme that
knows only thewhite-input (W) mutual informatich universally approache&Sy, is still out of reach, in the present
Cwi = logdet (I+ SNRHH) . work_ we take a step in this direc_tion. Namely, a .practical eom
munication architecture that achieves the capacity of aayss
corresponding to the channel, tdbes notknow the channel sjan MIMO channel up to aonstant gapthat depends only on
coefficients. the number of transmit antennas, is studied. Such tradition
While the theoretical performance limits of open-loop comnformation-theoretic performance guarantee is subistint
munication over a Gaussian MIMO channel are well urstronger than approximate universality. In particularglaesne
derstood, unlike for closed-loop transmission, much i#f stthat achieves a constant gap-to-capacity is obviously also
lacking when it comes to practical schemes that are akgproximately universal. In the considered scheme, whieh w
to approach these limits. Such a scheme is known for th&rmprecoded integer-forcinghe transmitter encodes the data
1 x 2 MISO channel where Alamouti modulation offers annto independent streams via the same linear code. The coded
optimal solution. More generally, modulation via orthogbn streams are then linearly precoded using the generatingxmat
space-time (ST) block “codes” allows to approacfy using of a space-time code from the class of perfect codes [3]-[5].
scalar AWGN coding and decoding in the limit of small rateat the receiver side, integer-forcing (IF) equalizatior] [6
where the mutual information is governed solely through thgplied. An IF receiver attempts to decode a full-rank set of
Frobenius norm of the channel matrix. linear combinations of the transmitted streams with intege
Un thi n . valued coefficients. Once these equations are decoded, they
n this paper(x)T is the conjugate transpose ®f

2All logarithms in this paper are to bage and rates are measured in bitsCan be solved for the transm'tted streams. ) . .
per channel use. Precoded IF may be viewed as an extension of linear dis-

with M transmit andN receive antennas. The input vector
is subject to the power constrainE(x’x) < M - SNR, and
the additive noisex is a vector of i.i.d. circularly symmetric
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Fig. 1. An illustrative comparison between linear dispamsspace-time coding and precoded integer-forcing.

persion ST “codes”. In such “codes”, uncoded QAM symbolset x,, be the signal transmitted by theth antenna, let
are linearly modulated over space and time. This is done By= [x ... xT,]7 € CM*" wheren is the block-length of
linearly precoding the QAM symbols using a precoding matrithe codeC, and let the subscriptRe andIm denote the real
P. For precoded IF, the same precoding maRiis applied to and imaginary parts of a matrix, respectively. The chasnel’
codewordgaken from a linear code, rather than uncoded QAMutput can be expressed by its real-valued representation

symbols. See Figure 1. The performance of linear dispersion v H H X 7
Re - Re —Ilim Re Re
|: Yim :| N [ Him Hge :| |: Xim ] + |: Zim ] ’ (2)

ST “codes” is dictated byimi,, the minimum distance in the

received constellation, whereas the performance of pestod

IF is determined by the effective signal-to-noise redRe. which will be written asY = HX + Z for notational com-

A key result we derive is that the two quantities are closelyactness.

related. Namely, minimum distance guarantees for precodedrhe IF receiver's goal is to decodé £ AX, for some

QAM symbols translate to guarantees on the effective SNRII-rank matrix A € Z2M>2M that can be chosen according

for precoded IF, when the same precoding matrix is used. to the channel coefficients. Let! be the kth row of A.
The design of precoding matrices for uncoded QAM, thah order to decode the equation, = a{f{ the receiver

guarantee an appropriate growth @fin as a function of first performs linear MMSE estimation of it from the output

Cwi, has been extensively studied over the last decade.YA This procedure induce2)M sub-channels, one for each

remarkable family of such matrices are the generating oesri equation

of perfectlinear dispersion ST codes, which are approximately .

universal [3], [4]. As a consequence of the tight connection Yeftk = Vi + Zetth, k=1,...,2M, ®)

between dmin and SNRe, when such precoding matricesyherezcy ;, is the estimation error of, from Y (this error can
are used for precoded IlSNRer also grows appropriately he made statistically independentwf using dithers, see [6]).
with Cw. Consequently, precoded IF achieves rates withifhe output of each sub-channel is fed to a decoder. Since the
a constant gap front’y, and hence also from the capacityeodebookC is linear, v is a member of the codebook (after
of any Gaussian MIMO channel. appropriate modulo reduction), and therefore the decodfng
Il. PEREFORMANCE OF THEINTEGERFORCING SCHEME  Vy is done using the standard decoder associated @vith
Integer-Forcing equalization is a low-complexity archite FO' IF equalization to be successful, decoding over all
ture for the MIMO channel, which was proposed by Zhaf sub-channels should be correct. Therefore, the worst sub-
et al [6]. The key idea underlying IF is to first decogé&hannel constitutes a bottleneck. We define the effectiv@ SN

integral linear combinations of the signals transmitted Kt thekth sub-channel as
all antennas, and then, after the noise is removed, invert s (T ~ e\ 1 !

those linear combinations to recover the individual traittsah SNRer = (a’“ (I+SNRH H) Ak ’ )
signals. This is made possible by transmitting codeworais fr
the samelinear/lattice code from allM/ transmit antennas,
leveraging the property that linear codes are closed under SNReff £ IninQMSNReff_’k. (5)

and the effective SNR associated with the IF scheme as

(modulo) linear combinations with integer-valued coeéfius. Ly

In the IF scheme, the information bits to be transmitteBheorem 3 in [6] states that IF equalization can achieve any
are partitioned into2)M streams. Each of theM streams rate satisfying
is encoded by the same linear code and each of the
M antennas transmits two coded streams, one from its in-
phase component and one from its quadrature componeértius, the performance of the IF scheme is dictate@KiRes.

Rie < Mlog(SNRef). (6)
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A. Bounding the Effective SNR for an optimal choiceAof and QAMY (L) is an M-dimensional vector whose compo-
The matrixA should be chosen such as to maxinfsiRes. N€NtS all belong to QANL). Note that if L is an even integer,

Using (4) and (5), this criterion translates to choosing dmin(H, L) is the.minimum distance at the receiverwhe_n each
. antenna transmits symbols from a QAR/2) constellation.
A%' = argmin  max a} (I + SNRfITﬁ) ay. This is true since
c72M x2M k=1....2M
det(A)7£0 min IHx; — Hxo|| = min | Hx]|.
x1,%x2€QAMM (L /2) xEQAMM (L)\0

X1 #X2

- -\ —1
The matrix (I +SNRH”H is symmetric and positive

definite, and therefore it admits a Cholesky decomposition |, the IF scheméhere is no assumptiothat QAM symbols
SNRATH -1 _LLT 7 are transmitted. Rather, each antenna transmits codewords
(I+ ) =LL", () taken from a linear codebook. Nevertheless, we show that
where L is a lower triangular matrix with strictly positive the performance of the IF receiver over the chanHetan
diagonal entries. With this notation the optimizationexrion b€ tightly related to those of hypotheticaluncoded QAM

becomes system over the same channel. See Figure 1. NarSBIRqs
) o is closely related talmin(H, L). This relation is formalized
AP = ar%gli{‘}M ppax |L"a . in the next key lemma, which is a simple consequence of
A )0 Theorem 1.
Denote byA(LT) the2M dimensional lattice spanned by the Lemma 1 (Relation betwe&NRe and dmin): Consider
matrix L7, i.e., the complex MIMO channey = Hx + z with M transmit
oA e - antennas and N receive antennas, power constraint
ALY 2 {L'a : acz*}. E(xfx) < M -SNR, and additve noisez with i.i.d.

circularly symmetric complex Gaussian entries with zero
mean and unit variance. The effective signal-to-noiseorati
when integer-forcing equalization is applied is lower boedh

It follows that A°P' should consist of the set &M linearly
independent integer-valued vectors that result in thetskor
set of linearly independent lattice vectorsiL.”'). A theorem
by Banaszczyk [7] can be used to connect the length of tn¥

2Mth shortest lattice vector in (L) with the shortest vector 1 . 2 2

in the latticeA (L ') spanned byL.—!; see [8] for more details. SNRefr > e L2 (L* + SNRdpyn (L, L))

Using this relation, we obtain the following theorem Whicr\]/vheredQ (H, 1) is defined in (9).

yeen

lower boundsSNRgg. min

Theorem 1:Consider the complex MIMO channel Proof: The bound from Theorem 1 can be written as
y =Hx+z with M transmit antennas andV receive 1
antennas, power constraifi{x'x) < M - SNR, and additive SNReft > YSYel anAEr-lﬁ-li%M\O lal|* +SNR||Hal|*.  (11)

noise z with i.i.d. circularly symmetric complex Gaussian
entries with zero mean and unit variance. The effectidest

signal-to-noise ratio when integer-forcing equalizatits N

applied is lower bounded by p(a) L T (@, @myy,) 5
SNReft > 1 5 min _al (I+SNRH'H)a.  (8) i.e., p(a) is the maximum absolute value of all real and imag-
AM? aczZM+izM\0 inary components oh. With this notation, (11) is equivalent
Proof: See [8]. m (o
. . _ 1
B. Relation between the effective SNR and the minimunSNRes > YSYE min nin |al|? + SNR||Ha||?
distance for uncoded QAM i 2L \0
A basic communication scheme for the MIMO channel is 1 ) ) )
transmitting independent uncoded QAM symbols from each = ane L e (L* + SNRdpin(H, L)) ,
antenna. In this case, the error probability strongly depen desired
on theminimum distancat the receiver. For a positive integel"jlS esired. u
L, we define lIl. PRECODEDINTEGER-FORCING
dmin(H, L) £ AI’algl [|Hal|, 9) Clearly, there are instances of MIMO channels for which
acQ (N0 the lower bound (8) orbNRe¢ does not increase with the
where WI mutual information. For example, consider a chanHel

a5 7 B where one of théV M entries equalé whereas all other gains
QAM(L) = ,{ L=L+1,....L-1,L} are zero. For such a chann€ly, = log(1 + |h|?SNR), yet
+i{=L,=L+1,....,L =1L},  (10) SNR = 1 (and the bound (8) only give&NReg > 1/(4112)).

300



Thus, it is evident that IF equalization alone can perforthat proved so useful for space-time coding are also useful
arbitrarily far fromCyy,. for precoded integer-forcing. A major difference, however
This problem can be overcome by transmitting linedretween the two is that while for linear dispersion spaoeti
combinations of multiple streams from each antenna. Moceding the precoding matri® is applied to QAM symbols,
precisely, instead of transmittir/ linearly coded streams, in precoded integer-forcing it is applied twoded streams
one from the in-phase component and one from the quadrattites in turn, yields an achievable rate characterizationctvh
component of each antenna, over channel uses2MT is not available using linear dispersion space-time cading
linearly coded streams are precoded by a unitary matrix apdrticular, very different asymptotics can be analyzedh&a

transmitted ovenT channel uses. than fixing the block length and takin§NR to infinity, as
Precoded IF, i.e., combining IF equalization with lineansually done in the space-time coding literature, here, we fi

precoding, was proposed by Domanoétzl [9]. The ideais the channel and take thglock lengthto infinity, as in the

to transform theV x M complex MIMO channel (1) into an traditional information-theoretic framework.

aggregateVT x MT complex MIMO channel and then apply The aim of the next section is to lower boudgln(H, L)

IF equalization to the aggregate channel. The transfoomédi as a function ofCyy, for precoding matrice® that generate

done using a unitary precoding matixe CMT*MT Specif- perfect linear dispersion space-time codes. This lowendou

ically, let x € CMT*1 pe the input vector to the aggregatevill be instrumental in proving that precoded IF univergall

channel. This vector is multiplied by to form the vector attains the MIMO capacity to within a constant gap.

x = Px € CMT*1 which is transmitted over the channel (1)

during T’ consecutive channel uses. Let IV. LINEAR DISPERSIONSPACE-TIME CODES
H 0 - 0 An M x T linear dispersion ST codé" over the constel-
0 H .- 0 lation S is the collection of all matriceX € CM** that can
H=IrH= L o, (12) be uniquely decomposed as
0 0 -~ H

K
X = ZSka, Sk € S,
where @ denotes the Kronecker product. The output of the k=1
aggregate channel is obtained by stackifigconsecutive

V= whereS is some constellation and the matridés € CM*T
outputs of the channel (1) one below the other and is giv P

@e fixed and independent of the constellation symbgl®e-

by noting byvec(X) the vector obtained by stacking the columns
y = HPx +z = Hx + Z, (13) of X one below the other, and letting= [s; --- sk’ gives

vec(X) = Ps, where P = [vec(F1) vec(F2) -+ vec(Fg)]

where H £ HP = (Ir @H)P € CNTMT s the aggregate s the code’sM T x K generating matrixA linear dispersion
channel matrix, and € C¥7*! is a vector of i.i.d. circularly g7 code isfull-rate if & — MT. In the sequel, linear

symmetric complex Gaussian entries. See Figure 5 in [8]. gispersion ST codes over a QAM) constellation, defined
A remaining major challenge is how to choose the precodipg (10), will play a key role. The linear dispersion ST code

matrix P (recall _that an open-loop scenario is considered, ag@tained by using the infinite constellation QAM) = Z+iZ
hence, the choice aP cannot depend o). As observed js referred to asCST, and, after vectorization, is in fact a

in Section Il, the p_erformance of th_e IF equalizer is dim‘atecomplex lattice witor? ’generating matrR. Since the QAML)

by SNRe. Thus, in order to obtain achievable rates thalynstellation is a subset @47 it follows that for any finite
are comparable to the WI mutual informatid®iNRet must 1, pe QAM(L) based cod€ST is a subset ofST.

scale appropriately witly. The precoding matri should  Ap important class of linear dispersion ST codes is that of

therefore be chosen such as to guarantee this propertylfor@lrfect code$3], [4] which is defined next.
channel matrices with the same WI mutual information.

Lemma 1 indicates that for the aggregate Chameﬁ Deﬁnition 1: An M x M “near diSperSiOI’l ST COde over a
increases withimn(H, L), where QAM constellation is callegerfectif
_ ) 1) It is full-rate;
dmin(H, L) = aGQA,\I}%(L)\O IHPal|. (14) 2) It satisfies the nonvanishing determinant criterion
Thus, the precoding matri¥ should be chosen such as to 5min(c§OT) 2 min_|det(X)]> > 0;
guarantee thatlmin(H, L) increases appropriately wit@y;. 0#Xecs]

This boils down to the problem of designing precoding matri-3) The code’s generating matrix is unitary, i.21P — 1.
ces for transmitting QAM symbols over an unknown MIMO T

channel with the aim of maximizing the received minimum In [3], perfect linear dispersion ST codes were found for
distance. This problem was extensively studied during tet p A/ = 2, 3,4 and 6, whereas in [4] perfect QAM based linear
decade, under the framework of linear dispersion space-tigispersion ST codes were obtained for any positive intdger
coding, and unitary precoding matrices that satisfy theeafo Thus, for any positive intege¥/, there exist codes that satisfy
mentioned criterion were found. Therefore, the same negtriche requirements of Definition 1.
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The approximate universality of an ST code over the MIM@sing Theorem 2, this is bounded by
channel was studied in [2]. This property refers to an ST 1 . +
code being optimal in terms of DMT regardless of the fadingNRes > 2373 min <L2 + {5min(c<§r)ﬁ27 - QMQLQ} )
statistics ofH. A sufficient and necessary condition for an ST

code to be approximately universal was derived in [2]. This 1 ) 9 6min(6§)ﬁ2% ) "

condition is closely related to the nonvanishing determina = 20 e T oMm2 L

criterion and is satisfied by perfect linear dispersion Sdeso

The next Theorem exploits the approximate universality of > Lgmin(CST)ﬁg%

perfect linear dispersion ST codes in order to lower bound ~ 8MS¢ >

dwin(H, L) for the aggregate channel obtained using théfollows that any rate satisfying

generating matriX of such a code as the precoding matrix. ) 1 ST\ L - Cwm

The notationfz]* £ max(z,0) is used. RiF aggregate< M log (W‘Smin(cm)klz M )
Theorem 2:LetP € (CMZXM.2 be a genergting matrix of a — MCu — Mlog 1 — M log(8M°)

perfect M x M QAM based linear dispersion ST cod&’ dmin(CST)

With dmin(CS]) = ming.xecsr | det(X)[> > 0. Then, for all is achievable over the aggregate channel. Since each dhanne
channel matricedi with corresponding white input mutualyse of the aggregate channel corresponda/t@hannel uses

information G = log det(I + SNRHTH) of the original channel, the communication rate should be
_ o + normalized by a factor of /M. Thus, Rp.ir = Rir,aggregatd M ,
SNRdZ,;, (FL, L) > |dmin(CST) 7 273 — 2M2L2} ; and the theorem follows. [
whereH = HP = (I,; @ H) P. Example 1: The golden-code [5] is a QAM-based perfect

; i ; Bp (ASTY _
Proof: The proof closely follows that of [2, Theorem 3.1],2 * 2 linear dispersion ST code, within(Cs) = 1/5. Thus,
and can be found in [8]. - for a MIMO channel withM = 2 transmit antennas its

generating matrixP € C*** can be used for precoded
V. MAIN RESULT integer-forcing. Theorem 3 implies that with this choice of

The next theorem shows that precoded IF can achielle Precoded integer-forcing achievésy, to within a gap
the WI mutual information of any Gaussian MIMO channe?f I' (1/5,2) = 20.32 bits, which translates to a gap 6f08
to within a constant gap that depends only on the numbifs per real dimension. While these constants may seem
of transmit antennas. Since the closed-loop capacity (willyite large, one has to keep in mind that this is a worst-
optimal input covariance matrix) differs fro, in no more case bound, whereas for the typical case, under common

than M log M bits, precoded IF also attains the closed-loopfatistical assumptions such as Rayleigh fading, the gap-t
MIMO capacity to within a constant gap. capacity obtained by precoded IF is considerably smalker, a

o o ) i seen in the numerical results of [9].
Theorem 3:Let P € CM"*M" pe a generating matrix of
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