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The Approximate Sum Capacity of the Symmetric
Gaussian K-User Interference Channel

Or Ordentlich, Uri Erez, Member, IEEE, and Bobak Nazer, Member, IEEE

Abstract— Interference alignment has emerged as a powerful
tool in the analysis of multiuser networks. Despite considerable
recent progress, the capacity region of the Gaussian K-user
interference channel is still unknown in general, in part due
to the challenges associated with alignment on the signal scale
using lattice codes. This paper develops a new framework for
lattice interference alignment, based on the compute-and-forward
approach. Within this framework, each receiver decodes by first
recovering two or more linear combinations of the transmitted
codewords with integer-valued coefficients and then solving these
linear combinations for its desired codeword. For the special case
of symmetric channel gains, this framework is used to derive the
approximate sum capacity of the Gaussian interference channel,
up to an explicitly defined outage set of the channel gains. The
key contributions are the capacity lower bounds for the weak
through strong interference regimes, where each receiver should
jointly decode its own codeword along with part of the interfering
codewords. As part of the analysis, it is shown that decoding
K linear combinations of the codewords can approach the sum
capacity of the K-user Gaussian multiple-access channel up to
a gap of no more than K/2 log K bits.

Index Terms— Interference channels, multiple access, lattice
codes, interference alignment.

I. INTRODUCTION

HANDLING interference efficiently is a major challenge
in multi-user wireless communication. Recently, it has

become clear that this challenge can sometimes be overcome
via interference alignment [1], [2]. For instance, consider the
K-user Gaussian interference channel, where K transmitter-
receiver pairs wish to communicate simultaneously. Through
the use of clever encoding strategies, it is possible to align
the transmitted signals so that each receiver only observes
its desired signal along with a single effective interferer.
As a result, each user can achieve roughly half the rate
that would be available were there no interference what-
soever, i.e., K/2 degrees-of-freedom (DoF) are available.
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However, many schemes, such as the Cadambe-Jafar frame-
work [2] and ergodic interference alignment [3], require a large
number of independent channel realizations to achieve near-
perfect alignment. In certain settings, this level of channel
diversity may not be attainable; ideally, we would like to
achieve alignment over a single channel realization.

The capacity region of the (static) Gaussian K-user interfer-
ence channel [4] is unknown in general, although significant
progress has been made recently, in part due to the discovery
of interference alignment and the shift from exact capacity
results to capacity approximations [5]–[7]. It has been shown
by Motahari et al. that K/2 DoF are achievable for almost all
channel realizations [8] but it is an open question as to whether
this result translates to real gains outside of the very high
signal-to-noise ratio (SNR) regime. One promising direction is
the use of lattice codes [9]–[11], as they can enable alignment
on the signal scale. By taking advantage of the fact that the
sum of lattice codewords is itself a lattice codeword, a receiver
can treat several users as one effective user, thereby reducing
the number of effective interferers. A compelling example of
this approach is the derivation of the approximate capacity of
the many-to-one interference channel by Bresler, Parekh, and
Tse [7]. For fully connected channels, much less is known,
owing to the difficulty of choosing lattices that simultaneously
align at several receivers.

In some cases, focusing on the special case of symmetric
channel gains has yielded important insights. For instance,
in the two-user case, Etkin, Tse, and Wang [5] used the
symmetric interference channel to develop the notion of gener-
alized degrees-of-freedom. This in turn revealed five operating
regimes, based on relative interference strength:

• Noisy: Each receiver treats interference as noise, which
is optimal for sufficiently weak interference [12]–[14].

• Weak and Moderately Weak: Each transmitter sends a
public and a private codeword following the scheme of
Han and Kobayashi [15]. Each receiver jointly decodes
both public codewords and its desired private codeword
while treating the interfering private codeword as noise.

• Strong: Each receiver jointly decodes both users’ code-
words. This regime and its capacity was discovered by
Sato [16] as well as Han and Kobayashi [15].

• Very Strong: Each receiver decodes and subtracts the
interference before recovering its desired codeword. This
regime and its capacity was discovered by Carleial [17].

Using these regimes as a guideline, they were able to approx-
imate the capacity region to within half a bit per real channel
dimension.
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Fig. 1. Two transmitters employ the same 7-symbol lattice code over the
channel x1 + 2x2. The effective constellation seen by the receiver contains
only 37 points, which means that the receiver cannot always uniquely identify
which pair of symbols was transmitted.

In this paper, we focus on the special case of the symmetric
(real) Gaussian K-user interference channel. Each receiver
observes

yk = xk + g
∑

� �=k

x� + zk (1)

where xk is the codeword sent by the kth transmitter, g is
the cross-channel gain, and zk is additive white Gaussian
noise. Building on the compute-and-forward strategy [18], we
propose a framework for lattice-based interference alignment
whose performance can be evaluated both numerically and
analytically at any SNR. Within our framework, each receiver
first decodes integer linear combinations of the codewords and
only afterwards solves these for its desired codeword. As we
will argue, this choice of receiver architecture allows us to
circumvent some of the difficulties encountered in the analysis
of a direct decoding strategy. Below, we summarize the main
technical contributions of the paper in the context of prior
work.

A. Paper Overview

One of the appealing properties of the symmetric Gaussian
interference channel is that, if each transmitter draws its
codeword xk from the same lattice codebook, the sum of the
K − 1 interfering codewords at each receiver

∑
� �=k x� will

align into a single effective codeword. This is due to the fact
that lattices are closed under addition, i.e., the sum of any
lattice codewords is itself a lattice codeword. The difficulty is
that, depending on the value of the cross-channel gain g, the
desired codeword may also align with the interference, since
it is drawn from the same lattice codebook. The achievable
rate is thus closely linked to the behavior of signal scale
alignment, which makes this channel an ideal setting to gain
a deeper understanding of this phenomenon at finite SNR.
In Section II-A, we provide a formal problem statement.

When |g| is sufficiently large, it is easy for the receiver to
distinguish its desired codeword from the aligned interfering
codewords. Specifically, in the very strong regime (|g| >√

SNR), the sum of the interfering codewords acts as the cloud
center from a classical superposition codebook [19] and the
desired codebook acts as the cloud. Thus, as proposed by
Sridharan et al. [20], the receiver can employ a successive
cancellation strategy: first decode the sum of the interference∑

� �=k x�, then subtract it from its channel observation yk, and

Fig. 2. Two transmitters employ the same 7-symbol lattice code over the
channel x1 +

√
2x2. The effective constellation seen by the receiver consists

of 49 points, which enables the receiver to determine which pair of symbols
was transmitted.

finally decode xk from the resulting interference-free effective
channel. We review this approach within the context of our
framework in Section VI-A.

As the magnitude of g decreases below
√

SNR, the code-
books corresponding to the desired codeword and the aligned
interference will start to overlap from the receiver’s perspec-
tive. For certain values of g, xk and

∑
� �=k x� will align,

which in turn significantly reduces the achievable rates. For
example, in Figure 1, we illustrate the effective codebook
corresponding to the linear combination x1 + 2x2 where x1

and x2 are drawn from the same lattice codebook. There are
only 37 points in this effective codebook, meaning that it
is not always possible to uniquely determine which of the
49 possible pairs of codewords was transmitted, regardless
of the SNR. However, for the linear combination x1 +

√
2x2

shown in Figure 2, there are 49 points in the effective
codebook, each corresponding to a unique codeword pair, even
though the interference strength has decreased.

Thus, while employing the same lattice codebook at each
transmitter aligns the interference at every receiver, it some-
times has the unintended effect of aligning the desired signal
as well. When this occurs, the rate must be reduced until
the desired codewords can be uniquely identified. We now
summarize several recent papers that have aimed to quantify
this effect. Etkin and Ordentlich [21] showed that, for the
Gaussian K-user interference channel, the DoF is strictly
less than K/2 if all channel gains are rational. They also
demonstrated, using a scalar lattice codebook, that if the
diagonal elements are irrational algebraic numbers and the off-
diagonals are rational, K/2 DoF is achievable. Subsequently,
Motahari et al. [8] proposed the “real interference alignment”
framework. In particular, they argued that scalar lattice code-
words can be uniquely identified from a linear combination (in
the high SNR limit) provided that the coefficients are rationally
independent.1 Using this framework, they demonstrated that,
for the Gaussian K-user interference channel, K/2 DoF is
achievable for almost all channel matrices by embedding
the asymptotic alignment framework of [2] into a single
dimension. This result was generalized by Wu et al. using
Rényi’s information dimension [22].

1The coefficients h1, . . . , hK ∈ R are said to be rationally independent if
there is no non-trivial choice of integers q1, . . . , qK such that q1h1 + · · ·+
qKhK = 0.
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For finite SNRs, [23] derived lower bounds on the achiev-
able symmetric rate for a two-user multiple-access channel
x1 + gx2 + z where each user employs the same linear code
over Zp for some prime p. The sensitivity of the bounds
to the rationality of g at different SNRs was investigated,
and the bounds were used to obtain achievable rate regions
for Gaussian K-user interference channels with integer-valued
off-diagonal channel gains. For the two-user Gaussian X
channel,2 Niesen and Maddah-Ali [24] approximated the sum
capacity via an “outage set” characterization. Their coding
scheme is guided by a variation on the deterministic model [6]
and consists of a scalar lattice constellation combined with
a random i.i.d. outer code. From one perspective, for any
c > 0, their scheme approximates the sum capacity to within
a constant gap of c + 66 bits up to an outage set of channel
matrices of measure roughly 2−c/2.

1) Novel Coding Strategies: The prior work described
above attempts to directly bound the minimum distance in the
effective codebook that results from the linear combination of
the transmitters’ lattice codebooks. This is a challenging task,
even for scalar lattices, and limits the analytical and numerical
results to relatively high SNRs. In this paper, we take an
alternative approach: we lower bound the achievable rate by
the rate required to decode enough integer linear combinations
to reveal the desired messages. For instance, in the strong
regime 1 ≤ g ≤

√
SNR, each receiver first decodes two linear

combinations of the form

a11xk + a12

∑

� �=k

x� a21xk + a22

∑

� �=k

x�,

where a11, a12, a21, and a22 are integer-valued coefficients. If
the vectors a1 = [a11 a12]T and a2 = [a21 a22]T are linearly
independent, then each receiver can solve for its desired
codeword xk. The rates at which these linear combinations
can be decoded can be determined directly via the compute-
and-forward framework [18], which we review in Section III.
Since this framework employs high-dimensional nested lattice
codes that can approach the point-to-point AWGN capac-
ity, we can obtain analytical and numerical results for any
finite SNR.

In Figure 3, we have plotted the symmetric rate of this
scheme (Theorem 9) at SNRs 15 and 25dB with respect to the
cross-gain g for the symmetric Gaussian 3-user interference
channel. Alongside, we have plotted the symmetric rate for
the two-user upper bound described in Section V, i.e., the rate
that would be achievable if each receiver only encountered a
single interferer. At 15dB, it is clear that the desired codeword
aligns with the interference only at integer-valued cross-gains.
At 25dB, alignment also occurs at g = 3/2, 5/2, and 7/2, i.e.,
rationals with denominator 2. In other words, the number of
channel gains where the rate saturates depends on the SNR.

We also propose a lattice version of the Han-Kobayashi
scheme [15] for the weak and moderately weak regimes: each
transmitter splits its information into a public lattice codeword
xk1 and a private lattice codeword xk2. Each receiver recovers

2In the X channel scenario, each transmitter has an independent message
for each receiver.

Fig. 3. Achievable symmetric rate for the symmetric Gaussian 3-user
interference channel from Theorem 9.

its desired information by first decoding three linear combi-
nations of the form

am1xk1 + am2xk2 + am3

∑

� �=k

x�1 m = 1, 2, 3

for integer-valued coefficients am1, am2, am3 that suffice to
solve for the desired public codeword xk1, the desired private
codeword xk2, and the sum of the public interfering codewords∑

� �=k x�1. (The private interfering codewords are treated as
noise.)

Within the standard compute-and-forward framework, the
rate of each codeword should be set according to the low-
est computation rate across all desired linear combinations.
In Section IV, we propose an algebraic successive cancellation
decoding strategy that can achieve higher rates. Consider a
single receiver that decodes K linearly independent combina-
tions of K lattice codewords in a given order. Each linear
combination is associated with a certain computation rate,
which we set as the rate of one of the codewords. After
decoding each linear combination, the receiver can cancel out
the effect of one codeword from its channel observation to
reduce the effective rate. As we show in Theorem 11, for the
lattice Han-Kobayashi scheme, this allows each user to attain
the sum of the second and third highest computation rates (as
opposed to twice the third highest).

Overall, these two lattice strategies, when combined with
successive cancellation for the very strong regime and treat-
ing interference as noise for the noisy regime, yield an
achievable rate region for the symmetric Gaussian K-user
interference channel. To evaluate this rate region, we only
need to optimize over the integer coefficients of the linear
combinations. See Section III-D for a discussion on how
the space of integer-coefficients can be explored numerically.
In Figure 7, we have plotted the resulting lower bound on the
symmetric capacity along with the two-user upper bound from
Section V.
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Fig. 4. Computation rates for the best two linearly independent integer linear
combinations vs. h for the channel y = x1+hx2+z at SNR=40dB. The sum
of these computation rates is nearly equal to the multiple-access sum capacity.
All rates are normalized by this sum capacity 1/2 log(1 + (1 + h2)SNR).

2) Analytical Bounds: We also develop new tools for
deriving closed-form lower bounds for the rate achievable via
lattice alignment. These tools and specifically the compute-
and-forward transform, derived in Section IV-A, may be of
independent interest. Consider again K transmitted codewords
and a receiver that decodes K linear combinations according
to the K highest computation rates with linearly independent
coefficient vectors. While the computation rate for each of
these K combinations is very sensitive to the exact values of
the channel gains, the sum of the computation rates is equal
to the multiple-access sum capacity up to a constant gap
that is independent of the channel gains and the SNR as we
show in Theorem 3. See Figure 4 for a plot of this behavior
for K = 2. That is, lattice-based multiple-access can operate
near the boundary of the capacity region. We also argue in
Section VII that the degrees-of-freedom associated to each of
these K linear combinations is 1/K for almost all channel
gains.

Interestingly, this sum capacity lower bound is very helpful
in deriving closed-form lower bounds. For instance, in the
strong regime, each user attains the rate associated with the
second best linear combination. Thus, to bound the achievable
rate, we should obtain an upper bound on the second best inte-
ger approximation of the real-valued channel gain g. Instead
of attacking this problem directly, we instead develop a lower
bound on the best integer approximation of g and combine this
with the sum capacity lower bound to obtain our upper bound.
More details are given in Section VI-B and similar bounds
are developed for the moderately weak and weak regime in
Sections VI-C and VI-D, respectively.

When compared with the two-user upper bound, these lower
bounds yield an approximation of the sum capacity in all
regimes that we summarize in Theorem 1. As in [24], our
approximation is stated in terms of outage sets, i.e., for a given
constant gap, we exclude a certain measure of channel gains.
This outage set can be understood in terms of the quality of

the best integer approximation of g, and is characterized as
part of the analysis in Section VI.

B. Related Work

Interference alignment has generated a great deal of excite-
ment, due to the promise of higher throughputs in wireless
networks [1], [2] as well as other applications, including
coding for distributed storage [25]. See the recent monograph
by Jafar for a comprehensive survey [26]. Of particular note is
a series of recent papers that delineate the degrees-of-freedom
limits of linear beamforming strategies for alignment over a
finite number of channel realizations [27], [28]. Beamforming
strategies can only approach perfect alignment asymptotically,
whereas lattice-based schemes can achieve K/2 degrees-
of-freedom over a single channel realization [8]. However,
lattice-based alignment at finite SNR has to date been lim-
ited to special cases, such as symmetric [20], [23], [29],
integer [30], and many-to-one interference channels [7], [31].
Capacity approximations are also available for one-to-many
[7] and cyclic interference channels [32], although these
coding schemes do not employ alignment. Bandemer and
El Gamal have recently proposed a class of three-user deter-
ministic channels where the interfering signals are passed
through a function on their way to the receiver, which, in
a certain sense, models interference alignment [33]. They
develop a new rate region based on interference decoding for
this model.

Nested lattice codes have been thoroughly studied as a
framework for efficient source and channel coding with side
information [9], [10], [34]. Recently, it has become clear
that the inherent linear structure of lattices can enable many
interesting new schemes, including distributed dirty paper
coding [35], distributed source coding of linear functions
[36]–[38], distributed antenna systems [39], [40], and physical-
layer network coding [18], [41]–[44], to name a few. See [45]
for a comprehensive survey. The origins of these schemes can
be traced to the work of Körner and Marton [46], who showed
that linear binning is optimal for the distributed compression
of the parity of a doubly symmetric binary source.

II. SYMMETRIC GAUSSIAN K -USER

INTERFERENCE CHANNEL

A. Problem Statement

We begin with some notational conventions. We will denote
vectors with boldface lowercase letters and matrices with
boldface uppercase letters. For instance, a ∈ Z

K and A ∈
Z

K×K . Let ‖a‖ =
√∑K

k=1 a2
k denote the �2-norm of the

vector a. Also, let 0 denote the zero vector and IK×K denote
the identity matrix of size K . We use �·� to denote rounding
to the nearest integer, �·� to denote the floor operation and 	·�
for the ceiling operation. In general, the letters a and b are used
in this paper whenever the variables they describe are integer
valued. All logarithms are to base 2. We also occasionally use
the notation log+(x) � max(0, log(x)). All measures in this
paper are Lebesgue measures.

There are K transmitter-receiver pairs that wish to simul-
taneously communicate across a shared channel over n
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Fig. 5. Block diagram of a symmetric Gaussian K-user interference channel.

time slots, where the channel gains are constant over all
n channel uses. We assume a real-valued channel model
throughout.

Definition 1 (Messages): Each transmitter has a
message wk drawn independently and uniformly over
{1, 2, . . . , 2nRSYM}.

Definition 2 (Encoders): Each transmitter is equipped with
an encoder, Ek : {1, 2, . . . , 2nRSYM} → R

n, that maps its
message into a length-n channel input xk = Ek(wk) that
satisfies the power constraint,

‖xk‖2 ≤ nSNR

where SNR > 0 is the signal-to-noise ratio.
Definition 3 (Channel Model): The channel output at each

receiver is a noisy linear combination of its desired signal and
the sum of the interfering terms, of the form

yk = xk + g
∑

� �=k

x� + zk, (2)

where g > 0 parametrizes the interference strength and zk

is an i.i.d. Gaussian vector with mean 0 and variance 1. See
Figure 5 for an illustration. We define the interference-to-noise
ratio to be

INR � g2SNR

and the interference level to be

α � log(INR)
log(SNR)

.

Remark 1: Note that our definition of INR ignores the fact
that there are K − 1 interferers observed at each receiver.
This is for two reasons. First, this definition parallels that of
the two-user case [5], which will make it easier to compare
the two rate regions. Second, the receivers will often be able
to treat the interference as stemming from a single effective
transmitter, via interference alignment. Of course, this is not
the case when the receiver treats the interference as noise, as
discussed in Section VI-E.

Definition 4 (Decoders): Each receiver is equipped with a
decoder, Dk : R

n → {1, 2, . . . , 2nRSYM}, that produces an
estimate ŵk = Dk(yk) of its desired message wk .

Definition 5 (Symmetric Capacity): A symmetric rate
RSYM is achievable if, for any ε > 0 and n large enough,
there exist encoders and decoders that can attain probability

Fig. 6. Generalized degrees-of-freedom for the symmetric Gaussian K-user
interference channel.

of error at most ε,

Pr
(
{ŵ1 �= w1} ∪ · · · ∪ {ŵK �= wK}

)
< ε.

The symmetric capacity CSYM is the supremum of all achiev-
able symmetric rates.

Remark 2: Due to the symmetry of the channel, the sym-
metric capacity is equal to the sum capacity, normalized by
the number of users. To see this, assume that the users employ
different rates and that a rate tuple (R1, R2, . . . , RK) is
achievable. Since each transmitter-receiver pair sees the same
effective channel, we can simply exchange the encoders and
decoders to achieve the rate tuple (Rπ(1), Rπ(2), . . . , Rπ(K))
for any permutation π. By time-sharing across all permu-
tations, we find that each user can achieve 1

K

∑K
k=1 Rk,

corresponding to a symmetric rate. Thus, the sum of any
achievable rate tuple is upper bounded by KCSYM.

Definition 6 (Generalized Degrees-of-Freedom): The gen-
eralized degrees-of-freedom (GDoF) specifies the fraction of
the point-to-point Gaussian capacity that can be attained per
user for a given interference level α ≥ 0 as SNR tends to
infinity,

d(α) = lim
SNR→∞

CSYM
1
2 log(1 + SNR)

.

B. Approximate Sum Capacity

As shown by Jafar and Vishwanath [47, Th. 3.1], the GDoF
of the symmetric K-user interference channel is identical to
that of the two-user channel, except for a singularity at α = 1,

d(α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − α 0 ≤ α < 1
2 (noisy)

α 1
2 ≤ α < 2

3 (weak)

1 − α
2

2
3 ≤ α < 1 (moderately weak)

1
K α = 1
α
2 1 < α < 2 (strong)

1 α ≥ 2 (very strong).

(3)

See Figure 6 for a plot. Notice that since SNR is taken to
infinity, the GDoF characterization treats all channel gains
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Fig. 7. Upper and lower bounds on the symmetric capacity of a 3-user symmetric Gaussian interference channel with respect to the cross-gain g. The upper
bound (red line) is given by (46) and the lower bound (black line) is the maximum of the achievable rates from Theorem 9 and Corollary 3, which were
computed numerically, and Theorem 10. The lower bounds from Theorem 1 are not plotted in this figure. For reference, we have also plotted the symmetric
rate achievable via time-division (dotted blue line). (a) SNR = 20dB. (b) SNR = 35dB. (c) SNR = 50dB. (d) SNR = 65dB.

g that do not scale with SNR as a single point at α = 1.
A finer view of this regime is possible at high SNR by
simply setting g to be some fixed value and then taking
SNR to infinity, corresponding to the standard notion of
degrees-of-freedom. Surprisingly, this degrees-of-freedom
characterization is discontinuous at rational values of g
[21]. This presents an obstacle towards a clean capacity
approximation at finite SNR.

To overcome this difficulty, our approximations allow for the
possibility of an outage set, which is explicitly characterized.
Specifically, in the regime around α = 1, our capacity results
take the following shape: for any constant c > 0, the capacity
is approximated within at most c + 9 + log K bits over
the entire range of SNR, and all channel gains g, except
for a set of measure μ(c) which vanishes rapidly with c.
This type of capacity approximation has also been used by
Niesen and Maddah-Ali for the two-user Gaussian X channel
[24] and seems to arise from the capacity region itself, not
just the lower bound. That is, it appears that the capacity
may in fact simultaneously vary rapidly with the fine scale
of the channel gains (e.g., the distance to an appropriately

scaled integer) and slowly on the coarse scale (e.g., relative
interference strength). In the high SNR limit, this behavior
shows up as a discontinuity on the rationals but, at reasonable
SNRs, our achievable scheme shows that this variation is in
fact fairly smooth. The theorem below captures our capacity
approximations in a simple form. All upper bounds in the
theorem are based on [5] and [47]. The lower bound for the
noisy interference regime is straightforward and the lower
bound for the very strong interference regime is (a slight
variation of) that of [20]. Our contibution is in the lower
bounds for the weak and strong interference regimes.

Theorem 1: The symmetric capacity of the symmetric
Gaussian K-user interference channel can be lower and upper
bounded as follows:

• Noisy Interference Regime, 0 ≤ α < 1
2 ,

1
2

log
(

1 +
SNR

1 + INR

)
− 1

2
log(K − 1)

≤ CSYM <
1
2

log
(

1 +
SNR

1 + INR

)
+ 1
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• Weak Interference Regime, 1
2 ≤ α < 2

3 ,

1
2

log+(INR)− 7
2
−log(K) ≤ CSYM ≤ 1

2
log+(INR) + 1

for all channel gains.
• Moderately Weak Interference Regime, 2

3 ≤ α < 1,

1
2

log+

(
SNR√
INR

)
− c − 8 − log(K)

≤ CSYM ≤ 1
2

log+

(
SNR√
INR

)
+ 1

for all channel gains except for an outage set of measure
μ < 2−c for any c > 0.

• Strong Interference Regime, 1 ≤ α < 2,

1
4

log+(INR) − c

2
− 3 ≤ CSYM ≤ 1

4
log+(INR) + 1

for all channel gains except for an outage set whose
measure is a fraction of 2−c of the interval 1 < |g| <√

SNR, for any c > 0.
• Very Strong Interference Regime, α ≥ 2,

1
2

log(1 + SNR) − 1 ≤ CSYM ≤ 1
2

log(1 + SNR)

Remark 3: Our characterization of the outage set in the
strong and moderately weak interference regimes is in
fact somewhat stronger than the characterization given in
Theorem 1. Specifically, for the strong interference regime
we show that, for any integer b in the range [1,

√
SNR)

and constant gap c > 0, the measure of the set of channel
coefficients in the interval g ∈ [b, b + 1) for which our inner
bound does not hold is smaller than 2−c. Similarly, for the
moderately weak interference regime we show that, for any
integer b in the range [1, 1/6 log(SNR)) and constant gap
c > 0, the measure of the set of channel coefficients the inter-
val g ∈ [2−b, 2−b+1) for which our inner bound does not hold
is smaller than 2−(c+b). Using this refined characterization,
our results can be interpreted in the following way: For all
values of α except for an outage set with Lebesgue measure
smaller than 2−c, the symmetric capacity of the symmetric
Gaussian K-user interference channel is

CSYM =
d(α)

2
log(SNR) ± δ(K, c),

where 0 ≤ δ(K, c) < c + log(K) + 10 and d(α) is
given in (3).

III. PRELIMINARIES

In this section, we give some basic definitions and results
that will be extensively used in the sequel.

A. K-User Gaussian MAC

Consider the K-user Gaussian multiple-access channel
(MAC)

y =
K∑

k=1

hkxk + z, (4)

where the vector h = [h1 · · · hK ]T ∈ R
K represents the

channel gains, xk ∈ R
n, k = 1, . . . , K , are the channel inputs,

z ∈ R
n is additive white Gaussian noise (AWGN) with zero

mean and unit variance and y ∈ R
n is the channel output.

Without loss of generality, we assume all K users are subject
to the same power constraint3

‖xk‖2 ≤ nSNR, k = 1, . . . , K. (5)

The capacity region of the channel (4) is known (see e.g., [48,
Th. 15.3.6]) to be the set of all rate tuples (R1, . . . , RK)
satisfying

∑

k∈S
Rk <

1
2

log

(
1 + SNR

∑

k∈S
|hk|2

)
(6)

for all subsets S ⊆ {1, . . . , K}. The achievability part
of the capacity theorem is established using i.i.d. Gaussian
codebooks for all users. Motivated by lattice interference
alignment, we are interested in establishing the achievability
of certain rate tuples under the constraint that the codebooks
employed by the K users form a chain of nested lattice codes.

Remark 4: Recall that the corner points of the capacity
region are achievable via successive interference cancella-
tion, either using i.i.d. Gaussian codebooks [48, Sec. 15.3.6]
or nested lattice codebooks [18, Sec. VII.A]. Time-sharing
between these corner points suffices to reach any point in the
capacity region. However, this time-sharing approach does not
suffice for an interference channel, as each receiver will require
a different time allocation between users.

B. Nested Lattice Codes

We employ the nested lattice framework originally proposed
in [10]. A lattice Λ is a discrete subgroup of R

n which is
closed under reflection and real addition. Formally, for any
t1, t2 ∈ Λ, we have that −t1,−t2 ∈ Λ and t1 + t2 ∈ Λ.
Note that by definition the zero vector 0 is always a member
of the lattice. Any lattice Λ in R

n is spanned by some n× n
matrix G such that

Λ = {t = Gq : q ∈ Z
n}.

We say that a lattice is full-rank if its spanning matrix G is
full-rank.

We denote the nearest neighbor quantizer associated with
the lattice Λ by

QΛ(x) = arg min
t∈Λ

‖x− t‖. (7)

The Voronoi region of Λ, denoted by V , is the set of all
points in R

n which are quantized to the zero vector, where
ties in (7) are broken in a systematic manner. The modulo
operation returns the quantization error w.r.t. the lattice,

[x] mod Λ = x − QΛ(x),

and satisfies the distributive law,
[
a[x] mod Λ + b[y] mod Λ

]
mod Λ = [ax + by] mod Λ,

for all a, b ∈ Z and x,y ∈ R
n.

A lattice Λ is said to be nested in Λ1 if Λ ⊆ Λ1. The coding
schemes presented in this paper utilize a chain of K+1 nested

3As otherwise the different powers can be absorbed into the channel gains.
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lattices satisfying

Λ ⊆ ΛK ⊆ · · · ⊆ Λ1. (8)

From these lattices, we construct K codebooks, one for each
user. Specifically, user k is allocated the codebook Lk =
Λθ(k)∩V , where V is the Voronoi region of Λ and the function
θ(k) : {1, . . . , K} → {1, . . . , K} maps between users and
lattices. The rate of each codebook Lk is

Rk =
1
n

log
∣∣Λθ(k) ∩ V

∣∣.

User k encodes its message into a lattice point from its
codebook, tk ∈ Lk. Each user also has a random4 dither vector
dk which is generated independently and uniformly over V .
These dithers are made available to the decoder. The signal
transmitted by user k is

xk = [tk − dk] mod Λ.

Remark 5: The nested lattice construction from [10]
employs Construction A. To create each fine lattice, this
procedure first embeds codewords drawn from a linear code
into the unit cube, and then applies the generator matrix for
the coarse lattice Λ. As shown in [10], this ensemble of nested
lattice codes can approach the capacity of a point-to-point
Gaussian channel. If the integers Z

n are selected as the coarse
lattice, the resulting nested lattice code is equivalent to a
linear code coupled with a pulse amplitude modulation (PAM)
constellation. Furthermore, the mod Λ operation simplifies to
the quantization error from rounding to the integers. It can be
shown that the cost of this simplification is only the shaping
gain, which corresponds to at most 1/2 log(2πe/12) � 0.255
bits per channel use [49].

C. Compute-and-Forward

Our objective is to communicate over the MAC using the
compute-and-forward scheme from [18]. See Figure 8 for an
illustration. To this end, the receiver first decodes a linearly
independent set of K integer linear combinations of the lattice
codewords. Afterwards, it solves this set of linear combina-
tions for the lattice codewords. Assume that the receiver is
interested in decoding the integer linear combination

v =

[
K∑

k=1

aktk

]
mod Λ

with coefficient vector a = [a1 · · · aK ]T ∈ Z
K . Following

the scheme of [18], the receiver scales the observation y by a
factor β, removes the dithers, and reduces modulo Λ to get

s =

[
βy +

K∑

k=1

akdk

]
mod Λ

=

[
K∑

k=1

akxk+
K∑

k=1

akdk+
K∑

k=1

(βhk−ak)xk+βz

]
mod Λ

= [v + zeff(h,a, β)] mod Λ, (9)

4It can be shown that these random dithers can be replaced with determin-
istic ones, meaning that no common randomness is required.

where

zeff(h, a, β) =
K∑

k=1

(βhk − ak)xk + βz (10)

is effective noise. From [18], we have that zeff(h,a, β) is
statistically independent of v and its effective variance, defined
as

σ2
eff(h, a, β) � 1

n
E‖zeff(h, a, β)‖2 (11)

is

σ2
eff(h, a, β) = ‖βh− a‖2 · SNR + β2. (12)

Let k∗ = mink:ak �=0 θ(k) be the index of the densest lattice
participating in the integer linear combination v. The receiver
produces an estimate for v by applying to s the lattice
quantizer associated with Λk∗ ,

v̂ = [QΛk∗ (s)] mod Λ. (13)

Let Vk∗ be the Voronoi region of Λk∗ , and note that the
probability of decoding error is upper bounded by the proba-
bility that the effective noise lies outside the Voronoi region
of Λk∗ ,

Pr (v̂ �= v) ≤ Pr (zeff(h, a, β) /∈ Vk∗) . (14)

The next theorem summarizes and reformulates relevant
results from Sections IV.C, IV.D, and V.A of [18].

Theorem 2: For any ε > 0 and n large enough there exists
a chain of n-dimensional nested lattices Λ ⊆ ΛK ⊆ · · · ⊆
Λ1 forming the set of codebooks L1, . . . ,LK having rates
R1, . . . , RK and satisfying the power constraint (5) such that:

(a) For all channel vectors h ∈ R
K and coefficient vectors

a ∈ Z
K , the average error probability in decoding the

integer linear combination v = [
∑K

k=1 aktk] mod Λ of
transmitted lattice points tk ∈ Lk can be made smaller
than ε so long as the message rates do not exceed the
computation rate,

Rk < Rcomp(h, a, β) � 1
2 log

(
SNR

σ2
eff(h,a,β)

)
, (15)

for all k such that ak �= 0 and some β ∈ R.
(b) The codebooks L1, . . . ,LK are isomorphic to some set

of linear codebooks C1, . . . , CK over the finite field Zp,
where p is a sufficiently large prime number.

(c) For the same p, the equation [p · t] mod Λ = 0 holds
∀t ∈ Λk, k = 1, . . . , K .

Corollary 1: Given K integer linear combinations V =
[v1 · · · vK ] with coefficient vectors A = [a1 · · · aK ]T ,
the lattice points t1, . . . , tK can be recovered if [A] mod p is
full rank over Zp.

Remark 6: By taking the blocklength n and field size p to
be large enough, it can be shown that, for a fixed channel
vector h and finite SNR, it suffices to check whether A is
full rank over the reals. See [18, Sec. VI] for an in-depth
discussion.

Remark 7: Note that it is also possible to map both the mes-
sages and the integer linear combinations into an appropriately
chosen finite field. That is, the messages can be written as vec-
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tors with elements that take values in a prime-sized finite field,
and the receiver ultimately recovers linear combinations of the
messages over the same finite field. See [18] for more details.

It follows from Theorem 2(a) that in order to maximize
the computation rate Rcomp(h,a, β) for a given coefficient
vector, one has to minimize σ2

eff(h,a, β) over β. It is seen
from (12) that the expression for σ2

eff(h,a, β) is equal to
the mean squared error (MSE) for linear estimation of X̃ =∑K

k=1 akXk from Y =
∑K

k=1 hkXk + Z where {Xk}K
k=1 are

i.i.d. random variables with zero mean and variance SNR and
Z is statistically independent of {Xk}K

k=1 with zero mean and
unit variance. Hence the minimizing value of β is the linear
minimum mean squared error (MMSE) estimation coefficient
of X̃ from Y . This value of β was found in [18, Th. 2] and
the resulting MSE is given by

σ2
eff(h,a) � min

β∈R

σ2
eff(h,a, β)

= SNR

(
‖a‖2 − SNR(hTa)2

1 + SNR‖h‖2

)

= SNR aT

(
IK×K − SNR hhT

1 + SNR‖h‖2

)
a

= aT
(
SNR−1IK×K + hhT

)−1
a (16)

=
∥∥∥
(
SNR−1IK×K + hhT

)−1/2
a
∥∥∥

2

, (17)

where (16) can be verified using Woodbury’s matrix identity
(i.e., the Matrix Inversion Lemma) [50, Th. 18.2.8]. Accord-
ingly, we define

Rcomp(h,a) � max
β∈R

Rcomp(h,a, β)

=
1
2

log
(

SNR

σ2
eff(h,a)

)
. (18)

In the sequel, we will require that the receiver decodes K
linearly independent integer linear combinations. However,
the specific values of the coefficient vectors for these linear
combinations are not important as long as they form a full-
rank set. Therefore, we are free to choose these coefficients
such as to maximize the corresponding computation rate.

Define the matrix

F �
(
SNR−1IK×K + hhT

)−1/2
, (19)

and the lattice Λ(F) = {ν = Fa : a ∈ Z
K}. Notice that

this K-dimensional lattice is induced by the channel matrix,
not the n-dimensional coding scheme. The effective variance
for the coefficient vector a is

σ2
eff(h,a) = ‖Fa‖2, (20)

and hence σ2
eff(h,a) is the length of the lattice vector cor-

responding to the integer-valued vector a. It follows that
the problem of finding the K linearly independent integer-
valued vectors that result in the highest computation rates
is equivalent to finding a set of shortest independent vectors
{ν1, . . . , νK} in the lattice Λ(F), and then taking the integer
coefficient vectors as am = F−1 · νm. The lengths of the
shortest linearly independent vectors in a lattice are called
successive minima, as defined next.

Definition 7 (Successive Minima): Let Λ(F) be a full-rank
lattice in R

K spanned by the matrix F ∈ R
K×K . For m =

1, . . . , K , we define the mth successive minimum as

λm(F) � inf
{
r : dim

(
span

(
Λ(F)

⋂
B(0, r)

))
≥ m

}

where B(0, r) =
{
x ∈ R

K : ‖x‖ ≤ r
}

is the closed ball of
radius r around 0. In words, the mth successive minimum of
a lattice is the minimal radius of a ball centered around 0 that
contains m linearly independent lattice points.

The following definition identifies the K linearly indepen-
dent coefficient vectors which yield the highest computation
rates.

Definition 8: Let F be the matrix defined in (19). We
say that an ordered set of integer coefficient vectors
{a1, . . . ,aK} with corresponding computation rates
Rcomp,m � Rcomp(h, am) is optimal if the K vectors
are linearly independent and ‖F am‖ = λm(F) for any
m = 1, . . . , K . Note, that such a set always exists by
definition of successive minima, and that it is not unique.
For example, if {a1, . . . ,aK} is an optimal set of coefficient
vectors, so is the set {−a1, . . . ,−aK}. Note also that the
optimal computation rates satisfy Rcomp,1 ≥ · · · ≥ Rcomp,K .

Remark 8: Several recent papers have proposed families
of constellations and codes that are well-suited for low-
complexity implementations of compute-and-forward [40],
[44], [51]–[55]. These codes could serve as building
blocks for a practical implementation of our alignment
scheme.

D. Numerical Evaluations

The optimal coefficient vectors and computation rates from
Definition 8 play an important role in the achievable rate
regions derived in this paper. The problem of determining
the optimal coefficient vectors is that of finding the set of
K linearly independent integer-valued vectors that minimizes
the effective noise (17). As discussed above, this problem
is equivalent to finding the shortest K linearly independent
lattice vectors in the lattice Λ(F) spanned by the matrix F
defined in (19).

It is shown in [18, Lemma 1] that only integer vectors
a ∈ Z

K that satisfy the condition

‖a‖2 < 1 + ‖h‖2SNR (21)

yield positive rates. Therefore, in our considerations it suffices
to enumerate all integer vectors (other than the zero vector)
that satisfy (21), and then exhaustively search over these
vectors in order to find the optimal set. At moderate values of
SNR this task is computationally reasonable. Nevertheless, it
is sometimes simpler to find a set of short linearly independent
lattice vectors in Λ(F), which is not necessarily optimal, in
order to obtain lower bounds on the set of optimal computation
rates. A simple low-complexity algorithm for computing a
short lattice basis (which forms a set of K linearly independent
lattice vectors) is the LLL algorithm [56].5 In producing the

5Pseudocode for the LLL algorithm can be found, e.g., in [57].
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Fig. 8. Compute-and-forward on a Gaussian multiple-access channel.
The transmitters send lattice points tk and the receiver decodes an integer
combination of them, modulo the coarse lattice Λ. The rate is determined by
how closely the equation coefficients ak match the channel coefficients hk .

figures for this paper we have employed the LLL algorithm,
meaning that the plotted achievable rates in Figure 7 are in
fact lower bounds on the rates given by Theorems 9 and 11.

We note that a similar procedure for finding the optimal
coefficient vectors was also described in [44], where the
optimal coefficient vectors are termed dominated solutions.

IV. MULTIPLE-ACCESS VIA COMPUTE-AND-FORWARD

This section introduces a new coding technique for reliable
communication over the K-user Gaussian multiple-access
channel. The basic idea is to first decode a linearly independent
set of K integer linear combinations of the transmitted code-
words, and then solve these for the transmitted messages. As
we will argue, under certain technical conditions, it is possible
to map the users’ rates to the computation rates in a one-to-
one fashion. We begin this section with a high-level overview
of the scheme, which is illustrated in Figures 9 and 10.

Each user k maps its message to a lattice point tk in its
codebook Lk and transmits a dithered version of it. The K
lattice codebooks utilized by the different users form a chain
of nested lattices as in (8). Assume for now that the users
are ordered with descending rates R1 ≥ R2 ≥ · · · ≥ RK , i.e.,
θ(k) = k for k = 1, . . . , K . The receiver, which sees
a noisy real-valued linear combination of the transmitted
codewords, begins by decoding the integer linear combination
v1 = [

∑
a1ktk] mod Λ that yields the highest computation

rate Rcomp,1. Using the compute-and-forward framework, this
is possible if R1 < Rcomp,1. Then, it proceeds to decode the
integer linear combination v2 = [

∑
a2ktk] mod Λ that yields

the second highest computation rate Rcomp,2. In general, t1

participates in this linear combination and the condition for
correct decoding of v2 is therefore R1 < Rcomp,2. Neverthe-
less, this condition can be relaxed using the linear combination
v1 that has already been decoded. Specifically, after scaling
of the channel output and removing the dithers, the receiver
has a noisy observation

s2 = [v2 + zeff(h,a2)] mod Λ

of the desired linear combination v2. If t1 participates in
v1, it is possible to cancel out t1 from the second linear
combination by adding a scaled version of v1 to s2. Namely,

the receiver adds r21v1 to s2, where r21 is an integer chosen
such that [(a21 + r21a11)] mod p = 0, which assures that
[(a21 + r21a11)t1] mod Λ = 0 for any t1 ∈ L1. After
reducing mod Λ, this yields

sSI
2 = [v2 + r21v1 + zeff(h, a2)] mod Λ

= [ṽ2 + zeff(h, a2)] mod Λ,

ṽ2 =

[
K∑

k=2

(a2k + r21a1k)tk

]
mod Λ.

Note that t1 does not participate in ṽ2. Since the effective
noise zeff(h, a2) is unchanged by this process, the receiver
can decode ṽ2 as long as R2 < Rcomp,2. Now, the receiver
can obtain v2 by subtracting r21v1 from ṽ2 and reducing
mod Λ.6 The receiver decodes the remaining linear combina-
tions in a similar manner, i.e., before decoding the mth linear
combination vm with computation rate Rcomp,m the receiver
adds to

sm = [vm + zeff(h, am)] mod Λ

an integer linear combination [
∑m−1

�=1 rm�v�] mod Λ of its
previously decoded linear combinations. The coefficients
rm1, . . . , rm,m−1 ∈ Z are chosen such that the effect
of t1, . . . , tm−1 is canceled out from vm. Assuming that
such coefficients exist, the receiver can decode ṽm =[
vm +

∑m−1
�=1 rm�v�

]
mod Λ as long as Rm < Rcomp,m.

Lemma 2, stated in Appendix A, establishes that for any set
of K linearly independent coefficient vectors {a1, . . . ,aK}
there indeed always exist integer-valued coefficients {rm�}
such that in the mth decoding step the receiver can cancel
out m − 1 lattice points from the desired linear combina-
tion vm, using the previously decoded linear combinations
{v1, . . . ,vm−1}. The procedure for finding these coefficients
is reminiscent of the Gaussian elimination procedure of a
full-rank matrix. One of the basic operations in Gaussian
elimination is row switching. In our considerations, this would
correspond to using a linear combination that has not been
decoded yet for eliminating lattice points from another linear
combination, which is clearly not possible. Therefore, a major
difference between our procedure for finding a good set of
coefficients {rij} and Gaussian elimination is that row switch-
ing is not permitted. This will sometimes constrain the order
in which we can cancel out users from linear combinations.
Nevertheless, there always exists at least one valid successive
cancellation order. In other words, we can always cancel out
the effect of m − 1 users from vm using the decoded linear
combination {v1, . . . ,vm−1}, but we cannot always control
which of the K users to cancel. As a result, there always
exists at least one permutation vector π such that all K linear
combination can be decoded as long as

Rπ(m) < Rcomp,m, m = 1, . . . , K. (22)

It follows that a sum-rate of
∑K

m=1 Rcomp,m is achievable

6The operation of extracting v2 from ṽ2 is in fact not necessary as
the receiver is only interested in decoding any linearly independent set of
K integer linear combinations. We describe this step only to simplify the
exposition of the scheme.
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Fig. 9. System diagram of the nested lattice encoding and decoding operations employed as part of the compute-and-forward transform. Each message
wk is mapped to a lattice codeword tk according to codebook Lk , dithered, and transmitted as xk . The multiple-access channel scales codeword k by hk

and outputs the sum plus Gaussian noise z. The decoder attempts to recover a linearly independent set of K integer linear combinations with coefficients
A = {amk}. For the figure, we have assumed that R1 ≥ R2 ≥ · · · ≥ RK and that Rm < Rcomp(h, am, βm). To decode the first linear combination
v1 = [

�
a1ktk] mod Λ, the receiver scales y by β1, removes the dithers, quantizes using QΛ1 , and takes mod Λ. For the second linear combination

v2 = [
�

a2ktk] mod Λ, the decoder scales by β2, removes the dithers, and then eliminates the lattice point t1 using its estimate of the first linear
combination v̂1 so that the rate of the remaining lattice points is at most R2. It then quantizes using QΛ2 , adds back in v̂1, and takes mod Λ. Decoding
proceeds in this fashion, using a form of successive interference cancellation to keep the rates of the lattice points below the computation rates. Afterwards,
the receiver solves for the original lattice points by multiplying by A−1

p , which is the inverse of A over Zp , and taking mod Λ. Finally, it maps these
estimates t̂k of the transmitted lattice points back to the corresponding messages.

Fig. 10. Effective MIMO channel induced by the compute-and-forward transform of a Gaussian multiple-access channel. The channel output y =
�

hkxk+z
is converted into a linearly independent set of K integer linear combinations vm = [

�
amktk] mod Λ plus effective noise zeff(h, am, βm) = βmz +�

(βmhk − amk)xk . As in Figure 9, these linear combinations can be decoded using a version of successive cancellation.

over the K-user MAC with our scheme, in which all users
employ nested lattice codebooks. As we shall see, this sum
rate is within a constant gap, smaller than K/2 log(K) bits,
from the sum capacity of the MAC, for all channel gains and
SNR.

A. The Compute-and-Forward Transform

We first introduce a transformation of a MAC to a multiple-
input multiple-output (MIMO) mod-Λ channel, where the
K × K channel matrix is integer-valued. This transforma-
tion, dubbed the compute-and-forward transform, will play an
important role in our decoding scheme for the interference
channel.

Definition 9: Let {a1, . . . ,aK} be a set of optimal integer
coefficient vectors (see Definition 8), β1, . . . , βK the cor-
responding optimal scaling factors, and Rcomp,1 ≥ · · · ≥
Rcomp,K the corresponding optimal computation rates. We
define the compute-and-forward transform of the MAC with

nested lattice codes as

S =

⎛

⎜⎝
s1

...
sK

⎞

⎟⎠ =

⎛

⎜⎜⎜⎝

[
β1y +

∑K
k=1 a1kdk

]
mod Λ

...[
βKy +

∑K
k=1 aKkdk

]
mod Λ

⎞

⎟⎟⎟⎠

=

⎡

⎢⎣A

⎛

⎜⎝
t1

...
tK

⎞

⎟⎠+ Zeff

⎤

⎥⎦ mod Λ, (23)

where we have written the channel output y, dithers dk, and
lattice codewords tk as length-n row vectors. We also denote
A = [a1 · · · aK ]T and Zeff = [zT

eff,1 · · · zT
eff,K ]T .

Remark 9: The transform is not unique as the set of
optimal integer coefficient vectors is not unique. Neverthe-
less, the set of optimal computation rates is unique. As
we shall see, the set of optimal computation rates dic-
tates the rates attained over the transformed channel. There-
fore, we use the term the compute-and-forward transform
of the channel, with the understanding that although there
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may be multiple options for the transform, they are all
equivalent.

The mth output sm of the transformed channel corresponds
to an integer linear combination plus effective noise. Due
to Theorem 2, each such linear combination can be reliably
decoded as long as all lattice points participating in it belong
to codes of rates smaller than Rcomp,m. We now lower bound
the sum of K optimal computation rates, and in the sequel we
show that this sum can be translated to a valid MAC sum rate.

Theorem 3: The sum of optimal computation rates is lower
bounded by

K∑

m=1

Rcomp,m ≥ 1
2

log
(
1 + ‖h‖2SNR

)
− K

2
log(K). (24)

The proof makes use of the following well-known theorem
due to Minkowski [58, Th. 1.5], that upper bounds the product
of successive minima.

Theorem 4 (Minkowski): For any lattice Λ(F) which is
spanned by a full-rank K × K matrix F

K∏

m=1

λ2
m(F) ≤ KK |det(F)|2. (25)

We are now ready to prove Theorem 3.
Proof of Theorem 3: Let Λ(F) be a lattice spanned by

the matrix F from (19), and let λ1(F), . . . , λK(F) be its
K successive minima. Let a1, . . . ,aK ∈ Z

K denote the
optimal coefficient vectors. By Definition 8 and (20) we have
‖F am‖ = λm(F) for m = 1, . . . , K . The sum of optimal
computation rates is

K∑

m=1

Rcomp,m =
K∑

m=1

Rcomp(h,am)

=
K∑

m=1

1
2

log
(

SNR

σ2
eff(h,am)

)

=
K

2
log (SNR) − 1

2
log

(
K∏

m=1

‖F am‖2

)

=
K

2
log (SNR) − 1

2
log

(
K∏

m=1

λ2
m(F)

)
.

Applying Theorem 4 to the product
∏K

m=1 λ2
m(F) yields

K∑

m=1

Rcomp,m≥ K

2
log(SNR)− 1

2
log
(
KK |det(F)|2

)
. (26)

Using Sylvester’s determinant identity (see e.g., [50])

det(IK×K + SNR hhT ) = det(1 + ‖h‖2SNR),

we have that

|det(F)|2 =
SNRK

1 + ‖h‖2SNR
. (27)

Substituting (27) into (26) proves the theorem.
Remark 10: It is possible to avoid the loss of the con-

stant factor K/2 log K in (24) using successive compute-and-

forward, as described in [59] and [60]. However, in this case
the operational interpretation of the sum of computation rates
becomes more involved than that described in the sequel.
See [60] for more details.

Next, we give an operational meaning to the K optimal
computation rates.

B. Multiple-Access Sum Capacity to Within a Constant Gap

We now show that the compute-and-forward transform
can be used for achieving several rate tuples within a con-
stant gap from the boundary of the capacity region of the
K-user MAC. To establish this result, we introduce a decod-
ing technique that we will refer to as algebraic successive
cancellation. Namely, each decoded linear combination will
be used to cancel out the effect of one user from the linear
combinations that have yet to be decoded. We first illustrate the
coding scheme by an example, and then formalize our result
in Theorem 5.

Example 1: Consider the two-user MAC

y =
√

5x1 + x2 + z,

at SNR = 15dB. It can be shown using (17) and (18) that the
compute-and-forward transform of this channel is

(
s1

s2

)
=
[(

2 1
3 1

)(
t1

t2

)
+
(

zeff,1

zeff,2

)]
mod Λ

with Rcomp,1 � 2.409 bits and Rcomp,2 � 1.372 bits. Note that
(Rcomp,1+Rcomp,2)/(1/2 log(1+‖h‖2SNR)) � 0.998. We use
a chain of three nested lattices Λ ⊆ Λ2 ⊆ Λ1 that satisfy the
conditions of Theorem 2 in order to construct the codebooks
L1 = Λ1 ∩ V with rate R1 arbitrarily close to Rcomp,1 for
user 1 and L2 = Λ2 ∩ V with rate R2 arbitrarily close to
Rcomp,2 for user 2.

From Theorem 2(a), we know that v1 = [2t1 + t2] mod Λ
can be decoded from s1 since R1 and R2 are smaller than
Rcomp,1. However, Theorem 2 does not guarantee that v2 =
[3t1 + t2] mod Λ can be decoded directly from s2 since the
first user employs a codebook with a rate R1 ≈ Rcomp,1

which is higher than the second computation rate Rcomp,2.
To circumvent this issue, we use the estimate v̂1 of the
linear combination v̂1 as side information in order to cancel
out the lattice point t1 ∈ Λ1 ∩ V from s2. Note that
Theorem 2(c) guarantees that [p · tk] mod Λ = 0, k = 1, 2
for some sufficiently large prime number p. Let 2−1 ∈ Z be
an integer that satisfies [2−1 · 2] mod p = 1. The receiver
computes

sSI
2 =

[
s2 − 3 · 2−1v̂1

]
mod Λ

(a)
=
[
(3 − 3 · 2−1 · 2)t1 + (1 − 3 · 2−1)t2 + zeff,2

]
mod Λ

(b)
=
[
[1 − 3 · 2−1] mod p · t2 + zeff,2

]
mod Λ

= [ã12 · t2 + zeff,2] mod Λ, (28)

where ã12 = [1 − 3·2−1] mod p. Step (a) in (28) follows from
the distributive law. Step (b) follows since 3−3·2−1·2 = M ·p
for some M ∈ Z. Thus,
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[
(3 − 3 · 2−1 · 2)t1

]
mod Λ = [M · p · t1] mod Λ

= [M · [p · t1] mod Λ] mod Λ
= 0,

where the last equality is justified by Theorem 2(c).
Now only t2 participates in the linear combination ṽ2 =

[ã12t2] mod Λ and, since R2 is smaller than Rcomp,2,
Theorem 2 guarantees that it can be decoded from sSI

2 . This is
accomplished by quantizing onto Λ2 and reducing modulo Λ,

ˆ̃v2 =
[
QΛ2(s

SI
2 )
]

mod Λ.

After decoding both linear combinations v1 and ṽ2 the
receiver can solve for the transmitted lattice points t1 and
t2, as the two linear combinations are full-rank over Zp. We
have therefore shown that the rate region R1 < Rcomp,1 and
R2 < Rcomp,2 is achievable. In a similar manner, we can
show that the rate region R1 < Rcomp,2 and R2 < Rcomp,1

is achievable with this scheme.
In order to formally characterize the achievable rate region,

we will need the following definition which identifies the
orders for which algebraic successive cancellation can be
performed.

Definition 10: For a full-rank K × K matrix A with
integer-valued entries we define the pseudo-triangularization
process, which transforms the matrix A to a matrix Ã
which is upper triangular up to column permutation
π = [π(1) π(2) · · · π(K)]. This is accomplished by left-
multiplying A by a lower triangular matrix L with unit
diagonal, such that Ã = LA is upper triangular up to column
permutation π. Although the matrix A is integer valued, the
matrices L and Ã need not necessarily be integer valued.
Note that the pseudo-triangularization process is reminiscent
of Gaussian elimination except that row switching and row
multiplication are prohibited. It is also closely connected to the
LU decomposition where only column pivoting is permitted.

Example 2: The 2 × 2 matrix

A =
(

2 1
3 1

)

from Example 1 can be pseudo-triangularized with two differ-
ent permutation vectors

Ã =
(

1 0
− 3

2 1

)
·A

=
(

2 1
0 − 1

2

)
, π = [1 2],

or

Ã =
(

1 0
−1 1

)
· A

=
(

2 1
1 0

)
, π = [2 1].

Remark 11: Any full-rank matrix can be triangularized
using the Gaussian elimination process, and therefore any
full-rank matrix can be pseudo-triangularized with at least
one permutation vector π. In particular, since for any MAC

the integer-valued matrix A from the compute-and-forward
transform is full-rank, it can always be pseudo-triangularized
with at least one permutation vector π. There are full-
rank matrices that can be pseudo-triangularized with several
different permutation vectors, such as A from Example 2.
However, there are also full-rank matrices A that can be
pseudo-triangularized with only one permutation vector π.
An example of such a matrix is the identity matrix IK×K .

The next theorem gives an achievable rate region for the
MAC under the compute-and-forward transform. The proof
is given in Appendix A and follows along the same lines as
Example 1.

Theorem 5: Consider the MAC (4). For any ε > 0 and n
large enough, there exists a chain of n-dimensional nested
lattices Λ ⊆ ΛK ⊆ · · · ⊆ Λ1 forming the set of code-
books L1, . . . ,LK with rates R1, . . . , RK such that for all
h ∈ R

K , if:

1) each user k encodes its message using the codebook Lk,
2) the integer-valued matrix from the compute-and-forward

transform of the MAC (4) can be pseudo-triangularized
with the permutation vector π, and the optimal computa-
tion rates are Rcomp,1 ≥ · · · ≥ Rcomp,K ,

3) all rates R1, . . . , RK satisfy

Rk < Rcomp,π−1(k), for k = 1, . . . , K (29)

where π−1 is the inverse permutation vector of π,

then all messages can be decoded with error probability
smaller than ε.

Combining Theorems 3 and 5 gives the following theorem.
Theorem 6: The sum rate achieved by the compute-and-

forward transform has a gap of no more than K/2 log K bits
from the sum capacity of the MAC.

Proof: Let Rcomp,1 ≥ · · · ≥ Rcomp,K be the optimal
computation rates in the compute-and-forward transform of
the MAC (4). The integer-valued matrix from the compute-
and-forward transform can be pseudo-triangularized with at
least one permutation vector π. By Theorem 5, the rate tuple

Rk = Rcomp,π−1(k) − δ, for k = 1, . . . , K (30)

is achievable for any δ > 0. For this rate tuple we have

K∑

k=1

Rk =
K∑

k=1

(
Rcomp,π−1(k) − δ

)

=
K∑

k=1

Rcomp,k − Kδ

≥ 1
2

log
(
1+‖h‖2SNR

)
−K

2
log(K)−Kδ, (31)

where (31) follows from Theorem 3. Since this is true for any
δ > 0, the result follows.

C. Effective Multiple-Access Channel

A channel that often arises in the context of lattice interfer-
ence alignment is a K-user Gaussian multiple-access channel
(MAC) with integer-valued ratios between some of the channel
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coefficients. Specifically, the output of such a channel can be
written as

y =
L∑

�=1

g�

(
∑

i∈K�

bixi

)
+ z, (32)

where K1, . . . ,KL are disjoint subsets of {1, . . . , K}. We
assume that the bi ∈ Z are non-zero integers, which opens
up the possibility of lattice alignment.

The channel (32) may describe the signal seen by a receiver
in an interference network, perhaps after appropriate precoding
at the transmitters. In such networks, each receiver is only
interested in the messages from some of the users while
the others act as interferers. Hence, it is beneficial to align
several interfering users into one effective interferer, by taking
advantage of the fact that the sum of lattice codewords is itself
a lattice codeword.

Definition 11 (Effective Users): For the MAC specified
by (32), we define L effective users

xeff,� �
∑

i∈K�

bixi, � = 1, . . . , L.

Definition 12 (Effective MAC): The K-user MAC (32)
induces the effective L-user MAC

y =
L∑

�=1

g�xeff,� + z, (33)

with the vector of effective channel coefficients g =
[g1 · · · gL]T ∈ R

L. The effective channel is further char-
acterized by the effective users’ weights

b2
eff,� �

∑

i∈K�

b2
i

for � = 1, . . . , L, and the effective (diagonal) weight matrix

B � diag(b2
eff,1, . . . , b

2
eff,L). (34)

Definition 13 (Effective Lattice Points): Let ti be the lat-
tice point transmitted by user i. We define the effective lattice
point corresponding to effective user � as

teff,� =

[
∑

i∈K�

biti

]
mod Λ.

Let θeff(�) = mini∈K�
θ(i) (where θ(·) is the mapping between

users and fine lattices defined in Section III) be the index of
the densest lattice contributing to teff,�. Since all lattices are
nested, it follows that teff,� ∈ Λθeff(�).

Example 3: (Symmetric K-User Interference Channel):
Consider the symmetric K-user interference channel (2).
The channel seen by the kth receiver is of the form
of (32) with g1 = 1, g2 = g, K1 = {k},
K2 = {1, . . . , K} \ k, and bi = 1 for i = 1, . . . , K . If each
of the K users transmits a single codeword drawn from a
common nested lattice code, the channel becomes an effective
two-user MAC,

yk = xeff,k1 + gxeff,k2 + zk,

where the effective users are xeff,k1 = xk and xeff,k2 =∑
i�=k xi, and the effective users’ weights are b2

eff,1 = 1 and

b2
eff,2 = K −1. The effective lattice points are teff,k1 = tk and

teff,k2 = [
∑

i�=k ti] mod Λ.
Our achievable schemes for the symmetric K-user interfer-

ence channel, developed in Section VI, are based on transform-
ing the K-user MAC seen by each receiver into an effective
MAC with less effective users. We will develop two schemes:
One transforms the channel into an effective two-user MAC
as in the example above. The other, which mimics the
Han-Kobayashi approach, transforms the channel into an effec-
tive three-user MAC.

When lattice interference alignment schemes are designed
properly, the message intended for the receiver is mapped into
a separate effective user, while multiple interfering users are
folded into a smaller number of effective users. In this case, it
suffices for the receiver to decode only the L effective lattice
points corresponding to the effective users, rather than the
K lattice points transmitted by all users. In our considerations,
the effective lattice points are recovered by first decoding L
integer linear combinations of the form

v =

[
L∑

�=1

a�

∑

i∈K�

biti

]
mod Λ

=

[
L∑

�=1

a�teff,�

]
mod Λ (35)

with linearly independent coefficient vectors, and then solving
for teff,1, . . . , teff,L.

As in Section III, in order to decode an integer linear
combination v, the receiver first scales its observation by a
factor β, removes the dithers, and reduces modulo Λ, which
yields

s =

[
βy +

L∑

�=1

a�

∑

i∈K�

bidi

]
mod Λ

=
[ L∑

l=1

a�xeff,� +
L∑

�=1

a�

∑

i∈K�

bidi

+
L∑

�=1

(βg� − a�)xeff,� + βz
]

mod Λ

= [v + zeff(g, a, β, {bi})] mod Λ, (36)

where

zeff(g, a, β, {bi}) = βy −
L∑

�=1

a�xeff,�

=
L∑

�=1

(βg� − a�)
∑

i∈K�

bixi + βz (37)

is effective noise which is statistically independent of v. Its
effective variance is

σ2
eff(g, a, β,B) = SNR

L∑

�=1

(βg� − a�)2b2
eff,� + β2, (38)

where B is defined in (34). Let �∗ = min�:a� �=0 θeff(�) be
the index of the densest lattice participating in the linear
combination v. Since all lattices are nested, then v ∈ Λ�∗ .
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The receiver produces an estimate for v by applying to s the
lattice quantizer associated with Λ�∗ ,

v̂ = [QΛ�∗ (s)] mod Λ. (39)

It follows from Theorem 2 that there exists a chain of K + 1
nested lattices which allows to decode v with a vanishing error
probability so long as

Ri < Rcomp(g,a, β,B) = 1
2 log

(
SNR

σ2
eff(g,a,β,B)

)
, (40)

for all i ∈
⋃

�:a� �=0 K�.
The expression for σ2

eff(g,a, β,B) is equal to the MSE
for linear estimation of X̃eff =

∑L
�=1 a�Xeff,� from Y =∑L

�=1 g�Xeff,� +Z where {Xeff,�}L
�=1 are statistically indepen-

dent random variables with zero mean and variances b2
eff,�SNR

respectively and Z is statistically independent of {Xeff,�}L
�=1

with zero mean and unit variance. Hence, the minimizing value
of β is the linear MMSE estimation coefficient of X̃ from Y .
A straightforward calculation shows that the minimizing value
of β is

β =
E(X̃effY )
Var(Y )

=
SNR gT Ba

1 + SNR gT Bg

and the MSE it achieves is

σ2
eff(g,a,B) � min

β∈R

σ2
eff(g,a, β,B)

= SNR aT

(
B− SNR BggTB

1 + SNR · gTBg

)
a (41)

= aT
(
SNR−1B−1 + ggT

)−1
a (42)

=
∥∥∥
(
SNR−1B−1 + ggT

)−1/2
a
∥∥∥

2

,

where again (42) can be verified using Woodbury’s matrix
identity [50, Th. 18.2.8]. Accordingly, we define

Rcomp(g,a,B) � 1
2

log
(

SNR

σ2
eff(g,a,B)

)
. (43)

As in Section III, we define the set of optimal L coeffi-
cient vectors for the equivalent channel (33) as the L lin-
early independent vectors {a1, . . . ,aL} that yield the highest
computation rates Rcomp,1 = Rcomp(g,a1,B) ≥ · · · ≥
Rcomp,L = Rcomp(g,aL,B) (see Definition 8). The
compute-and-forward transform of the effective L-user
MAC is

S =

⎛

⎜⎜⎜⎝

[
β1y +

∑L
�=1 a1�

∑
i∈K�

bidi

]
mod Λ

...[
βLy +

∑L
�=1 aL�

∑
i∈K�

bidi

]
mod Λ

⎞

⎟⎟⎟⎠

=

⎡

⎢⎣A

⎛

⎜⎝
teff,1

...
teff,L

⎞

⎟⎠+ Zeff

⎤

⎥⎦ mod Λ, (44)

where A = [a1 · · ·aL]T and Zeff = [zT
eff,1 · · · zT

eff,L]T .
The next two theorems are simple extensions of Theorems 3

and 5. Their proofs are given in Appendix B.

Theorem 7: The sum of optimal computation rates for the
effective L-user MAC (33) is lower bounded by

L∑

�=1

Rcomp,�≥
1
2

log

(
1+SNR

∑L
�=1 g2

� b2
eff,�

det(B)

)
−L

2
log(L).

Theorem 8: Consider the effective L-user MAC (33),
induced from the K-user MAC (32), characterized by the
effective channel vector g and the effective weight matrix B.
For any ε > 0 and n large enough there exists a chain of
n-dimensional nested lattices Λ ⊆ ΛL ⊆ · · · ⊆ Λ1 forming
the set of codebooks L1, . . . ,LL with rates R1, . . . , RL such
that for all g ∈ R

L and B, if:

1) each user i ∈ K� encodes its message using the codebook
L� or a codebook nested in L�,

2) the integer-valued matrix from the compute-and-forward
transform of the effective MAC (33) can be pseudo-
triangularized with the permutation vector π, and the
optimal computation rates are Rcomp,1 ≥ · · · ≥ Rcomp,L,

3) all rates R1, . . . , RL satisfy

R� < Rcomp,π−1(�), for � = 1, . . . , L (45)

where π−1 is the inverse permutation vector of π,

then all effective lattice points teff,� can be decoded with error
probability smaller than ε.

Corollary 2 (Achievable Symmetric Rate): Consider the
effective L-user MAC (33), induced from the K-user
MAC (32), characterized by channel coefficients g and
the effective weight matrix B. There exists a pair of
n-dimensional nested lattices Λ ⊆ Λ1 forming the codebook
L of rate R such that for all g ∈ R

L and B, if

1) all users encode their messages using L (or codebooks
nested in L),

2) The Lth optimal computation rate in the compute-and-
forward transform of (33) is Rcomp,L,

3) R < Rcomp,L,

then, for n large enough, all effective lattice points teff,� can
be decoded with an arbitrarily small error probability.

Remark 12: Corollary 2 is easily obtained from Theorem 8.
However, it can also be established without incorporating
the compute-and-forward transform machinery. Indeed, if all
users transmit from the same lattice codebook with rate
smaller than Rcomp,L, by Theorem 2, each of the L lin-
ear combinations with optimal coefficient vectors can be
decoded (without using algebraic successive decoding as in the
compute-and-forward transform approach). Then, the decoded
linear combinations can be solved for the effective lattice
points.

In Section VI, we introduce two achievable schemes for
the K-user Gaussian interference channel. One of them is a
simple transmission scheme where all users transmit from the
same nested lattice code. The result of Corollary 2 suffices
to establish the rates achieved by this scheme. In the second
achievable scheme, which mimics the Han-Kobabyshi scheme
for the two-user interference channel, each user transmits
a superposition of codewords taken from two nested lattice
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codebooks. In this case, Corollary 2 does not suffice and
Theorem 8, which uses the compute-and-forward transform
machinery, is needed.

In Section VI, we leverage these achievability results to
lower bound the capacity of the symmetric Gaussian K-user
interference channel.

V. SYMMETRIC CAPACITY UPPER BOUNDS

In this section, we state an upper bound on the sym-
metric capacity of the symmetric K-user Gaussian interfer-
ence channel. We follow the same arguments given in [47]
for showing that the symmetric capacity of the symmetric
K-user interference channel is upper bounded by that of the
symmetric two-user interference channel. Namely, eliminating
all but two users, say users 1 and 2, the symmetric capacity
is upper bounded by the results of [5]. This is simply because
removing interferers cannot decrease the symmetric rates for
users 1 and 2. Thus, the upper bounds from [5] hold for the
symmetric rates of user 1 and 2 in the K-user symmetric
interference channel. Repeating the same argument for each
pair of users we see that the upper bounds on CSYM developed
in [5] for K = 2 continue to hold for all K > 2 as well.
Therefore, the symmetric capacity of the symmetric K-user
Gaussian interference channel is upper bounded as [5]

CSYM ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2 log

(
1 + INR + SNR

1+INR

)
0 ≤ α < 2

3

1
4 log (1 + SNR)

+ 1
4 log

(
1 + SNR

1+INR

)
2
3 ≤ α < 1

1
4 log (1 + SNR+INR) 1 ≤ α < 2
1
2 log (1 + SNR) 2 ≤ α.

(46)

Since we are only after an approximate capacity characteriza-
tion, we further upper bound CSYM as

CSYM ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2 log

(
1 + SNR

1+INR

)
+ 1 0 ≤ α < 1

2

1
2 log+ (INR) + 1 1

2 ≤ α < 2
3

1
2 log+

(
SNR√
INR

)
+ 1 2

3 ≤ α < 1
1
4 log+ (INR) + 1 1 ≤ α < 2
1
2 log (1 + SNR) 2 ≤ α.

. (47)

for all values of SNR.

VI. ACHIEVABLE SCHEMES

This section introduces two simple achievable schemes for
reliable communication over the symmetric K-user interfer-
ence channel that are based on nested lattice codes. These
schemes are then shown to approximately achieve CSYM, the
symmetric capacity of the channel, for all channel gains g,
except for an outage set of bounded measure. This outage set
is explicitly characterized.

We begin by describing the two schemes and deriving their
achievable symmetric rates. These rates are given in terms
of the optimal computation rates corresponding to a certain
effective multiple access channel, i.e., the rates are given
as a solution to an optimization problem. This optimization
problem, which amounts to finding the optimal coefficient

Fig. 11. Illustration of the single-layer lattice scheme. Each transmitter
sends a codeword drawn from a common lattice. Each receiver decodes two
equations of the codewords, which it can then solve for its desired message.

vectors, can be efficiently solved numerically, as described
in Section III-D. Figure 7 shows our achievable rates for the
three-user symmetric interference channel as a function of the
interference level g, for several values of SNR. It is evident
that the obtained rates significantly improve over time-sharing
even for moderate values of SNR.

In order to establish the approximate optimality of these
schemes, we derive explicit lower bounds on the rates they
achieve which depend only on the SNR and INR. As in the
two-user case, the symmetric capacity exhibits a different
behavior for different regimes of interference strength, char-
acterized by the parameter α.

We now present the two achievable schemes. The first
achieves the approximate symmetric capacity in the noisy,
strong, and very strong interference regimes, while the second
achieves the approximate symmetric capacity in the weak and
moderately weak interference regimes.

First scheme - A single-layer lattice code: A pair of nested
lattices Λ ⊆ Λ1 is utilized to construct the codebook L =
Λ1 ∩ Λ of rate RSYM. All users encode their messages using
this codebook. Since all interferers arrive at the kth receiver
with the same gain, they will be aligned into one effective
lattice point. Thus, the K-user MAC seen by the kth receiver
becomes an effective two-user MAC of the form defined in
Section IV-C (see Example 3)

yk = xeff,k1 + gxeff,k2 + zk, (48)

where xeff,k1 = xk , xeff,k2 =
∑

i�=k xi are the effective users,
b2

eff,1 = 1, b2
eff,2 = K − 1 are the effective users’ weights and

g = [1 g]T is the vector of channel gains.
The next theorem gives an achievable rate region for the

K-user interference channel when each receiver jointly
decodes both the effective user xeff,k1 which carries the
desired information, and the effective user xeff,k2 which
carries the sum of interfering codewords. The theorem
relies on decoding two independent linear combinations of
the effective lattice points. See Figure 11 for an illustra-
tion. This is in contrast to the successive decoding tech-
nique used in [20], where first the interference is decoded
and removed, and only then the desired lattice point is
decoded.



3466 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014

Fig. 12. Illustration of the lattice Han-Kobayashi scheme. Each transmitter sends a public (blue) and a private (red) lattice codeword. Each receiver decodes
three linear combinations of the public codewords as well as its desired private codeword while treating the other private codewords as noise. From these
linear combinations, the receivers can infer their desired public and private messages.

Theorem 9: Let Rcomp,1 ≥ Rcomp,2 be the optimal com-
putation rates for the effective MAC (48) induced by the
symmetric K-user interference channel (2). Any symmetric
rate RSYM < Rcomp,2 is achievable for the symmetric K-user
interference channel (2).

Proof: Corollary 2 implies that for any symmetric rate
RSYM < Rcomp,2 there exists a pair of nested lattices Λ ⊆ Λ1

such that both effective lattice points can be decoded at each
receiver. Since the first effective user xeff,k1 carries all the
desired information for the kth receiver, it follows that any
RSYM < Rcomp,2 is achievable.

The next theorem gives an achievable rate region for the
K-user interference channel when each receiver decodes only
its desired codeword, while treating all other interfering code-
words as noise. This theorem can be trivially proved using
i.i.d. Gaussian codebooks. Nevertheless, we prove the theorem
using nested lattice codebooks for completeness.

Theorem 10: Any symmetric rate satisfying

RSYM <
1
2

log
(

1 +
SNR

1 + (K − 1)g2SNR

)

is achievable for the symmetric K-user interference chan-
nel (2).

Proof: Decoding xk at the kth receiver of the symmetric
K-user interference channel (2), while treating all other users
as noise, is equivalent to decoding the linear combination
with coefficient vector a = [1 0]T in the effective two-user
MAC (48). Therefore, any symmetric rate satisfying RSYM <
Rcomp(g, [1 0]T ,B) is achievable. The effective noise variance
for decoding this linear combination is found using (41) to be

σ2
eff(g, [1 0]T ,B) = SNR

(
1 +

SNR

1 + (K − 1)g2SNR

)−1

,

which, using (43), implies that

Rcomp(g, [1 0]T ,B) =
1
2

log
(

1 +
SNR

1 + (K − 1)g2SNR

)
.

For the two-user case, it is known that in the weak and
moderately weak interference regimes each receiver should
decode only part of the message transmitted by the other

user [5]. A natural extension of this Han-Kobayashi [15]
approach to the K-user case is for each receiver to decode
linear combinations that only include parts of the interfering
messages. This is enabled by using a superposition of two
lattice codewords at each transmitter, as we describe next. See
Figure 12 for an illustration.

Second scheme - Lattice Han-Kobayashi: This scheme
employs a chain of nested lattices Λ ⊆ Λ2 ⊆ Λ1 to construct
two codebooks L1 and L2 with rates R1 and R2, respectively.
Each user k splits its message wk into two messages, a
public message wk1 that is mapped into a codeword xk1 from
L1 and a private message wk2 that is mapped into a codeword
xk2 from L2. It is convenient to treat each user k as two virtual
users with codewords xk1 and xk2 that carry messages wk1

and wk2, respectively. User k transmits a superposition of its
virtual users’ codewords,

xk =
√

1 − γ2xk1 + γxk2,

for γ ∈ [0, 1). The signal seen by the kth receiver is

yk =
√

1 − γ2xk1 + γxk2

+g
√

1 − γ2
∑

i�=k

xi1 + gγ
∑

i�=k

xi2 + zk, (49)

which induces the effective four-user MAC

yk =
√

1 − γ2xeff,k1 + γxeff,k2

+g
√

1 − γ2xeff,k3 + gγxeff,k4 + zk, (50)

with effective users xeff,k1 = xk1, xeff,k2 = xk2, xeff,k3 =∑
i�=k xi1 and xeff,k4 =

∑
i�=k xi2. The effective users’

weights are b2
eff,1 = 1, b2

eff,2 = 1, b2
eff,3 = K − 1 and

b2
eff,4 = K − 1, and

g =
[√

1 − γ2 γ g
√

1 − γ2 gγ
]T

is the vector of effective channel gains.
The receiver aims to decode the effective codewords xeff,k1,

xeff,k2 and xeff,k3 while treating the fourth effective codeword
xeff,k4 as noise. The next lemma will be useful for the
derivation of rates achieved by this scheme. Its proof is given
in Appendix C.
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Lemma 1: Consider the effective L-user MAC (33), where
the decoder is only interested in the first L−1 effective lattice
points teff,1, . . . , teff,L−1 and let κ = 1/

√
1 + SNRg2

Lb2
eff,L.

Any rate tuple achievable for decoding teff,1, . . . , teff,L−1 over
the effective (L − 1)-user MAC

L−1∑

�=1

κg�xeff,� + z (51)

is also achievable for decoding the desired L−1 lattice points
over (33).

The next theorem gives the achievable rate region for the
lattice Han-Kobayashi scheme.

Theorem 11: Let κ(γ) = 1/
√

1 + SNRg2γ2(K − 1) and
consider the effective MAC

yk = κ(γ)
√

1 − γ2xeff,k1 + κ(γ)γxeff,k2

+κ(γ)g
√

1 − γ2xeff,k3 + zk, (52)

with effective channel vector

g =
[
κ(γ)

√
1 − γ2 κ(γ)γ κ(γ)g

√
1 − γ2

]T
,

and effective users’ weights b2
eff,1 = 1, b2

eff,2 = 1, and
b2

eff,3 = K − 1. Let {a1(γ),a2(γ),a3(γ)} and Rcomp,1(γ) ≥
Rcomp,2(γ) ≥ Rcomp,3(γ) be the optimal coefficient vectors and
computation rates, respectively. Any symmetric rate satisfying

RSYM < max
γ∈[0,1)

Rcomp,2(γ) + Rcomp,3(γ)

is achievable for the symmetric K-user interference chan-
nel (2).

Proof: The receiver is only interested in the effective
lattice points teff,k1, teff,k2. Nevertheless, we require that it
decodes the three effective lattice points teff,k1, teff,k2 and
teff,k3. Due to Lemma 1, any rate tuple that is achievable
over the effective channel (52) is also achievable for decoding
teff,k1, teff,k2 and teff,k3 from the original effective chan-
nel (50) induced by the lattice Han-Kobayashi scheme.

Note that teff,k1 and teff,k3 are points from the same
codebook L1 with rate R1, and teff,k2 is a codeword from
L2 with rate R2.

Consider a compute-and-forward transform coefficient
matrix A(γ) = [a1(γ) a2(γ) a3(γ)]T for (52). For
any full-rank matrix there exists at least one order of
pseudo-triangularization. Therefore, there exists a pseudo-
triangularization of A(γ) with at least one permutation
vector π.

Consider first the case where π(3) = 2, i.e., the effective
lattice point teff,2 is the last to be removed in the algebraic
successive cancellation decoding procedure of the compute-
and-forward transform. According to Theorem 8, for any R1 <
Rcomp,2(γ) and R2 < Rcomp,3(γ) there exists a chain Λ ⊆
Λ2 ⊆ Λ1 such that teff,k1, teff,k2 and teff,k3 can be decoded
from the effective channel (52) via the compute-and-forward
transform.

Otherwise, π(1) = 2 or π(2) = 2, which means that the
effective lattice point teff,2 is either removed first or second
from the proceeding linear combinations in the algebraic
successive cancellation decoding procedure of the compute-

and-forward transform. According to Theorem 8 for any
R1 < Rcomp,3(γ) and R2 < Rcomp,2(γ) there exists a chain
Λ ⊆ Λ2 ⊆ Λ1 such that teff,k1, teff,k2 and teff,k3 can be
decoded from the effective channel (52) via the compute-and-
forward transform.

Since RSYM = R1 + R2, and γ can be chosen such as to
maximize RSYM, the theorem is proved.

The problem of optimizing the power allocation γ between
the private and public codewords, played a major role in the
approximation of the two-user interference channel capac-
ity [5]. Here, we follow the approach of [5] and choose γ
such that, at each unintended receiver, the received power of
each private codeword is equal to that of the additive noise.
Specifically, in the sequel we set γ2 = 1/(g2SNR). While
this choice of γ may be sub-optimal, it suffices to develop
our capacity approximations in closed form. The achievable
symmetric rate for γ2 = 1/(g2SNR) is given in the following
corollary to Theorem 11.

Corollary 3: Assume g2SNR > 1 and consider the effective
MAC

yk =

√
g2SNR − 1
K · g2SNR

xeff,k1 +
√

1
K · g2SNR

xeff,k2

+g

√
g2SNR − 1
K · g2SNR

xeff,k3 + zk, (53)

with effective channel vector

g =

[√
g2SNR−1
K ·g2SNR

√
1

K ·g2SNR
g

√
g2SNR−1
K ·g2SNR

]T

, (54)

and effective users’ weights b2
eff,1 = 1, b2

eff,2 = 1, and b2
eff,3 =

K − 1. Let {aHK
1 , aHK

2 , aHK
3 } and RHK

comp,1 ≥ RHK
comp,2 ≥ RHK

comp,3

be the optimal coefficient vectors and computation rates for
this effective MAC. Any symmetric rate

RSYM < RHK
comp,2 + RHK

comp,3

is achievable for the symmetric K-user interference
channel (2).

Computing the achievable rates given by Theorem 9 and
Corollary 3 requires finding the optimal computation rates for
the effective MACs (48) and (53), which involves solving an
integer least-squares optimization problem (see Section III-D).
In the remainder of this section, we derive lower bounds on
these achievable rates that depend only on the values of SNR
and INR and can therefore be directly compared to the upper
bounds (47). To simplify the exposition, we assume g > 0 in
the sequel, although all results easily follow for g < 0 as well.

A. Very Strong Interference Regime

The very strong interference regime corresponds to
g2 ≥ SNR. The sum capacity for

g2 ≥ (SNR + 1)2

SNR
, (55)

which covers almost all of this regime was characterized
exactly by Sridharan et al. [20] using a lattice encoding scheme
very similar to the one used in Theorem 9. The key difference
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σ2
eff(g, [0 1]T ,B) = SNR ·

[
0 1
]

⎛

⎜⎜⎝

[
1 0
0 K − 1

]
−

SNR

[
1 0
0 K − 1

] [
1
g

] [
1 g
] [ 1 0

0 K − 1

]

1 + SNR
[
1 g
] [ 1 0

0 K − 1

] [
1
g

]

⎞

⎟⎟⎠

[
0
1

]

= SNR · (K − 1)(1 + SNR)
1 + SNR + (K − 1)g2SNR

(57)

is that in [20] each receiver decodes successively: it first
decodes the sum of interfering codewords and then subtracts
it in order to get a clean view of the desired signal. Recall that
in our scheme, each receiver decodes two linear combinations
of its signal and the interference.

A slight modification of the scheme given in [20] suffices
to achieve the interference-free capacity to within a (small)
constant gap for all g2 > SNR.7 Nevertheless, rather than
using the results of [20], we now proceed to lower bound the
achievable rate of Theorem 9 for the case α ≥ 2, i.e., g2 ≥
SNR. We do this in order to show that our lattice encoding
and decoding framework suffices to achieve the approximate
capacity in all regimes.

Using the single-layer scheme presented above, the channel
seen by each receiver is converted to an effective two-user
MAC (48). Let Rcomp,1 ≥ Rcomp,2 be the optimal computation
rates for this effective channel. Theorem 9 implies that any
RSYM < Rcomp,2 is achievable, and hence, it suffices to lower
bound Rcomp,2. We have

Rcomp,2 = Rcomp,1 + Rcomp,2 − Rcomp,1.

Applying Theorem 7 to the effective MAC (48), we find that
the sum of the optimal computation rates is lower bounded by

Rcomp,1+Rcomp,2≥
1
2

log
(

1 + SNR(1+g2(K−1))
K−1

)
−1.

Therefore

Rcomp,2 ≥ 1
2

log
(

1+SNR(1+g2(K−1))
K−1

)
−1−Rcomp,1,

(56)

and it suffices to upper bound Rcomp,1.
Let Rcomp(g, [0 1]T ,B) be the computation rate for decod-

ing the linear combination with coefficient vector a = [0 1]T

over the effective MAC (48) with g = [1 g]T and B =
diag(1, K − 1). The effective noise variance for the coef-
ficient vector a = [0 1]T , which is calculated using (41),
is given in (57), shown at the top of the page. Substituting
σ2

eff(g, [0 1]T ,B) into (40) gives

Rcomp(g, [0 1]T ,B) = 1
2 log

(
1+SNR(1+g2(K−1))

(K−1)(1+SNR)

)
. (58)

The coefficient vector a = [0 1]T either gives the high-
est computation rate or not. If it does, i.e., if Rcomp,1 =

7Namely, if SNR ≤ g2 < SNR + 2 + 1/SNR all transmitters can
reduce their transmission power by a small factor such that the very strong
interference condition from [20] is satisfied. This power reduction results in
a constant rate-loss.

Rcomp(g, [0 1]T ,B), substituting (58) into (56) gives

Rcomp,2 ≥ 1
2

log(1 + SNR) − 1. (59)

It follows from (18) and (20) that [0 1]T yields the
highest computation rate among all integer coefficient vec-
tors that are linearly dependent with it. Thus, if Rcomp,1 �=
Rcomp(g, [0 1]T ,B), any coefficient vector that attains Rcomp,1

must be linearly independent of [0 1]T . It follows that

Rcomp,2 ≥ Rcomp(g, [0 1]T ,B)

>
1
2

log
(

g2 SNR

1 + SNR

)
. (60)

Taking the minimum of the two bounds (59) and (60), and
using the fact that g2 ≥ SNR we obtain

Rcomp,2 ≥ min
(

1
2

log(1+SNR)−1,
1
2

log
(

SNR2

1 + SNR

))+

≥ 1
2

log(1+SNR)−1.

Thus, in the very strong regime, any symmetric rate satisfying

RSYM <
1
2

log(1 + SNR) − 1 (61)

is achievable, which is within 1 bit of the outer bound (47).

B. Strong Interference Regime

The strong interference regime corresponds to 1 ≤ α < 2,
or equivalently 1 ≤ g2 < SNR. As in the previous subsection,
we lower bound Rcomp,2 in order to obtain a closed-form
expression for the achievable symmetric rate. In contrast to
the very strong interference regime, where the lower bound
on Rcomp,2 is valid for any g2 ≥ SNR, here we must exclude
certain channel gains in order to get a constant gap from the
outer bound (47). That is, the lower bounds we derive for
the strong interference regime are only valid for a predefined
subset of the interval g2 ∈ [1, SNR). As we increase the
measure of this subset, our approximation gap worsens. This
somewhat strange behavior is to be expected from the existing
literature. The results of [8] and [21] show that for the K-user
interference channel the DoF are discontinuous at the rationals.
The notion of DoF corresponds to α ≈ 1. Since the strong
interference regime contains values of α near 1, we cannot
expect to achieve rates which are a constant gap from the
upper bounds of [5] for all values of g. Instead, we show that
these upper bounds can be approached up to a constant gap for
all 1 ≤ g2 < SNR except for some outage set whose measure
can be controlled at the price of increasing the gap. We will



ORDENTLICH et al.: THE APPROXIMATE SUM CAPACITY OF THE SYMMETRIC GAUSSIAN K-USER INTERFERENCE CHANNEL 3469

see a similar phenomenon when we analyze the moderately
weak interference regime.

From (56), we have

Rcomp,2 ≥ 1
2

log
(

1 + SNR(1 + g2(K − 1))
K − 1

)
− 1 − Rcomp,1

>
1
2

log
(
g2SNR

)
− 1 − Rcomp,1 (62)

The optimal computation rate for the effective MAC (48) can
be written, by substituting g = [1 g]T and B = diag(1, K−1)
into (38), as

Rcomp,1 =
1
2

log(SNR) − 1
2

log(σ2
g) (63)

σ2
g = min

β,a1,a2

(
(β−a1)2SNR+(βg−a2)2(K−1)SNR+β2

)

where σ2
g is the effective noise variance and the minimization

is over β ∈ R, and a = [a1 a2]T ∈ Z
2 \ 0. Substituting (63)

into (62) and applying Theorem 9, we see that any symmetric
rate satisfying

RSYM <
1
2

log
(
g2
)

+
1
2

log
(
σ2

g

)
− 1, (64)

is achievable over the K-user interference channel. Thus, in
order to obtain a lower bound on CSYM it suffices to lower
bound σ2

g .
Remark 13: It may at first seem counterintuitive that the

symmetric rate expression in (64) is an increasing function
of the effective noise variance σ2

g for the highest computation
rate Rcomp,1. However, as discussed in Section I-A, when σ2

g is
small, the desired signal and the interference are aligned. From
another perspective, if the channel vector g is very close to the
integer vector a (after scaling by β), then it must be far from
the integer coefficient vector that determines Rcomp,2, which in
turn determines RSYM. Thus, the best performance is attained
when the channel vector is hard to approximate with an
integer vector. Building on this idea, the lower bound derived
below connects our problem to a Diophantine approximation
problem8 and characterizes the outage set in terms of channel
gains that are well-approximated by rationals.

The effective noise σ2
g can be bounded as

σ2
g ≥ min

β,a1,a2

((
(β − a1)2 + (βg − a2)2

)
SNR + β2

)
. (65)

We first hold β constant and minimize over a1, a2. If |β| ≥
1/(2g), the optimal choices for the integers a1, a2 are

a1 = �β�, a2 = �βg�. (66)

If |β| < 1/(2g), rounding the gains will set both a1 and
a2 to zero, which is not allowed. Since g ≥ 1, the optimal
choice is

a1 = 0, a2 = sign(β). (67)

Now, we are left with the problem of minimizing (65) over β.
Rather than explicitly solving this minimization problem, we
give a lower bound on its solution. We do this by splitting

8Diophantine approximation refers to the branch of number theory that
studies how well real numbers can be approximated by rational numbers.

the real line into three intervals, and lower bounding σ2
g for

all values of β within each one. Then, we take the minimum
over these three bounds.

Interval 1: 0 < |β| ≤ 1/(2g)
In this interval it is optimal to set a2 = sign(β). Moreover,

|βg| ≤ 1/2, and therefore |βg − a2| > 1/2. Combining this
with (65) gives

σ2
g ≥ SNR

4
. (68)

Interval 2: 1/(2g) < |β| ≤ 1/2
Here, it is optimal to set a1 = �β� = 0. Substituting a1 = 0

in (65) gives

σ2
g ≥ β2SNR >

SNR

4g2
>

SNR1/2

4
√

g2
, (69)

where the last inequality follows since g2 < SNR in the strong
interference regime.

Interval 3: 1/2 < |β|
Since |β| > 1/2, we can write β = q + ϕ where q is a

nonzero integer and ϕ ∈ [−1/2, 1/2). Substituting into (65),
we get

σ2
g ≥ min

ϕ,q,a1,a2

(
(ϕ + q − a1)2SNR

+(qg − a2 + ϕg)2SNR + (ϕ + q)2
)

≥ min
ϕ,q,a2

((
ϕ2 + (qg − a2 + ϕg)2

)
SNR +

q2

4

)
. (70)

The minimization of (70) with respect to ϕ (where the
constraint ϕ ∈ [−1/2, 1/2) is ignored) can be obtained by
differentiation. The minimizing value of ϕ is

ϕ∗ = − g

1 + g2
(qg − a2).

Substituting ϕ∗ into (70) gives

σ2
g ≥ min

q,a2

(
1

1 + g2
(qg − a2)2SNR +

q2

4

)
, (71)

which, using the fact that g2 ≥ 1, can be further bounded by

σ2
g ≥ 1

4
min
q,a2

max
(

1
g2

(qg − a2)2SNR, q2

)
. (72)

We would like to obtain a lower bound on σ2
g that is valid for

all g /∈ S, where S is an outage set with bounded measure.
Consider first the interval [b, b + 1) for some integer 1 ≤ b <√

SNR. Define

qmax,b � 1√
b + 1/2

SNR1/4−δ/2, (73)

for some δ > 0 to be specified later, and note that qmax,b is
not necessarily an integer. Also, define

Φb �
√

b + 1/2 SNR−1/4−δ/2 (74)

and let Sb be the set of all values of g ∈ [b, b + 1) such that
the inequality

|qg − a2| < Φb (75)
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has at least one solution with integers q and a2, where q is in
the range 0 < q ≤ qmax,b. Let S̄b = [b, b+1)\Sb. By (72), (73),
and (74), we have that for all g ∈ S̄b

σ2
g ≥ 1

4
min

(
min

0<q≤	qmax,b
,a2

max
(

1
g2

(qg − a2)2SNR, q2

)
,

min
�qmax,b�≤q,a2

max
(

1
g2

(qg − a2)2SNR, q2

))

≥ 1
4

min
(

1
g2

Φ2
bSNR, q2

max,b

)

=
1
4

min
(

b + 1/2
g2

SNR1/2−δ,
1

b + 1/2
SNR1/2−δ

)
. (76)

Since b ≥ 1, we have that

g

2
< b +

1
2

< 2g.

Thus, (76) can be further bounded by

σ2
g ≥ 1

8|g|SNR1/2−δ. (77)

We now turn to upper bound the Lebesgue measure of the
set Sb. Our derivation is quite similar to the proof of the
convergent part of Khinchine’s Theorem [61]. Let I = [−1, 1)
and define the set

Tb(q)=
[{

b, b+
1
q
, . . . , b+

q − 1
q

}
+

Φb

q
I
]

mod [b, b+1),

where the sum of the two sets is a Minkowski sum. Writing
the Diophantine approximation problem (75) as

∣∣∣∣g − a2

q

∣∣∣∣ <
Φb

q
, (78)

we see that for a given q and g ∈ [b, b + 1) the inequality
admits a solution if and only if g ∈ Tb(q). It follows that

Sb =
	qmax,b
⋃

q=1

Tb(q). (79)

See Figure 13 for an illustration of the sets Tb(q) and Sb. Thus,
the Lebesgue measure of Sb can be upper bounded by

μ(Sb) = Vol (Sb)

≤
	qmax,b
∑

q=1

Vol (Tb(q))

≤
	qmax,b
∑

q=1

q · 2Φb

q

≤ 2qmax,bΦb

= 2SNR−δ. (80)

Setting δ = (c + 1)/ log(SNR) and substituting into (77)
and (80) gives

σ2
g ≥ 2−c

16
√

g2
SNR1/2 (81)

for all g ∈ [b, b + 1) up to an outage set Sb of measure not
greater than 2−c.

Fig. 13. An illustration of the sets Tb(1), Tb(2), Tb(3) and their union Sb.
In this illustration, qmax,b = 3 and Φb = 1/16.

Combining the three bounds (68), (69), and (81) yields

σ2
g ≥ min

(
SNR

4
,

1

4
√

g2
SNR1/2,

2−c

16
√

g2
SNR1/2

)

≥ 2−c

16
√

g2
SNR1/2 (82)

for all g ∈ [b, b + 1) up to an outage set Sb with measure at
most 2−c.

Combining (64) and (82) we see that, for all g ∈ [b, b + 1)
up to an outage set Sb of measure not greater than 2−c, any
symmetric rate satisfying

RSYM <
1
4

log(g2SNR) − c

2
− 3

=
1
4

log(INR) − c

2
− 3 (83)

is achievable. We conclude that the symmetric rate (83) is
achievable for all channel gains in the strong interference
regime except for an outage set whose measure is a frac-
tion of 2−c of the interval 1 ≤ |g| <

√
SNR, for any

c > 0.
Remark 14: In the high SNR limit, the total DoF of the

symmetric K-user IC drops below K/2 when the channel
gain g is rational [8], [21]. At finite SNR, we observe that
the channel gains in the interval g ∈ [b, b + 1) that fall
within the outage set are the ones close to rational numbers
with denominator smaller than qmax,b. Since qmax,b scales as
SNR1/4/

√
|g|, only channel gains close to rational numbers

with denominator smaller than SNR1/4 may result in outage.
Moreover, the sensitivity of the achievable rate to the “ratio-
nality” of g decreases as g increases.

Remark 15: We note that for any c > 0 the set of channel
coefficients that fall in the outage set

S =
	√SNR
⋃

b=1

Sb,

can be easily determined by setting δ = (c + 1)/ log(SNR)
in (73), (74), and applying (79).
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C. Moderately Weak Interference Regime

The moderately weak interference regime is characterized
by 2/3 ≤ α < 1, or equivalently, SNR−1/3 ≤ g2 < 1. As
in the strong interference regime, we show the achievabil-
ity of symmetric rates which are a constant gap from the
upper bound for a certain fraction of the channel gains. As
opposed to the very strong and strong interference regimes,
where a single-layered lattice scheme suffices to achieve
the approximate capacity, here we will need the second
scheme, which employs two layers of lattice codes at each
transmitter.

We will set the power of the private lattice codewords
so that they are perceived at noise level at the unintended
receivers. Let g1, g2 and g3 be the channel gains in the
effective three-user MAC (53) from Corollary 3, and recall
that, for this effective channel, the effective weight matrix is
B = diag(1, 1, K − 1). Let RHK

comp,1 ≥ RHK
comp,2 ≥ RHK

comp,3

be the three optimal computation rates for the effective chan-
nel (53). Corollary 3 states that any symmetric rate satisfying
RSYM < RHK

comp,2 + RHK
comp,3 is achievable, and we now turn to

lower bounding this achievable rate in closed form. First, note
that

RHK
comp,2 + RHK

comp,3 =
3∑

m=1

RHK
comp,m − RHK

comp,1. (84)

By applying Theorem 7 to the effective channel (53), we
obtain the following lower bound on the sum of optimal
computation rates,

3∑

m=1

RHK
comp,m

≥ 1
2

log
(

1 + SNR(g2
1 + g2

2 + (K − 1)g2
3)

K − 1

)
− 3

2
log(3)

>
1
2

log
(
SNR(g2

1 + g2
2)
)
− 1

2
log
(
33(K − 1)

)

=
1
2

log (SNR) − 1
2

log (27K(K − 1)) , (85)

where we have used the fact that g2
1 + g2

2 = 1/K in the
last equality. The highest computation rate can be written
as

RHK
comp,1 = 1

2 log(SNR) − 1
2 log(σ2

HK) (86)

where σ2
HK is given in (87), shown at the bottom of the page.

The minimization in (87) is performed over all β ∈ R and
aHK

1 = [a1 a2 a3]T ∈ Z
3 \ 0. Combining (84), (86), and (87)

and applying Corollary 3, we see that any symmetric rate
satisfying

RSYM <
1
2

log(σ2
HK) − 1

2
log (27K(K − 1)) (88)

is achievable for the K-user interference channel. Therefore,
it suffices to lower bound the effective noise variance σ2

HK.

Substituting

β =

√
Kg2SNR

g2SNR − 1
β̃

in (87), which is allowed since β can take any value in R,
gives

σ2
HK = min

β̃,a1,a2,a3

(
β̃2 · Kg2SNR

g2SNR − 1
+ (β̃ − a1)2SNR

+

(
β̃√

g2SNR − 1
− a2

)2

SNR

+ (K−1)(β̃g−a3)2SNR

)
. (89)

In the sequel, we assume9 SNR > 4. With this assumption,√
g2SNR − 1 > 1 for all g2 ≥ SNR−1/3, i.e., for all

values of g in the moderately weak interference regime. We
will also use the fact that the inequality

√
g2SNR−1 > 1

continues to hold for all g2 ≥ SNR−1/2, i.e., for all
values of g in the weak interference regime. This implies
that g2SNR/(g2SNR − 1) > 1 and hence (89) can be lower
bounded as

σ2
HK ≥ min

β̃,a1,a2,a3

(
Kβ̃2 + (β̃ − a1)2SNR

+

(
β̃√

g2SNR − 1
− a2

)2

SNR

+ (K − 1)(β̃g − a3)2SNR

)
. (90)

We first hold β̃ constant, and minimize over a1, a2, a3.
If |β̃| ≥ 1/2, the optimal choices for the integers
a1, a2, a3 are

a1 = �β̃�, a2 =
⌊
β̃/
√

g2SNR − 1
⌉

, a3 = �β̃g�. (91)

If |β̃| < 1/2, all three integers a1, a2, a3 from (91) are zero,
which is not permitted. Therefore, for these values of β̃ one of
the integers must take the value 1 or −1. Since for SNR > 4
and SNR−1/2 ≤ g2 < 1 we have

max
(
|β̃|,
∣∣∣β̃/
√

g2SNR − 1
∣∣∣, |β̃g|

)
= |β̃|,

the optimal choices of a1, a2, a3 for values of |β̃| < 1/2 are

a1 = sign(β̃), a2 = 0, a3 = 0. (92)

Now, the problem of lower bounding σ2
HK reduces to min-

imizing (90) over β̃. Rather than solving this cumbersome

9This assumption is valid, since for SNR ≤ 4 the symmetric capacity is
upper bounded by 1/2 log(1+ 4) = 1.161bits. Our capacity approximations
in this subsection, and also in the next subsection, exhibit a constant gap
greater than 7/2 bits, and therefore hold for SNR < 4.

σ2
HK = min

β,aHK
1

⎛

⎝β2+

⎛

⎝
(

β

√
g2SNR−1
K · g2SNR

−a1

)2

+

(
β

√
1

K · g2SNR
−a2

)2

+(K−1)

(
βg

√
g2SNR−1
K · g2SNR

−a3

)2
⎞

⎠SNR

⎞

⎠ (87)
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minimization problem, we split the real line into four intervals,
and lower bound σ2

HK for all values of β̃ within each one.
Then, we take the minimum over these four lower bounds.
In a similar manner to the previous subsection, we define
δ = (2c + 8)/ log(SNR), where c > 0 is some constant. The
lower bounds below are derived in Appendix D-A.

Interval 1: 0 < |β̃| ≤ 1/2

σ2
HK ≥ SNR

4
. (93)

Interval 2: 1/2 < |β̃| ≤
√
|g|SNR1/4−δ/2/2 10

For all values of SNR−1/3 < |g| ≤ 1 except for an outage
set with measure not greater than 2−c we have

σ2
HK >

2−2c

4 · 28

SNR1/2

√
g2

. (94)

Interval 3:
√
|g|SNR1/4−δ/2/2 < |β̃| ≤ SNR1/4/

√
8|g|

σ2
HK ≥ 2−2c

4 · 28

SNR1/2

√
g2

. (95)

Interval 4: SNR1/4/
√

8|g| < |β̃|

σ2
HK ≥ 1

8
SNR1/2

√
g2

. (96)

Combining the four lower bounds (93), (94), (95), and (96),
we have

σ2
HK ≥ min

(
1
4
SNR,

2−2c

210

SNR1/2

√
g2

,
1
8

SNR1/2

√
g2

)

=
2−2c

210

SNR1/2

√
g2

for all SNR−1/3 ≤ g2 < 1 up to an outage set of measure not
greater than 2−c. Thus, substituting our lower bound for σ2

HK
into (88), we find that any symmetric rate satisfying

RSYM <
1
2

log

(
SNR1/2

√
g2

)
−c−5−1

2
log(27) − 1

2
log(K2)

is achievable over the symmetric K-user interference channel
for all SNR−1/3 ≤ g2 < 1 up to an outage set of measure not
greater than 2−c. Since

1
2

log

(
SNR1/2

√
g2

)
− c − 5 − 1

2
log(27) − 1

2
log(K2)

>
1
2

log

(
SNR1/2

√
g2

)
− c − 8 − log(K)

=
1
2

log
(

SNR√
INR

)
− c − 8 − log(K),

any symmetric rate satisfying

RSYM <
1
2

log
(

SNR√
INR

)
− c − 8 − log(K) (97)

is achievable.

10If
�

|g|SNR1/4−δ/2/2 < 1/2 this interval is empty, and we skip to
interval 3.

Remark 16: It follows from the derivation in
Appendix D-A that, as in the strong interference regime, the
channel gains that fall within the outage set are the ones close
to rational numbers with denominator smaller than SNR1/4.
Here, the sensitivity of the achievable rate to the “rationality”
of g increases as g approaches 1.

D. Weak Interference Regime

This regime is characterized by 1/2 ≤ α < 2/3, or equiva-
lently, SNR−1/2 ≤ g2 < SNR−1/3. As in the moderately weak
interference regime, we develop a closed-form lower bound on
the achievable symmetric rate of Corollary 3. A key difference
is that the bound derived here is valid for all channel gains,
rather than up to an outage set.

We first note that equations (88) and (90) continue to hold in
this regime as in the moderately weak interference regime, and
the optimal choices of a1, a2, a3 are also as in (91) and (92).
As before, we divide the real line into four intervals, give
lower bounds on σ2

HK which hold for all values of β̃ in each
one, and conclude that σ2

HK is lower bounded by the minimum
of these four bounds. The lower bounds below are derived in
Appendix D-B

Interval 1: 0 < |β̃| ≤ 1/2

σ2
HK ≥ SNR

4
. (98)

Interval 2: 1/2 < |β̃| ≤ 1/(2|g|)

σ2
HK ≥ g2SNR

4
. (99)

Interval 3: 1/(2|g|) < |β̃| ≤
√

g2SNR/8

σ2
HK ≥ 1

4g4
. (100)

Interval 4:
√

g2SNR/8 < |β̃|

σ2
HK >

g2SNR

4
. (101)

Combining the four lower bounds (98), (99), (100),
and (101), we have

σ2
HK ≥ 1

4
min

(
SNR, g2SNR, g−4

)

=
g2SNR

4
, (102)

where (102) is true since SNR−1/2 ≤ g2 < SNR−1/3. It
follows by substituting (102) into (88) that any symmetric rate
satisfying

RSYM <
1
2

log
(

g2SNR

4

)
− 1

2
log(27) − 1

2
log(K2)

is achievable for the symmetric K-user interference channel
with SNR−1/2 ≤ g2 < SNR−1/3. Since

1
2

log
(

g2SNR

4

)
− 1

2
log(27) − 1

2
log(K2)

>
1
2

log
(
g2SNR

)
− 7

2
− log(K)

=
1
2

log (INR) − 7
2
− log(K)
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any symmetric rate satisfying

RSYM <
1
2

log (INR) − 7
2
− log(K) (103)

is achievable.

E. Noisy Interference Regime

The noisy interference regime is characterized by α < 1/2,
or equivalently g2 < SNR−1/2. In this regime, each receiver
decodes its desired codeword while treating all interfering
codewords as noise. Lattice codes are not necessary in this
regime in order to approximate the symmetric capacity: ran-
dom i.i.d. Gaussian codebooks suffice. Nevertheless, the same
performance can be achieved with lattice codes as shown in
Theorem 10 which states that any symmetric rate

RSYM <
1
2

log
(

1 +
SNR

1 + (K − 1)g2SNR

)

is achievable. It follows that any symmetric rate satisfying

RSYM <
1
2

log
(

1 +
SNR

1 + g2SNR

)
− 1

2
log(K − 1)

=
1
2

log
(

1 +
SNR

1 + INR

)
− 1

2
log(K − 1) (104)

is achievable.

VII. DEGREES-OF-FREEDOM

In the previous section, we have shown that the compute-
and-forward transform can approximate the capacity of the
symmetric K-user interference channel up to a constant gap
for all channel gains outside a small outage set. Ideally, we
would like to use a similar approach to approximate the
capacity of the general (non-symmetric) interference channel.
In contrast to the symmetric case, where all interferers are
automatically aligned (if they all use the same lattice code-
book), in a general interference channel the interferers will be
observed through different channel gains. A linear combination
of lattice codewords is always a codeword only if all of the
coefficients are integers. Thus, in order to induce alignment,
all of the interfering gains should be steered towards integers,
which is an overconstrained problem.

The compute-and-forward transform proposed in this paper
is quite general, in that its performance can be evaluated for
any Gaussian interference network, and it can be combined
with precoding schemes that induce alignment. For instance,
consider the class of real interference alignment precoding
schemes that transform the channel seen by each receiver in
a non-symmetric interference channel to an effective MAC
where some of the interfering users are aligned. A remarkable
example of such a scheme is that of [8], which is used
to prove that the DoF offered by almost every Gaussian
K-user interference channel is K/2. To date, essentially all
real interference alignment schemes utilized a scalar lat-
tice constellation (e.g., p-ary pulse amplitude modulation),
concatenated with a random i.i.d. outer code. Potentially,
replacing this construction with AWGN capacity achieving
n-dimensional lattice codes can improve the performance of

such schemes and may eventually lead to achievable rate
regions that outperform TDMA at reasonable values of SNR.
Here, we take a first step and verify that the compute-and-
forward transform can attain the same high SNR asymptotics.

Specifically, we show that for almost every K-user MAC,
each user can achieve 1/K DoF using the compute-and-
forward transform. In [8], it is shown that the same is true
using a scalar lattice concatenated with a random i.i.d. outer
code and maximum likelihood decoding. This result is then
used as a building block for the interference alignment scheme.
Since real interference alignment schemes often induce
effective multiple-access channels whose coefficients are
dependent [8], our analysis assumes that the channel coeffi-
cients belong to a manifold, and our results apply for a set of
full Lebesgue measure with respect to the considered manifold.

Theorem 3 in Section IV guarantees that the sum of the
optimal computation rates is close to the sum capacity of the
MAC. However, the theorem does not tell us how the sum rate
is divided between the K rates. We now show that, in a DoF
sense, the sum is equally split between all K rates for almost
every channel realization. Recall the definition for DoF:

dcomp,k = lim
SNR→∞

Rcomp,k(SNR)
1
2 log(1 + SNR)

. (105)

First, we upper bound dcomp,1, the DoF provided by the highest
computation rate.

Theorem 12: Let f1, . . . , fK be functions from R
m to R

satisfying

1) fk for k = 1, . . . , K is analytic in R
m,

2) 1, f1, . . . , fK are linearly independent over R,

and define the manifold

M =
{[

f1(h̃) · · · fK(h̃)
]

: h̃ ∈ R
m
}

. (106)

For almost every h ∈ M, the DoF offered by the highest
computation rate is upper bounded by

dcomp,1 ≤ 1
K

. (107)

The proof is given in Appendix E, and is based on showing
that restricting the scaling coefficient β from (9) to the form
β = q/h1 for q ∈ Z (almost surely) incurs no loss from a DoF
point of view. This way, the first coefficient of βh is an integer.
Then, a result from the field of Diophantine approximation
which is due to Kleinbock and Margulis [62] is used in order
to lower bound the error in approximating the remaining K−1
channel gains with integers.

As a special case of Theorem 12 we may choose the
manifold M as R

K which implies the following corollary.
Corollary 4: For almost every h ∈ R

K the DoF offered by
the highest computation rate is upper bounded by

dcomp,1 ≤ 1
K

.

Remark 17: Niesen and Whiting [63] studied the DoF
offered by the highest computation rate and showed that

dcomp,1 ≤
{

1/2 K = 2
2/(K + 1) K > 2 (108)
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for almost every h ∈ R
K . Our bound therefore agrees with

that of [63] for K = 2 and improves it for K > 2.
The next corollary shows that all K optimal computation

rates offer 1/K DoF for almost every h satisfying mild
conditions.

Corollary 5: Let M be a manifold satisfying the conditions
of Theorem 12. For almost every h ∈ M the DoF provided
by each of the K optimal computation rates is dcomp,k = 1/K .

Proof: Theorem 3 implies that
∑K

k=1 dcomp,k ≥ 1. Using
the fact that dcomp,k is monotonically decreasing in k and
that dcomp,1 ≤ 1/K for almost every h ∈ M, the corollary
follows.

The corollary above implies that, in the limit of very high
SNR, not only is the sum of computation rates close to the
sum capacity of the MAC, but each computation rate scales
like the symmetric capacity of the MAC for almost all channel
gains. Note that our analysis (as well as that of [63]) is within
the context of the achievable computation rates stemming from
Theorem 2.

The next corollary follows from Corollary 5 and Theorem 5.
Corollary 6: Let M be a manifold satisfying the condi-

tions of Theorem 12. The DoF attained by each user in the
K-user MAC under the compute-and-forward transform is
1/K for almost every h ∈ M. In particular, the DoF attained
by each user in the K-user MAC under the compute-and-
forward transform is 1/K for almost every h ∈ R

K .
The next theorem shows that for almost every effective

L-user multiple access channel of the form introduced in
Section IV-C each of the effective users achieves 1/L degree
of freedom. The proof is given in Appendix F.

Theorem 13: Let f1, . . . , fL be functions from R
m to R

satisfying

1) f� for � = 1, . . . , L is analytic in R
m,

2) 1, f1, . . . , fL are linearly independent over R,

and define the manifold

M =
{[

f1(g̃) · · · fL(g̃)
]

: g̃ ∈ R
m
}

.

For almost every g ∈ M the DoF offered by each of the L
optimal computation rates for the effective MAC (33) is

dcomp,� = lim
SNR→∞

Rcomp,�(SNR)
1
2 log(1 + SNR)

=
1
L

. (109)

Remark 18: The manifold M is the same manifold used
in [8]. This manifold was general enough to allow the deriva-
tion of the DoF characterization of the K-user interference
channel in [8]. Thus, the DoF results from [8] can be re-
derived using the same real interference alignment scheme
from [8] with n-dimensional lattice codes instead of 1-D
integer constellations concatenated with outer codes.

VIII. DISCUSSION

In this paper, we have developed a new decoding framework
for lattice-based interference alignment. We used this frame-
work as a building block for two lattice-based interference
alignment schemes for the symmetric real Gaussian K-user
interference channel. These schemes perform well starting
from the moderate SNR regime, and are within a constant gap

from the upper bounds on the capacity for all channel gains
outside of some outage set whose measure can be controlled.

A natural question for future research is how to extend
the results above to the general Gaussian K-user interference
channel. The main problem is that, in the general case, the
interfering lattice codewords are not naturally aligned, as their
gains are not integer-valued. Therefore, in order to successfully
apply lattice interference alignment, some form of precoding,
aimed towards forcing the cross channel gains to be integers,
is required. Unfortunately, simple power-backoff strategies do
not suffice, even in the three-user case.

One option for overcoming this problem is to use many
layers at each transmitter, as in [8], and create partial alignment
between interfering layers. While this achieves the optimal
DoF, it performs poorly at reasonable values of SNR, as there
will be a rate loss for each additional layer. As a result the
rate region obtained by combining the compute-and-forward
transform with the precoding scheme of [8] is inferior to
that obtained by time-sharing, for values of SNR of practical
interest. Another option is to precode not only using power-
backoff, but also over time, which may partially compensate
for the lack of sufficient free parameters. An example for
such a precoding scheme is the power-time code introduced
in [23].

A positive feature of the compute-and-forward framework
is that it does not require perfect alignment of the lattice
points participating in the integer linear combinations.
Namely, the effect of not perfectly equalizing the channel
gains to integers is an enhanced effective noise. For the
general interference channel, this suggests that it may suffice
to find precoding schemes that only approximately force the
cross-channel gains to integers.

APPENDIX A
PROOF OF THEOREM 5

We begin with two lemmas which will be useful for the
proof of Theorem 5.

Lemma 2: Let A be a K × K matrix with integer entries
of magnitudes bounded from above by some constant amax. If
there exists a real-valued K × K lower triangular matrix L
with unit diagonal such that Ã = LA is upper triangu-
lar up to column permutation π, then for any prime p >
K(K!)2(Kamax)2Kamax there also exists a lower triangular
matrix L(p) with elements from {0, 1, . . . , p − 1} and unit
diagonal such that Ã(p) =

[
L(p)A

]
mod p is upper triangular

up to column permutation π.
Proof: Assume that there exists a lower triangular

matrix L with unit diagonal such that Ã = LA is upper
triangular up to column permutation π. We begin by showing
that all elements in the ith (i > 1) row of L can be written
as rational numbers with the same denominator 1 ≤ qi ≤
K!(Ka2

max)
K . To see this note that if Ã is triangular up to

column permutation vector π, then its ith row contains at least
i− 1 zeros, namely ãij = 0 for j = π(1), . . . , π(i− 1). Since
L is lower triangular, the following equations must hold

ãij =
i∑

m=1

�imamj = 0, for j = π(1), . . . , π(i − 1). (110)
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By definition �ii = 1, therefore (110) can be written as

i−1∑

m=1

�imamj = −aij , for j = π(1), . . . , π(i − 1). (111)

Define the vectors �(i) = [�i1 · · · �i,i−1]T , a(iπ) = −[ai,π(1)

· · · aiπ(i−1)]T and the matrix

A(i,π) =

⎛

⎜⎝
a1π(1) . . . ai−1π(1)

...
. . .

...
a1π(i−1) . . . ai−1π(i−1)

⎞

⎟⎠ .

We have,

A(i,π)�(i) = a(i,π). (112)

From the fact that A can be pseudo-triangularized with per-
mutation vector π, we know that the system of equations (112)
has a solution. Assume that

rank
(
A(i,π)

)
= u ≤ i − 1.

It follows that there are u linearly independent columns in
A(i,π). Let U ⊆ {1, . . . , i − 1} be a set of indices corre-
sponding to u such linearly independent columns, and Ū be
its complement. Let A(i,π)

U ∈ Z
i−1×u be the matrix obtained

by taking the columns of A(i,π) with indices in U . Since (112)
has a solution, we have a(i,π) ∈ span

(
A(i,π)

U
)

. Thus, we can

set �(i)(k) = 0 for all k ∈ Ū , and (112) will still have a
solution. Letting �

(i)
U ∈ R

u×1 be the vector obtained by taking
from �(i) only the entries with indices in U , it follows that

A(i,π)
U �

(i)
U = a(i,π) (113)

has a solution. Now, multiplying both sides of (113) by(
A(i,π)

U
)T

gives

A′(i,π)
�
(i)
U = a′(i,π), (114)

where A′(i,π) =
(
A(i,π)

U
)T

A(i,π)
U ∈ Z

u×u is a full-rank

matrix and a′(i,π) =
(
A(i,π)

U
)T

a(i,π) ∈ Z
u×1. Note that

all entries of A′(i,π) as well as all entries of a′(i,π) have
magnitude bounded from above by ãmax � ua2

max. Cramer’s
rule for solving a system of linear equations (see [50]) implies
that all elements of �

(i)
U can be expressed as rational numbers

with denominator qi � | det(A′(i,π))|. Recall the Leibnitz
formula (see [50]) for the determinant of an n × n matrix G

det(G) =
∑

σ∈Sn

sign(σ)
n∏

i=1

Gi,σi , (115)

where Sn is the set of all permutations of {1, . . . , n}. It
follows that det

(
A′(i,π)

)
must be an integer and in addition

1 ≤ | det
(
A′(i,π)

)
| ≤ u!(ãmax)u. Thus, 1 ≤ qi ≤ u!(ãmax)u.

Moreover, Cramer’s rule also implies that the numerator of
each element in �

(i)
U is an integer not greater than u!(ãmax)u

in magnitude. Since u ≤ K , and since each element of
�(i) is either zero or corresponds to an element in �

(i)
U ,

each element �ij , j ≤ i of L can be written as a rational

number �ij = mij/qi with 1 ≤ qi ≤ K!(Ka2
max)

K and
|mij | ≤ K!(Ka2

max)K for i = 1, . . . , K .
Now, define the matrix L̃ = diag(q1, . . . , qK)L and note

that L̃ ∈ Z
K×K due to the above. Let Ã′(p) = [L̃A] mod p.

Since multiplying a row in a matrix by a constant leaves its
zero entries unchanged, the entries of the matrix

Ã′(p) = [L̃A] mod p

= [diag(q1, . . . , qK)LA] mod p

= [diag(q1, . . . , qK)Ã] mod p, (116)

are zero whenever the entries of Ã are equal to zero. More-
over, since all elements of L are bounded in magnitude by
K!(Ka2

max)K and all elements of A are bounded in magnitude
by amax, all elements of Ã = LA are bounded in magnitude
by KK!(Ka2

max)
Kamax. Combining with the fact that 1 ≤

qi ≤ K!(Ka2
max)

K , we have |ã′(p)
ij | ≤ K(K!)2(Kamax)2Kamax

for all i = 1, . . . , K , j = 1, . . . , K . Therefore, for a prime
number p > K(K!)2(Kamax)2Kamax the modulo reduction
in (116) does not change any of the non-zero entries of
diag(q1, . . . , qK)Ã to zero.

Recall that if A can be pseudo-triangularized with a
matrix L and permutation vector π then ãi,π(i) �= 0, and

hence also ã
′(p)
i,π(i) �= 0 for i = 1, . . . , K . We have therefore

shown that for p large enough there exists a lower-triangular
matrix L̃(p) = [diag(q1, . . . , qK)L] mod p with elements from
{0, 1, . . . , p − 1} such that Ã′(p) = [L̃(p)A] mod p is upper-
triangular up to column permutation π. In order to complete
the proof, it is left to transform L̃(p) to a lower-triangular
matrix with elements from {0, 1, . . . , p−1} and unit diagonal.
Let (qi)−1 be an integer that satisfies [(qi)−1qi] mod p = 1.
Such an integer always exists since qi is an integer different
than zero, and p is prime. It is easy to verify that the matrix
L(p) = [diag

(
(q1)−1, . . . , (qK)−1

)
L̃(p)] mod p is a lower-

triangular matrix with elements from {0, 1, . . . , p−1} and unit
diagonal, and Ã(p) =

[
L(p)A

]
mod p is upper triangular up

to column permutation π.
Lemma 3: Let t1, . . . , tk be lattice points from a chain of

nested lattices satisfying the conditions of Theorem 2. Let
v =

[∑K
k=1 aktk

]
mod Λ and u =

[∑K
k=1 bktk

]
mod Λ be

integer linear combinations of these points. Then

[v + u] mod Λ =

[
K∑

k=1

(
(ak + bk) mod p

)
tk

]
mod Λ.

Proof: Due to the distributive property of the modulo
operation we have

[v + u] mod Λ =

[
K∑

k=1

(ak + bk)tk

]
mod Λ.

=

[
K∑

k=1

[(ak + bk) mod p + Mk ·p]tk

]
mod Λ

=
[ K∑

k=1

(
(ak + bk) mod p

)
tk

+
K∑

k=1

Mk · [p · tk] mod Λ
]

mod Λ (117)
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where {Mk}K
k=1 are some integers. Utilizing the fact that

[p · tk] mod Λ = 0 for all lattice points in the chain, which
follows from Theorem 2(c), the lemma is established.

We are now ready to prove Theorem 5.
Proof of Theorem 5: Let T = [tT

1 · · · tT
K ]T and V =

[vT
1 · · · vT

K ]T = [AT] mod Λ. The compute-and-forward
transform of the MAC (4) can be written as

S =

⎡

⎢⎣A

⎛

⎜⎝
t1

...
tK

⎞

⎟⎠+ Zeff

⎤

⎥⎦ mod Λ

= [AT + Zeff] mod Λ
= [V + Zeff] mod Λ.

Assume there exists a pseudo-triangularization of A with per-
mutation vector π, i.e., there exists a lower triangular matrix L
with unit diagonal such that Ã = LA is upper triangular up
to column permutation π. Lemma 2 implies that there exists
a lower triangular matrix L(p) with elements from {0, 1, . . . ,
p − 1} and unit diagonal such that Ã(p) =

[
L(p)A

]
mod p

is upper triangular up to column permutation π. Since L(p)

has a unit diagonal it can be written as L(p) = I + R where
I is the identity matrix and R has non-zero entries only below
the main diagonal.

Assume the receiver has access to the side information
v1, . . . ,vK−1. As the entries of R are non-zero only below
the main diagonal, the receiver could compute R · V, add it
to S and reduce modulo Λ, giving rise to

SSI = [S + R ·V] mod Λ

= [AT + RAT + Zeff] mod Λ

= [(I + R)AT + Zeff] mod Λ

=
[
L(p)AT + Zeff

]
mod Λ

=
[
[L(p)A] mod p ·T + Zeff

]
mod Λ (118)

=

⎡

⎢⎣Ã(p)

⎛

⎜⎝

t1

...
tK

⎞

⎟⎠+ Zeff

⎤

⎥⎦ mod Λ

where (118) follows from Lemma 3. Let Ṽ = [Ã(p)T] mod Λ
and recall that Ã(p) is upper-triangular up to column permu-
tation π, thus ã

(p)
j,π(m) = 0 for all j = π(m) + 1, . . . , K . It

follows that for any m < K the lattice point tπ(m) does not
participate in any of the linear combinations ṽm+1, . . . , ṽK .

Assume the mapping function between users and lattices
is chosen as θ(k) = π−1(k), i.e., each user k employs the
codebook Lk = Λπ−1(k) ∩ Λ. In this case, the densest lattice
participating in linear combination ṽm is Λm. The decoder
uses sSI

m in order to produce an estimate

ˆ̃vm =
[
QΛm(sSI

m)
]

mod Λ (119)

for each one of the linear combinations ṽm, m = 1, . . . , K . It
follows from Theorem 2 that there exists a chain of nested
lattices Λ ⊆ ΛK ⊆ · · · ⊆ Λ1 forming the set of code-
books L1, . . . ,LK with rates R1, . . . , RK such that all linear
combinations ṽ1, . . . , ṽK can be decoded with a vanishing

error probability as long as the rates of all users satisfy the
constraints of (29).

We have shown that if the receiver has access to
v1, . . . ,vK−1 it can decode the set of linear combinations
Ṽ. We now show a sequential decoding procedure which
guarantees that the receiver has the right amount of side
information at each step. First, note that

sSI
m =

[
sm +

m−1∑

�=1

rm�v�

]
mod Λ, (120)

thus the necessary side information for decoding ṽm is only
v1, . . . ,vm−1. In particular, sSI

1 = s1 and hence v1 can
be decoded with a vanishing error probability with no side
information. After decoding v1 the receiver has it as side
information, and can therefore compute sSI

2 and decode ṽ2.
As ṽ2 = [r21v1 + v2] mod Λ and the receiver knows v1, it
can use it in order to recover v2. Now, the receiver has v1

and v2 as side information and can use it to compute sSI
3 . The

process continues sequentially until all linear combinations
ṽ1, . . . , ṽK are decoded.

Conditioned on correct decoding, we obtain K noiseless
linear combinations

⎛

⎜⎝
ṽ1

...
ṽK

⎞

⎟⎠ =

⎡

⎢⎢⎢⎣Ã
(p)

⎛

⎜⎜⎜⎝

t1

t2

...
tK

⎞

⎟⎟⎟⎠

⎤

⎥⎥⎥⎦ mod Λ. (121)

Since Ã(p) is upper-triangular up to column permutation, and
in particular full-rank modulo p, the original lattice points
t1, . . . , tK each user transmitted can be recovered.

APPENDIX B
PROOF OF THEOREMS 7 AND 8

Proof of Theorem 7: The proof is identical to that of

Theorem 3 with F =
(
SNR−1B−1 + ggT

)−1/2
.

Proof of Theorem 8: Let

S =

⎡

⎢⎣A

⎛

⎜⎝
teff,1

...
teff,L

⎞

⎟⎠+ Zeff

⎤

⎥⎦ mod Λ

be the compute-and-forward transform of the effective L-user
MAC, and assume that A can be pseudo-triangularized with
permutation vector π. Repeating the proof of Theorem 5 it is
easy to see that, for any set of rates

R� < Rcomp,π−1(�), � = 1, . . . , L,

there exists a chain of nested lattices Λ ⊆ ΛL ⊆ · · · ⊆ Λ1

inducing the codebooks L� = Λπ−1(�)∩V with rates R�, such
that if teff,� ∈ L� for all � = 1, . . . , L, all effective lattice
points can be decoded from S.

If each of the users i ∈ K� that comprise effective user
� uses the lattice codebook L� (or any codebook nested in
L�), then teff,� ∈ L� and all effective lattice points can be
decoded.
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APPENDIX C
PROOF OF LEMMA 1

In order to decode the desired effective lattice points, it
suffices to decode L − 1 linearly independent integer linear
combinations of them, in which teff,L does not participate. Let
ā = [ā1 · · · āL−1 0]T be some coefficient vector for such a
linear combination. The effective rate for computing the linear
combination v̄ =

[∑L−1
�=1 ā�teff,�

]
mod Λ with the coefficient

vector ā over the channel (33) is

Rcomp(g, ā,B) =
1
2

log
(

SNR

σ2
eff(g, ā,B)

)
, (122)

where

σ2
eff(g, ā,B) = min

β̄∈R

SNR
L−1∑

�=1

(β̄g� − ā�)2b2
eff,�

+β̄2(1 + SNRg2
Lb2

eff,L)

= min
β∈R

SNR
L−1∑

�=1

(βκg� − ā�)2b2
eff,� + β2, (123)

where (123) follows by substituting β̄ = βκ. The effective
noise variance and computation rate for decoding a linear
combination with coefficient vector ā = [ā1 · · · āL−1 0]
over the effective channel (33) are therefore the same as those
of decoding a linear combination with a = [ā1 · · · āL−1]
over the effective channel (51). Thus, for purposes of decod-
ing integer linear combinations of effective lattice points
teff,1, . . . , teff,L−1 the two channels are equivalent. Since this
is all we need in order to decode teff,1, . . . , teff,L−1, the lemma
follows.

APPENDIX D
DERIVATION OF THE UPPER BOUNDS ON σ2

HK WITHIN

THE DIFFERENT INTERVALS

A. Moderately Weak Interference Regime

We upper bound σ2
HK for all values of β̃ within each of the

four intervals. Recall that in the moderately weak interference
regime SNR−1/3 ≤ g2 ≤ 1. Define δ = (2c + 8)/ log(SNR),
where c > 0 is some constant.

Interval 1: 0 < |β̃| ≤ 1/2
In this interval the choice a1 = sign(β̃) is optimal due

to (92). Therefore, for all |β̃| ≤ 1/2 we have (β̃−a1)2 ≥ 1/4.
Thus,

σ2
HK ≥ SNR

4
.

Interval 2: 1/2 < |β̃| ≤
√
|g|SNR1/4−δ/2/2

Since |β̃| > 1/2 we can express it as β̃ = q + ϕ with
q ∈ Z \ 0 and ϕ ∈ [−1/2, 1/2). We can further lower bound
σ2

HK as

σ2
HK > min

ϕ,q,a1,a3

((
(ϕ + q − a1)2 + (qg − a3 + ϕg)2

)
SNR

)

= min
ϕ,q,a3

((
ϕ2 + (qg − a3 + ϕg)2

)
SNR

)
. (124)

Ignoring the constraint ϕ ∈ [−1/2, 1/2), the minimizing value
of ϕ is found to be

ϕ∗ = − g

1 + g2
(qg − a3).

Substituting ϕ∗ into (124) gives

σ2
HK > min

q,a3

(
1

1 + g2
(qg − a3)2SNR

)

≥ 1
2

min
q,a3

(
(qg − a3)2SNR

)
. (125)

For b = 1, 2, . . . , 	1/6 log(SNR)� we define the sets

Gb =
{
g : g ∈

[
2−b, 2−b+1

)}
, (126)

and the quantities

qmax,b �
√

2−b+1SNR1/4−δ/2,

Φb � 1√
2−b+1

SNR−1/4−δ/2.

Let Sb be the set of all values of g ∈ Gb such that the inequality

|qg − a3| < Φb (127)

has at least one solution with 0 < |q| ≤ qmax,b and a3 ∈ Z.
Note that since q = β̃ −ϕ and we assume in this interval that
1/2 < |β̃| ≤

√
|g|SNR1/4−δ/2/2, we have

|q| <
√
|g|SNR1/4−δ/2.

Thus, for all g ∈ Gb and β̃ in the considered interval, we have

|q| < qmax,b.

Let S̄b = Gb \ Sb. Using (125), we have that for all g ∈ S̄b

and β̃ in the considered interval

σ2
HK ≥ 1

2
Φ2

bSNR

≥ 1
2

SNR1/2−δ

2−b+1

≥ 1
4

SNR1/2−δ

√
g2

. (128)

The condition (127), which defines the set Sb, can be written
equivalently as

|q · 2bg − 2ba3| < 2bΦb. (129)

Define g̃ = 2b · g, and note that for all g ∈ Gb we have
g̃ ∈ [1, 2). With this notation, (129) becomes

∣∣∣∣g̃ − 2ba3

q

∣∣∣∣ < 2b Φb

q
. (130)

Define

Tb(q) =

[{
0
q
,
1 · 2b

q
,
2 · 2b

q
, . . . ,

⌊
2q−1
2b

⌋
· 2b

q

}

+ 2b Φb

q
I
]

mod [0, 2), (131)

where I = [−1, 1) and the sum in (131) is a Minkowski sum.
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It is easy to verify that

Sb ⊆ 2−b
	qmax
⋃
q=1

Tb(q). (132)

Since
⌊

2q−1
2b

⌋
= 0 for all 0 < q < 2b−1, for all values of q in

this range we have

Tb(q) =
[
2b Φb

q
I
]

mod [0, 2)

⊆
[
2bΦbI

]
mod [0, 2)

= Tb(1). (133)

Therefore,

Sb ⊆ 2−b

⎛

⎝

⎛

⎝
2b−1−1⋃

q=1

Tb(q)

⎞

⎠ ∪

⎛

⎝
	qmax
⋃

q=2b−1

Tb(q)

⎞

⎠

⎞

⎠

= 2−b

⎛

⎝Tb(1) ∪

⎛

⎝
	qmax
⋃

q=2b−1

Tb(q)

⎞

⎠

⎞

⎠ . (134)

The Lebesgue measure of Sb is bounded by

μ(Sb) = Vol (Sb)

≤ 2−b

⎛

⎝Vol (Tb(1)) +
	qmax,b
∑

q=2b−1

Vol (Tb(q))

⎞

⎠

≤ 2−b

⎛

⎝2 · 2bΦb +
	qmax,b
∑

q=2b−1

⌈
2q

2b

⌉
· 2 · 2b Φb

q

⎞

⎠

≤ 2Φb + 2Φb

	qmax,b
∑

q=2b−1

2
2q

2b

1
q

≤ 2Φb + 8 · 2−bΦbqmax,b

= 2Φb + 8 · 2−bSNR−δ

=
√

2 · 2b/2SNR−1/4−δ/2 + 8 · 2−bSNR−δ. (135)

We can now upper bound the measure of the outage set

S =
�1/6 log(SNR)�⋃

b=1

Sb,

of all values of SNR−1/6 ≤ g < 1 for which (128) does not
necessarily hold, as

μ(S) =
�1/6 log(SNR)�∑

b=1

μ(Sb)

<
√

2SNR−1/4−δ/2

	1/6 log(SNR)
+1∑

b=1

(
√

2)b

+ 8SNR−δ

	1/6 log(SNR)
+1∑

b=1

2−b.

Using the identity

B∑

b=1

ρb =
ρ

ρ − 1
(ρB − 1),

which is valid for all ρ �= 1, and the fact that
∑∞

b=1 2−b < 1,
we have

μ(S) <
√

2SNR−1/4−δ/2

√
2√

2 − 1

√
2SNR1/12 + 8SNR−δ

< 7SNR−δ/2 + 8SNR−δ

< 16SNR−δ/2. (136)

Substituting δ = (2c+8)/ log(SNR) into (128) and (136), we
see that in the interval 1/2 < |β̃| ≤

√
|g|SNR1/4−δ/2/2 for

all values of SNR−1/3 < |g| ≤ 1 except for an outage set with
measure not greater than 2−c we have

σ2
HK >

2−2c

4 · 28

SNR1/2

√
g2

.

Interval 3:
√

|g|SNR1/4−δ/2/2 < |β̃| ≤ SNR1/4/
√

8|g|
Since SNR−1/3 ≤ g2 < 1 and we assumed SNR > 4, we

have

g2SNR − 1 >
g2SNR

2
. (137)

Note that (137) continues to hold for all g2 > SNR−1/2. This
will be useful in the weak interference regime. For all values
of |β̃| in this interval

∣∣∣∣∣
β̃√

g2SNR − 1

∣∣∣∣∣ ≤
SNR1/4/

√
8|g|√

g2SNR − 1

<
SNR1/4

√
8|g| · g2SNR

2

≤ 1
2
|g|−3/2SNR−1/4

≤ 1
2
,

and hence, using (91), the optimal value of a2 is

a2 =
⌊
β̃/
√

g2SNR − 1
⌉

= 0.

Therefore, using the fact that δ = (2c+8)/ log(SNR), we can
upper bound (90) as

σ2
HK ≥ β̃2SNR

g2SNR − 1
≥ 2−2c

4 · 28

SNR1/2

√
g2

.

Interval 4: SNR1/4/
√

8|g| < |β̃|
In this interval,

σ2
HK ≥ Kβ̃2 ≥ 1

8
SNR1/2

√
g2

.

B. Weak Interference Regime

We upper bound σ2
HK for all values of β̃ within each of the

four intervals. Recall that in this regime SNR−1/2 ≤ g2 <
SNR−1/3.

Interval 1: 0 < |β̃| ≤ 1/2
As a1 �= 0, in this interval (β̃ − a1)2 > 1/4. Thus,

σ2
HK ≥ SNR

4
.
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Interval 2: 1/2 < |β̃| ≤ 1/(2|g|)
In this interval a3 = �β̃g� = 0. Thus,

σ2
HK ≥ (β̃g)2SNR ≥ g2SNR

4
.

Interval 3: 1/(2|g|) < |β̃| ≤
√

g2SNR/8
Under our assumption that SNR > 4, for all values of |β̃|

in this interval we have∣∣∣∣∣
β̃√

g2SNR − 1

∣∣∣∣∣ ≤
√

g2SNR/8√
g2SNR − 1

<

√
g2SNR/8√
g2SNR/2

≤ 1
2
,

where the second inequality follows from (137). Thus, the
optimal choice for a2 is

a2 =
⌊
β̃/
√

g2SNR − 1
⌉

= 0. (138)

Therefore, (90) can be lower bounded by

σ2
HK ≥ β̃2

g2SNR
SNR ≥ 1

4g4
.

Interval 4:
√

g2SNR/8 < |β̃|
In this interval,

σ2
HK ≥ Kβ̃2 >

g2SNR

4
.

APPENDIX E
PROOF OF THEOREM 12

For the proof we will need a key result from the field
of metric Diophantine approximation which is due to Klein-
bock and Margulis. The following theorem is a special case
of [62, Th. A].

Theorem 14: Let U be a domain in R
m and let

f1, f2, · · · , fK be real analytic functions in h̃ ∈ U , which
together with 1 are linearly independent over R, and define
the manifold

M =
{[

f1(h̃) · · · fK(h̃)
]

: h̃ ∈ U
}

.

For almost every h ∈ M and any δ > 0, the inequality

max
�=1,...,K

|qh� − a�| ≤ |q|− 1
K −δ (139)

has at most finitely many solutions (q, a) ∈ Z × Z
K .

For the proof of Theorem 12 we will need a corollary of
Theorem 14.

Corollary 7: Let f1, f2, . . . , fK be functions from R
m to

R satisfying the following conditions:

1) fi for i = 1, . . . , K is analytic in R
m,

2) 1, f1, . . . , fK are linearly independent over R.

Let D =
{
h̃ ∈ R

m : f1(h̃) = 0
}

and D(ε) = D + B(0, ε),
where the sum is a Minkowski sum and B(0, ε) is an m-
dimensional closed ball with some radius ε > 0. Define the set
U(ε) = R

m \D(ε), the set of functions f̃k(h̃) = fk(h̃)/f1(h̃)

from U(ε) to R for k = 2, . . . , K , and the manifold

M̄(ε) =
{[

f̃2(h̃) · · · f̃K(h̃)
]

: h̃ ∈ U(ε)
}

. (140)

For all ε > 0, almost every h̄ ∈ M̄(ε), and any δ > 0 the
inequality

max
�=1,...,K−1

∣∣qh̄� − a�

∣∣ ≤ |q|− 1
K−1−δ (141)

has at most finitely many solutions (q, a) ∈ Z × Z
K−1.

Proof of Corollary 7: We would like to apply Theorem 14
for the set of functions f̃2, . . . , f̃K from U(ε) to R. To that end
we have to show that for all ε > 0 the functions f̃2, . . . , f̃K are
analytic in U(ε) and together with 1 are linearly independent
over R.

The reciprocal of an analytic function that is nowhere
zero is analytic. Thus, for any ε > 0, the function 1/f1(h̃)
is analytic in U(ε). Furthermore, the product of two ana-
lytic functions is analytic. Therefore, for any ε > 0, the
functions f̃k = fk(h̃) · (1/f1(h̃)) are analytic in U(ε) for
k = 2, . . . , K .

We show that the functions 1, f̃2, . . . , f̃K from U(ε) to R are
linearly independent for all ε > 0 by contradiction. Assume
they are linearly dependent. Thus, there a exists a measurable
set S ∈ U(ε) and a set of coefficients {t1(ε), . . . , tK(ε)} ∈ R

not all zero such that ∀h̃ ∈ S

t1(ε) · 1 + t2(ε) ·
f2(h̃)
f1(h̃)

+ · · · + tK(ε) · fK(h̃)
f1(h̃)

= 0.

This implies that ∀h̃ ∈ S

0 · 1 + t1(ε) · f1(h̃) + t2(ε) · f2(h̃) + · · ·+ tK(ε) · fK(h̃) = 0,

in contradiction to the assumption that the functions
1, f1, . . . , fK from R

m to R are linearly independent over R.
We can therefore apply Theorem 14 to the set of functions

f̃2, . . . , f̃K from U(ε) to R for all ε > 0, and the corollary
follows.

We are now ready to prove Theorem 12. Define the sets D,
D(ε) and U(ε) as in Corollary 7, and the manifold

M̃(ε) =
{[

f1(h̃) · · · fK(h̃)
]

: h̃ ∈ U(ε)
}

.

We begin by showing that, for any ε > 0, the DoF offered by
the first computation rate is upper bounded by

dcomp,1 ≤ 1
K

(142)

for almost every h ∈ M̃(ε). Then we take ε to zero in order
to show that this holds for almost every

h ∈ M =
{[

f1(h̃) · · · fK(h̃)
]

: h̃ ∈ R
m
}
.

Consider the manifold M̃(ε) for some ε > 0. Note that
h1 = f1(h̃) �= 0 for any h ∈ M̃(ε), and we can therefore
define h̄ = h/h1. We have h̄1 = 1 and [h̄2 · · · h̄K ] ∈ M̄(ε),
where M̄(ε) is the manifold from (140) in Corollary 7.

The channel (4) is equivalent to the channel

ȳ =
1
h1

y = x1 +
∑

k �=1

h̄kxk +
1
h1

z. (143)
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Let a be a vector of integer coefficients, and β be the
scaling factor used by the receiver in order to decode the linear
combination v = [

∑K
k=1 aktk] mod Λ, see Section III. The

effective noise encountered in decoding the linear combination
v with coefficient vector a is

zeff(h,a, β) = (β − a1)x1 +
∑

k �=1(βh̄k − ak)xk + β
h1

z,

and its effective variance is given by

σ2
eff(h,a, β) = (β − a1)2SNR

+
∑

k �=1

(βh̄k − ak)2SNR +
β2

|h1|2
. (144)

Recall that

Rcomp,1 = max
a,β

1
2

log
(

SNR

σ2
eff(h,a, β)

)

=
1
2

log (SNR) − 1
2

log
(

min
a,β

σ2
eff(h,a, β)

)
. (145)

Thus, in order to obtain an upper bound on Rcomp,1 we need
to lower bound σ2

eff(h,a, β) for all values of β ∈ R and a ∈
Z

K \ 0. Let
h̄∗ = max

k=1,...,K
h̄k,

and
k∗ = arg max

k=1,...,K
h̄k.

Note that if |β| < 1/(2h̄∗) the minimizing corresponding
choice of integers a1, . . . , aK in (144) is ak∗ = sign(β),
and ak = 0 for all k �= k∗. This in turn, implies that for
|β| < 1/(2h̄∗) we have

σ2
eff(h,a, β) > (βh̄∗ − sign(β))2SNR >

SNR

4
, (146)

which means dcomp,1 = 0. Thus, in order to obtain a positive
DoF, |β| must be greater than 1/(2h̄∗).

If 1/(2h̄∗) ≤ |β| ≤ 1/2, then the minimizing value of
a1 in (144) is a1 = 0. This implies that for all values of
1/(2h̄∗) ≤ |β| ≤ 1/2 we have

σ2
eff(h,a, β) > β2SNR >

SNR

4
(
h̄∗)2 , (147)

which also means dcomp,1 = 0. Thus, in order to obtain a
positive DoF, |β| must be greater than 1/2.

Hence, in order to lower bound (144) in the limit of very
high SNR, it suffices to limit the optimization space of β to
|β| > 1/2. For such values, β can be written in the form
β = q + ϕ where ϕ ∈ [−1/2, 1/2), and q ∈ Z \ 0 is the
nearest integer to β.

For any |ϕ| < 1/2, q ∈ Z \ 0 and a ∈ Z
K \ 0 we have

σ2
eff(h,a, q, ϕ)

≥ (ϕ + q − a1)2SNR

+ max
k �=1

(
qh̄k − ak + ϕh̄k

)2
SNR +

(q/2)2

|h1|2

≥ ϕ2SNR + max
k �=1

(
qh̄k − ak + ϕh̄k

)2
SNR +

(q/2)2

|h1|2

= max
k �=1

((
ϕ2 + (qh̄k − ak + ϕh̄k)2

)
SNR +

q2

|2h1|2

)
(148)

We further bound (148) by substituting the minimizing value
of ϕ for each k �= 1. It follows by simple differentiation that
for each k �= 1 the minimum occurs at

ϕ∗(k) = −h̄k

1+h̄2
k

(qh̄k − ak).

Substituting ϕ∗(k) into (148) yields

σ2
eff(h, a, q, ϕ)

≥ max
k �=1

(
1

1 + h̄2
k

(qh̄k − ak)2SNR +
q2

|2h1|2

)

>
1

1 + maxk �=1 h̄2
k

· max
k �=1

|qh̄k − ak|2SNR +
q2

|2h1|2

≥ c0(h) ·
(

max
k �=1

|qh̄k − ak|2SNR + q2

)
, (149)

where c0(h) > 0 is some constant independent of the SNR.
Consider the limit of SNR → ∞, and assume |q| is upper

bounded by some finite integer q0 > 0. Then, for almost every
h ∈ M̃(ε), there exists a constant c1(h, q0) > 0, independent
of the SNR, for which

max
k �=1

|qh̄k − ak| > c1(h, q0) (150)

for all 0 < |q| ≤ q0 and a ∈ Z
K−1. Note that h does not

satisfy (150) only if all elements of h̄ are rational. Substi-
tuting (150) into (149) gives σ2

eff(h, a, q, ϕ) > c2(h, q0)SNR
which means that the DoF is zero. Therefore, in order to get
a positive DoF, q must tend to infinity when the SNR tends
to infinity.

Any positive integer |q| can be expressed as |q| = SNRγ for
some γ > 0. From Corollary 7 we know that for any ε, δ > 0,
almost every h̄ ∈ M̄(ε), and q large enough, we have

max
k �=1

|qh̄k − ak| > |q|− 1
K−1−δ = SNR− γ

K−1−γδ. (151)

Thus, for |q| large enough and almost every h ∈ M̃(ε), we
have

σ2
eff(h, a, q, ϕ) ≥ c2

0(h) · max
(

SNR1− 2γ
K−1−2γδ, SNR2γ

)
.

(152)

Minimizing (152) with respect to γ gives

γ =
K − 1

2(K + δK − δ)
.

Hence, for all q ∈ Z, ϕ ∈ [−1/2, 1/2), a ∈ Z
K \0 and almost

every h ∈ M̃(ε)

σ2
eff(h, a, q, ϕ) > c3(h)SNR

K−1
K+δ(K−1) , (153)

where c3(h) > 0 is also a constant independent of the SNR.
Substituting into (145) gives

Rcomp,1 <
1 + δ(K − 1)
K + δ(K − 1)

· 1
2

log(SNR)

−1
2

log(c3(h)) (154)
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for any δ > 0. Taking δ → 0, it follows that the DoF the
highest computation rate offers is upper bounded by

lim
SNR→∞

Rcomp,1

1
2 log (1 + SNR)

≤ 1
K

, (155)

for almost every h ∈ M̃(ε). Since this holds for all ε > 0,
we can now take ε to zero (note that the bound does not
depend on ε). The set D has measure zero since f1 is analytic
on R

m and is not identically zero (otherwise, the set of
functions 1, f1, . . . , fK is not linearly independent). Note that
the measure of D(ε) goes to zero as ε → 0, and furthermore
D = ∩ε>0D(ε). Therefore, the claim holds for almost every
h ∈ M.

APPENDIX F
PROOF OF THEOREM 13

Consider the reference L-user MAC

yref =
L∑

�=1

g�x� + z, (156)

where z is AWGN with zero mean and unit variance and all
users are subject to the power constraint ‖x�‖2 ≤ nSNR.
Applying Corollary 5 to this channel implies that, for almost
every g ∈ M, the DoF that each optimal computation
rate offers is 1/L. Let Rref

comp(g,a) be the computation rate
corresponding to the coefficient vector a over the reference
MAC (156). We now show the computation rate of the same
coefficient vector Rcomp(g,a,B) over the effective MAC (33)
is within a constant number of bits from Rref

comp(g,a).
For the reference channel (156) the effective noise variance

for a given a and β is

σ2
ref(g,a, β) = SNR‖βg − a‖2 + β2,

while for the effective L-user MAC (33) the effective variance
for the same a and β is

σ2
eff(g,a, β,B) = SNR

L∑

�=1

(βg� − a�)2b2
eff,� + β2.

Letting b∗ = max�=1,...,L b2
eff,� and noting that b∗ ≥ 1 gives

σ2
ref(g,a, β) ≤ σ2

eff(g,a, β,B) ≤ b∗σ2
ref(g,a, β).

Since the above inequalities are valid for any value of β, in
particular they hold true for the optimal value of β and it
follows that

Rref
comp(g,a) − 1

2
log(b∗) ≤ Rcomp(g,a,B) ≤ Rref

comp(g, a).

As b∗ is independent of the SNR, it follows that the DoF
offered by each computation rate for the reference and effec-
tive MACs (156) and (33) are equal, In particular, this is
the case for the optimal computation rates, thus the theorem
follows.
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