Subset-Universal Lossy Compression

Or Ordentlich Ofer Shayevitz
Tel Aviv University Tel Aviv University
ordent@eng.tau.ac.il ofersha@eng.tau.ac.il

Abstract—A lossy source codeC with rate R for a discrete X" to Y™ is zero. It is therefore tempting to jump to the
memoryless sources is called subset-universal if for every0 < — conclusion that the smallest average distortion that can be
R' < R, almost every subset of2"™ of its codewords achieves attained in this setting i®)p, (0). But is this indeed the case?

average distortion close to the source’s distortion-rate Unction . . . :
D(R'). In this paper we prove the asymptotic existence of such We will show that the answer is negative, and that in fact

codes. Moreover, we show the asymptotic existence of a coddNere exists a coding scheme that achieves average dstorti

that is subset—universal with respect to all sources with ta same D pg (% log |f(X™)]) for almost every deterministic channel.

alphabet. Note that the encoder, which knows the functip@), can

deterministically impose any output from the ggft™) C Y".

. . o ) . However, due to its ignorance, the decoder does not know how
To m0t|yate the toplc studied in th|_s work, let us co_nS|d% translate the possible outputs to a vectologf| f(X™)] bits.

the following scenario. LetS be a discrete source with ajngtead, the encoder and decoder can agree in advance on a

probability mass function (pmf)ES over an alphabetS. mappingg : Y™ — S" from each possible channel output to a

Assume one wants to convey i.i.d. instances ofS over g rce reconstruction sequence. Thegg@t”) of all possible

a deterministic channef : A" — Y, with the smallest roconsiructions can be thought of as a source ¢bdé rate

possible distortion. If the channel layi(-) is known at both p _ log || bits per source symbol. The channel’s effect is

ends, the channel corresponds to a bit pipe whose Capaﬁi%iluting C to the source codé€’ = g(f(X™)) C C whose

is the normalized logarithm of the function’s image sizggie isp’ — Liog |f(x™)| bits per symbol. In other words, a

e, O = S log|f(X™)]. In this case a separation approachyeterministic channef(-) with capacity?’ chooses a subset
where the source is first compressed with r@tand then the s onR’ sodewords from the™® codewords irC.

compression index is transmitted over the channel, is @tim This motivates the study afubset-universasource codes.
and achieves the best possible average distorfion (C), o subset—universal source code of ratehas the property
where Dp,(-) is the distortion-rate function of the souré®. ihat for any0 < R' < R, almost every subset af*® of
When only the encoder knows the fUr‘ft'q’m")’ but the jis codewords is close to being optimal, in the sense that
decoder does not, it may be possible to “learn” the channgl inqyced average distortion is close to the distortiaier
law if the class of possible _func_tloni is sufficiently Sm&0r  gnction D, (R'). Our main result is the asymptotic existence
instance, iff(-) tensorizes, i.e., iff(x") = A(z1),..., h(2n),  of such codes. In fact, we show the asymptotic existence of a
it is possible to learnf(-) with negligible cost forn large cqge that is subset—universal with respect to any i.i.drceou
enough. In this case, the separation based approach conii@sribution over the alphabed.
ues to be asymptotically optimal. Moreover, sometimes evengetrning to our discussion on joint-source channel coding
partial knowledge off(-) at the decoder is sufﬁment f(gr_overadeterministic channel known only at the encoder, xhe e
separation to be optimal. For example, if the “channel” igence of a subset-universal code implies that for almestye

a binary memory device withz pn cells stuck at eithed .npice of f(), an average distortion abp, (X log |f(X™)])
or 1, and whose locations are known only to the encoder,a,, pe asymptotically achieved. "

reliable communication rate approachifidog | f(X™)| can be

achieved via Gelfand-Pinsker coding [1], [2], and subsatjye Il. MAIN RESULT

separation can asymptotically attain the optimal distorti The entropy of a random variablé with probability mass
A separation approach, however, is completely useless wtfanction (pmf) Py over the alphabed, is defined as

f(-) can be anyarbitrary function known only to the encoder. A

This follows from the fact that the capacity of the compound H(Y) = - Z Py (y) log Py (y).

channelF that consists of ally|"!*!" possible functions from vey
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I. INTRODUCTION



and the mutual information is defined as distortion measure. For anfg > 0, 6 > 0, there exists a

N B sequence of2"% n) codebooksC C S™ with the property
1(Y;2) = H(Y) - H(Y|Z) = H(Z) - H(Z]Y). that for any source pmPs on S and any0 < R’ < R, almost

For two distributionsP and Q defined on the same alphabegVery subset 02"/ codewords fronC achieves an expected

Z, the KL-divergence is defined as distortion no greater thap, (R’ — 9).
P(2) Remark 1:Ziv's result [5] is based on first splitting the
z

D(P||Q) & Z P(2)log . source sequence intoblocks of lengthk (¢ > k). Then, the
ez Q(z) best(2*%, k) lossy source code, with respect to the average

distortion among the/ blocks, is found, and conveyed to

Let S be a discrete memoryless source (DMS) over tlc}ﬁ . . . :
. 3 . e receiver. Afterwards, each block is encoded using this
alphabets with pmf Ps, 5 a reconstruction alphabet, an ource code and its index is sent to the receiver ?f the

d:S x S — RT a bounded single-letter distortion measure. :

(2% n) lossy source code consists of an encoder that ass@r!ignbe.r (.Jf blocks of length is large enougr_\, .the over_head for

an indexm(s") € {1,2,...,2"F} to eachn-dimensional ransmitting the codebook becomes negligible, w_hlc_h eeflow

vector s” € S", and a decoder that assigns an estim he_ scheme tq perform WeII_ for a large clas_s of d|str|bl_1t|ons

8" (m) € S to each indexm € {1,2,...,2"7} The set is construction, hpwev_er, is nqt subsetunlversaI.Tdmge
TR note that the empirical distribution of most codewords ia th

C ={8"(1),...,8"(2"")} constitutes the codebook. We will _~ ™. )
assume throughout that the encoder assigns to each som?rbcrt)g'ned codebook is that of the largest type. Thus, a random

sequence the index*(s") according to the optimal rule subset of2 codewords will contalr! a negligible fraction _
of codewords from other types, and in general cannot attain

. . 1 & o the distortion-rate function unless the optimal recorcdiom
m(s") = argmin % d(s;, (8" (m))), distribution at rateR’ is equal to that of the largest type as
me{1,2,...,2nR} i well
such that the lossy source _code is completely specified by ther,o proof of Theorem 1 relies on independently drawing
codeboolkC (and the distortion measurd). the codewords o€ from a mixture distribution, and will be

The e_xpected distortion associated with a lossy source Cogﬂ\?en in Section IV. In the next section we lay the ground by
C is defined as proving certain properties of mixture distributions.

N 1 — .
Egn (d(S",S")) £ Esn <ﬁ Zd(Si,Si)> : Ill. PROPERTIES OFMIXTURE DISTRIBUTIONS
=1

We follow the notation of [6], and define the empirical pmf
of an n-dimensional sequengg® with elements fromy as

A distortion-rate pair (D,R) is said to be achiev-
able if there exists a sequence ¢2"% n) codes with

limsup,, ., Egn (d(S", S")) < D. The distortion-rate func- m(yly™)
tion Dp,(R) of the sourcePs is the infimum of distortions
D such that(D, R) is achievable, and is given by [3], [4]

Dp.(R) & min Ps(s)Pz o(8]s)d(s, §).
Ps( ) e :1(S:8)<R Z ) S( ) s|s( | ) ( )
s18 s€8,3€8

L1l y =y forye .
Similarly, the empirical pmf of a pair ofi-dimensional se-
quencegy™,z") with elements from) x Z is defined as

ﬂ_(y72|yn’zn) £ % |Z : (yivzi) = (y72)| for (y,Z) € y X Z.
(1) Let Pyy = Py Pzy be a joint pmf on) x Z. The set of

For a sequence @™, n) codes and < R’ < R, we say that e-typical n-dimensional sequences w.rRy is defined as

almost every subset with cardinali’? satisfies a certain 7-(n) L fyn . ny _

property if the fraction of subsets with cardinaly®’ that TR B SO ") - @)l < ePr() Yy € 3

do not satisfy the property vanishes with and the set of jointly-typical n-dimensional sequences w.r.t.
In [5], Ziv proved that there exists a codebook with réte Py 7 is defined as

that asymptotically achieves the distortion-rate functia( R),

regardless of the underlying source distribution. His kesw (™) (Py ) £ {(y",z”) :

holds for any stationary source and even for a certain class

of nonstationary sources. Our main result, stated beloly, on(, ~|y" z7) — Py, (y, 2)| < ePyz(y, 2) V(y,2) € Y x Z}.
deals with i.i.d. sources with unknown distribution, and is B

hence less general than [5] in terms of the assumptions Mage 5|50 define the set of conditionathtypical n-dimensional

on the source’s distribution. However, it extends [5] in thgequences W.rPy 5, as

sense that the distortion attained by subsets, and nothjast t

full codebook, is shown to be universally optimal. R T (Py z]y™) & {Zn C (y",z") e T (pYZ)}_
Theorem 1:Let S be a DMS over the alphabef, S a

reconstruction alphabet, anfl : S x & — Rt a bounded The next statement follows from the definitions above [6].



Proposition 1:iLety™ € V™. For everyz" € T2 (Py z|y™) = 2~ (Y32)+3(e))
we havez" € 7" (Pz). If in addition, y" € 7;(,”)(Py), for

somee’ < ¢, then forn large enough whered(e) »> 0 fore — 0. m

|7;(n) (Pyzly™)| > (1 — E)zn(l—a)H(Z|Y)' IV. PROOF OFTHEOREM 1
Random codebook generatiobnet

Let PIZl denote the simplex containing all probability n
mass functions onZ. For everyd  PIZl, let Py(z) be QE") =/ _w(6) [] Po(s:)de,
the corresponding pmf evaluated at Let w(f) be some oeP!el =1
probability density function orP!Z!. We may now define the

. T where P!S! is the simplex containing all probability mass
mixture distribution@ as [7] p g P y

functions onS and w() is the uniform distribution on

" i PISl. Randomly and independently generate® sequences
Qz") = /0 piz| w(®) HP"(Zi)do' () s7(m), m e {1,2,...,27R}, each according t@(5"). These
© =1 sequence constitutes the full codebabk
The following propositions are proved in the appendix. A subset of the codebook, indexed Ly, R’), consists of
Proposition 2:Let Z" be a random-dimensional sequencean index sefZ c {1,2,...,2"F} with cardinality|Z| = 2%,

drawn according ta)(z") defined in (2). LetPyz be some ( < R’ < R, and the corresponding sequengegn), m < Z.
pmfon) x Z, and lety™ € 7;(,") (Py), for somee’ < e. For An arbitrary(Z, R') subset of is revealed to the encoder and

n large enough, we have the decoder.
Encoding: Given the source sequenc® and a subset
Pr (Z” € 7;(”>(Pyz|y")> (Z,R’) of C, the optimal encoder sends the index of the

codeword that achieves the minimal distortion, i.e., itdgen
> (1 —5)/ w(@)2~ AU 2)+D(Pz||Po)+2:H(ZIY)) gy Lo
oepl=] m* = argmin — Z d (s, (8™(m));) . 3)

. o m€eZl M
Proposition 3:Let P, be some distribution ifP!Z!. For ) ) ) o
any 0 < ¢ < 1/|Z%, there exists a subsat c PIZl with Note that the optimal encoder (3) is universal, i.e., it does

Lebesgue measueZ!~! on PIZI, such that for all’, ¢ v have to know the true underlying source pmf, and that such
knowledge can in no way improve its performance.

Decoding:Upon receiving the index:, the decoder simply
sets the reconstruction sequencesagn).

. . , ) Analysis:Let us define a quantized grid of rates[ih R)
Combining Proposition 2 and 3 yields the following Iemmavvalution i\ > 0

Lemma 1l:iLet Q(z") be as defined in (2), withy(9) taken
as the uniform distribution o!#!, and letZ" be a random Ra2{R; : Rj=j-A, j=1,...,|R/A]}.
n-dimensional sequence drawn accordingX@™). Let Py »
be some pmf ory x Z, and lety” e TE(/") (Py), for some
¢’ < e. Forn large enough, we have

1
D(Pz||Py) <log ————
(Pzll 9)_0g1_§|2|27

We further define a set of quantized distributions as follows
For0 < A <1 and0 < pmin < 1 define the set of points

A AN
whered(e) — 0 for e — 0. { — Lo Prin J
Proof. Let ¢|z| be the Lebesgue measure of the simgRx!. o (1 + A) tos(1+137) }
Clearly, we have thatv(d) = ¢, for 6 € PI#| andw(f) = S|

0 otherwise. Settingg = (1 — 27%)/|Z|? in Proposition 3 . o .
implies that there exists ; St 7);/\|3| |with volume ((1 — Our set of quantized distributions is denoted Bf‘pmm and
2-5)/|2[2)/Z1-1 such thatD(Pz||Py) < e for any Py € V. consists of all vectors in the simpleR!S! with at least

Combining this with Proposition 2 gives |S| — 1 components that belong tG p,, s|- Clearly, the
cardinality|73§;mm| of this set is a function of onlyS|, pmin
Pr <Z" e 7™ (Pyz|y")) and A. Moreover, for any pmfP; € PIS!I with the property
that minges Pyp(s) > (1 — A/|S|)pmin, there exists a pmf
>(1— 5)/ w(9)2 (U Y:2)+e+2eH(ZIY)) g9 Py € PEIPW such that|Py(s) — Py (s)| < APy (s) for all
oev s € §. To see this, construdby by quantizing all but the

1—¢ (1 - 2—a)z|—1 ()12 b2 H(ZIY ) greatest entry of% to the nearest point i ;.. |s| and set

¢z EE the remaining entry such that s Py (s) = 1.



Let PpmlL be the set of all probability mass functions 8n &(I,R) = {S” e 7im (Ps),
whose minimal mass is smaller thagin. We can partition the c

remaining part of the simplex as 5" (m) ¢ 7;(”)(P§SI|S”) for all m & I}, ©)
PP = U P
Psep!S! and A < & < e. Note that&; is independent ofZ and

that Pr(£;) — 0 asn — oo by the (weak) law of large
where the sets?(P;) c P!S| are disjoint and satisfy the numbers and the fact that < <’. The second error event does
property that for any?, € P(P,) we have|FPy(s) — Ps(s)] < depend oriZ. We will now show that its expected probability
APs(s) forall s € S. with respect to the ensemble of codeboBksPr(E>(Z, R')))

Let R" € Ra and Ps € P'S‘ . We will next show that vanishes for almost alt c {1,2,...,2"%} of cardinality
almost every codebook in our ensemble satisfies the propémﬁ
that almost every subset @'’ of its codewords achieves Leti{ be a random subset of indices drawn from the uniform
average distortion no greater thén, (R’ — ) with respect to distribution on all subsets ofl,...,2"%} with cardinality
all sources whose pmf belongs®{ Ps). Since|Ra |- |73f|pmm| 27 By the random symmetric generation process of the
does not increase with, there must exist a codebook thatodewords inC, the value ofEcy, (Pr (& U, R')) U = T)
S|multaneously satisfies this property for &l € Ro and depends on the index sétonly through its cardinalitg" .
Ps € P 7pmm. The theorem will then follow by takings — 0, We therefore have
o a bounded artogn measudg], < e (PrEU) = EuEeu (Pt R)L0)

Let R € Ra, Ps € 73 . and Pg € P(Ps). We upper  _ o Z Pl (s™)
bound the average d|stort|on ofa given suligetr’) of C over
the ensemble of codebooks and a DMS with pdf P;. To
that end, rather than analyzing the average d@stort@orinatlla_ Pr (gn(m) ¢ T n)(P Is™) for all m € U | L{) >
by the encoder (3), we analyze the average distortion atain $8
by the following suboptimal encoder. The suboptimal encode
first solves the minimization problem = Eu Z

sn 67;(/”) (Ps)

Pga(s")
sneT (" (Ps)

Pgls argmin Z PS(S)PS‘S(§|S)d(S,§),
Pays (58S 5o TT e (870m ¢ TRl ) )

and setsPé’? PSP§S as the target joint pmf. Then, given a o

source sequemﬁZ |t ooks forthe smallestindex € Z such = Z P (s") ( ( "(1) ¢ 7;”)(P S|S )))

that (s™,8"(m)) € 7 ( R’y and sends it to the decoder. If s1eT (Pg)

no such mdex is found, t%e smallest € Z is sent to the : @)

decoder. Note that this suboptimal encoder is not universal

as it requires knowledge oPs. Nevertheless, its averageBy Lemma 1 we have

distortion is by definition greater than that of the optimal n (n) [ DR |on —n(I(S:87 ) +5(e))

encoder which is universal, and will therefore indeed serve Pr (S (1) € 7.7 (Pggls )) 22 ’

as an upper bound on the distortion of the universal encod\% 1( R
Let S* be a random source drawn i.i.d. accordingg erel(S; 5

and defineS™ as the reconstruction obtained by applying the

) is the mutual information betwee$i and S
under the target joint meR This implies that

suboptimal encoder (and the decoder described above).eDefin gk’
the error event(Z, R') as (Pr (Q"(l) ¢ 7" (PE|s" )>)
E(T,R) 2 {(s",8" M (PE) forallmeT}. , i/
. %) {( ,87(m)) & T2 (Pyg) for all m € } < (1 _ 9-n(I(S;57 >+a<e>>)2
4) =

By the definition ofP;?i and the definition of the typical set, < exp {—2"(R/_I(S;SR )_6(6))} (8)
we have that if£(Z, R’) did not occur n(5—8(e)

<exp{-2 b 9

d(S™,8") < (1 +¢)Dpy (R —9), (5)

whereDp, (+) is the distortion-rate function (1) with respect t
Ps. Further, the error event satisfie&Z, R') C £,UE(Z, R),
where S\S

& ={s"¢ 7" (Ps)} Ecu (Pr(&2(U, R))) < exp {~270=50} - (10)

where (8) follows from the inequalityl — z)* < e~** which
%olds forz € [0,1], and (9) follows from the definition of
Combining (7) and (9) we have



Thus, for anyd > 0 we may take) < A < ¢’ < ¢ sufficiently where the last inequality follows from Proposition 1, and
small such thad(¢) < ¢ and (10) can be made arbitrary smalll

when increasing:. The proof is concluded by applying thel’ =

following arguments:
« By Markov’s inequality, (10) implies that for evedy
P(Ps) and almost every subs&t C {1,2,...,2"F#}
of cardinality 2"% the expectatiorc (Pr (&(Z, R')))
vanishes for large:.

every subsef C {1,2,...,2"%} of cardinality2"%" the perturbation set

probability Pr (£2(Z, R')) vanishes for large:.

o As discussed abov&r(£;) — 0 asn — oo for every 74/ —

(1—e)H(Z|Y)+ (1+¢) > Pz(2)log Ps(2)

z€EZ
—2eH(Z|Y) + (1 +¢) (H(Z]Y) = D(Pz||Py) — H(Z))
> —(1+¢)(I(Y; Z) + D(Pz||Py) + 2¢ H(Z[Y)) .

as desired.m

Proof of Proposition 3. Without loss of generality, we

« Applying Markov’s inequality again, this time with re-may assumez = {1,...,|Z|} and thatP;(1) < P(2) <
spect toC we see that almost all codebooks in the.. < p,(|z|). Note that under these assumptidig|Z|) <
ensemble satisfy that for evel;, € P(Ps) and almost Pz(|Z]) < 1, and Pz(|Z] — 1) < L. Let us define the

2

{(ul,...,u|z) 0 <y <€, fOf’iZl,...,|Z|—1

P{ € P(Ps), regardless of andC. By the union bound
Pr(E(Z,R")) < Pr(&) + Pr(&(Z, R')). We therefore
have that almost all codebooks in the ensemble satisfy
that for everyP; € P(Pg) and almost every subset
7 c {1,2,...,2"} of cardinality 2"%’ the probability and the seV = P, + 1/, where the sum is in the Minkowski
Pr(£(Z, R')) vanishes for large.. sense. Clearlyy ¢ P! for any 0 < ¢ < 1/|2|?, and its

« Since the distortion measurkis bounded, this together Lebesgue measure on the simplB¢! is |V| = ¢121-1. In
with (5) implies that almost all codebooks in the ensembbddition, for anyP, € V we have
satisfy that for everyP{ € P(Ps) and almost every

|Z2]-1

Uz =~ Z “}

=1

/ P,
subsetZ < {1,2,...,2"%} of cardinality 2% the D(Pz||Pp) = ZPZ(Z)IOg PZ((Z))
average distortion approachés+ ¢)Dp (R’ — §) asn 2€Z 012
increases. Pz(|12])
. Since|RA|-|Pfme| does not increase with, there must < Pz(|2])log Pz(|1Z)) - €(12] - 1)
exist a sequence of codebooks whose average distortion 1/|2|

approachegl + ¢)Dp, (R’ — ¢) for almost every subset < log (1/12]) = €(12] - 1)

7 c {1,2,...,2"%} of cardinality 2"%’, simultaneously 1
forall R" € Ra, Ps € Pﬂomm and P € P(Ps). < log T_¢ZF
o The theorem follows by taking — 0, pmn — 0 and
using the continuity of the functio® p. (R) with respect
to Ps and R for a bounded distortion measude8]. REFERENCES
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