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_ Abstract—Sampling above the Nyquist-rate is at the heart of for achieving a target mean-squared error (MSE) distortion
sigma-delta modulation, where the increase in sampling r& is  The input to the sigma-delta modulator is a signal sampled at
translated to a reduction in the overall (minimum mean-squaed- L times the Nyquist ratel{ > 1). This over-sampled signal

error) reconstruction distortion. This is attained by using a . . - - .
feedback filter at the encoder, in conjunction with a low-pas 'S then quantized using aR-bit quantizer, where the task

filter at the decoder. The goal of this work is to characterize Of exploiting the benefits of oversampling is performed by a
the optimal trade-off between the per-sample quantizationrate feedback filter whose role is to “push” the quantization aois

and the resulting mean-squared-error distortion, under vaious into high frequencies which are eventually filtered out a& th

restrictions on the feedback filter. To this end, we establis a dual- receiver, see Figure 1.

ity relation be.tween Fhe performance of sigma-delta modu]ﬁon, Anoth hni f . ith
and that of differential pulse-code modulation when appliel to _ A\NOther technique for compressing sources with memory
(discrete-time) band-limited inputs. As the optimal tradeoff for IS differential pulse-code modulation (DPCM). In DPCM, a
the latter scheme is fully understood, the full characteriation for  prediction filter is applied to the quantized signal. Thepont
sigma-delta modulation, as well as the optimal feedback fiérs,  of this filter is then subtracted from the source and the tésul
immediately follow. fed to the quantizer, see Figure 2. At the decoder, the czehti

|. INTRODUCTION signal is simply passed through the inverse of the predictio
- - filter.
Analog-to-digital (A/D) and digital-to-analog (D/A) con-. The connection between DPCM and sigma-delta modula-

vertors are an integral part of almost all electric deviaes |. . . .
use. Often, the same A/D (or D/A) component is applied &on, as two instances of predictive coding, was known from
) ! e outset. In fact, both paradigms emerged from two Bell-

a variety of signals with distinct characterizations. Fhist ;
reason, it is desirable to design the data-converter to lmesto Labs patents authored_ by C. C. Cutler in 1952 and .1954'
Nevertheless, the techniques used for the performancesasal

to the characteristics of its input signal. : . L
One assumption that cannot be avoided is knowledge of t?]feDPCM and S|gma-.delta modl_JIann are quite dlfferent._ One
lanation for the divergence in the analysis methodsas th

bandwidth of the signal to be converted (or at least an up cM developed dicti h ¢ tochast
bound on the bandwidth), which dictates the minimal sangplir. was developed as a prediction scheme for a stochastic
tﬂgnal, whereas sigma-delta modulation was originally in-

rate, according to Nyquist's Theorem. Beyond the bandwid ted . hapina techni imed at achievi
however, one would like to assume as little as possible abg[it'r€d as a noise-shaping technique aimed at achievinga mor
esirable noise spectrum, rather than reducing compressio

the input signal. A reasonable model for the input signal e H th h th th ¢ inent f
therefore astochasticone, where the input signal is assumeffic: MOWever, througn the years the most prominent use o
a-delta modulation has become reducing compresdien ra

to be a stationary Gaussian process with a given variance §t h hy . i ‘ o a4 ab
an arbitraryunknownpower spectral density (PSD) within the?! (N€ EXpENSE o InCreasing sampling raté, as discusse@.abo

assumed bandwidth, and zero otherwise. In this paper \ﬂiarly, one can pursue the same goal by applying the DPCM
' '_scheme to an over-sampled signal.

adopt thiscompoundmodel which is rich enough to include a .
wide variety of processes. The robustness requirement fromThe _performa_mce_z Of.DPCM under the a_ssumptlom@h-
the A/D (or D/A) convertor translates to requiring that i{esolutlonquantlzatlon is well understood since as early as the

induces a small average distortion simultaneously for id 6hOs. Underﬂtwms astsumlp}lon, the Pfed'c“on filter sldould
processes within our compound model. e chosen as the optimal linear minimum mean-squared-

Sigma-delta modulation is a widely used technique f&ror (MMSE) prediction filter of the source process from its

A/D as well as D/A conversion. The main advantage offer st[1], and the effect of the filtered quantization noise lba

by this type of modulation is the ability to trade-off theheglected in the prediction process. While in most casesavhe

; : . DPCM is traditionally used, the high resolution assumpton
sampling rate and the number of bits per sample requw\%g" justified, it totally breaks down for the class of band-
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for any distortion level and any stationary Gaussian squrcehe PSD of a continuous stationary process is defined in an
the DPCM architecture induces a rate-distortion optimat teanalogous manner.
channel, provided that the prediction filter is chosen as the
optimal filter for predicting the source from itginatized past ~ Assume X*2(¢) is a continuous stationary band-limited
and in addition water-filling pre- and post-filters are apgli Gaussian process with zero mean and variange whose
The analysis of [2], which takes into account the effect @ thPSD is zero for all frequencidg’| > fmax but is otherwise
guantization noise, can therefore be used to obtain thenapti unknown. The Nyquist sampling rate for this process figax
feedback filter and its corresponding performance for a DPCsamples per second. Since our focus here is on quantization
system applied to an over-sampled stationary Gaussiacesoupf over-sampled signals, we assume that> (¢) is sampled
Our main result, derived in Section Il, is that for overuniformly with rate of2L fnax samples per second for some
sampled band-limited stationary Gaussian processesgttte £ > 1. The obtained sampled proce$& >~} is therefore
channel induced by the sigma-delta modulator (Figure &)discrete stationary Gaussian process with zero mean and
achieves precisely the same rate-distortion function asdh variancec whose PSD is zero for alb ¢ [—x/L,w/L],
the DPCM test channel (Figure 2) with a Gaussian stationddyt is otherwise unknown. Our goal is to characterize the
input with the same variance, whose spectrum is flat withén tiiate-distortion trade-off obtained by a sigma-delta mathil
same frequency band. More specifically, for such processe®deled as the test channel from Figure 1, whose input is
for any choice o2y and prediction filterC(Z) in the test {X>“}. To that end, we establish an equivalence between the
channel of Figure 2, the same choice®fZ) together with performance obtained by this test channel for any statjonar
the choice band-limited Gaussian process with varianegé and the
o2 performance obtained by the test channel from Figure 2,
0%\ = =TT DPCM (1) which models a DPCM compression system, for a stationary
Lo [T1 11 = Clw)Pdw flat band-limited Gaussian process with variangg. The
in Figure 1, yields the same compression rate and the Sag%formance of the latter is now well understood [2], and, as
9 Y P we shall show, can be translated to a simple charactenratio

distortion. of the sigma-delta modulation performance
While this result is simple to derive, it has a very pleasing 9 P '

consequence. the pr_oblem of optimizing the f”@(Z_) in The test channels in Figure 1 and Figure 2 model a sigma-
Elgma-ctielta modulz?\tloln, tundebrl any fset tpf_c_onsi;]amtDsl’Dg@EIta modulator and a DPCM system, respectively, where in

€ cast as an equivalent problem of optimizing the “both systems the filte€(Z) is assumed strictly causal and
prediction f"t‘?r undgr the same set _Of_ constraints. Usingy guantizer was replaced by an AWGN channel. We analyze
results fr_om_lmear time-invariant pre(_1|ct|on theory, WaNnC e distortions attained by the test channels and the scalar
then easily find the optimal filter for sigma-delta mOdUIHt'omutual information (Uy.; U,, + N,,) between the input and

. . . . . - ns n n

_un?her lc_:tonsttralnts for which gn expllc![t sglu_non was Iag<'noutput of the additive white Gaussian noise (AWGN) channels
in the literatuire, or was cumbersome 1o cerve. embedded within the two test channels. The test channels in

F|na_IIy, In Sec_tlon Il we show tha_t the rate—d_lstort|ond_qa Figure 1 and Figure 2 do not immediately induce an output
off derived for 5|g_ma-delta modulation in Sect_lon I, whish distribution from which a random quantization codebookhwit
based on analyzing the test-channel from Figure 1, remajns. [(Up;U, + N,,) and MSE distortionD can be drawn

. . . . ny n n "
Yal'd for_a_S|gma—deIta modylator with a scalar unn‘(_)rm A/ ne reason for this is the sequential nature of the compres-
tizer of finite support. Applying such a scalar quantizeiunsc sion, which seems to conflict with the need of using high-
a constant additive rate pe.nalt_y, who;e PUrpose Is 10 ensyi e siong guantizers, as required for attaining a qaatitin
that an overload event, which jeopardizes the stabilitynef t o istributed agv,, with compression raté(U,,; U, + Ny, ).
system, occurs with _Iow_probablllty. Our treatment tagkm Fortunately, this difficulty, which is also present in dézis-
issue of .stablhty, Wh'.Ch IS treat.ed rather heur-lsucaﬂynl)uch feedback equalization for intersymbol interference cledgn
of the sigma-delta literature, in a systematic and rigosiro an be overcome with the help of an interleaver [2]-[4]
manner, and the trade-off between the rate penalty and e discussion in [5, Section 11.B]). Thus, the scalar rmltu

overload probability is analytically determined. informationI(U,,; U, + N,,) can indeed be interpreted as the
II. MAIN RESULT compression rate needed to achieve the distortion attained

by the test channels in Figure 1 and Figure 2. Moreover, in

Section Il we show thaf (U,,; U,, + N,,) is closely related to

the required quantization rate in a sigma-delta moduldtat t

applies auniform scalar quantizeof finite support.

For a discrete signafc, }, the Z-transformC(Z) and the
discrete-time Fourier transfordi(w) are defined in the usual
manner. For a discrete stationary procgss,} with zero-
mean and autocorrelation functioRx[k] = E(X,+xX,)

we define the power-spectral density (PSD) as the Fourierrhe proofs of the following two propositions are straight-
transform of the autocorrelation function forward and can be found in [5].

Sx(w) 2 Y Rx[kle 7*F. Proposition 1:For a Gaussian stationary procesk>2}
k=—o00 with variances% whose PSD is zero for alt ¢ [—/L, /L],
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Fig. 1. The test channel corresponding to the sigma-deltdutation architecture, with the sigma-delta quantizedaegd by an AWGN channel.
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Fig. 2. The test channel corresponding to the DPCM architectwith the DPCM quantizer replaced by an AWGN channel.

the test channel from Figure 1 achieves MSE distortion

2 1 7T/L 2
D=ots o [ = cfa

and its scalar mutual information satisfies
TUZUF + N3)

1 1 [" ;
= = log 1+—/ |C(w)|2dw+02—x .
2 2 J_, O$A

Proposition 2:For a Gaussian stationary procgssP”cM}
with variances% and PSD

Lok for lw| <7/L
S?(PCM(w):{ Ox w <7/ )

0 for /L < |w| <m’

the test channel from Figure 2 achieves MSE distortion

2 . - - . .
D = @ and its scalar mutual information satisfies

(UPPCM, [yDPCM | \yDPCM) _ %bg <1 N % /ﬁ

-7
Lo% 1 /L

2
Oppem 27T J _n/L

|C(w)[2dw

11— C(w)dw |.

Our main result now follows immediately from Propositions 1
and 2.

Theorem 1:Let {X>~} be a Gaussian stationary process
with variances% whose PSD is zero for alt ¢ [—7/L, /L],
let {XPPCM1 be a Gaussian stationary process with PSD as
in (2), and letC(Z) be a strictly causal filter. The test channel
from Figure 1 with

9 D

OxA = /L )
= [T = Cw)Pdw

and the test channel from Figure 2 witi}py = L - D both
achieve MSE distortioD and their scalar mutual information
satisfy

I(UEA’ UnEA _|_ NEA) — I(U,EPCM; U,EPCM _|_ N,EPCM)

1 1" ,
= §log <1+%/W|C(w)| dw

0% 1 /L 9
- — 1- dw |.
+ D 9 /W/L| C(w)| w>

This theorem indicates that for any stationary band-lichite
Gaussian process with varianee,, the sigma-delta test
channel from Figure 1 achieves precisely the same rate-
distortion trade-off as that of the DPCM test channel from

Remark 1:In Propositions 1 and 2 we derived tisealar %! ¢ ; ~V net |
mutual information between the input and output of thEigure 2 with a stationary flat band-limited Gaussian input
AWGN test channels embedded in Figures 1 and 2, respé‘ﬂth the same variance, provided that the AWGN variances
tively. As will become clear in Section I, the scalar mutua@r€ scaled according to (1). Thus, Theorem 1 provides a
information is closely related to the required quantizatiate Unified framework for analyzing the performance of sigma-
when a scalar memoryless quantizer is used within the signfig/ta modulation and DPCM. A great advantage afforded by
delta or DPCM modulator. In [2], [4], the directed infornaati such a unified framework, is that any result known for DPCM
was shown to be related to the required quantization ratewHen be translated to a corresponding result for sigma-delta
the quantizer is followed by an entropy coder. Here, we dgodulation, and vice versa. Theorems 2 and 3 below corestitut
not consider applying entropy coding to the quantizerpatt WO Important exampIEeAs of such results. _
as we require that the designed modulator be robust to thel heorem 23|59t {X, 7} be a Gaussian stationary process
statistics of the input process, whereas entropy codingilyea With variancesy. whose PSD is zero for alb ¢ [—n/L, /L]

relies on the statistics of the process. Furthermore, pytroAnd letC be a family of strictly causal filters. Define the
coding is undesirable in A/D converters. “virtual” process{S, } as a Gaussian stationary process with

PSD as in (2), and the “virtual” proce$$V,,} as a Gaussian

1All logarithms in this paper are taken with base i.i.d. random process statistically independent{6f,} with



varianceL - D, D > 0. Let Thus, the optimal predictor df,, from the past of S,, + W, }
o2 = min E (S, — cn * (Sn + Wn))2 is identical to the optimal predictor &f,, + W,, from its past

c(z)ec samples. Wher(C'(Z) is taken as the (unique) infinite order
C%(Z) = argminE (S, — ¢y * (Sn + Wn))2- optimal one-step pre_zdiction filter_ af,, + W,, from its past
c(z)ec samples, the prediction error variance is the entropy paker

If the filter C'(Z) in the sigma-delta test channel from Figure fhe procesqS,, + Wy} [10], which equals

belongs toC and the MSE distortion attained by this test o2\ VE
channel isD, then 227 JZ, loe(L-DASs(@)dw _ (1. D) (1 + %) . (6)
*2
I(UZA,UZA 4 NZ2) 2% log (1 + LUDD) . (3) Moreover, the infinite order prediction error
da
with equality if C(2Z) = C%(2). ENCS Sy + Wi — e # (Sp + Wa)

Theorem 2 states that for a target distortibn the sigma- s in this case a white process. This, together with (6) ig®li

delta filter which minimizes the required compression rat@at for the optimal unconstrained sigma-delta fit&iZ) we
is the optimal linear time-invariant MMSE estimator, withi must have

the class of constraints, for S,, from the past of the noisy o )
process{S,, + W, }. For example, ifC consists of all strictly ~ Sewes(w) = [1 = C(w)[" (L - D + Ss(w))

causal finite-impulse response (FIR) filters of lengththe o2 1/L

optimal filter C(Z) is the optimal predictor of5,, from the =(L-D) (1 + 3) , Ywe [-mm)  (7)
samples{S,_1 + Wy_1,...,Sn—p + W,_p}, which can be . ] _

easily calculated in closed-form. Combining (5), (6), and (7) yields the following theorem.

The optimal sigma-delta filter design problem was studied Theorem 3:Let {X**} be a Gaussian stationary process
by several authors, under various assumptions [6]-[9]. HoWith variancer, whose PSD is zero for alb ¢ [—7/L,m/L].
ever, to the best of our knowledge, the simple expressian frdf the test channel from Figure 1 attains MSE distortibn
Theorem 2 for the optimal filter as the optimal predictor dhen
S, from the past of S,, + W, } is novel.

Proof of Theorem 2. By Proposition 1, if the test channel

1 2
I{UZAUZR + NZ2) > o7 log (1 + ”—X) . (8)
from Figure 1 achieves MSE distortiaRl, we must have

D

with equality if and only if C(Z) is a strictly causal filter
02, = D , satisfying
1 pm/L 2
5= 77T/L|1—C(w)| dw o2\ ~(E-1/L .
By Theorem 1, the corresponding mutual information |1 _ c(.)? — (1 T we[-%. 7] (9)
I(UTA, U2 + NZ2) is equal to the mutual information (1+ %)”L wé[-T,1],

T(UPPCM. (7DPCM - \'DPCM) i the DPCM test channel from
Figure 2 with XPPM — g ~and NPPCM = 17, It is shown and

in [2], [5] that , D L-D
DPCM)2 OyA = L = —I-1/L"
(UDPEM, [7DPCM | \DPCM) _ llog <1 n E(Ug ) ) = _T/F/L 1 - C(w)]2dw (1 n i) (L-1)/
2 9DbpPcMm
and that Remark 2:The output of the test channel from Figure 1
UDPCM — YDPCM _ (. (XDPCM _ \yDPCM) (as well as that from Figure 2) is of the fortY>2 =

XZA 4 ETZA) where EX2 has zero mean and variandg,
Therefore, we have and is statistically independent of>2. This estimate can
I(UZA,USA  NZ&) be further improved by applying scalar MMSE estimation for
sA FRA : : :
B : E (S — cn % (S + Wi))? . Xn from X2, In thlls casedtg{he mu.tual_mforman(_)n from (8)
=5 log 1+ D . (4) |s_ further reduged to7 log (T) which is t.he optimal rate-
] ) ] _ . distortion function for a stationary Gaussian soufce>~}
It follows that among all filters inC, the filter that mini- yjth pSD as in (2). It follows that the sigma-delta test creinn
mizes (4) isC(Z), and that it attains (3) with equalitys  from Figure 1 withC(Z) ando2, as specified in Theorem 3

It is interesting to note [2] that sincgW,.} is an i.i.d. s minimax optimal for the class of all stationary Gaussian
process with variancé - D and C'(2) is strictly causal, the sorces with variance and PSD that equals zero for all

mutual information (4) can also be written as w ¢ [-r/L,n/L], i.e., no other system can achieve MSE
I(UEA; UEA + NEA) distortion D with a smaller compression rate, universally for
all sources in this class.
_ 1 E (Sp + Wy — ¢ % (Sp + Wi))? .
- 5 0g L-D ( ) °The existence of a strictly causal filtef'(Z) which satisfies (9) is
guaranteed by Wiener's spectral-factorization theorem.
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Fig. 3. A sigma-delta modulator with a dithered scalar umifauantizer.
I1l. SIGMA-DELTA MODULATION WITH A SCALAR The following theorem, whose proof can be found in [5],
UNIFORM QUANTIZER characterizes the trade-off between the distortion, qatidn

rate and overload probability achieved by the scalar sigma-

The sigma-delta modulation architecture is mainly usefbita modulator depicted in Figure 3 in terms of the scalar
for A/D and D/A conversion. In such applications, vectomytual information between the input and output of the
quantization is typically out of the question and simplelaca AWGN channel from Figure 1.
quantizers of finite support are used instead. For such Quant Theorem 4:Let D be the MSE distortion attained by the
ers, the quantization error is composed of two main facts [ test channel in Figure 1 with a filt€¥(Z) of finite length, and
granular errors that corresponds to the quantization error in(7=A. 734 4 N3A) the scalar mutual information between
the case where the input signal falls within the quantizeffe input and output of the AWGN channel in the same figure.
support, anaverload errorsthat correspond to the case whergq, any0 < P,, < 1 the scalar sigma-delta modulator from

the input signal falls outside the quantizer’s support. Buie  Figure 3 applied on a sequenceSfconsecutive source sam-
feedback loop, inherent to the sigma-delta modulator,rerrgjes with quantization rat& = I(UZAUZA+NZ2)4-6(Pyy)

of the latter kind, whose magnitude is not bounded, may haxgains MSE distortion smaller than

a disastrous effect as they jeopardize the system’s dtabili D(1 + 01(N))

order to avoid such errors, the support of the quantizer has 71,

to be large enough, which translates to a constraint on the 1= Po

guantizer rate. with probability greater than — P,;, whereo;(N) — 0 asN
We shall show that, given that overload errors did not occuncreases, and

the quantization noise can be modeled as an additive noise. 1 2 P,
Thus, the test channel from Figure 1 accurately predicts the 6(Por) £ 5 log (—g In 2]\7) :
total distortion incurred by a sigma-delta A/D (or D/A) inigh

case. Further, the overload probability can be controlled b REFERENCES
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