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Abstract—Sampling above the Nyquist-rate is at the heart of
sigma-delta modulation, where the increase in sampling rate is
translated to a reduction in the overall (minimum mean-squared-
error) reconstruction distortion. This is attained by using a
feedback filter at the encoder, in conjunction with a low-pass
filter at the decoder. The goal of this work is to characterize
the optimal trade-off between the per-sample quantizationrate
and the resulting mean-squared-error distortion, under various
restrictions on the feedback filter. To this end, we establish a dual-
ity relation between the performance of sigma-delta modulation,
and that of differential pulse-code modulation when applied to
(discrete-time) band-limited inputs. As the optimal trade-off for
the latter scheme is fully understood, the full characterization for
sigma-delta modulation, as well as the optimal feedback filters,
immediately follow.

I. I NTRODUCTION

Analog-to-digital (A/D) and digital-to-analog (D/A) con-
vertors are an integral part of almost all electric devices in
use. Often, the same A/D (or D/A) component is applied to
a variety of signals with distinct characterizations. For this
reason, it is desirable to design the data-converter to be robust
to the characteristics of its input signal.

One assumption that cannot be avoided is knowledge of the
bandwidth of the signal to be converted (or at least an upper
bound on the bandwidth), which dictates the minimal sampling
rate, according to Nyquist’s Theorem. Beyond the bandwidth,
however, one would like to assume as little as possible about
the input signal. A reasonable model for the input signal is
therefore astochasticone, where the input signal is assumed
to be a stationary Gaussian process with a given variance and
an arbitraryunknownpower spectral density (PSD) within the
assumed bandwidth, and zero otherwise. In this paper, we
adopt thiscompoundmodel which is rich enough to include a
wide variety of processes. The robustness requirement from
the A/D (or D/A) convertor translates to requiring that it
induces a small average distortion simultaneously for all
processes within our compound model.

Sigma-delta modulation is a widely used technique for
A/D as well as D/A conversion. The main advantage offered
by this type of modulation is the ability to trade-off the
sampling rate and the number of bits per sample required
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for achieving a target mean-squared error (MSE) distortion.
The input to the sigma-delta modulator is a signal sampled at
L times the Nyquist rate (L > 1). This over-sampled signal
is then quantized using anR-bit quantizer, where the task
of exploiting the benefits of oversampling is performed by a
feedback filter whose role is to “push” the quantization noise
into high frequencies which are eventually filtered out at the
receiver, see Figure 1.

Another technique for compressing sources with memory
is differential pulse-code modulation (DPCM). In DPCM, a
prediction filter is applied to the quantized signal. The output
of this filter is then subtracted from the source and the result is
fed to the quantizer, see Figure 2. At the decoder, the quantized
signal is simply passed through the inverse of the prediction
filter.

The connection between DPCM and sigma-delta modula-
tion, as two instances of predictive coding, was known from
the outset. In fact, both paradigms emerged from two Bell-
Labs patents authored by C. C. Cutler in 1952 and 1954.
Nevertheless, the techniques used for the performance analysis
of DPCM and sigma-delta modulation are quite different. One
explanation for the divergence in the analysis methods is that
DPCM was developed as a prediction scheme for a stochastic
signal, whereas sigma-delta modulation was originally in-
vented as a noise-shaping technique aimed at achieving a more
desirable noise spectrum, rather than reducing compression
rate. However, through the years the most prominent use of
sigma-delta modulation has become reducing compression rate
at the expense of increasing sampling rate, as discussed above.
Clearly, one can pursue the same goal by applying the DPCM
scheme to an over-sampled signal.

The performance of DPCM under the assumption ofhigh-
resolutionquantization is well understood since as early as the
mid 60’s. Under this assumption, the prediction filter should
be chosen as the optimal linear minimum mean-squared-
error (MMSE) prediction filter of the source process from its
past [1], and the effect of the filtered quantization noise can be
neglected in the prediction process. While in most cases where
DPCM is traditionally used, the high resolution assumptionis
well justified, it totally breaks down for the class of band-
limited processes, which includes the input signals to sigma-
delta modulators.

Fortunately, the high-resolution assumption in DPCM anal-
ysis has been overcome in [2], where it was shown that



for any distortion level and any stationary Gaussian source,
the DPCM architecture induces a rate-distortion optimal test
channel, provided that the prediction filter is chosen as the
optimal filter for predicting the source from itsqunatized past,
and in addition water-filling pre- and post-filters are applied.
The analysis of [2], which takes into account the effect of the
quantization noise, can therefore be used to obtain the optimal
feedback filter and its corresponding performance for a DPCM
system applied to an over-sampled stationary Gaussian source.

Our main result, derived in Section II, is that for over-
sampled band-limited stationary Gaussian processes, the test
channel induced by the sigma-delta modulator (Figure 1)
achieves precisely the same rate-distortion function as that of
the DPCM test channel (Figure 2) with a Gaussian stationary
input with the same variance, whose spectrum is flat within the
same frequency band. More specifically, for such processes,
for any choice ofσ2

DPCM and prediction filterC(Z) in the test
channel of Figure 2, the same choice ofC(Z) together with
the choice

σ2
Σ∆ =

σ2
DPCM

L · 1
2π

∫ π/L

−π/L |1− C(ω)|2dω
(1)

in Figure 1, yields the same compression rate and the same
distortion.

While this result is simple to derive, it has a very pleasing
consequence: the problem of optimizing the filterC(Z) in
sigma-delta modulation, under any set of constraints, can
be cast as an equivalent problem of optimizing the DPCM
prediction filter under the same set of constraints. Using
results from linear time-invariant prediction theory, we can
then easily find the optimal filter for sigma-delta modulation
under constraints for which an explicit solution was lacking
in the literature, or was cumbersome to derive.

Finally, in Section III we show that the rate-distortion trade-
off derived for sigma-delta modulation in Section II, whichis
based on analyzing the test-channel from Figure 1, remains
valid for a sigma-delta modulator with a scalar uniform quan-
tizer of finite support. Applying such a scalar quantizer incurs
a constant additive rate penalty, whose purpose is to ensure
that an overload event, which jeopardizes the stability of the
system, occurs with low probability. Our treatment tacklesthe
issue of stability, which is treated rather heuristically in much
of the sigma-delta literature, in a systematic and rigourous
manner, and the trade-off between the rate penalty and the
overload probability is analytically determined.

II. M AIN RESULT

For a discrete signal{cn}, theZ-transformC(Z) and the
discrete-time Fourier transformC(ω) are defined in the usual
manner. For a discrete stationary process{Xn} with zero-
mean and autocorrelation functionRX [k] , E(Xn+kXn)
we define the power-spectral density (PSD) as the Fourier
transform of the autocorrelation function

SX(ω) ,
∞
∑

k=−∞

RX [k]e−jωk.

The PSD of a continuous stationary process is defined in an
analogous manner.

AssumeXΣ∆(t) is a continuous stationary band-limited
Gaussian process with zero mean and varianceσ2

X , whose
PSD is zero for all frequencies|f | > fmax, but is otherwise
unknown. The Nyquist sampling rate for this process is2fmax

samples per second. Since our focus here is on quantization
of over-sampled signals, we assume thatXΣ∆(t) is sampled
uniformly with rate of2Lfmax samples per second for some
L > 1. The obtained sampled process{XΣ∆

n } is therefore
a discrete stationary Gaussian process with zero mean and
varianceσ2

X whose PSD is zero for allω /∈ [−π/L, π/L],
but is otherwise unknown. Our goal is to characterize the
rate-distortion trade-off obtained by a sigma-delta modulator,
modeled as the test channel from Figure 1, whose input is
{XΣ∆

n }. To that end, we establish an equivalence between the
performance obtained by this test channel for any stationary
band-limited Gaussian process with varianceσ2

X and the
performance obtained by the test channel from Figure 2,
which models a DPCM compression system, for a stationary
flat band-limited Gaussian process with varianceσ2

X . The
performance of the latter is now well understood [2], and, as
we shall show, can be translated to a simple characterization
of the sigma-delta modulation performance.

The test channels in Figure 1 and Figure 2 model a sigma-
delta modulator and a DPCM system, respectively, where in
both systems the filterC(Z) is assumed strictly causal and
the quantizer was replaced by an AWGN channel. We analyze
the distortions attained by the test channels and the scalar
mutual informationI(Un;Un + Nn) between the input and
output of the additive white Gaussian noise (AWGN) channels
embedded within the two test channels. The test channels in
Figure 1 and Figure 2 do not immediately induce an output
distribution from which a random quantization codebook with
rate I(Un;Un + Nn) and MSE distortionD can be drawn.
The reason for this is the sequential nature of the compres-
sion, which seems to conflict with the need of using high-
dimensional quantizers, as required for attaining a quantization
error distributed asNn with compression rateI(Un;Un+Nn).
Fortunately, this difficulty, which is also present in decision–
feedback equalization for intersymbol interference channels,
can be overcome with the help of an interleaver [2]–[4]
(see discussion in [5, Section II.B]). Thus, the scalar mutual
informationI(Un;Un +Nn) can indeed be interpreted as the
compression rate needed to achieve the distortion attained
by the test channels in Figure 1 and Figure 2. Moreover, in
Section III we show thatI(Un;Un+Nn) is closely related to
the required quantization rate in a sigma-delta modulator that
applies auniform scalar quantizerof finite support.

The proofs of the following two propositions are straight-
forward and can be found in [5].

Proposition 1: For a Gaussian stationary process{XΣ∆
n }

with varianceσ2
X whose PSD is zero for allω /∈ [−π/L, π/L],



XΣ∆
n Σ−

UΣ∆
n

NΣ∆
n ∼ N

(

0, σ2
Σ∆

)

UΣ∆
n +NΣ∆

n

H(ω)

Σ
−

NΣ∆
n

C(Z)
ω

1

− π
L

π
L

X̂Σ∆
n

Fig. 1. The test channel corresponding to the sigma-delta modulation architecture, with the sigma-delta quantizer replaced by an AWGN channel.
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Fig. 2. The test channel corresponding to the DPCM architecture, with the DPCM quantizer replaced by an AWGN channel.

the test channel from Figure 1 achieves MSE distortion

D = σ2
Σ∆ · 1

2π

∫ π/L

−π/L

|1− C(ω)|2dω,

and its scalar mutual information satisfies1

I(UΣ∆
n ;UΣ∆

n +NΣ∆
n )

=
1

2
log

(

1 +
1

2π

∫ π

−π

|C(ω)|2dω +
σ2
X

σ2
Σ∆

)

.

Proposition 2:For a Gaussian stationary process{XDPCM
n }

with varianceσ2
X and PSD

SDPCM
X (ω) =

{

Lσ2
X for |ω| ≤ π/L

0 for π/L < |ω| < π
, (2)

the test channel from Figure 2 achieves MSE distortion
D =

σ2

DPCM
L and its scalar mutual information satisfies

I(UDPCM
n ;UDPCM

n +NDPCM
n ) =

1

2
log

(

1 +
1

2π

∫ π

−π

|C(ω)|2dω

+
Lσ2

X

σ2
DPCM

1

2π

∫ π/L

−π/L

|1− C(ω)|2dω
)

.

Remark 1:In Propositions 1 and 2 we derived thescalar
mutual information between the input and output of the
AWGN test channels embedded in Figures 1 and 2, respec-
tively. As will become clear in Section III, the scalar mutual
information is closely related to the required quantization rate
when a scalar memoryless quantizer is used within the sigma-
delta or DPCM modulator. In [2], [4], the directed information
was shown to be related to the required quantization rate when
the quantizer is followed by an entropy coder. Here, we do
not consider applying entropy coding to the quantizer’s output
as we require that the designed modulator be robust to the
statistics of the input process, whereas entropy coding heavily
relies on the statistics of the process. Furthermore, entropy
coding is undesirable in A/D converters.

1All logarithms in this paper are taken with base2.

Our main result now follows immediately from Propositions 1
and 2.

Theorem 1:Let {XΣ∆
n } be a Gaussian stationary process

with varianceσ2
X whose PSD is zero for allω /∈ [−π/L, π/L],

let {XDPCM
n } be a Gaussian stationary process with PSD as

in (2), and letC(Z) be a strictly causal filter. The test channel
from Figure 1 with

σ2
Σ∆ =

D

1
2π

∫ π/L

−π/L
|1− C(ω)|2dω

,

and the test channel from Figure 2 withσ2
DPCM = L ·D both

achieve MSE distortionD and their scalar mutual information
satisfy

I(UΣ∆
n ;UΣ∆

n +NΣ∆
n ) = I(UDPCM

n ;UDPCM
n +NDPCM

n )

=
1

2
log

(

1 +
1

2π

∫ π

−π

|C(ω)|2dω

+
σ2
X

D

1

2π

∫ π/L

−π/L

|1− C(ω)|2dω
)

.

This theorem indicates that for any stationary band-limited
Gaussian process with varianceσ2

X , the sigma-delta test
channel from Figure 1 achieves precisely the same rate-
distortion trade-off as that of the DPCM test channel from
Figure 2 with a stationary flat band-limited Gaussian input
with the same variance, provided that the AWGN variances
are scaled according to (1). Thus, Theorem 1 provides a
unified framework for analyzing the performance of sigma-
delta modulation and DPCM. A great advantage afforded by
such a unified framework, is that any result known for DPCM
can be translated to a corresponding result for sigma-delta
modulation, and vice versa. Theorems 2 and 3 below constitute
two important examples of such results.

Theorem 2:Let {XΣ∆
n } be a Gaussian stationary process

with varianceσ2
X whose PSD is zero for allω /∈ [−π/L, π/L]

and let C be a family of strictly causal filters. Define the
“virtual” process{Sn} as a Gaussian stationary process with
PSD as in (2), and the “virtual” process{Wn} as a Gaussian
i.i.d. random process statistically independent of{Sn} with



varianceL ·D, D > 0. Let

σ∗2
D = min

C(Z)∈C

E (Sn − cn ∗ (Sn +Wn))
2

C∗
D(Z) = argmin

C(Z)∈C

E (Sn − cn ∗ (Sn +Wn))
2
.

If the filter C(Z) in the sigma-delta test channel from Figure 1
belongs toC and the MSE distortion attained by this test
channel isD, then

I(UΣ∆
n ;UΣ∆

n +NΣ∆
n ) ≥1

2
log

(

1 +
σ∗2
D

L ·D

)

, (3)

with equality if C(Z) = C∗
D(Z).

Theorem 2 states that for a target distortionD, the sigma-
delta filter which minimizes the required compression rate
is the optimal linear time-invariant MMSE estimator, within
the class of constraintsC, for Sn from the past of the noisy
process{Sn +Wn}. For example, ifC consists of all strictly
causal finite-impulse response (FIR) filters of lengthp, the
optimal filter C(Z) is the optimal predictor ofSn from the
samples{Sn−1 + Wn−1, . . . , Sn−p + Wn−p}, which can be
easily calculated in closed-form.

The optimal sigma-delta filter design problem was studied
by several authors, under various assumptions [6]–[9]. How-
ever, to the best of our knowledge, the simple expression from
Theorem 2 for the optimal filter as the optimal predictor of
Sn from the past of{Sn +Wn} is novel.
Proof of Theorem 2. By Proposition 1, if the test channel
from Figure 1 achieves MSE distortionD, we must have

σ2
Σ∆ =

D

1
2π

∫ π/L

−π/L |1− C(ω)|2dω
.

By Theorem 1, the corresponding mutual information
I(UΣ∆

n ;UΣ∆
n + NΣ∆

n ) is equal to the mutual information
I(UDPCM

n ;UDPCM
n + NDPCM

n ) in the DPCM test channel from
Figure 2 withXDPCM

n = Sn andNDPCM
n = Wn. It is shown

in [2], [5] that

I(UDPCM
n ;UDPCM

n +NDPCM
n ) =

1

2
log

(

1 +
E(UDPCM

n )2

σ2
DPCM

)

and that

UDPCM
n = XDPCM

n − cn ∗ (XDPCM
n +NDPCM

n ).

Therefore, we have

I(UΣ∆
n ;UΣ∆

n +NΣ∆
n )

=
1

2
log

(

1 +
E (Sn − cn ∗ (Sn +Wn))

2

L ·D

)

. (4)

It follows that among all filters inC, the filter that mini-
mizes (4) isC∗

D(Z), and that it attains (3) with equality.
It is interesting to note [2] that since{Wn} is an i.i.d.

process with varianceL · D andC(Z) is strictly causal, the
mutual information (4) can also be written as

I(UΣ∆
n ;UΣ∆

n +NΣ∆
n )

=
1

2
log

(

E (Sn +Wn − cn ∗ (Sn +Wn))
2

L ·D

)

. (5)

Thus, the optimal predictor ofSn from the past of{Sn+Wn}
is identical to the optimal predictor ofSn +Wn from its past
samples. WhenC(Z) is taken as the (unique) infinite order
optimal one-step prediction filter ofSn + Wn from its past
samples, the prediction error variance is the entropy powerof
the process{Sn +Wn} [10], which equals

2
1

2π

∫
π

−π
log(L·D+SS(ω))dω = (L ·D)

(

1 +
σ2
X

D

)1/L

. (6)

Moreover, the infinite order prediction error

Epred
n , Sn +Wn − cn ∗ (Sn +Wn)

is in this case a white process. This, together with (6) implies
that for the optimal unconstrained sigma-delta filterC(Z) we
must have

SEpred(ω) , |1− C(ω)|2 (L ·D + SS(ω))

= (L ·D)

(

1 +
σ2
X

D

)1/L

, ∀ω ∈ [−π, π) (7)

Combining (5), (6), and (7) yields the following theorem.
Theorem 3:Let {XΣ∆

n } be a Gaussian stationary process
with varianceσ2

X whose PSD is zero for allω /∈ [−π/L, π/L].
If the test channel from Figure 1 attains MSE distortionD,
then

I(UΣ∆
n ;UΣ∆

n +NΣ∆
n ) ≥ 1

2L
log

(

1 +
σ2
X

D

)

. (8)

with equality if and only ifC(Z) is a strictly causal filter
satisfying2

|1− C(ω)|2 =











(

1 +
σ2

X

D

)−(L−1)/L

ω ∈ [− π
L ,

π
L ]

(

1 +
σ2

X

D

)1/L

ω /∈ [− π
L ,

π
L ],

(9)

and

σ2
Σ∆ =

D

1
2π

∫ π/L

−π/L |1− C(ω)|2dω
=

L ·D
(

1 +
σ2

X

D

)−(L−1)/L
.

Remark 2:The output of the test channel from Figure 1
(as well as that from Figure 2) is of the form̂XΣ∆

n =
XΣ∆

n + EΣ∆
n , whereEΣ∆

n has zero mean and varianceD,
and is statistically independent ofXΣ∆

n . This estimate can
be further improved by applying scalar MMSE estimation for
XΣ∆

n from X̂Σ∆
n . In this case the mutual information from (8)

is further reduced to1
2L log

(

σ2

X

D

)

which is the optimal rate-

distortion function for a stationary Gaussian source{XΣ∆
n }

with PSD as in (2). It follows that the sigma-delta test channel
from Figure 1 withC(Z) andσ2

Σ∆ as specified in Theorem 3
is minimax optimal for the class of all stationary Gaussian
sources with varianceσ2

X and PSD that equals zero for all
ω /∈ [−π/L, π/L], i.e., no other system can achieve MSE
distortionD with a smaller compression rate, universally for
all sources in this class.

2The existence of a strictly causal filterC(Z) which satisfies (9) is
guaranteed by Wiener’s spectral-factorization theorem.
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Fig. 3. A sigma-delta modulator with a dithered scalar uniform quantizer.

III. S IGMA -DELTA MODULATION WITH A SCALAR

UNIFORM QUANTIZER

The sigma-delta modulation architecture is mainly used
for A/D and D/A conversion. In such applications, vector
quantization is typically out of the question and simple scalar
quantizers of finite support are used instead. For such quantiz-
ers, the quantization error is composed of two main factors [1]:
granular errors that corresponds to the quantization error in
the case where the input signal falls within the quantizer’s
support, andoverload errorsthat correspond to the case where
the input signal falls outside the quantizer’s support. Dueto the
feedback loop, inherent to the sigma-delta modulator, errors
of the latter kind, whose magnitude is not bounded, may have
a disastrous effect as they jeopardize the system’s stability. In
order to avoid such errors, the support of the quantizer has
to be large enough, which translates to a constraint on the
quantizer rate.

We shall show that, given that overload errors did not occur,
the quantization noise can be modeled as an additive noise.
Thus, the test channel from Figure 1 accurately predicts the
total distortion incurred by a sigma-delta A/D (or D/A) in this
case. Further, the overload probability can be controlled by
taking the quantization rate greater thanI(UΣ∆

n ;UΣ∆
n +NΣ∆

n ).
Let QR,σ2(·) be a uniform mid-riser quantizer [1] with

quantization step
√
12σ2 and2R quantization levels, such that

the quantizer support is[−Γ/2,Γ/2), whereΓ , 2R
√
12σ2.

Our goal is to analyze the distortion and overload probability
Pol attained by a sigma-delta modulator that uses aQR,σ2

Σ∆

(·)
quantizer, as a function ofR andσ2

Σ∆.
Clearly, if we employ the scalar sigma-delta modulator on a

long enough input sequence, an overload event will eventually
occur. As discussed above, the effects of overload errors can
be amplified due to the feedback loop, and in this case the
average MSE may significantly grow. We therefore split the
input sequence into finite blocks of lengthN , and initialize the
memory of the filterC(Z) with zeros before the beginning of
each new block. This makes sure that the effect of an overload
error in the original system is restricted to the block whereit
occurs.

The analysis is made much simpler by introducing a sub-
tractive dither [11]. Namely, let {Zn} be a sequence of
i.i.d. random variables uniformly distributed over the inter-
val [−

√

12σ2
Σ∆/2,

√

12σ2
Σ∆/2). In order to quantize a real

numberUn, we addZn to it before applying the quantizer,
and subtractZn afterwards, such that the obtained result is
QR,σ2

Σ∆

(Un + Zn)− Zn.

The following theorem, whose proof can be found in [5],
characterizes the trade-off between the distortion, quantization
rate and overload probability achieved by the scalar sigma-
delta modulator depicted in Figure 3 in terms of the scalar
mutual information between the input and output of the
AWGN channel from Figure 1.

Theorem 4:Let D be the MSE distortion attained by the
test channel in Figure 1 with a filterC(Z) of finite length, and
I(UΣ∆

n ;UΣ∆
n +NΣ∆

n ) the scalar mutual information between
the input and output of the AWGN channel in the same figure.
For any0 < Pol < 1 the scalar sigma-delta modulator from
Figure 3 applied on a sequence ofN consecutive source sam-
ples with quantization rateR = I(UΣ∆

n ;UΣ∆
n +NΣ∆

n )+δ(Pol)
attains MSE distortion smaller than

D(1 + o1(N))

1− Pol
,

with probability greater than1−Pol, whereo1(N) → 0 asN
increases, and

δ(Pol) ,
1

2
log

(

−2

3
ln

Pol

2N

)

.
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