Performance Analysis and Optimal Filter Design for
Sigma-Delta Modulation via Duality with DPCM

Or Ordentlich and Uri ErezZMember, IEEE

Abstract—Sampling above the Nyquist rate is at the heart of (or D/A) converter translates to requiring that it inducessraall
sigma-delta modulation, where the increase in sampling r&t is average distortion simultaneously for all processes withir
translated to a reduction in the overall (mean-squared-eror) compound model.

reconstruction distortion. This is attained by using a feetback . Lo . .

filter at the encoder, in conjunction with a low-pass filter at the Sigma-delta modulat|0_n IS a W'dely_ used technique for A/D
decoder. The goal of this work is to characterize the optimal as Well as D/A conversion. The main advantage offered by
trade-off between the per-sample quantization rate and thee- this type of modulation is the ability to trade-off the samgpl
sulting mean-squared-error distortion, under various redrictions  rate and the number of bits per sample required for achieving
on the feedback filter. To this end, we establish a duality reition target mean-squared error (MSE) distortion. The input to

between the performance of sigma-delta modulation, and tha th - delt dulator i . | ledati
of differential pulse-code modulation when applied to (disrete- '€ SigMma-adelta modulator 1S a signal sampledratimes

time) band-limited inputs. As the optimal trade-off for the the Nyquist rate & > 1). This over-sampled signal is then
latter scheme is fully understood, the full characterizaton for quantized using amiR-bit quantizer. In much of the literature

sigma-delta modulation, as well as the optimal feedback fétrs, about sigma-delta modulation, no stochastic model is asdum
immediately follow. for the input signal. However, when such a model is assumed,
the benefit of over-sampling can be easily understood from
basic rate-distortion theoretic principles: the (per-genrate
required to achieve distortio for the over-sampled signal
Analog-to-digital (A/D) and digital-to-analog (D/A) con-js 7, times smaller than the rate required to achieve the same
verters are essential in modern electronics. In many casgstiortion for the signal obtained by sampling at the Nytuis
it is the quality of these converters that constitutes thénmagate. Thus, in principle, increasing the sampling rate &hou
bottleneck in the system, and consequently, dictates tiseeng|iow one to use quantizers with lower resolution, which is
performance. On the other hand, as digital circuits are nQsirable in many applications.
considered relatively cheap to implement, the interface be However, the rate-distortion theoretical property thaargu
tween the analog and digital domains is often one of the megftees a constant product of the number of bits per sample
expensive components in the system. Developing A/D and Dffseded to achieve distortiaR, and the over-sampling ratio
components that are on the one hand relatively simple, apdjs only valid when a very long block of samples is vector-
on the other hand introduce little distortion, is therefofe quantized. In A/D and D/A conversion, vector-quantization
Interest. in high dimensions is a prohibitively complex operationdan
Often, the same A/D (or D/A) component is applied tQuantization is invariably done via scalar uniform quagtiz
a variety of signals with distinct characterizations. Foist Scalar quantizers alone cannot translate the increasenof sa
reason, it is desirable to design the data converter to bﬂ:stobp“ng rate to a Significant reduction in the necessary remu
to the characteristics of the input signal. One assumptigft fortunately this problem can be circumvented with the ai
that cannot be a.VOided iS the bandW|dth Of the Signal to mappropriate Signai processing_
converted, which dictates the minimal sampling rate, atioor  |n sigma-delta based converters, the quantization noise
to Nyquist's theorem. Beyond bandwidth, however, one would shaped using a causal shaping filter embedded within a
like to assume as little as possible about the input signal.ffedback loop, see Figure 1. The filter coefficients are ahose
reasonable model for the input signal is therefostarhastic jn 3 manner that ensures that most of the energy of the shaped
one, where the input signal is assumed to be a stationgfiyantization noise lies outside the frequency band ocdupje
Gaussian process with a given variance and an arbitrahe over-sampled signal. At the decoder, the quantizedabign
unknownpower spectral density (PSD) within the assumed |ow-pass filtered, cancelling out the high-frequenciethe
bandwidth, and zero otherwise. In this paper, we adopt thjgantization noise process without effecting the signaths
compoundmodel which is rich enough to include a widethat the decoder's output is composed of the original signal
variety of processes. The robustness requirement from tbe Aeorrupted by a low-pass noise process.

. _ Another technique for compressing sources with memory,
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quantized signal is simply passed through the inverse of thgma-delta feedback filtef'(Z), such as confining it to be
prediction filter. The well-known “DPCM error identity” [1] a finite impulse response (FIR) filter with a limited number
states that the output of the decoder is equal to the soudofetaps. For a given desired MSE distortion level, our goal
plus the quantization error, just like in simple non-prégiE is to find the constrained sigma-delta feedback filfqi7)
guantization. The benefit of using DPCM, however, is that thbhat minimizes the quantization rate w.r.t. all sourcesha t
signal fed to the quantizer is the error in predicting therseu compound class, and to characterize the attained rategdhls
from its quantizedpast, rather than the source itself. If thaes different than the one pursued in [14], where the optimal
coefficients of the prediction filter are chosen approplyate unconstrainedilters w.r.t. a known PSD were found.
the variance of this error should be smaller than the vagianc The problem of finding the optimalvV-tap FIR sigma-
of the original source, which translates to a reduction ia ttdelta feedback filtet”(Z) for a compound family of sources
number of bits required from the quantizer for achieving similar to ours, was considered in [6]. The optimal filter was
certain distortion. claimed in [6] to be theNth order MMSE prediction filter
The performance of DPCM under the assumption of higi*(Z) = (1 — Z~!)" of a bandpass stationary process from
resolution quantization is well understood since as easly s past, and for a fixed target MSE distortion the required
the mid 60’s [1]-[3]. Under this assumption, the predictioguantization rate was found to decrease linearly WithSuch
filter should be chosen as the optimal linear minimum meaas statement is obviously inaccurate, as it violates Shasno
squared-error (MMSE) prediction filter of the source pracesate-distortion theorem. The major drawback of [6] is that
from its past [1], and the effect of the filtered quantizatioin (implicitly) makes the high-resolution assumption tlhe
noise can be neglected in the prediction process. While st m@ariance of the quantizer’s input is solely dictated by tigét
cases where DPCM is traditionally used, the high resoluti@ignal {X,,}, whereas the contribution of the quantization
assumption is well justified, it totally breaks down for tHass noise to this variance can be neglected. As discussed above,
of band-limited processes, which includes the input sigt@l for over-sampled processes this assumption may not be valid
sigma-delta modulators. Indeed, the prediction error @hsueven when the quantizer’s resolution is very high. In patécg
a process from its infinite past has zero-variance, renderiosing the filterC(Z) = (1—Z~1)" from [6], the energy of the
the DPCM high-resolution rate-distortion formulas coniple  quantization noise within the frequency band occupied lgy th

useless. signal indeed decreases exponentially with However, the
_ _ noise’s energy outside this band increases rapidly wittand
A. Connection to Previous Work for any quantization resolution it will become much greater

The connection between DPCM and sigma-delta moduldan 0% for N large enough, making the high-resolution
tion, as two instances of predictive coding, was known fromssumption inapplicable. In this case, the dynamic range of
the outset. Indeed, both paradigms emerged from two Belhe quantizer will be exceeded and overload errors would
Labs patents authored by CC Cutler [4], [5] in 1952 and 195#equently occur.

In fact, by adding appropriate pre- and post-filters to the It therefore follows that in the analysis of sigma-delta
sigma-delta modulator, as depicted in Figure 3, the inpotodulators one should not make high-resolution assumgtion
to the quantizer, as well as the final reconstruction of thmit rather must take into account the effect of the filtered
signal, become identical to those in the DPCM architectdire quantization noise on the variance of the quantizer's input
Figure 2, see [6, Section I1], [7, Chapter 3.2.4]. Thus, ormg m Fortunately, in the analysis of DPCM modulators the high-
implement DPCM via either of the architectures of Figure Bsolution assumption has been overcome in [8]. It was shown
or Figure 3. that for any distortion level and any stationary Gaussian

However, an important aspect of our interest in sigma-dekaurce, the DPCM architecture induces a rate-distortion op
modulators as a means of data-conversion rather then dai@al test channel, provided that the prediction filter i®sén
compression, is that it dictates that the assumptions one @& the optimal filter for predicting the source fromdtsantized
make on the statistics of the input signal must be minimgast and in addition water-filling pre- and post-filters are
Consequently, we considerampoundclass of sources thatapplied. The analysis of [8], which takes into account the
consists of all stationary Gaussian processes with vagiafic effect of the quantization noise, can therefore be usedt@irob
whose PSD is limited to some predefined frequency bartfle optimal feedback filter and its corresponding perforcean
Unfortunately, for this compound class, DPCM is unsatisfafor a DPCM system applied to an over-sampled stationary
tory, as its performance depends not only on the variance a@dussian source. In this paper, we leverage the results[&pm
bandwidth, but rather, on the explicit form of the PSD. On th® the analysis of sigma-delta modulators, by establishing
other hand, for any choice @¥(Z), sigma-delta modulation, appropriate duality between the two architectures.
as depicted in Figure 1, attains the same performance for all
sources within the class. The duality result we establish,he
that the performance of sigma-delta modulationdny source
in the compound class is equal to that of DPCM designed forLet S be the compound class of all discrete-time stationary
a band-limited stationary process with a flat PSD. Gaussian sources with varianag and PSD that is zero for

Data converters often operate at very high rates, andalt w ¢ [—7/L,7/L], L > 1. Note that this class corresponds
therefore makes sense to impose various constraints on theiniformly sampling a compound class of continuous-time

B. Contributions



stationary Gaussian processes with variamgeand PSD that system, occurs with low probability. The stochastic model w
is zero for all|f| > fmax at @ sampling rate dL fmax Sam- assume for the input process allows us to tackle the issue of
ples/per second. LefXPP°Ml be a discrete-time stationarystability in a systematic and rigourous manner, and thestrad

Gaussian process with PSD off between the excess-rate and the overload probability is
Lo? for || < /L analytically det_ermined.
SOPCM(y) = 7x wism 7 1) Clearly, a sigma-delta modulator can only perform well
0 for m/L <|w| < if overload errors are rather rare. Our stability analysis i

Section Il is based on avoiding overload events w.h.p., and
DPCM '
and note thaf X"} € S. does not aim to consider the effect of such events on the

XOEuAr n}aln r(te;,ult, derived ('jn lses(g'ot?] “’t's tth?]t for aln_y grm:zsdistortion once they occur. In general, the overload proihab
{X,, %} from the compound clasS, the test channel induce of the scheme described in Section Il decreases double

by the sigma-delta modulator (Figure 1) achieves exacty tl@xponentially with the excess-rate of the quantizer wtiné
same rate-distortion function as that of the DPCM test Chhm}nutual information. Thus, taking an excess rate 1of- 2

(Figure 2) with input{X,"°"}. More specifically, for such iy sually yield a sufficiently low overload probajl
procr:]esses, for: any Th?'ce. Obecn anr(]j predlctlonhﬁ!terC(é) However, sigma-delta quantizers are often employed with a
In the test channel o Figure 2, the same choice(t) one-bit quantizer. In this case, the overload error prditgabi
together with the choice cannot be very low. Consequently, the designer would need to

2 oBpcm 5 guarantee that the effect of overload errors is local in tiamel
78 T I. % .W/I;L 11— O(w)|2dw @ does not drive the system out of stability. There are various
sy —T

restrictions one can place @(Z) in pursuit of the latter goal.

in Figure 1, yields the same compression rate and the saltee issue of maintaining stability when overload errors are

distortion. unavoidable is outside the scope of this paper. Nevertheles
While this result is simple to derive, it has a very pleasinge stress that our main result is of great relevance to this

consequence: the problem of optimizing the filt8(Z) in setting, as it shows that the filté¥(Z) should be chosen as

sigma-delta modulation w.r.t. any signal& under any set of the optimal MMSE prediction filter of X°PPM} from its noisy

constraints, can be cast as an equivalent problem of optigniz past under the stability ensuring restrictions.

the DPCM prediction filter w.r.t. inpu{ X°PPM} under the

same set of constraints. Furthermore, in Section II-A, we 1. MAIN RESULT

formalize a similar duality between DPCM and sigma-delta We begin by introducing some basic notation that will be

modulation for a frequency-weighted-mean-squared-elior o i the sequel. For a discrete sighal}, the Z-transform
tortion measure. In this casiy”™(w) is replaced with a PSD ¢ qofined as

that depends on the distortion’s weight function. ~

In principle, recasting the sigma-delta optimization peob c(z) 2 Z e Z-n

. . . . n b

as an MMSE prediction problem may be derived directly
from the formulas characterizing its performance, as given .
in Proposition 1. Nevertheless, establishing the equie and the Fourier transform as
between sigma-delta modulation and DPCM, in the specific
form described above, is insightful as it allows to borrow
known results from the literature about the latter.

Having recast the filter optimization problem for sigmatael For a discrete (real) stationary process,} with zero-mean
as that of optimal linear prediction, we can readily obtaia t @nd autocorrelation functioR x [k] £ E(X,1xX,,) we define
solution under constraints for which an explicit solutioasy the power-spectral density (PSD) as the Fourier transfdrm o

n=—oo

C(CU) 2 C(Z)|Z:ej“’ = Z Cne—jwn.

n=—oo

lacking in the literature, or was cumbersome to derive. ~ the autocorrelation function

One may question the relevance of the test channel of P ik
Figure 1 and its information-theoretic analysis to the ticad, Sx(w) = Z Rx[kle™".
resource limited, problem of A/D and D/A conversion via k==o00

sigma-delta modulators. To that end, in Section Il we replaThe PSD of a continuous stationary process is defined in an
the AWGN channel from Figure 1 with a simple scalar uniforranalogous manner.

(dithered) quantizer of finite support, which is suitable fo Assume X*2(t) is a continuous stationary band-limited
implementation within A/D and D/A converters. As long assaussian process with zero mean and variaricevhose PSD
overload does not occur, the effect of applying the scalerzero for all frequencieff| > fmax but otherwise unknown.
guantizer is equivalent to that of an additive noise chanffel The Nyquist sampling rate for this process2ifnax samples
show that the rate-distortion trade-off derived for sigdedta per second. Since our focus here is on quantization of over-
modulation in Section Il remains valid with high probalyilit sampled signals, we assume that* (¢) is sampled uniformly
with a constant additive excess-rate penalty for usingascaWith rate of 2L fnax Samples per second for somie > 1.
quantization. The purpose of this excess-rate is to ensdiiee obtained sampled proceg& >~} is therefore a discrete
that an overload event, which jeopardizes the stabilityhef t stationary Gaussian process with zero mean and variafice
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Fig. 1. The test channel corresponding to the sigma-deltdutation architecture, with the sigma-delta quantizelaegd by an AWGN channel. The input
is assumed to be over-sampled/atimes the Nyquist rate.
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Fig. 2. The test channel corresponding to the DPCM architectwith the DPCM quantizer replaced by an AWGN channel. ifipait is assumed to be
over-sampled af. times the Nyquist rate.
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Fig. 3. A test channel corresponding to the sigma-delta natidn with pre-filter1 — C(Z) and post-filter17é<z). This test-channel is equivalent to that
from Figure 2.

whose PSD is zero for alb ¢ [—n/L,n/L], but otherwise  The test channels in Figure 1 and Figure 2 do not imme-
unknown. Our goal is to characterize the rate-distortiadér diately induce an output distribution from which a random
off obtained by a sigma-delta modulator, modeled as the tegtantization codebook with rat&U,,; U,, + N,,) and MSE
channel from Figure 1, whose input {s{>4}. To that end, distortionD can be drawn. The reason for this is the sequential
we establish an equivalence between the performance eltainature of the compression, which seems to conflict with the
by this test channel for any stationary band-limited Gaussineed of using high-dimensional quantizers, as required for
process with variance?, and the performance obtained by thettaining a quantization error distributed &§ with compres-
test channel from Figure 2, which models a DPCM compresion ratel (U,; U,, + N,,). Fortunately, this difficulty, which is
sion system, for a stationafiat band-limited Gaussian processalso present in decision—feedback equalization for igtetmol
with variancec%. The performance of the latter is now wellinterference channels, can be overcome with the help of
understood [8], and, as we shall show, can be translatedato interleaver [8]-[10]. Thus, the scalar mutual inforroati
a simple characterization of the performance of sigmaadelf(U,,; U,, + N,,) can indeed be interpreted as the compression
modulation. rate needed to achieve the distortion attained by the test
First, we recall the derivation of the distortions attaineBhannels in Figure 1 and Figure 2. We elaborate further about
by the test channels from Figure 1 and Figure 2, arhis in subsection II-B. Moreover, in Section Ill we showtha
the scalar mutual informatiod (UZ2;U>2 + NZ2) and 1(Un;Un+ Ny) is closely related to the required quantization
I(UPPCM, [7DPCM 4 \DPCM) hetween the input and output offate in a sigma-delta modulator that appliearaform scalar
the additive white Gaussian noise (AWGN) channels embe@uantizerof finite support.
ded within the two test channels. We begin with the test channel in Figure 1, that corresponds



to sigma-delta modulation, with the sigma-delta quantizésllowing straightforward proposition characterizes trete
replaced by an AWGN channel with zero mean and varianeed distortion for any choice of the causal filt€%(Z) and
0% . The filter C(Z) is assumed to be strictly causal. any value ofo3pey.-

Proposition 1:For any Gaussian stationary process>} Proposition 2:For a Gaussian stationary procgssP”cM}
with variances% whose PSD is zero for al} ¢ [—7/L, /L], with variances? and PSD
the test channel from Figure 1 achieves MSE distortion

_UEAQ/ 1 - Clw)2dw,
—n/L

and its scalar mutual information satisfies

SOPCM() — Lo% for |w| <n/L 7 Ko
0 form/L < jw| <

the test channel from Figure 2 achieves MSE distortion

2
9bPcm
LUZ2 U7 + N72) D==
— ~log <1 4 %/ C(w) 2w + > > ~and its scalar mutual information satisfies
- TA 1 1 i
HUZPM UM 4 N2 — Lo (14 5 [ (P
™ —T
Proof. From Figure 1, we have that 5 /L
no T An T F N I5pem 27 J /L
and therefore
Proof. From Figure 2, we have that
UZA 4 NZA = XZ2 4 (5, — cp) % NZA, g
UDPCM XDPCM VDPCM (8)
where §,, is the discrete identity filter. Using the fact that DPCM DPCM DPCM DPCM
{X>A2} is a low-pass process, passing it through the filter & =Un +N tenxV, ©)
H(w) has no effect, and hence Substituting (8) in (9) yields
XEA = hy % (UZA + N2 V/DPCM _ DPCM__ \yDPCM (10)

_ XEA hn 671 —cp NEA' ] ]
no i ¢n) * N, Using the fact thaf XPPM1 is a low-pass process, as before,

The MSE distortion attained by the test channel from Figurevle obtain

is therefore XDPCM _ J, ., (XDPCM | yDPCM)

R 1 w/L n n n n

D=RE(X>2 - X322 =452, . o / / 11— C(w)|*dw. = XPPCM L 1« NDPCM, (11)

—n/L

Since { NPPCM} is AWGN with variancespcy,, the variance

The scalar mutual information between the “quantizer'gun . .
g BN o the filtered process,, x NOPMis o2,/ L. Thus,

UZA and output/>2 + N2 is given by

I(UZA,URA 4+ NZ2) = h(UP2 + NZ2) — h(NZ2)  (4) D = E(XDPPCM _ XDPCMy2 _ @
1 E(UZA)? . . .
=3 log < + Q) , (5) As in the analysis of the test channel from Figure 1, the scala
s

mutual information betwee®P”M and UPPCM - NDPCM g
where (4), as well as (5), follow from the statistical indepe given by
dence of N2 andU>A. Using (3), the variance dfi >4 is ) E(170POM)
DPCM., y7DPCM DPCMy __ n
E(UZ2)? = 0% + U%Ai /7T |C(w)]?dw. (6) TG0 N = 2 o (1 N TBpem > .
" 21 J_x (12)

Substituting (6) into (5) establishes the second part of thgw, substituting (10) in (8) gives
proposition. m DPCM __ DPCM DPCM

Next, we analyze the test channel in Figure 2, that cor- Un = (0 — ) * Xy, = Cn ok N
responds to DPCM compression with the DPCM quantizgfd the variance olf,, is therefore
replaced by an AWGN channel with zero mean and variance 1
odecm- As in the test channel of Figure 1, the filtél(Z)  E(UPPM)2 = / SOPEM(L) 1 — C(w)|?dw

is strictly causal. The distortion corresponding to thistte 27

channel, as well ag(UPPM; yDPPEM . NyDPCEM) "\yere already i 1 SDPCM( )|C(w)[?du

found in [8, Theorem 1] for the special case wWhétez) is 27 J_

the optimal MMSE infinite length prediction filter of ?PCM Lo% [/t oBecm [* )
from all past samples of the proceg&2PM 4+ NPPEM} ‘The = —— /_W/L 1 - C(w)[*dw + 21 o /_7r |C(w)|"dw.

1All logarithms in this paper are taken to bage (13)



Substituting (13) into (12) establishes the second parhef t Theorem 2:Let {X>2} be a Gaussian stationary process

proposition. m with variances?, whose PSD is zero for alb ¢ [—n/L,7/L]
Remark 11n propositions 1 and 2 we derived teealarmu- and letC be a family of strictly causal filters. Define the

tual information between the input and output of the AWGHNvirtual” process{S,,} as a Gaussian stationary process with

test channels embedded in Figures 1 and 2, respectively. BSD as in (7), and the “virtual” proce¢$V,,} as a Gaussian

will become clear in Section Ill, the scalar mutual inforinat i.i.d. random process statistically independent{6f,} with

is closely related to the required quantization rate whenvarianceL - D, D > 0. Let

scalar memoryless quantizer is used within the sigma-delta

or DPCM modulator. In [8], [10], the directed information o = CI(I%i)IéCE(Sn — n * (Sp + Wp))?
was shown to be related to the required quantization rate . . )
when the quantizer is followed by an entropy coder. Here, Cp(2) = Eg(gZI)ngE(Sn = Cn % (S + Wa))™.

we do not consider applying entropy coding to the quanszer’

output as we require that the designed modulator be robyshe filter C'(Z) in the sigma-delta test channel from Figure 1

to the statistics of the input process, whereas entropyngodhelongs toC and the MSE distortion attained by this test
is very sensitive to the process statistics. Moreover, & ththannel isD, then

design of an A/D (or D/A) is considered, the appropriate meri
for the modulator’s complexity is the number of quantizatio SA 7rRA say 1 o?
o : . : >

levels within the scalar quantizer, which are not reduced by LU U2 + N ™) 2 log | 1+ L-D)’ (14)
incorporating an entropy coder. _ o

Our main result now follows immediately from ProposiyvIth equality if C(Z) = Cp(Z).
tions 1 and 2. Theorem 2 states that for a target distortibn the sigma-

Theorem 11et { X2} be any Gaussian stationary procesdelta filter which minimizes the required compression rate
with variances whose PSD is zero for alb ¢ [—7 /L, 7/L], is the optimal linear time-invariant MMSE estimator, withi
let {XPPCM} be a flat low-pass Gaussian stationary procele class of constraint, for S5, from the past of the noisy
with PSD as in (7), and le€(Z) be a strictly causal filter. Process{S, + W,}. For example, ifC consists of all strictly

The test channel from Figure 1 with causal finite-impulse response (FIR) filters of lengththe
optimal filter C'(Z) is the optimal predictor of5,, from the
P D samples{S,,_1 + Wy _1,...,Sn—p + Wyr_p}, which can be
SA 1 /L _ 9 ’ . . .
5 ],,T/L [1 - C(w)|?dw easily calculated in closed-form.
) _ The optimal sigma-delta filter design problem was studied
and the test channel from Figure 2 with by several authors, under various assumptions [1], [6]]H11

[15]. However, to the best of our knowledge, the simple
expression from Theorem 2 for the optimal filter as the optima

both achieve MSE distortio® and their scalar mutual infor- Predictor of S, from the past of{S,, + W, } is novel. The

2
oppem = L - D,

mation satisfy references most relevant to Theorem 2, are perhaps [13]
and [14], [15]. In [13], Spang and Schultheiss formulated an
I(UZA, URA 4 NZA) = [(UPPCM, yDPCM | \yDPCM) optimization problem for finding the best FIR filter wiih
1 1 [T ) coefficients in a sigma-delta modulator with a scalar quanti
-3 log (1 Tor / [Cw)[dw under a fixed overload probability. Their optimization pieh
2 4 - /L can be solved numerically, but no closed form solution was
+ U_X_/ 11— C(w)|2dw). given. In [14] and [15] the design of an optimahconstrained
D2 J x/L sigma-delta filter was studied, under the assumption of a fixe

scalar quantizer which can only be scaled in order to control
This theorem indicates that for any stationary band-lichit¢he overload probability. Equations that characterize dpe

Gaussian process with Varian@§, the sigma-delta test chan-timal filter were derived. However, the obtained expression
nel from Figure 1 achieves exactly the same rate-distortiigually yield filters with an infinite number of taps, and do
trade-off as that of the DPCM test channel from Figure 120t provide the solution to the constrained problem. It goal
with a stationary flat band-limited Gaussian input with th#&orth mentioning that for the case of a stationary Gaussian
same variance, provided that the AWGN variances are sca@@cess{ X, } with L = 1 (sampling at the Nyquist rate)
according to (2). Thus, Theorem 1 provides a unified framand known PSD the optimal infinite length filter under the
work for analyzing the performance of sigma-delta modatati assumption of high-resolution quantization is known toaqu
and DPCM. A great advantage offered by such a unifidfle optimal prediction filter of{,, from its (clean) past [11].
framework, is that any result known for DPCM can be trané\s already mentioned in the introduction, the high-resotut
lated to a corresponding result for sigma-delta modulationl assumption never holds whdh> 1 and therefore this result
vice versa. Theorems 2 and Corollary 1 below constitute tvi® inapplicable for over-sampled signals.

important examples of such results. Proof of Theorem 2. By Proposition 1, if the test channel



from Figure 1 achieves MSE distortiall, we must have with equality if and only if C(Z) is a strictly causal filter

satisfying
EIN D (L-1)/L
SA T - . o —(L—
= [ - Ol , J(+% wel-%,1]
[1-Cw)” = e’ (20)
By Theorem 1, the corresponding mutual information 1+ %X) wé¢ -5 Fl
I(UTA,UZA + NZ2) is equal to the mutual information
T(UDPCM, JDPCM 4 \DPCM) i the DPCM test channel from @1
Figure 2 withXPPeM = g NPPCM — 1 andodpey = L-D. oA = D = LD
/L —(L-1)/L"
Thus, o [T 1 - C(w)Pdw (1+%) (E=1/
I(UEA UEA _|_ NEA) — I(UDPCM, UDPCM _|_ NDPCM)
2 Remark 2:Note that the existence of a strictly causal filter
= llog <1 + E (Sn an* (g" + W) ) , (15) C(Z) which satisfies (20) is guaranteed by Wiener’s spectral-
2 ’ factorization theory [16] due to the readily verified facath
where we have used (8), (10), and (12), to arrive at (15). It 9= JI log[1-C(w)|*dw _ |
follows that among all filters i€, the filter that minimizes (15) ) o
is C'%(Z), and that it attains (14) with equalitys The optimal filter induces a two-level frequency response fo

o . . . N |1 — C(w)|?. In [10] Dstergaard and Zamir used sigma-delta
It is interesting to note [8] that sincéiW,.} is an i.i.d. modulation to attain the optimal multiple-description erat
process with variancé - D and C'(Z) is strictly causal, the gistortion region. Interestingly, the optimal filték(Z) in their
mutual information (15) can also be written as scheme also induced a two-level response |for C(w)|2.
[(UEA, =4 4 NEA) We also note that the optimality of the unconstrained filter
n on n specified by (20) can be deduced as a special case of [14,
Loy [(E(Sn A Wa = co* (Su + Wo))? Section IV].
2 8 L-D ' Remark 3:Note that for the optimal unconstrained filter
(16) C(Z) specified by (20), the pre- and post-filters from Figure 3
) ) have no effect as long as the PSD of the input sidoaf~}
Thus, the optimal predictor o, from the past of S, +Wn} s zero for allw ¢ [~ /L, 7/L]. However, filters with a finite
is identical to the optimal predictor df,, + W, from its past nymbper of taps will never incur a flat frequency response in
samples. WherC'(Z) is taken as the (unique) infinite ordefine intervall— /L, 7 /L], and for such filters the systems from

optimal one-step prediction filter of,, + W, from its past Figure 1 and Figure 3 will not be equivalent.
samples, the prediction error variance is the entropy paker

the procesqS,, + W,,} [16], which equals

Remark 4:The output of the test channel from Figure 1
(as well as that from Figure 2) is of the forrJf(EA =
. o2\ VL XA + EXA, where EZ2 has zero mean and variand?,
237 J 7 loa(Ss(@)+L-D)dw _ (1. D) <1 + —X) (17) and is statistically independent of>2. This estimate can
D be further improved by applying scalar MMSE estimation for
Moreover, the infinite order prediction error XEA from XEA This boils down to producing the estimate

XZA = o XZA where

Egred 4 Sn + Wn — Cp * (Sn + Wn) 2

_ %%
is in this case a white process. This, together with (17) iespl @= 0%+ D’
that for the optimal unconstrained sigma-delta fittetZ) we Consequently, the obtained MSE distortion is reduced to
must have
D=FE(x5A X2A2_U§('D
Spwew) £ [1 = C@)|? (L- D + Ss(w)) SEXT e =50

2

1/L . . . . .
—(L-D) <1 N %{> Vwe-mr)  (18) It is straightforward to verify [17] that with this improvesnt,

the sigma-delta test channel from Figure 1 wit{Z) and
- . _ 2 . as specified in Corollary 1 attains
Combining (16), (17), and (18) yields the following corolla oza pectied y I ,
1
Corollary 1: Let {X>2} be a Gaussian stationary process LU URA 4+ VPR = oL log (%) ,
with variances% whose PSD is zero for alt ¢ [~ /L, 7/ L. o . . _ . .
If the test channel from Figure 1 attains MSE distortibn  Which is the optimal rate-distortion function for a staton

then Gaussian sourceX >4} with PSD as in (7). It follows that the
) sigma-delta test channel from Figure 1 wit{Z) ando% , as

I(UZAUPA + NZ2) > L log (1 + U_X) i (19) specified in Corollary 1 is minimax optimal for the class df al
2L D stationary Gaussian sources with variamée and PSD that



equals zero for allw ¢ [—«/L,w/L], i.e., no other system « It follows that the DPCM test channel for the process

can achieve MSE distortio with a smaller compression {S,} under MSE distortion is equivalent to the sigma-

rate, universally for all sources in this class. delta test channel with inpufX>2} under FWMSE
distortion, in the sense that in both channels if the atthine

A. Extension to Frequency-Weighted Mean Squared Error distortion is Drwmse (under the appropriate distortion
Distortion measure), then

In many applications, higher values of distortion are ac- I(UEA;UEA + N§A) = J(UPPCM. yDPCM  \yDPCM)
ceptable in certain frequency bands while smaller disiorti 9
is permitted in other bands. The MSE distortion measure is - llog 1+ E (Sn — cn * (Sn + Wa)) )
inadequate for such scenarios, and a commonly used distorti 2 L - Dewwse
measure, that (partially) captures such perceptual sffecthe g
frequency-weighted mean squared error (FWMSE) criterion.

Under this criterion, the d|st2rt|on 's measured as B. Sigma-Delta Modulation with an Interleaved Vector Quan-

DFWMSE é i P(w)SE(w)dw, (21) tizer

20 Jx The goal of this short subsection is to give the test channel
where P(w) is @ non-negative weight function, arttk;(w) is from Figure 1 an operational meaning, i.e., to show how
the PSD of the error proceds, 2 X>2 — X>2 Note that the AWGN from the figure can be replaced with a lossy
for P(w) = 1,Yw € [—7,w), the FWMSE criterion reducessource code of rateR = I(UX*;UX» + N>2) whose
to the MSE one. The next theorem shows that the constrairiedurred quantization noise is distributed A$~. As already
optimal sigma-delta filter under the FWMSE criterion is thenentioned, the key idea is to use an interleaver [8]-[10], as
optimal constrained prediction filter of a noisy processroafi we now recall.
according to the weight functiof(w). Assume that{X>2}, the input process to the sigma-

Theorem 3:Let {XZ4} be a Gaussian stationary proceselta modulator, has a decaying memory, such figt* is

with variances% whose PSD is zero for alt ¢ [—x/L, x/L), essenpally_ independent of all samples qf sufﬂuentlyah!;t
P(w) a weighting function which forms a valid PSD, add sampling times. In order to compress Ardimensional vector
a family of strictly causal filters. Define the “virtual” press <A _ [Xle, o 7X]§\J]A]7
{S,} as a Gaussian stationary process with PSD

) containingN consecutive samples of the procgss>>}, we
GEWMSE(,) — {LUXP(W) for lw| < =/L (22) first split it into K vectors

0 for m/L < |w| <7’
% = X0 i X, k=1,.. K,

and the “virtual” process{W,} as a Gaussian i.i.d. ran- N _
dom process statistically independent{s,} with variance WhereM = N/K. Now, we can applys parallel sigma-delta

L - Dpwmse, Dewmse > 0. Let modulators, one for each such vector, where the only qoguplin
v . ) between theK parallel systems is through the quantization
O Dewmse = CI(T%I)%CE(Sn — Cn * (Sn + Wh)) step, which is applied jointly on all of them, as depicted
) 9 in Figure 4. By our assumption thgtX>*} has decaying
Crt (Z) = argminE (S, — ¢, % (S, + Wy))". : : "
Drwwmise c(Z)ec notn n n memory, if M is large enough theK inputs that enter

. ) ) . the quantizerQ(-) = [@Q1(-),...,Qk(-)] are i.i.d. random
If the filter C'(Z) in the S|gma—del_ta test channel from Figure Lariables distributed a8~ from Figure 1. For large enough
belongs toC and the FWMSE distortion w.r.(w) attained  r; standard rate-distortion arguments imply that theretesis

Py s festehamnel Brmss 17 vector quantizer with raté(U;2; U2 + N72) that induces
1 oy quantization noise distributed &8§>2.
IUSA U + NP2 >Zog [ 14 —Dowmse )
2 L - Dewwmse

Ill. SIGMA-DELTA MODULATION WITH A SCALAR
with equality if C(Z) = Cp,_,,..(2)- UNIFORM QUANTIZER

Sketch of proof:. The proof is fairly similar to that of  The previous subsection showed how to replace the AWGN
Theorem 2. Thus, for brevity, we omit the full proof and onlyhannel in Figure 1 with a vector quantizer whose rate is
highlight its main steps: arbitrarily close toR = I(UZ*;U>» + N>*) and whose
« Repeat the derivation of Proposition 1 where now thieduced quantization noise is distributed 5§“. The inputs
MSE distortion is replaced by FWMSE distortion. Notdo the vector quantizer are vectors of i.i.d. Gaussian cempo
that this has no effect oh(U>2; UZA + NZA). nents. Thus, any “off-the-shelf” rate—distortion optinvaktor
« Repeat the derivation of Proposition 2 where the PSD gliantizer for an i.i.d. Gaussian source can be used. The tota
the input process is (22), rather than (7). Note that thisgma-delta compression system that is obtained is therefo
changesI (UPPCM, yPPEM 1 NDPEM) " hut has no effect simple in the sense that it only requires the vector quantize
on the attained distortion. to be good for quantizing an i.i.d. Gaussian source, which is
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Fig. 4. K parallel sigma-delta modulators coupled by Erdimensional quantize@(-).

a standard task, rather than requiring it to be a good quantiz Qr.o2(z)

for a band-limited Gaussian source. 3
However, the sigma-delta modulation architecture is nyainl

used for A/ID and D/A conversion. In such applications,

vector quantization is typically out of the question, and e 1

uniform scalar quantizers of finite support are used. Fohsuc ; ; ; ; x

guantizers, the quantization error is composed of two main —4 —2 0 2 4

factors [1]:granular errorsthat correspond to the quantization

error in the case where the input signal falls within the

guantizer's support, andverload errorsthat correspond to

the case where the input signal falls outside the quansizer’

support. Due to the feedback loop, inherent to the sigmidel _ _

modulator, errors of the latter kind, whose magnitude is nb- 5 An illustration ofQ ;2() for & =2 ando® = 1/3.

bounded, may have a disastrous effect as they jeopardize the

system’s stability. In order to avoid such errors, the suppb

. ; learly, if we employ the scalar sigma-delta modulator on a
the quantizer has to be chosen appropriately. As the suppar . ;
. . . . -+ rlong enough input sequence, an overload event will evelgtual
of the quantizer determines its rate for a given quantimatio

. » occur. As discussed above, the effects of overload errars ca
resolution, the overload probability can be controlled bg o . X
increasing the quantization rate e amplified due to f[he_ feedback loop, and in this case the

' average MSE may significantly grow. We therefore split the

We shall show that, given that overload errors did not Occqﬁgut sequence into finite blocks of lengih and initialize the

the quantization noise can be modeled as an additive no'guemory of the filterC/(Z) with zeros before the beginning of

Thus, _the test _channel from I_:igure 1 accurately predipts 88ch new block. This makes sure that the effect of an overload
total distortion incurred by a 5|gma-delt_a_\ A/_D (or D/A) ingh error in the original system is restricted to the block whiere
case. Moreover, the overload probability is a doubly eXPQecurs

i i i SA. A SA
nentially decreasing function i — I(U;*; U™ + N;™), The analysis is made much simpler by introducing a sub-

where 2% are the number of levels in the scalar quantizeﬁ’active dither [17]. Namely, let {Z,} be a sequence of
Thus, fixing the desired overload error probability &3, we i.i.d. random variables uniformly distributed over theeintal

may achieve the MSE distortion predicted by the test channel 5 5 YA

from Figure 1 (characterized in Proposition 1) with a scal rd(\j/;%tEA_ﬁ; \f/12UZA/|2)_' lnthorder tot_quannz(;%Un o W‘:
tizer whose rate US> U5 + N5) 1 5(Py). where » 10 it before applying the quantizer, and subtrag]

quan noVn n ot/ afterwards, such that the obtained resulJg .z (U2 +

0(Po) = 0O (IOglog (P% . Z,) — Z,. Adding and subtractind/>2, we getU>* +
Let Qg 2(-) be a uniform quantizer with quantization ste Qroz (USA 4+ 2,) — (USA + Zn)), and the quantization

V1202 and 2% quantization levels, such that the quantizet, o is therefore

support is[-T'/2,T'/2), wherel" £ 271/1252, see Figure 5.

Our goal is to analyze the distortion and overload probigbili N, & QR_,U%A(U,LEA +Z,) — (UEA +Zn) (23)

attained by a sigma-delta modulator that use@@o_h(-)

quantizer, as a function a® ando?,.

The main result in this section is the following.
Theorem 4:Let D be the MSE distortion attained by the
ohe _ _ . test channel in Figure 1 with a filt€?(Z) of finite length, and
As discussed in Section I-B, one can try to limit the effectostrload SA. [JSA | NZAY th | Linf ion b
errors by placing various constraints 6 7). Here, we restrict attention to I(U@ ;Up'™ + N;2) the scalar mutual in O_rmatlon etw_een
controlling the overload probability. the input and output of the AWGN channel in the same figure.



10

Zn
| H(w)

UZA + l - l UEA NZA 1 N
xX=A @ n @ Qn.z () @ n_ T L XA
T &) 8 —I:I—»,r —

T T
¢4 NEA\E/

Fig. 6. A sigma-delta modulator with a dithered scalar umifoquantizer. The input is assumed to be over-samplefl aines the Nyquist rate, and the
dither sequencd Z,,} is assumed to be an i.i.d. sequence of random variablesroyfadistributed over the interva[—1 /1202 5 /2, 4 /120’%A/2> and
statistically independenfX >4 1.

For any0 < P, < 1 the scalar sigma-delta modulator fronthe intervall—\/1202 , /2, /1202 , /2), statistically indepen-
Figure 6 applied on a sequencefconsecutive source sam-dent of { X>2}. Note thatN,, has zero mean and variance
ples with quantization rat® = I (UZ2; UTA+NZ2)+6(P,;) o%,. Following this reasoning, the reference sigma-delta

attains MSE distortion smaller than data converter depicted in Figure 6 (with an infinite-suppor
D(1+4 on(1)) quantizer) is equivalent to the test channel from Figure 1
—1_p, with N2 ~ Uniform ([~ /1203 5 /2, 1/120% /2) ) instead

given that overload did not occur. In addition, the overlog@f Ny® ~ N (0,0%,). Thus, the average MSE distortion
probability is smaller thanP,;, where oy (1) — 0 as N attained by the reference scalar sigma-delta modulaten fro

increases, and Figure 6 is as given in Proposition 1 up to a multiplicative
1 5 p factor of1+ox (1) that accounts for edge effects. These effects

5(Py) £ = log (—— In "l) ) (24) are the by-product of the operation of nulling the filter meyno
2 3 2N at the beginning of each new block, which incurs temporal

Proof. Let sz(x) be the operation of rounding to the Nnon-stationarities. In particular, if the filte¥(Z) hasL taps,

nearest point in the (infinite) lattice/1202Z. It is easy to then only afterl. samples within the block the statistics of
verify that for anyz € [-TI'/2,T'/2) we have the procesgU>>} will converge to its stationary distribution.
’ However, if the block length is sufficiently large w.r.t. tfiker

Qo) = O n V1202 ) V1202 (25) length and the inverse of the MSE distortion, the influence of
R,o2\T) = /150y | T 2 2 these effects vanishes.

Next, we turn to analyze the probability that an overload
error occurs within a block of lengthv, as a function ofR
andI(UZ4;UXA+N>%). Since this event is equivalent to the

Applying (23) therefore yields that if overload did not occu
in the nth sample, i.e., fU>2 + Z,| < T'/2, we have

N, =0 USA 4 7+ /302 event that aF the refgrence _sy_stem some i.nput '.[0 the quantize
Qv 12032 ( " zA exceedd’/2 in magnitude within the block, it suffices to upper
SA 5 bound the probability of the latter event.
—\US +Z, + /3054 |- (26) .
Assume the reference scalar sigma-delta modulator from

Dealing with the overload event of the quantizer directly i§igure 6 is applied to a vector™® = [XT2,... X34 of
rather involved. Instead, as done in [18], we first consider/ consecutive samples of the proce§¥,;*}, where the
reference systemith an infinite-support quantizef = o) Memory of theAfllterC(Z) is initialized with zeros. Define

. ) : a A A
and analyze its performance. If the magnitude of the inplit¢ €vent Ok = {lUg= + N2 > I'/2} and the event
to the infinite-support quantizer never excedd& within OL = Uy OL. By the union bound, we have
the processed block, then clearly the reference system is
completely equivalent to the original system within thisdX. N
Thus, it suffices to find the average distortion of the refeeen P, 2 Pr(OL) < Zpr (OLy). 27)
system and the probability that the input to its quantizer 1
exceedd"/2 within a block. In what follows we will therefore
assume that the quantization noise is given by (26) regssdle
of whether or notU>» + Z,| < I'/2, and account for the  The random variablé/>2 + NZ2 = X7 + (0k — i) *
overload probability later. NZA is a linear combination of a Gaussian random variable

Assuming that the dither sequendeZ,,} is drawn sta- X;*® and statistically independent uniform random variables
tistically independent of the processX>“}, the Crypto {N2}. In [19, Lemma 4] the probability that a random
Lemma, see, e.g. [17, Lemma 4.1.1], implies that,} is an variable of this type exceeds a certain threshold was balinde
i.i.d. sequence of random variables uniformly distributeer in terms of its variance. Applying this bound &°~ + N2
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yields probability smaller thar2N exp —5225 . Thus, Proposi-

B r’ } tion 1 characterizes the rate-distortion” tradeoff actdebg
SE(UZA + NP2)2 | the scalar sigma-delta system up to the aforementionedrfact

1902 2R and a constant rate penaly(P,;), that depends on the
= 2exp {— SA QEA ST, } , target overload error probability. To be more precise, foy a

8 (E(Uk )? +E(N2) ) 0 < P,; < 1, taking the rate penalty as in (24) guarantees that

where in the last equality we have used the definitioi’of the overload error probability is smaller tha;,. m
and the fact that/;2 and N> are statistically independent.
Equivalently, we may write

Pr (|U,€ZA + NP2 > I‘/2> < 2exp{
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