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Abstract—Integer-forcing receivers generalize traditional lin-
ear receivers for the multiple-input multiple-output channel by
decoding integer-linear combinations of the transmitted streams,
rather then the streams themselves. Previous works have shown
that the additional degree of freedom in choosing the integer
coefficients enables this receiver to approach the performance of
maximum-likelihood decoding in various scenarios. Nonetheless,
even for the optimal choice of integer coefficients, the addi-
tive noise at the equalizer’s output is still correlated. In this
work we study a variant of integer-forcing, termed successive
integer-forcing, that exploits these noise correlations to improve
performance. This scheme is the integer-forcing counterpart
of successive interference cancellation for traditional linear re-
ceivers. Similarly to the latter, we show that successive integer-
forcing is capacity achieving when it is possible to optimize
the rate allocation to the different streams. In comparison
to standard successive interference cancellation receivers, the

successive integer-forcing receiver offers more possibilities for
capacity achieving rate tuples, and in particular, ones that are
more balanced.

I. INTRODUCTION

The integer-forcing (IF) linear receiver architecture, pro-

posed in [1], provides an alternative to standard linear receivers

for the Gaussian multiple-input multiple-output (MIMO) chan-

nel. Classical architectures, such as zero-forcing (ZF) and

linear minimum mean-squared error (MMSE) receivers, first

equalize the channel to the identity matrix I and then decode

each data stream separately via single-user decoders. While

this reduces the implementation complexity (as compared to

jointly decoding the data streams), it comes at the cost of

a significant rate loss. This is due to the fact that, after

equalization, the total noise power is spread unevenly across

data streams. If there is no channel state information at the

transmitter (CSIT), it is not possible to allocate rates to

compensate for this noise perturbation. The main advantage of

the IF receiver over classical linear receivers is that it has the

freedom to equalize the channel to any full-rank integer-valued

matrix A. This helps the receiver reduce the correlations

between the noises experienced by each of its single-user

decoders, and balance the noise power across them. Using the
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compute-and-forward strategy [2], each of these decoders then

recovers an integer-linear combination of the data streams.

Finally, the resulting noise-free linear combinations are solved

for the desired data streams. We note that the complexity of

the IF receiver is comparable1 to that of a classical ZF or

linear MMSE receiver.

Recent work [3] has shown that the IF receiver can attain the

capacity of the Gaussian MIMO channel to within a constant

number of bits in an open-loop scenario (no CSIT), provided

that an appropriate universal linear precoding operation is

applied at the transmitter. Moreover, even without precoding

at the transmitter, it is shown in [3] that for almost every

channel matrix the IF receiver attains the total degrees-of-

freedom (DoF) offered by the channel, even when the number

of receive antennas is smaller than the number of transmit

antennas and is unknown at the transmitter. This is in sharp

contrast to standard linear receivers that cannot achieve any

DoF in such scenarios. As an example consider the M -user

Gaussian multiple-access channel (MAC) where each user

is equipped with one transmit antenna and the receiver is

also equipped with a single antenna. Obviously, applying the

linear MMSE equalizer on the channel’s output would result

in highly suboptimal performance, as there are not enough

observations to separate the transmitted signals at the receiver.

With IF equalization, on the other hand, the ratios between

the individual rates achieved by each user and the symmetric

capacity tend to one for almost all channel gains as the signal-

to-noise ratio (SNR) increases [4].

Beyond its role as a low-complexity receiver architecture,

IF also has several theoretical advantages. In particular, IF

equalization exploits the closure of linear/lattice codebooks

w.r.t. integer-linear combinations. In the last decade, lattice

codes were found to play a key role in characterizing the

fundamental limits of certain communication networks, see

e.g. [2], [4]–[8]. A common feature of several of these lattice-

based coding schemes is that, from the perspective of each

receiver, they induce effective multiple-access channels with a

reduced number of users, all of which employ the same lattice

codebook. The achievable rates for a MAC where all users use

the same lattice codebook is difficult to analyze [9], but can

1The additional complexity comes from computing the target integer-valued
matrix A. This is required only once per coherence interval, meaning that the
added complexity is negligible for long coherence times.



be lower bounded by the rates attained via the IF receiver [4].

The performance of standard linear receivers can be im-

proved using successive interference cancelation (SIC). The

key idea is to use decoded streams to improve the channel

quality for decoding subsequent streams. In this paper, we

develop and analyze an analogous scheme for IF, dubbed suc-

cessive integer-forcing. That is, the receiver will use decoded

linear combinations in order to improve the channel quality

for decoding the remaining linear combinations. The idea of

applying SIC to IF has been partially explored in the literature.

In [10], a successive decoding procedure was developed for

the IF receiver in the setting where the number of receive

antennas is at least as high as the number of transmit antennas.

However, the optimal filter design was not found, meaning

that the obtained achievable rates are suboptimal. In [11], a

successive procedure was developed for decoding two linear

combinations over an M -user Gaussian MAC. The optimal

filters and the highest achievable rates were found for this

scenario.

The contribution of the present work is a successive IF

scheme that is suitable for any number of transmit and receive

antennas, and any number of desired linear combinations.

Through standard linear filtering theory, we derive closed-

form expressions for the optimal filters and characterize the

corresponding achievable rates. We also show that the optimal

integer coefficients for successive IF can be obtained using

Korkin-Zolotarev lattice basis reduction. Thus, in contrast to

standard IF, the optimal integer-valued matrix A (in terms of

achievable rate) for successive IF is always unimodular.

The IF scheme is most advantageous in an open-loop

scenario where the transmitter does not know the channel

gains. In this case, it does not know how to allocate rates to the

different streams, and therefore a single codebook is usually

used for encoding each of the transmitted streams. However,

as mentioned above, the IF scheme is also of theoretical

interest in the context of network communication problems,

where it is commonly assumed that all transmitters know all

channel gains. In this case, the rates of the different streams

transmitted in the IF scheme can be appropriately allocated.

We show that with a judicious rate allocation, under several

technical conditions, successive IF can achieve rate tuples

whose sum equals the channel’s multiple-access sum-capacity.

While this property is shared with the standard MMSE-SIC

equalizer [12], successive IF equalization achieves additional

sum-rate optimal rate tuples that are not attained by MMSE-

SIC equalization without rate-splitting or time-sharing. These

rate tuples lie closer to the symmetric capacity than those

attained by the MMSE-SIC equalizer.

II. PRELIMINARIES

In this section, we review some key results that will be use-

ful in our derivation of the successive IF receiver. Throughout

the paper, lowercase boldface variables will refer to column or

row vectors (e.g., x ∈ R
n×1 or x ∈ R

1×n). In general, we use

row vectors for vectors whose entries correspond to different

time indices and column vectors for vectors whose entries

correspond to different spatial indices. Uppercase boldface

variables will refer to matrices (e.g., X ∈ R
M×n). For a given

matrix X, we denote its transpose by XT and its Forbenius

norm as ‖X‖F . We denote the identity matrix by I where the

dimensions will be clear from the context. All logarithms are

taken to base 2 and rates are measured in bits per channel use.

We will focus on the real-valued Gaussian multiple-input

multiple-output (MIMO) channel with M transmit and N
receive antennas. The channel output is given by

Y = HX + Z (1)

where H ∈ R
N×M is the channel matrix, X ∈ R

M×n is the

channel input across the M transmit antennas over n channel

uses, and Z ∈ R
N×n is additive noise that is elementwise

i.i.d. Gaussian with zero mean and unit variance. The channel

input is subject to the power constraint

1

n
E‖X‖2

F ≤ M · SNR .

Remark 1: Following the steps in [2, Appendix C], we can

show that our results also hold under a strict power constraint
1
n
‖X‖2

F ≤ M · SNR.

Remark 2: All of our results can be immediately extended

to M × N complex-valued MIMO channels by expressing

these channels in terms of their 2M ×2N real-valued decom-

position. See [1] for more details.

A. MIMO Capacity

The capacity of the MIMO channel is given by [13]

C = max
Q≻0

trace(Q)≤M·SNR

1

2
log det

(

I + QHTH
)

. (2)

The choice of Q that maximizes (2) is determined by

the water-filling solution. Often, the suboptimal choice

Q = SNR · I is used, resulting in the white-input (WI) mutual

information

CWI =
1

2
log det

(

I + SNR HTH
)

.

Remark 3: Note that if we restrict the M rows of the

channel input X to be independent with power constraints
1
n

E‖xm‖2 ≤ SNR for m = 1, . . . , M , the channel model (1)

describes an M -user Gaussian MAC, where each user is

equipped with a single transmit antenna and the receiver with

N antennas. In this case, CWI is the sum-capacity [14, Eq.

(15.153)].

B. Successive Interference Cancelation via Noise-Prediction

In the sequel, we will show that successive IF can achieve

CWI, provided that the transmitter can allocate rates correctly

to the different streams. In order to gain some intuition,

we review the standard MMSE-SIC scheme, also known

as V-BLAST. However, rather than describing the receiver’s

decoding procedure in the common way, where it successively

decodes streams and subtracts them to get a “cleaner” channel,



we describe a receiver that performs noise prediction. These

two variants are known to be equivalent [15].

Assume each of the M antennas transmits a stream xm ∈
R

1×n of length n taken from an i.i.d. Gaussian code with

average power SNR, independent of the streams transmitted

by the other antennas. The receiver decodes the transmitted

streams in M successive steps, where in each step a single

stream is decoded. The receiver first performs linear MMSE

estimation of X = [xT
1 · · · xT

M ]T from Y using the filter

matrix

B = HT

(

1

SNR
I + HHT

)−1

. (3)

This gives rise to the effective channel

Yeff = BY = X + E,

where

E = (BH− I)X + BZ,

is the estimation error. Since X and Z are statistically inde-

pendent and all their entries are i.i.d. Gaussian, the columns

of E are Gaussian vectors, statistically independent of each

other. Each column of E, corresponding to a different time

index, is a zero-mean Gaussian vector with covariance matrix

Kee = SNR(BH− I)(BH − I)T + BBT (4)

= SNR(I + SNR HTH)−1, (5)

where (5) follows by substituting (3) into (4) and apply-

ing Woodbury’s matrix identity (i.e., the Matrix Inversion

Lemma) [16, Thm 18.2.8].

The matrix (I + SNR HTH)−1 is symmetric and positive

definite, and therefore admits a (unique) Cholesky decompo-

sition
(

I + SNR HTH
)−1

= GGT , (6)

where G ∈ R
M×M is a lower triangular matrix with strictly

positive diagonal entries. It follows that

Kee = SNR GGT , (7)

and E can be written as E =
√

SNR GW, where W is an

M × n matrix of i.i.d. Gaussian entries with zero mean and

unit variance. Thus, the effective channel can be written as

Yeff = X +
√

SNR GW. (8)

Now, the receiver starts successively decoding the streams.

First, it uses yeff,1, the first row of Yeff, to decode the first

stream x1. Denoting the (i, j)-th entry of G by gij , this can

be done as long as the rate of this stream satisfies

R1 <
1

2
log

(

1 +
SNR

g2
11SNR

− 1

)

= −1

2
log
(

g2
11

)

.

where the −1 term inside the logarithm compensates for the

fact that E and X are correlated, as explained in [17, Lemma

2]. After correctly decoding x1, the receiver can obtain w1,

the first row of W, as

w1 =
yeff,1 − x1√

SNRg11

, (9)

and produce a less noisy channel

Y
(2)
eff = Yeff −

√
SNRg1w1

= X +
√

SNR ·G(2)W,

where g1 is the first column of G and G(2) = G− g1 is the

matrix G with its first column nulled out. Now, the receiver

can decode x2 from y
(2)
eff,2, the second row of Y

(2)
eff , as long as

its rate satisfies

R2 < −1

2
log
(

g2
22

)

.

Continuing in the same manner, it follows that each stream

can be decoded reliably as long as

Rm < −1

2
log
(

g2
mm

)

, m = 1, · · · , M.

The described noise prediction scheme can therefore achieve

the sum-rate

M
∑

m=1

Rm = −1

2

M
∑

m=1

log
(

g2
mm

)

= −1

2
log

(

M
∏

m=1

g2
mm

)

= −1

2
log det

(

GGT
)

=
1

2
log det

(

I + SNRHTH
)

= CWI.

In the sequel, we will see that a similar noise prediction

scheme enables successive integer-forcing to achieve a sum-

rate of CWI. Rather than performing linear MMSE estimation

for X, in successive integer-forcing one estimates the linear

combinations AX, and successively predicts the associated

estimation errors.

C. Integer-Forcing

IF equalization is a low-complexity architecture for the

MIMO channel, which was proposed by Zhan et al. [1].

The key idea underlying IF is to first decode integer-linear

combinations of the signals transmitted by all antennas, and

then, after the noise is removed, invert those linear com-

binations to recover the individual transmitted signals. This

is made possible by transmitting codewords from the same

linear/lattice code from all M transmit antennas, leveraging

the property that linear codes are closed under (modulo) linear

combinations with integer-valued coefficients.

We briefly recall the IF scheme. We begin by presenting

several lattice definitions. A lattice Λ is a discrete subgroup

of R
n which is closed under reflection and real addition.



We denote the nearest neighbor quantizer associated with the

lattice Λ by

QΛ(x) = argmin
t∈Λ

‖x − t‖. (10)

The basic Voronoi region of Λ, denoted by V , is the set of all

points in R
n which are quantized to the zero vector, where

ties in (10) are broken in a systematic manner. The modulo

operation returns the quantization error w.r.t. the lattice,

[x] mod Λ = x− QΛ(x).

and the second moment of Λ is defined as

σ2(Λ) =
1

n

1

Vol(V)

∫

u∈V

‖u‖2du,

where Vol(V) is the volume of V . A lattice Λ is said to be

nested in Λ1 if Λ ⊆ Λ1. The coding scheme presented in this

paper utilizes a pair of n-dimensional nested lattices Λc ⊂ Λf ,

where Λc is referred to as the coarse lattice and Λf as the fine

lattice. A nested lattice codebook C = Λf ∩ Vc, with rate

R =
1

n
log |Λf ∩ Vc|

is associated with the nested lattice pair. The codebook is

scaled such that σ2(Λc) = SNR. In Section III-A we extend

the proposed coding scheme to one that uses a chain of M +1
nested lattices

Λc ⊆ ΛfM
⊆ · · · ⊆ Λf1

, (11)

from which we construct M nested codebooks.

In the IF scheme, the information bits to be transmitted are

partitioned into M streams. Each of these streams is encoded

by the nested lattice code C, producing M row vectors, each

in C ⊂ R
1×n. In particular, the mth stream, consisting of nR

information bits, is mapped to a lattice point tm ∈ C. Then, a

random dither2 dm ∈ R
1×n uniformly distributed over Vc and

statistically independent of tm, known to both the transmitter

and the receiver, is used to produce the signal

xm = [tm − dm] mod Λc.

The signal xm is uniformly distributed over Vc and is sta-

tistically independent of tm due to the Crypto Lemma [18,

Lemma 1]. It follows that

1

n
E‖xm‖2 = σ2(Λc) = SNR.

The mth antenna transmits the signal xm ∈ R
1×n over n

consecutive channel uses.

Define T , [tT
1 · · · tT

M ]T to be the M × n matrix whose

rows consist of the lattice points corresponding to the M data

streams, D , [dT
1 · · · dT

M ]T be the M×n matrix whose rows

correspond to the M dither vectors, and X , [xT
1 · · · xT

M ]T

be the matrix whose rows correspond to the M channel

2These random dithers can be replaced with deterministic dithers without
affecting the achievable rate region, i.e., no common randomness is necessary.
See [2, Appendix C] for more details.

input vectors. These inputs vectors are transmitted into the

channel (1) to yield the N × n output Y.

The IF receiver chooses an equalizing filter matrix B ∈
R

M×N and a full-rank target integer-valued matrix A ∈
Z

M×M , and computes

Yeff = [BY + AD] mod Λc

= [AX + AD + (BH − A)X + BZ] mod Λc

= [AT + (BH− A)X + BZ] mod Λc

= [V + Zeff] mod Λc, (12)

where

V , [AT] mod Λc (13)

is an M×n real-valued matrix with each row being a codeword

in C owing to the linearity of the code,

Zeff , (BH− A)X + BZ (14)

is additive noise statistically independent of V (since X and Z

are statistically independent of T), and the notation mod Λc

is to be understood as reducing each row of the obtained matrix

modulo the coarse lattice. Each row of Yeff, denoted by yeff,m,

m = 1, . . . , M , is the modulo sum of a codeword and effective

noise. Thus, the IF receiver transforms the original MIMO

channel into a set of M point-to-point modulo-additive sub-

channels

yeff,m = [vm + zeff,m] mod Λc, m = 1, . . . , M. (15)

The IF receiver decodes the output of each sub-channel sepa-

rately. If the decoding is successful over all M sub-channels,

the receiver has access to V = [vT
1 · · · vT

M ]T , from which

it can recover the matrix T by solving the (modulo) set of

equations.

Define the effective variance of zeff,m as

σ2
eff,m ,

1

n
E ‖zeff,m‖2

.

It follows from [2], [18] that for a “good” (capacity-achieving)

nested lattice code C the integer-linear combination vm can

be reliably decoded from yeff,m as long as

R <
1

2
log

(

SNR

σ2
eff,m

)

,

and all M equations can be decoded reliably if

R < min
m=1,...,M

1

2
log

(

SNR

σ2
eff,m

)

.

Note that the additive noise vectors zeff,1, . . . , zeff,M are not

statistically independent. Thus, treating the M sub-channels

as parallel is suboptimal, and some improvement can be

obtained by exploiting this coupling. In the next section,

we will show how successive IF exploits the aforementioned

noise correlations to enhance performance, with only a slight

increase in the decoding complexity, i.e., the receiver still

decodes the linear combinations one-by-one.



D. Linear MMSE Estimation and Generalizations to Matrix

Estimation

The derivation of the optimal filters for successive IF

involves several results from linear MMSE estimation.

Consider a random vector x ∈ R
M×1 with zero mean and

covariance matrix {Kxx}ij = E(xixj) and a random vector of

measurements y ∈ R
N×1 with zero mean and covariance ma-

trix {Kyy}ij
= E(yiyj). The cross-covariance matrix between

x and y is given by {Kxy}ij
= E(xiyj). The class of linear

estimators for x from y consists of all estimators of the form

x̂ = By, where B ∈ R
M×N . The estimation error is defined

as e = x − x̂, and the linear MMSE criterion corresponds

to minimizing E(e2
i ) for all i = 1, . . . , M over all filters

B ∈ R
M×N . It is well known that the optimal estimation filter

under this criterion must satisfy the orthogonality principle

0 = E
(

eyT
)

= E
(

(x − By)yT
)

,

where 0 is a matrix of zeros with appropriate dimensions, and

is given by

B∗ = KxyK
−1
yy .

For the optimal estimator, the estimation error covariance

matrix is given by

Kee , E(eeT ) = Kxx − Kx̂x̂.

In the previous subsection we have seen that the perfor-

mance of the IF receiver is dictated by Zeff, which can be

thought of as the estimation error of AX from Y = HX+Z,

when the filter B is used. The achievable rate for IF over the

mth sub-channel is maximized when σ2
eff,m = 1/nE‖zeff,m‖2

is minimized. Thus, B should be chosen such as to minimize

σ2
eff,m for all m = 1, . . . , M . This criterion is similar to

the MMSE criterion, except for the fact that here the goal

is to minimize the effective variance of a (non-i.i.d.) vector,

rather than the variance of a random variable. However, as

we now show, the two problems are equivalent if we replace

the covariance matrices of random vectors, whose entries

correspond to the correlations between random variables, with

generalized covariance matrices whose entries correspond to

the effective correlations between random vectors.

Definition 1: For a random matrix X ∈ R
M×n with rows

xT
i ∈ R

1×n, i = 1, . . . , M , we define the generalized

covariance matrix as
{

K̃XX

}

ij
,

1

n
E
(

xT
i xj

)

.

If Y ∈ R
N×n with rows yT

j ∈ R
1×n, j = 1, . . . , N , is another

random matrix, we define the generalized cross-covariance

matrix of X and Y as
{

K̃XY

}

ij
,

1

n
E
(

xT
i yj

)

.

Proposition 1: Let X ∈ R
M×n and Y ∈ R

N×n be two ran-

dom matrices with generalized covariance matrices K̃XX and

K̃YY, respectively, and cross-covariance matrix K̃XY. Let

W = GX and U = HY for two deterministic matrices G ∈
R

K×M and H ∈ R
L×N . Then, K̃WU = GK̃XYHT , and in

particular, K̃WW = GK̃XXGT and K̃UU = HK̃YYHT .

Proof:

{

K̃WU

}

ij
=

1

n
E
(

wT
i uj

)

=
1

n
E

(

K
∑

k=1

L
∑

ℓ=1

gikx
T
k yℓhjℓ

)

=
K
∑

k=1

L
∑

ℓ=1

gik

{

K̃XY

}

kℓ
hjℓ

=
{

GK̃XYHT
}

ij
.

Lemma 1: Let x ∈ R
M×1 and y ∈ R

N×1 be two random

vectors with zero mean, covariances Kxx and Kyy and cross-

covariance matrix Kxy. Let X ∈ R
M×n and Y ∈ R

N×n

be two random matrices with zero mean and generalized

covariance and cross-covariances as x and y, i.e., K̃XX =
Kxx, K̃YY = Kyy and K̃XY = Kxy. Then, for any filter

B ∈ R
M×N

K̃EE = Kee,

where E = BY−X and e = By−x. In particular, the linear

MMSE estimator for xm from y also minimizes the effective

variance of the estimation error vector of xm from Y for all

m = 1, . . . , M .

Proof: Follows immediately from Definition 1 and Propo-

sition 1.

III. SUCCESSIVE INTEGER-FORCING

We now describe and analyze the successive integer-forcing

receiver, which combines ideas from classical successive in-

terference cancellation and integer-forcing. At a high level, the

goal of the successive IF receiver is the same as that of the

IF receiver: first recover a set of integer-linear combinations

described the coefficient matrix A ∈ Z
M×M and then solve

for the desired messages. However, rather than decoding

these integer-linear combinations in parallel, the successive

IF receiver decodes them one at a time and uses decoded

combinations to reduce the effective noise encountered in

subsequent decoding steps (as in SIC).

The receiver begins by performing linear MMSE estimation

of AX from Y, adding back the dithers and reducing the result

modulo the coarse lattice, just as in standard IF. The resulting

effective channel is given by (12), (13), and (14) where B is

chosen as

B = AHT

(

1

SNR
I + HHT

)−1

.

The resulting generalized covariance matrix of Zeff is

K̃ZeffZeff
= SNR A(I + SNR HTH)−1AT .



For a full-rank matrix A ∈ Z
M×M , the matrix A(I +

SNR HTH)−1AT admits a Cholesky decomposition

A
(

I + SNR HTH
)−1

AT = LLT , (16)

where L ∈ R
M×M is a lower triangular matrix with strictly

positive diagonal entries. Let

W =
1√
SNR

L−1Zeff

and note that K̃WW = I, by Proposition 1. Now, the effective

channel is

Yeff =
[

V +
√

SNR LW
]

mod Λc, (17)

where W is statistically independent of V as it is a deter-

ministic function of Zeff which is statistically independent of

V.

As in Section II-B, the receiver successively decodes the

integer-linear combinations one-by-one. After decoding the

mth combinations vm, it recovers wm and cancels its con-

tribution to the effective noises that corrupt equations that are

yet to be decoded. Specifically, the receiver begins by decoding

v1 from yeff,1. This can be done reliably if

R <
1

2
log

(

SNR

SNR ℓ2
11

)

= −1

2
log(ℓ2

11). (18)

Assuming v1 was decoded correctly, the receiver next com-

putes

ŵ1 =
1√

SNRℓ11

[yeff,1 − v1] mod Λc

=
1√

SNRℓ11

[√
SNR ℓ11w1

]

mod Λc

w.h.p.
= w1, (19)

where (19) follows from the fact that for a “good” nested

lattice codebook (18) implies that
√

SNRℓ11w1 ∈ Vf ⊂ Vc

with high probability. See Section III-B for a comprehensive

discussion on this assumption. The receiver then uses w1 to

produce a less noisy channel

Y
(2)
eff =

[

Yeff −
√

SNR l1w1

]

mod Λc

=
[

V +
√

SNR L(2)W
]

mod Λc,

where l1 is the first column of L and L(2) = L− l1 is the

matrix L with its first column nulled out. Now, the receiver

can decode v2 from y
(2)
eff,2, the second row of Y

(2)
eff , as long as

R < −1

2
log
(

ℓ2
22

)

.

Continuing in the same manner, it follows that all equations

can be decoded reliably as long as

R < −1

2
log

(

max
m=1,...,M

ℓ2
mm

)

. (20)

This is summarized in the following theorem.

Theorem 1: There exist nested lattice codebooks such that,

for any full-rank matrix A ∈ Z
M×M , successive IF can

achieve any rate satisfying

RS-IF < −M

2
log

(

max
m=1,...,M

ℓ2
mm

)

,

where ℓmm are the diagonal entries of L from (16).

Note that in the described scheme each antenna transmits

an independent stream. Thus, the same coding scheme can be

applied over an M -user Gaussian MAC, where the transmit

antennas are distributed. Hence, for a Gaussian M -user MAC,

with the mth column of H representing the coefficients from

the mth user to the receiver, each user can achieve any rate

satisfying (20).

A. Sum Rate Optimality of Successive IF

In this subsection, we consider using a chain of nested

lattice codebooks. Specifically, M nested lattice codebooks

Cm = Λfm
∩ Vc, m = 1, . . . , M , are constructed from the

lattice chain (11). Note that CM ⊆ · · · ⊆ C1 by construction,

and the associated rates satisfy RM ≤ · · · ≤ R1. Each of the

M streams is encoded by one of these codebooks. We show

that with such a chain of nested lattice codebooks, successive

IF can achieve CWI if the transmitter judiciously allocates the

rates to the different streams, and if the diagonal entries of L

from (16) are monotonically increasing.

The main idea is that each integer-linear combination vm

can be decoded reliably if it is taken from a good nested

lattice codebook of rate smaller than −1/2 log(ℓ2
mm). Thus,

if we could ensure that vm belongs to the codebook Cm, for

all m = 1, . . . , M , we could just choose the rates of the M
nested codebooks to satisfy Rm < −1/2 log(ℓ2

mm).

However, vm = [
∑M

k=1 amktk] mod Λc belongs to

the densest lattice codebook from which the codewords

t1, . . . , tM are taken. This obstacle can be overcome by

using the equations that were already decoded not only for

estimating the noises corrupting the remaining equations, but

also for reducing the rates of the remaining equations. This

is essentially done by adding integer multiples of decoded

equations to the remaining ones in a way that nulls out the

effect of some of the lattice points tk participating in these

equations.

The idea of using decoded equations for reducing the rates

of the remaining ones was proposed and analyzed in [4,

Section IV.B]. For sake of brevity, we do not repeat the

details, and only briefly illustrate the idea by a simple example.

Assume that the number of transmit antennas is M = 2 and

C2 ⊂ C1 are two nested linear codes over the prime field

Zp with rates R2 ≤ R1. Two nested lattice codebooks are

constructed by mapping C1 and C2 to a p-PAM constellation,

and the coarse lattice, in this case, is taken as Λc = pZ
n. The

first antenna transmits a codeword t1 ∈ C1 and the second



transmits t2 ∈ C2. The effective channel (12) is

yeff,1 = [a11t1 + a12t2 + zeff,1] mod p

yeff,2 = [a21t1 + a22t2 + zeff,2] mod p,

where we assume w.l.o.g. that σ2
eff,1 ≤ σ2

eff,2. The first equation

v1 = [a11t1 + a12t2]mod p is a codeword in C1 and can be

decoded if R1 is small enough w.r.t. σ2
eff,1. After decoding v1

the receiver can scale it by a21a
−1
11 , where the inversion is over

the field Zp, and subtract it from yeff,2 to obtain

ỹeff,2 =
[

a21t1 + a22t2 − a21a
−1
11 v1 + zeff,2

]

mod p

=
[

(a22 − a21a
−1
11 a12)t2 + zeff,2

]

mod p.

Now, v
(2)
2 , [(a22 − a21a

−1
11 a12)t2]mod p is in C2 and it

suffices that R2 is small enough w.r.t. σ2
eff,2 to ensure correct

decoding. Thus, the described procedure enables to “allocate”

different rates to the different equations.

It was shown in [4] that for any full-rank A ∈ Z
M×M such

procedure can always ensure that vm ∈ Cm for all m for at

least one mapping between codebooks and transmit antennas.

Here, we combine this ingredient with the idea of using

the decoded equations also for performing noise prediction.

Namely, in the mth successive decoding step we compute

Y
(m)
eff =

[

Yeff −
m−1
∑

k=1

(√
SNR lkwk − qkvk

)

]

mod Λc

=
[

V(m) +
√

SNRL(m)W
]

mod Λc,

where the role of the column vectors {lk} is to perform

noise prediction, as before, and the role of the integer-valued

column vectors {qk} is to reduce the number of lattice points

participating in the remaining equations, such that only lattice

points from Cm, . . . , CM participate in V(m).

When doing so, however, one new issue arises. Reducing

the rate of remaining equations using decoded ones is advan-

tageous if the effective variances σ2
eff,1, . . . , σ

2
eff,M are mono-

tonically increasing, such that the achievable computation

rates are monotonically decreasing. Without noise prediction,

one can always choose the decoding order such that this

is satisfied, i.e., start with the best equation, then decode

the second best and so on. When noise prediction is also

applied, a situation that may occur is that after decoding the

best equation and using it to predict the effective noise for

the second equation, the second computation rate becomes

higher than the first. This occurs if the diagonal entries of

L, corresponding to the effective variances of the prediction

errors, are not monotonically increasing. In this case, using

decoded equations for reducing the rates of the remaining ones

is less effective.

When the diagonal entries of L are monotonically increas-

ing, the described scheme can achieve any sum-rate satisfying

M
∑

m=1

Rm = −1

2

M
∑

m=1

log
(

ℓ2
mm

)

= −1

2
log

(

M
∏

m=1

ℓ2
mm

)

= −1

2
log det

(

LLT
)

= −1

2
log det

(

A
(

I + SNRHTH
)−1

AT
)

= CWI − log | det(A)|.
The following definition from [4] is needed for formally

characterizing the performance of the described scheme.

Definition 2: For a full-rank M × M matrix A with

integer-valued entries we define the pseudo-triangularization

process, which transforms the matrix A to a matrix

Ã which is upper triangular up to column permutation

π = [π(1) π(2) · · · π(M)]. This is accomplished by left-

multiplying A by a lower triangular matrix R with unit

diagonal, such that Ã = RA is upper triangular up to column

permutation π. Although the matrix A is integer valued, the

matrices R and Ã need not necessarily be integer valued.

Note that the pseudo-triangularization process is reminiscent

of Gaussian elimination except that row switching and row

multiplication are prohibited.

Remark 4: Any full-rank matrix can be triangularized using

the Gaussian elimination process, and therefore any full-

rank matrix can be pseudo-triangularized with at least one

permutation vector π.

Theorem 2: Let A ∈ Z
M×M be a full-rank target integer-

valued matrix that can be pseudo-triangularized with the

permutation vector π, and let L be the lower-triangular matrix

from (16), whose diagonal entries are ℓii. If ℓ2
11 ≤ · · · ≤

ℓ2
MM , then there exists a chain of nested lattice codebooks

CM ⊆ · · · ⊆ C1 with rates RM ≤ · · · ≤ R1 such that if each

mth antenna encodes its stream using the codebook Cπ−1(m)

with rate Rπ−1(m) and

Rπ−1(m) < −1

2
log(ℓ2

π−1(m)π−1(m)), ∀m = 1, . . . , M

all streams can be decoded with a vanishing error probability

using the successive integer-forcing receiver. In other words,

all streams can be decoded if the rate of each mth stream is

smaller than − 1
2 log(ℓ2

π−1(m)π−1(m)). Consequently, the suc-

cessive integer-forcing receiver can achieve any rate satisfying

RS-IF < CWI − log | det(A)|.

In the described scheme each antenna transmits an in-

dependent stream. Thus, Theorem 2 remains valid for a

Gaussian MAC with the mth column of H representing the

coefficients from the mth user to the receiver. In this case,

the theorem implies that, if the stated conditions on A are

staisfied, there exists a chain of nested lattice codebooks



and a mapping π−1 : {1, . . . , M} → {1, . . . , M} between

users and codebooks such that the mth user can achieve

any rate below − 1
2 log(ℓ2

π−1(m)π−1(m)) with a vanishing error

probability using the successive integer-forcing receiver. Since

CWI is the MAC’s sum-capacity, under the conditions of

Theorem 2, successive IF (which is usually termed successive

compute-and-forward for a MAC) achieves the sum-capacity

if A is unimodular.

Remark 5: Note that for the choice A = I, successive IF

corresponds to standard SIC. In this case, the monotonicity

condition on the diagonal entries of L is not needed. This is

due to the fact that for the choice A = I only one lattice

point participates in each “linear combination”. Therefore,

the procedure from [4, Section IV.B], which induces this

monotonicity condition, is not needed.

Example 1: Consider the two-user Gaussian MAC

y =
√

2x1 + x2 + z,

at SNR = 15dB. For the choice A = I and its row

permutation, successive IF reduces to standard SIC, and results

in the achievable rate-regions

R1 < 0.7776
bits

channel use
, R2 < 2.5139

bits

channel use
,

and

R1 < 3.0028
bits

channel use
, R2 < 0.2887

bits

channel use
,

respectively. For the choice

A =

(

1 1
3 2

)

we have ℓ2
11 < ℓ2

22, as Theorem 2 requires, and

−1/2 log(ℓ2
11) = 1.8452 and −1/2 log(ℓ2

22) = 1.4463. In

addition, A can be pseudo-triangularized with the permutation

vectors π1 = [1 2] and π2 = [2 1]. It therefore follows that

the two rate-regions

R1 < 1.8452
bits

channel use
, R2 < 1.4463

bits

channel use
,

and

R1 < 1.4463
bits

channel use
, R2 < 1.8452

bits

channel use
,

are achievable with successive IF. In addition, since

| det(A)| = 1, these points are sum-rate optimal. Figure 1

shows the capacity region of the MAC from this example,

along with the rate region achieved by successive IF.

Remark 6: An interesting conclusion from Theorem 2 is

that if A is such that the conditions of the theorem are

satisfied, then the compute-and-forward decoder used in [2]

achieves the same rates as the optimal maximum-likelihood

(ML) decoder for decoding the integer-linear combinations

whose coefficients are the rows of A. Recall that the decoder

from [2] scales its observations, subtracts the dithers, quantizes

R2

2.51

1.85

1.44

0.28

R13.001.851.440.77

Fig. 1. The capacity region of the MAC from Example 1, and the rate
region achieved by successive IF. The gray (dark shaded) area in the figure
corresponds to the rate-region achievable by standard SIC, whereas the pale
blue (bright shaded) area is the additional rate-region obtained by successive
IF. Note that the plotted rate-region does not include time-sharing.

to the fine lattice and reduces the result modulo the coarse

lattice. This is in contrast to the ML decoder that computes

the likelihood of each possible outcome for the desired integer-

linear combination given the channel’s output, and chooses

the one that is most likely. The achievable rates described

by Theorem 2 are attained using the same decoder as in [2]

at each decoding step (after noise prediction was applied). It

is shown that the obtained sum-rate equals the MAC’s sum-

capacity. If the ML decoder could attain higher rates, than

using the noise prediction scheme described in this section,

with the ML decoder instead of the one from [2], higher rates

could be obtained, contradicting the converse theorem for the

MAC capacity region. We emphasize that this only shows that

the decoder of [2] achieves the highest possible rate for the

described transmission scheme, where each user transmits a

dithered version of a lattice point taken from a chain of nested

lattice codebook. Our results do not preclude the possibility

that integer-linear combinations can be reliably decoded with

a higher computation rate than that of [2] under a different

transmission scheme.

B. From mod-Λ decoding to decoding over the reals

Successive IF uses the values of the effective noise vectors

zeff,1, . . . , zeff,m−1 in order to estimate zeff,m and reduce its

effective variance. However, correct decoding of the equation

vk from yeff,k = [vk + zeff,k] mod Λc only ensures that

the receiver has access to [zeff,k] mod Λc, whereas for the

successive IF scheme zeff,k is needed. Correct decoding of vk

from yeff,k only implies that [zeff,k] mod Λc ∈ Vf , but does

not necessarily imply that zeff,k ∈ Vf . If the fine lattice Λf

used for constructing C is Poltyrev-good and ΛC is Rogers-



good [18], we have

Pr (zeff,k /∈ Vf ) < 2
−n

(

1

2
log

(

SNR

σ2

eff,k

)

−R−o1(n)

)

, (21)

and since Vf ⊂ Vc the probability that [zeff,k] mod Λc 6= zeff,k

can be made arbitrarily small by increasing the block length

n. In (19) we assumed that Λf is Poltyrev-good and Λc is

Rogers-good to obtain the relation [zeff,k] mod Λc
w.h.p.

= zeff,k.

In practice, however, a “good” nested lattice codebook is

hard to implement, and suboptimal nested lattice codebooks

are constructed. A commonly used construction for a nested

lattice codebook is one where the fine lattice is built from a

linear code of block length n over a prime field Zp with mod-

erate cardinality (e.g., an LDPC code or a turbo code) using

Construction A [19], [20], and the coarse lattice is the scaled

integer-lattice pZ
n. In this case, although Pr([zeff,k] mod Λc /∈

Vf ) can be made as small as desired for n large enough and an

appropriate choice of R, Pr([zeff,k] mod Λc 6= zeff,k) cannot

be made arbitrarily small, as Λc is the scaled integer lattice

whose Euclidean minimum distance does not increase with n.

In other words, Λf is not Poltyrev good. Thus, for construction

A nested lattice codebooks, correct decoding of vk does

not ensure correct decoding of zeff,k. This may degrade the

performance of successive IF, as the predictions of subsequent

effective noises may also be impaired.

Nevertheless, we claim that for moderate (not too small)

rates of the codebook C, this type of error will have a

negligible effect on the total error probability. It can be shown

that for a Construction A nested lattice codebook, if R is such

that vk can be decoded reliably from yeff,k, then

Pr ([zeff,k(i)] mod p 6= zeff,k(i)) < exp
{

−πe

4
22R
}

for each of the n components of zeff,k. Thus, the expected

number of components where [zeff,k]mod p 6= zeff,k is fairly

small for moderate R, and these erroneous components will

not degrade the performance of successive IF by much.

IV. FINDING THE OPTIMAL INTEGER-VALUED MATRIX A

Thus far, we have described the successive IF scheme for

some predefined integer-valued matrix A. The performance of

IF, as well as successive IF, critically depends on the choice

of A and we now discuss a procedure for finding its optimal

value.

We would like to find the matrix A that maximizes the

computation rate for the worst equation when noise prediction

is used. Mathematically, this problem can be formulated as

A
opt
S-IF = arg min

A∈Z
M×M

det(A) 6=0

max
k=1,...,M

ℓ2
kk, (22)

where ℓkk are the diagonal entries of the lower triangular

matrix L defined in (16). Note that this problem is different

than the optimization problem for standard IF, which can be

written as

A
opt
IF = arg min

A∈Z
M×M

det(A) 6=0

max
k=1,...,M

k
∑

i=1

ℓ2
ik. (23)

As a result, the solution of (22) may be different that that

of (23). We now show that for successive IF we can restrict

A to the class of unimodular matrices (matrices with integer

entries and determinant ±1) without loss of generality, and

its optimal value can be obtained using the Korkin-Zolotarev

basis reduction procedure.

Definition 3 (Korkin-Zolotarev basis [21]): Let

F = [f1 · · · fM ] be a lattice basis of rank M , and let

F∗ = [f∗1 · · · f∗M ] be its corresponding Gram-Schmidt

orthogonalization, i.e., F = F∗ · R for some upper

triangular matrix R with unit diagonal. Define the projection

functions Pi(x) =
∑

j≥i(x
T f∗j /‖f∗j ‖2)f∗j that project x onto

span(f∗i , . . . , f∗M ). The basis F is Korkin-Zolotarev (KZ)

reduced if and only if for all i = 1, . . . , M

• f∗i is a shortest nonzero vector in Pi(Λ(F))
• for all j > i, the Gram-Schmidt coefficients rj,i =

fT
j f∗i /‖f∗i ‖2 of F satisfy |rj,i| ≤ 1/2.

Theorem 3: Let G be defined as in (6) and let A be a

unimodular matrix. If GTAT is a KZ basis of the lattice

Λ(GT ) , {GTx : x ∈ Z
M} then A is an optimal integer-

valued matrix for successive IF.

Proof: Let A be a unimodular matrix such that GTAT

is a KZ basis of the lattice Λ(GT ). Such a matrix always

exists [21]. Let aT
i be the ith row of A, and let L be the

lower triangular matrix defined in (16). Note that ℓii depends

only on {a1, . . . ,ai}, and is independent of {ai+1, . . . ,aM}.

We first show that out of all integer-valued vectors that

are linearly independent of {a1, . . . ,ai−1}, ai yields the

minimum value of ℓ2
ii. Let F = [f1 · · · fM ] = GTAT and

let F∗ = [f∗1 · · · f∗M ] be the corresponding Gram-Schmidt

orthogonalized basis, such that F = F∗ · R for an upper

triangular matrix R with unit diagonal. We further define the

unitary matrix U , F∗ · diag(‖f∗1 ‖−1, . . . , ‖f∗M‖−1) and the

upper triangular matrix LT , diag(‖f∗1 ‖, . . . , ‖f∗M‖) ·R, such

that F = ULT and

FTF = AGGT AT = LLT .

From the uniqueness of the Cholesky decomposition, it follows

that the L defined above is the same as in (16). Define

the projection functions Pi(x) =
∑

j≥i(x
T f∗j /‖f∗j ‖2)f∗j that

project x onto span(f∗i , . . . , f∗M ). We have

ℓ2
ii = ‖f∗i ‖2 = ‖Pi(fi)‖2 = ‖Pi(G

T ai)‖2. (24)

By definition of the KZ reduction, Pi(G
Tai) is a shortest

nonzero vector in Pi(Λ(GT )), which means that

ai = argmin
a∈Z

M

rank(a1,...,ai−1,a)=i

‖Pi(G
T a)‖2 = argmin

a∈Z
M

rank(a1,...,ai−1,a)=i

ℓ2
ii,

(25)



as desired, where the last equality follows from (24).

To establish the optimality of A for successive IF, it remains

to show that a greedy procedure that for each i selects the ai

as in (25) also minimizes the value of maxk=1,...,M ℓ2
kk. Let

Ã = [ã1 · · · ãM ] be a “competing” full-rank matrix with

integer-valued entries. Define the matrix F̃ = [f̃1 · · · f̃M ] =
GT Ã and define the matrix L̃ as the lower triangular matrix in

the Cholesky decomposition of F̃T F̃, i.e., F̃T F̃ = L̃L̃T . For

the choice Ã, the achievable rate for successive IF is dictated

by maxk=1,...,M ℓ̃2
kk , where ℓ̃kk are the diagonal entries of

L̃. Let F̃∗ = [f̃∗1 · · · f̃∗M ] be the Gram-Schmidt orthogo-

nalized basis corresponding to F̃ and define the projection

functions P̃i(x) =
∑

j≥i(x
T f̃∗j /‖f̃∗j ‖2)f̃∗j that project x onto

span(f̃∗i , . . . , f̃∗M ). Note that we have ℓ̃2
ii = ‖P̃i(G

T ãi)‖2.

In order to prove that A is optimal, we show by induction

that for each m = 1, . . . , M

max
k=1,...,m

ℓ2
kk ≤ max

k=1,...,m
ℓ̃2
kk. (26)

The induction hypothesis (26) holds for m = 1 since ℓ2
11 =

‖f1‖2, and by definition of the KZ reduction f1 is a shortest

vector in Λ(GT ). We assume (26) holds for m− 1 and show

that it also holds for m. We have

max
k=1,...,m

ℓ2
kk = max

(

ℓ2
mm, max

k=1,...,m−1
ℓ2
kk

)

≤ max

(

ℓ2
mm, max

k=1,...,m−1
ℓ̃2
kk

)

(27)

= max

(

‖Pm(GTam)‖2, max
k=1,...,m−1

ℓ̃2
kk

)

(28)

where (27) follows from the induction hypothesis.

If span(a1, . . . ,am−1) = span(ã1, . . . , ãm−1) we have

‖Pm(x)‖ = ‖P̃m(x)‖ for any x ∈ R
M . Therefore,

‖Pm(GT am)‖2 ≤ ‖Pm(GT ãm)‖2 = ‖P̃m(GT ãm)‖2 = ℓ̃2
mm,

(29)

where the first inequality follows from the definition of the

KZ reduction. Substituting (29) into (28) gives (26).

If span(a1, . . . ,am−1) 6= span(ã1, . . . , ãm−1), let j be the

smallest index for which ãj /∈ span(a1, . . . ,am−1). It follows

that span(ã1, . . . , ãj−1) ⊂ span(a1, . . . ,am−1) and therefore

‖Pm(x)‖ ≤ ‖P̃j(x)‖ for any x ∈ R
M . We have

‖Pm(GT am)‖2 = min
a∈Z

m

rank(a1,...,am−1,a)=m

‖Pm(GTa)‖2 (30)

≤ ‖Pm(GT ãj)‖2 (31)

≤ ‖P̃j(G
T ãj)‖2 (32)

= ℓ̃2
jj , (33)

where (30) follows from (25), (31) follows since ãj /∈
span(a1, . . . ,am−1) and is therefore included in the mini-

mization space, and (32) follows since ‖Pm(x)‖ ≤ ‖P̃j(x)‖
for any x ∈ R

M . Substituting (33) into (28) gives (26).

It is well known [21], and not too difficult to verify, that if

a linearly independent set of lattice vectors S = [s1 · · · sM ]
is KZ reduced, then S is a basis for the original lattice. For

this reason, in contrast to standard IF where the optimal A

is not necessarily unimodular, for successive IF there is no

loss (in terms of achievable rate) in restricting A to the class

of unimodular matrices. It follows that for uncoded PAM

transmission (or equivalently using the 1 − D integer lattice

as codebook), successive IF and lattice-reduction (LR) aided

SIC [22] are in fact equivalent. Although the advantages of

the KZ reduction for lattice-reduction-aided SIC were pointed

out in the literature [23], to the best of our knowledge, there

is no prior work on its optimality in terms of minimizing the

error probability.

Finding a KZ basis for a lattice is known to be NP-hard in

general, as it involves finding a shortest lattice vector, which

is itself NP-hard. The following is a recursive procedure for

finding a KZ basis F = [f1 · · · fM ] for a rank M lattice Λ.

Let f1 be a shortest vector in Λ, and let Λ′ be the lattice given

by the orthogonal projection of Λ on the subspace of span(Λ)
orthogonal to f1 (it can be verified that Λ′ is indeed a lattice).

Let c2, . . . , cM be the KZ basis of Λ′. Define fi = ci + αif1,

where αi ∈ (−1/2, 1/2] is the unique number such that fi ∈
Λ, for i = 2, . . . , M .

For channels of small dimensions the KZ basis can be com-

puted exactly. For large dimensions, it can be approximated

by applying the LLL algorithm M successive times, where the

dimension of the lattice for which LLL is applied decreases at

each iteration. Such as algorithm is described in [24, Section

VI.D], and Matlab code for finding an approximation for the

optimal A based on this method can be found in [25].

APPENDIX A

SUCCESSIVE IF VIA MMSE-GDFE

In Section III, we described the implementation of succes-

sive IF via noise-prediction. In this appendix, we show an

equivalent implementation of successive IF where the decoded

equations themselves, instead of the effective noises, are used

for improving the achievable rates for decoding subsequent

equations. As for successive IF via noise-prediction, the

derivation relies on linear MMSE estimation theory, and in

particular on the MMSE-GDFE framework.

A key fact used in the derivation is that if a certain equation

v = [aT T] mod Λc can be decoded from Y, then with high

probability aT X can also be recovered from Y. This fact

is proved in [11, Lemma 1], and follows from the same

considerations discussed in Section III-B. Therefore, when

attempting to decode the equation vk = [aT
k T] mod Λc, the

receiver already has access to aT
1 X, . . . ,aT

k−1X. Thus, for any

lower-triangular matrix C with diagonal entries equal to zero,

the successive IF receiver can produce the effective channel

Yeff = [BY − CAX + AD] mod Λc

= [AT + (BH− A − CA)X + BZ] mod Λc

= [V + E] mod Λc, (34)



where

E , (BH− RA)X + BZ (35)

is statistically independent of T, and R , I + C. Note that

the constrained structure of C ensures that in all steps of the

successive decoding procedure the receiver only uses values

of aT
i X that are already available to it. The filter matrix R

is monic, i.e., a lower-triangular matrix with unit diagonal

entries, and together with B can be optimized such as to

minimize the generalized covariance matrix K̃EE. For a given

choice of R, the filter B should be chosen as the optimal linear

MMSE estimation filter of RAX from Y, which is given by

B = RAHT

(

1

SNR
I + HHT

)−1

,

and the resulting estimation-error generalized covariance ma-

trix is

K̃EE = SNR · (RA)
(

I + SNRHTH
)−1

(RA)T . (36)

Comparing (36) to the estimation error covariance matrix

obtained in standard IF

SNR · A
(

I + SNRHTH
)−1

AT

reveals the advantage of successive IF over standard IF. It

essentially allows to decode any full rank-set of equations of

the form RAX, where R is some monic filter, rather than

just equations of the form AX.

Recall that the performance of the IF receiver are dictated

by the effective variances of the effective noises, i.e., by the

diagonal entries of K̃EE. Thus, for a given choice of A, R

should be chosen such as to minimize the values of these

entries. Note that,

K̃EE = SNR · (RL)(RL)T ,

where L is the lower triangular matrix defined in (16). The

ith diagonal entry of K̃EE is therefore equal to SNR times

the squared Euclidean norm of the ith row in the matrix RL.

Now, since R is monic, we must have {RL}ii = ℓii, which

implies that
{

K̃EE

}

ii
≥ SNRℓ2

ii, ∀i = 1, . . . , M. (37)

The choice

R = diag(ℓ11, . . . , ℓMM )L−1, (38)

attains the bound from (37), and is therefore optimal. The

resulting estimation-error generalized covariance matrix is

K̃EE = SNR · diag(ℓ2
11, . . . , ℓ

2
MM ),

and as a result the achievable rates are exactly as in Theorem 1,

which shows that successive IF via noise-prediction or via

MMSE-GDFE are indeed equivalent.
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