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On the Robustness of Lattice Interference Alignment
Or Ordentlich and Uri Erez, Member, IEEE

Abstract—A static (constant channel gains) real -user interfer-
ence channel is considered, where all interference (cross) channel
gains are integers. For such channels, previous results demonstrate
that the number of degrees of freedom is very sensitive to slight
variations in the direct channel gains. In this paper, we derive an
achievable rate region for such channels that is valid for finite SNR.
At moderate values of SNR, the derived rate region is robust to
slight variations in the direct channel gains. At asymptotic high
SNR conditions, known results on the degrees of freedom are re-
covered. The new rate region is based on lattice interference align-
ment. The result is established via a new coding theorem for the
two-user Gaussian multiple-access channel where both users use a
single linear code.

Index Terms—Interference alignment, interference channel,
linear codes, multiple-access channel (MAC).

I. INTRODUCTION

A N important open problem in network information theory
is determining the capacity region of the interference

channel. The interference channel is a communication model
where multiple pairs of transmitters and receivers utilize the
same communication medium. As a result, each user receives
the output of a multiple-access channel (MAC), i.e., it suffers
from interference from transmissions intended for other users.
An important special case of this channel model is the

Gaussian interference channel, where each receiver sees a
linear combination of its intended signal and the signals trans-
mitted by the interfering users plus an additive white Gaussian
noise (AWGN). For the case where only two users are sharing
the same medium, i.e., the interference at each receiver is
generated by only one user, the capacity region was character-
ized up to half a bit only recently [1]. The achievability part
utilizes the Han–Kobayashi [2] scheme which is shown to be
nearly optimal in the two-user case. The results of [1] are rather
disappointing in the sense that they imply that for a wide range
of channel parameters, either treating the interference as noise,

Manuscript received June 18, 2011; revised July 22, 2012; accepted
November 21, 2012. Date of publication January 30, 2013; date of current
version April 17, 2013. This work was supported in part by the Israel Science
Foundation under Grant 1557/12 and in part by the Binational Science Founda-
tion under Grant 2008455. O. Ordentlich was supported in part by the Adams
Fellowship Program of the Israel Academy of Sciences and Humanities, in
part by a fellowship from The Yitzhak and Chaya Weinstein Research Institute
for Signal Processing at Tel Aviv University, and in part by the Feder Family
Award. This paper was presented in part at the 2011 IEEE Information Theory
Workshop.
The authors are with the Department of Electrical Engineering-Systems,

Tel Aviv University, Ramat Aviv 69978, Israel. (e-mail: ordent@eng.tau.ac.il;
uri@eng.tau.ac.il).
Communicated by S. A. Jafar, Associate Editor for Communications.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2012.2235523

or alternating access to the medium (i.e., time sharing) between
the two transmitter–receiver pairs, is a reasonable approach. In
particular, time sharing yields the maximal degrees of freedom
(DoFs) afforded by the channel (i.e., one), where the number
of DoFs is defined as the ratio between the maximal possible
sum rate and in the limit where the SNR goes to
infinity.
An interesting aspect of the interference channel is that

the two-user case does not capture the quintessential features
of the general ( -user) interference channel, as has recently
been demonstrated in the framework of Gaussian interference
channels. In particular, while one may have suspected that the
channel would be interference limited, i.e., that time sharing
would be optimal at high SNR, it has been demonstrated that
this is not the case. Rather, it has been shown [3]–[6] that the
correct “extension” of the two-user results is that in general,

DoF are afforded by the -user Gaussian interference
channel.

A. Related Work

The works of [3]–[6] have revealed that the Han–Kobayashi
approach is inadequate for , and a new approach, namely,
interference alignment, was needed to achieve the DoF afforded
by the (general) -user interference channel. See [7] for a com-
prehensive survey.
The first applications of interference alignment for Gaussian

interference channels included the time-varying single-input
single-output (SISO) -user interference channel [3], [4], the
multiple-input multiple-output (MIMO) X channel [8], [9], and
-user MIMO interference channels with constant channel

gains [3], [10], [11] and time-varying channel gains [10]. In
these works, the alignment schemes rely on the diversity in the
channel gains. The focus of this paper is the real static (constant
channel gains) SISO -user Gaussian interference channel,
for which another form of interference alignment has proven
to play a key role. In this case, it was shown in [5] and [6] that
by taking the transmitted signal to belong to the (1-D) integer
lattice, it is possible to align the interference so that it remains
confined to this lattice. As a result, the minimum distance of
the received constellation at each receiver does not decrease
with , and when the SNR approaches infinity, each receiver
can decode its intended signal with rate , yielding
a total of DoF. Thus, linear constellations, i.e., a PAM
constellation in the 1-D case play a key role in interference
alignment for static channels.
Specifically, it was shown in [5] that if at each receiver,

the channel gains corresponding to the interferers are rational,
whereas the direct channel gains corresponding to the intended
signal are irrational algebraic, DoFs are achievable. Even
more interestingly, the authors of [5] have shown that if the
direct channel gains are rational as well, the DoFs of the
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channel are strictly smaller than . Later, the authors of
[6] proved that the DoF of the static interference channel are

for almost all sets of channel gains. Recently, a general
single-letter formula for the number of DoF the interference
channel offers was derived by Wu et al. [12].
The results of [5] and [6] imply that in asymptotic high SNR

conditions. the capacity characterization of the interference
channel is extremely sensitive to slight variations in the channel
gains. Such a behavior is highly undesirable, and puts into ques-
tion the feasibility of lattice interference alignment for static
channels. The main motivation for this paper is to explore the
robustness of lattice interference alignment at a nonasymptotic
setting, and to find out whether the aforementioned phenomena
are a by-product of the asymptotic definition of the DoF or an
inherent feature of lattice interference alignment.
As noted above, linear/lattice codes play an important role

in coding for static Gaussian interference channels. This fea-
ture of the -user Gaussian interference channel is shared with
a growing number of problems in network information theory
where lattice strategies have been shown to be an important
ingredient. There are several examples where lattice strategies
achieve better performance than the best known random coding
strategies. In particular, Philosof et al. introduced lattice inter-
ference alignment in the context of the doubly-dirty MAC [13],
i.e., to a Gaussia MAC with multiple interference signals, each
known to a different transmitter. Other network scenarios where
lattices play a key role are the two-way (or multiple-way) relay
problem [14] and the compute-and-forward approach to relay
networks [15].
Lattice interference alignment for the interference channel

was first proposed by Bresler et al. in [16], [17], where an
approximate characterization of the capacity region for the
many-to-one and one-to-many interference channels was
derived. Lattice interference alignment was later utilized by
Sridharan et al. in [18] where a coding scheme where all users
transmit points from the same lattice was introduced. If at
each receiver all the gains corresponding to the interferers are
integers, the sum of the interferences is a point in the same
lattice, and thus, the interference from users is confined
to one lattice. Under very strong interference conditions, which
are defined in [18] and play the same role as the well known
very high interference condition [19] for the two-user case, the
decoder can first decode the sum of interferers while treating
the desired lattice point as noise, then subtract the decoded
interference, and finally decode the intended codeword. Later,
in [20], this scheme was combined with a layered coding
scheme in order to show that lattice interference alignment can
yield substantial gains and, in particular, achieve more that one
DoF in some cases for a broader (but still quite limited) class
of channels.
The works of [18] and [20] allowed for important progress

toward the understanding of lattice interference alignment at fi-
nite SNR. Nonetheless, these results are limited since they es-
sentially rely on using superposition coding with a judicious
choice of power allocation such that a very strong interference
condition holds, in conjunction with successive decoding. In
the decoding procedure, a single layer is decoded at every step,
while the other layers are treated as noise. At each step of the

successive decoding procedure, the decoder sees an equivalent
point-to-point AWGN channel where lattice codes are used. The
performance of lattice codes over point-to-point AWGN chan-
nels is well understood, and therefore, the scheme of [18] and
[20] can be analyzed with relative ease. For special classes of
channel gains, it is possible to design a layered codebook that
is simultaneously good for all receivers. For a wide range of
channel parameters, however, such a layered scheme is not ben-
eficial, as also noted in [20].

B. Summary of Results

The main contribution of this work is in providing a general
framework for lattice interference alignment that is not confined
to successive decoding. A coding theorem is established for a
two-user MAC where both users use the same linear codebook.
Specifically, if the interference is aligned to a lattice, but the

very strong interference condition is not satisfied, the decoder
can still perform joint decoding of the interference codeword
and the desired codeword. A major obstacle however arises
when one attempts to jointly decode both codewords: the align-
ment of all interferers into one lattice point, which occurs simul-
taneously at all receivers, is only possible due to the fact that
all users transmit lattice points from the same lattice. Thus, if
joint decoding is applied, each decoder sees a two-user Gaussia
MAC where both users use the same linear code. The capacity
region of the MAC without this restriction is derived based on
joint typicality arguments, which assume that either the pair of
transmitted codewords is statistically independent of any pair
of competing codewords or one of the codewords in the trans-
mitted pair is the same as in the competing pair, and the other
codeword in the competing pair is statistically independent of
that in the transmitted pair. This assumption, which is valid
when both users use different random codes, is no longer valid
when both users use the same linear code.
The fact that the number of DoF of many families of inter-

ference channels is implies that for certain channel con-
ditions, it is sufficient to transform the channel seen by each
receiver into a two-user MAC in order to approach the optimal
performance, i.e., half of the resources are dedicated to the inter-
ference and the other half to the intended signal. In light of this
observation, along with the proven advantages of lattice codes
in creating alignment between different users, it is important to
study the achievable performance of the two-user GaussiaMAC
where the same lattice code is used by all transmitters.
In this paper, we first address the question of finding an

achievable symmetric rate for the Gaussian (modulo-additive)
MAC with two users that are “forced” to use the same linear
code. We then employ this new ingredient in order to analyze
an interference alignment scheme, suitable for a class of inter-
ference channels, which we refer to as the integer-interference
channel, where all cross gains are integers (or rationals). In
contrast to the results obtained in previous work, here, the
analysis is not asymptotic in the SNR.
While the proposed coding scheme does not require asymp-

totic conditions, we show that it is asymptotically optimal in a
DoF sense, i.e., it achieves DoFs for the integer-interfer-
ence channel for almost all direct channel gains. The rate region
achieved by the scheme enables to shed light on the effect of
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the direct channel gains being rational or irrational, which has
to date only been understood for asymptotic high SNR condi-
tions. In the proposed scheme, rational direct channel gains of
the form limit the achievable symmetric rate to be smaller
than , which is not a serious limitation if is large and the
SNR is moderate, but does indeed pose a limitation in the limit
of very high SNR.
Moreover, previous results [5], [6] state that the DoF of an

interference channel with integer interference gains are discon-
tinuous at rational direct channel gains. Such a result is quite
displeasing and calls into question the applicability of interfer-
ence alignment for static channels at nonasymptotic conditions,
i.e., raises questions with respect to (w.r.t.) the robustness of
lattice interference alignment. The results of this work demon-
strate the behavior of the rate when the direct channel gains ap-
proach a given set of rational numbers. The (derived achievable)
rate is everywhere continuous, as is to be expected, in the direct
channel gains for any SNR, but the variation, i.e., sensitivity to
the direct channel gain, increases with the SNR.
While the presented scheme is only valid for channels where

all the (nondirect) interference gains are integers (or rationals),
we believe that the results are an important step toward the un-
derstanding of the robustness of lattice interference alignment
for general static interference channels at finite SNR.
Since the first appearance of this paper, there have been

significant progress in the understanding of lattice interference
alignment. Specifically, in [21], our main result regarding the
achievable rate over a two-user MAC where both users transmit
from the same lattice code has been strengthened and extended
to the -user MAC where all users share the same lattice code.
This allowed to characterize the sum capacity of the symmetric
-user Gaussian interference channel to within a constant gap

for all channel gains outside some outage set [21]. Another
subsequent work with flavor similar to ours is [22] which finds
the approximate capacity of the SISO two-user X-channel for
all channel gains outside some outage set.
The rest of this paper is organized as follows. In Section II,

some notations used throughout the paper are defined. In
Section III, an achievable symmetric rate is derived for a
two-user Gaussian (modulo-additive) MAC where both users
use the same linear code. Section IV presents an interference
alignment scheme for finite SNR. Section V discusses the effect
of the direct channel gains being rational versus irrational on the
performance of interference alignment. In Section VI, possible
approaches for interference alignment when the interference
gains are not restricted to be integers (or rational) are discussed.
The paper concludes with Section VII.

II. NOTATIONAL CONVENTIONS

Throughout the paper, we use the following notational con-
ventions. Random variables are denoted by uppercase letters
and their realizations by lowercase letters. For example, is
a random variable, whereas is a specific value it can take. We
use boldface letters to denote vectors, e.g., denotes a vector
with entries .
A number of distinct modulo operations are used extensively

throughout the paper. The notation denotes reducing

modulo the interval . That is, is equal to

where is the (unique) integer such that

Similarly, for , is defined to equal

where is the unique integer such that .
If is a vector, the notation is understood to mean

reducing each component of modulo the interval . We
define the basic interval as where .
Reducing modulo the interval is denoted by , i.e.,

The Euclidean norm of a vector is denoted by . The no-
tation denotes rounding to the nearest integer. We denote
the set of all prime numbers by . All logarithms in the paper
are to the base 2, and therefore, all rates are expressed in bits per
(real) channel use. All signals considered in this paper are real
valued.

III. ACHIEVABLE SYMMETRIC RATE FOR THE TWO-USER
GAUSSIA MAC WITH A SINGLE LINEAR CODEBOOK

A. Problem Statement

We consider the modulo-additive MAC

(1)

where is an i.i.d. Gaussian noise with zero mean and vari-
ance . We are interested in characterizing the
achievable rate region for this channel where both users are
forced to use the same linear code, and where both users are
subject to the power constraint

Note that a random variable uniformly distributed over has
unit power.
An code for this model is defined by one encoding

function (for both users)

and a decoding function

The linearity constraint on the encoding function is expressed
by the condition that for any , there
exists a such that

(2)
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User 1 chooses a message and transmits
, and user 2 chooses a message

and transmits . The decoder upon receiving

generates estimates for the transmitted messages

The error probability for decoding the transmitted messages is
denoted by

where the expectation is taken with respect to the uniform dis-
tribution on all pairs of messages . We say that a sym-
metric rate is achievable if for any and large enough
(depending on ), there exists an linear code such that

.

B. Connection to the Standard Gaussia MAC and Previous
Results

The channel (1) can be viewed as a degraded version of the
Gaussia MAC

(3)

as can be obtained from by the transformation

It follows that the achievable symmetric rate for our channel
model with the constraint that both users use the same linear
code is upper bounded by that of the channel (3) where each
user can use any codebook with rate .
The capacity region of the Gaussia MAC (3) was character-

ized by Ahlswede [23] through the following equations:

It follows that the symmetric capacity (i.e., the maximum
achievable ) is given by

(4)

The achievability part of the capacity theorem is proved using
two different random codebooks, whereas we restrict both users
to use the same linear (over the group with the addition oper-
ation) codebook.

C. Main Result and Discussion

The main result of this section is the following theorem.

Theorem 1 (MAC With One Linear Code): For the setting
described in Section III-A (a two-user GaussiaMACwhere both
users use the same linear code), the following symmetric rate is
achievable

(5)

where

(6)

and1

(7)

Discussion: Inspecting the equations describing the achiev-
able rate region of Theorem 1, the role of the optimization pa-
rameter and the factor may seem at first strange. In
the scheme that achieves this rate region, the parameter is
the size of the PAM constellation over which the -dimensional
linear code is constructed (in a Construction A [24] manner).
The factor is a measure of how accurately can be ap-
proximated by a rational number with a denominator smaller
than . See Fig. 1 for an illustration of the function’s behavior
for different values of .
Note that above some moderate value of , the expres-

sions dominating (5) are

(8)

and

(9)

Since the parameter dictates the support of the minimization
space in (6), is monotonically nonincreasing in . On the
one hand, increasing decreases the terms and , but on
the other hand, this reduces the “effective SNR”
in (9). Thus, the choice of should balance the two effects. For
example, if is a rational number that can be written in the form

1Replacing the constraint with the constraint results
in a negligible change in the rate region described by (5) and (6) for values of
that are not very “close” (w.r.t. ) to .
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Fig. 1. Function for , , and .

Fig. 2. Illustration of the ambiguity problem for rational channel coefficients
with small denominator. In this example, a 5-PAM constellation is used by both
transmitters. If , each pair of inputs results in a different channel
output. However, for , different pairs of may cause the same
channel output. Channel outputs that are ambiguous, i.e., that can be the result
of different inputs, are marked by full black circles in the figure.

, then for any , we have . If this is the
case, only values of yield nontrivial rates in (5), which in
turn implies that for any value of , the rate of (5) is smaller
than .
This saturation phenomenon of the achievable rates for ra-

tional values of is most intuitively understood through the
case of uncoded transmission. For instance, assume both users
transmit from the PAM constellation

Note that according to the definitions of Section III-A, the con-
stellation forms a 1-D linear code of rate . Even in the
noiseless case, if with , the individual sym-
bols transmitted by the two users cannot always be distinguished
from the channel’s output. This point is illustrated by Fig. 2 for

and .
It is tempting to think that the ambiguity problem is caused

by the cardinality of the constellation being too small. In other
words, one may hope that the problem can be overcome by con-
structing a high-dimensional linear code over a larger alphabet
with cardinality . However, as the following example im-
plies, this is not necessarily the case.

Example: In order to informally show why the rate saturation
phenomenon (why for any SNR) does not disappear
when -dimensional linear codes over large constellations are
used, we consider the case of . We assume that for any

, the linear codebook that is used satisfies the
property

(10)

That is, for any pair of distinct codewords and
nonzero integer , we have . The ensemble of
codebooks we consider in the proof of Theorem 1 satisfies this
property.
Assume that the first user transmitted the codewords and

the second user transmitted the codeword .
From the linearity of the code (2) combined with the property

(10), for any choice of , there exists a codeword such that

Furthermore, for any codeword , there exists a codeword
such that

Now consider the pair of competing codewords

and

which exists by the linearity of the codebook. Note that while
is determined by , the codeword can be any of the

codewords in , regardless of the choice of and . Thus,
there are different pairs of competing codewords from this
form.
After passing through the channel (1), the “distance” between

the transmitted pair of codewords and the “competing” pair of
codewords is

(11)

The term

which is dictated by the codeword transmitted by the second
user can only take values in . For each of the

different choices of , the term

(12)

also results in a sequence in . If these se-
quences were all different, then the fact that there are only
different sequences in would imply that if

, there must exist a for which and
an error always occurs. In general, there is no guarantee that
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Fig. 3. plotted as a function of for
.

the sequences of (12) are distinct. However, for a random
ensemble of linear codes where is uniformly distributed
over a dense grid in , the probability that one of the choices
of will null the distance is high. Thus, it is difficult to
construct a linear codebook for which the described form of
competing codewords does not incur an error.
We emphasize that this example does not prove that it is im-

possible to achieve rates substantially greater than when
both users share the same linear code. Rather, it gives intuition
to why this might be the case.
As already mentioned, Theorem 1 was improved upon in [21]

using a pair of “good” nested lattice codes with dithering. The
dithering allows to achieve rates somewhat higher than
for high SNR, but the results of [21] still exhibit a saturation
phenomenon for rational channel gains. Note that in the problem
formulation from Section III-A, dithering is not allowed. How-
ever, for purposes of interference alignment, which is the main
motivation for this work, letting all users transmit from the same
linear code with different dithers for each user does not pose a
problem.
Comparison With Random Codebooks: In order to better un-

derstand the performance of our coding scheme, we compare
the maximum symmetric rate it achieves, which we refer to as

, with that achieved by a coding scheme that utilizes
two different random codebooks. We refer to the latter sym-
metric rate as , which is given by (4). Define the
normalized rate

(13)

Fig. 3 depicts as a function of for a
range of moderate to high values of , specifically

. Fig. 4 depicts as a function of
for extremely high values of , namely

.
Figs. 3 and 4 demonstrate the sensitivity of the rate to the

channel gains. For a range of “reasonable” values of , the

Fig. 4. plotted as a function of for
.

rate changes rather smoothly with . For extremely high ,
however, a slight change in the value of may dramatically
change the achievable rate.
The figures also suggest that for almost every value of ,

the normalized rate approaches one as the SNR
tends to infinity. Thus, the symmetric rate achieved when both
users are using the same linear code scales with the SNR as

for asymptotic high SNR conditions.
Note that Theorem 1 does not take into account shaping is-

sues, since it uses a 1-D lattice as the coarse lattice. We have
chosen not to pursue shaping in this paper in order to simplify
the analysis. Moreover, the main contribution of this paper is
in characterizing the losses resulting from using the same linear
code for both users, which outweigh the shaping loss, that can
be upper bounded by a constant fraction of a bit. In subsequent
work [21], nested lattice codes with a “good” coarse lattice (as
opposed to the 1-D coarse lattice used here) were used to im-
prove the rate region obtained here.

D. Proof of Theorem 1

We first describe the process of the code generation, the en-
coding and the decoding procedures, and then turn to analyze
the error probability in decoding the transmitted messages.
Construction of Linear Codebook Ensemble: We begin by

describing the generation process of the ensemble of linear
codebooks considered, which is a variant of the well-known
Construction A (see, e.g., [24]). A generating matrix of
dimensions is used, where all elements of are in-
dependently and randomly drawn according to the uniform
distribution over the prime field . We set

The set is generated by multiplying all -tuple vectors with
elements from the field by the matrix (where all operations
are over )
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We refer to the vectors as message vectors, and note that there
are such vectors, each corresponding to one of the possible
messages.
Finally, the codebook is generated from the set by prop-

erly scaling and shifting it such that it meets the power constraint

The ensemble of codebooks created by the aforementioned pro-
cedure satisfies the following properties.
1) For any set of linearly independent message vec-
tors, , the corresponding codewords

are statistically independent.
2) Each codeword (except for the zero codeword) has a
memoryless distribution

3) For any , the corresponding codeword is uniformly
distributed over the constellation

4) Each codeword in the ensemble satisfies the power con-
straint

5) Each codebook in the ensemble satisfies the linearity con-
straint as defined in (2).

Encoding: Suppose a codebook from the aforementioned en-
semble, which is completely characterized by the matrix , has
been chosen. User uniformly draws a message vector , and
transmits

(14)

The channel output is thus

Decoding: Given the encoding matrix and the channel
output , the decoder searches the pair of codewords
for which

(15)

is closest to in the following sense

(16)

If there is more than one pair of indices satisfying (16), an error
is declared.
The decoder only searches over the pairs of codewords cor-

responding to message vectors that are linearly in-
dependent (over ). This constraint on the decoder facilitates
the analysis of the error probability since it means that when
is assumed to be random, the decoder only searches over the

pairs of codewords which are statistically indepen-
dent. The aforementioned constraint implies that if the users had
chosenmessage vectors which are linearly dependent,
an error event occurs. For the rest of the analysis, we assume that
indeed the chosenmessage vectors are linearly independent, and
as a consequence, are statistically independent when
is assumed to be random. We account for the probability of

the error event that occurs when this is not the case, in the final
step of the proof.
We note that the decision rule (16) is an approximation of

the maximum-likelihood decoder which searches for a pair of
codewords that satisfies

We choose the suboptimal decoder (16) rather than the optimal
maximum-likelihood decision rule in order to simplify the anal-
ysis.
Analysis of Error Probability: We analyze the average error

probability over the ensemble of codebooks, i.e., we assume the
generating matrix is random, and average over all possible
realizations of .
Assume that the message vectors were chosen by

users 1 and 2, respectively, such that codeword was trans-
mitted by user 1, and by user 2. We first analyze the pairwise
error probability, i.e., the probability of the decoder preferring a
(different) specific pair of message vectors , corre-
sponding to the pair of codewords , over the trans-
mitted pair.
As we recall, due to the linear structure of the codebook,

linear dependences within the set of chosen and “competing”
message vectors result in statistical de-
pendences within the set of transmitted and “competing” code-
words . We are interested in the average
pairwise error probability associated with each pair of “com-
peting” message vectors . Thus, the average pair-
wise error probability has to be analyzed w.r.t. each one of the
possible statistical dependences. We develop upper bounds on
the average pairwise error probability associated with each type
of statistical dependence, and then invoke the union bound in
order to establish an upper bound on , the average prob-
ability of the decoder not deciding on the correct pair of trans-
mitted codewords. Using this bound, an achievable rate region
is obtained.
Denote the pairwise error probability from the pair of mes-

sage vectors to the pair , for a given code-
book in the ensemble, by , and the average pairwise error
probability over the ensemble by .
We begin by deriving a general expression that upper bounds

the average pairwise error probability and then eval-
uate it for each of the possible statistical dependences within the
set .
The decoder makes an error to the pair only if

(17)
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where is defined in (15). The condition in (17) is equiv-
alent to

(18)

Define the pairwise difference random variable

(19)

and vector
(20)

Note that the distribution of the pairwise difference vector
encapsulates the statistical dependences in the set of codewords

. We first express our upper bounds on the
average pairwise error probability as a function of the random
vector , and only then account for the fact that the statistics
of vary with the different types of statistical dependences be-
tween the transmitted and the “competing” pairs of codewords.
Substituting (19) into (18), we have that an error occurs only

if

(21)

Given a specific codebook from the ensemble was chosen, is
deterministic, and (21) implies

(22)

Let . Since every coordinate of the vectors
and has an absolute value smaller than , the value of

that minimizes the expression cannot
have an absolute value greater than in any component, and it
suffices to limit the search for it to . Hence, (22) simplifies
to

(23)

We now state a simple lemma that enables us to replace the
folded Gaussian noise in (23) with a simple Gaussian noise
.

Lemma 1: For , , and the events

(24)

and
(25)

the following relation holds:

Proof: See Appendix I.

The next lemma provides an upper bound on , the
average pairwise error probability over the ensemble, that de-
pends on the statistics of only through .

Lemma 2: The average pairwise error probability over the
ensemble is upper bounded by

where

(26)

Proof: Using Lemma 1, we have

(27)

Using the union bound, (27) can be further bounded by

(28)

Since is a vector of i.i.d. Gaussian components with zero
mean and variance , the random variable is
Gaussian with zero mean and variance . Using
the notation

and recalling that

(28) becomes

In order to find the average (over the ensemble) pairwise error
probability, we need to average according to the distri-
bution of

(29)
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Since the code generation is memoryless, is also memoryless,
and (29) can be rewritten as

(30)

Equation (30) can be further simplified by

(31)

(32)

where (31) follows from the fact that the random vari-
ables are identically distributed, and (32) is true
since , and thus, as well as

.

In order to obtain an explicit upper bound on the average
(over the ensemble) pairwise error probability, we are left
with the task of calculating , or equivalently calculating

.
We recall that is a deterministic function of the pair of

transmitted codewords and the pair of “competing”
codewords , where each one of the codewords
is generated as specified in (14). The statistical dependences
within the set of codewords correspond
to the linear dependences within the set of message vectors

. Since we assumed the message vectors
are linearly independent,2 there are only four possible

cases of linear dependences within the set .
Case A: The four vectors are linearly
independent.
Case B: The vectors are linearly indepen-
dent and is a linear combination of them.
Case C: The vectors are linearly indepen-
dent and is a linear combination of them.
Case D: The vectors are linearly independent
and both and are linear combination of them.

Each case of statistical dependences induces a different dis-
tribution on . Thus, for the calculation of ,

2The message vectors are also linearly independent, as the de-
coder only searches over the pairs of linearly independent message vectors.

each case should be considered separately. To that end, we now
give upper bounds on for the four different possible cases.
The derivations of these bounds are given in Appendix III, and
rely on some auxiliary lemmas brought in Appendix II
Case A: The codewords are all statis-

tically independent. Given , there are less than
pairs of competing message vectors that incur this
kind of statistical dependence. Denote by the value of as-
sociated with case A. We have

(33)

where

(34)

Case B: The codewords are statistically in-
dependent and

where , , and can take any value in . Given ,
there are no more than pairs of competing message vec-
tors that incur this kind of statistical dependence.
Denote by the value of associated with case B. We have

(35)

where is as in (34).
Case C: The codewords are statistically in-

dependent and

where , , and can take any value in . Given ,
there are no more than pairs of competing message vec-
tors that incur this kind of statistical dependence.
Denote by the value of associated with case C. We have

(36)

where is as in (34). Note that although the bounds (35)
and (36) are identical, cases B and C are not identical (i.e., there
is no symmetry) since the two codewords and play
a different role in the pairwise difference vector , as is
multiplied by while is not.
Case D: The codewords are statistically indepen-

dent, whereas

and

where , , , and can take any value in , except for
(in which case and

). Given , there are no more than pairs
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of competing message vectors that incur this kind
of statistical dependence. Denote by the value of associ-
ated with case D. We have

(37)

where is given in (34).
We can now establish the theorem. Denote by

, the average error probability
associated with each case of statistical dependences. We recall
that the decoder in our scheme only searches over the pairs of
codewords corresponding to message vectors that
are linearly independent. Thus, an error event occurs if the
message vectors chosen by the users are linearly
dependant. Denote by the probability of this event (which
is independent of the codebook). By basic combinatorics

Using the union bound, the average error probability over the
ensemble can be upper bounded by

Holding constant and taking to infinity, we see that the av-
erage error probability goes to zero if

(38)

(39)

(40)

(41)

The conditions (38)–(40) imply that the rate should be taken to
satisfy

(42)

whereas condition (41) implies

(43)

and

(44)

Condition (43) is satisfied for any positive rate, since it is con-
tained in (42). Condition (43) is equivalent to

(45)

Since any prime value of that satisfies (45) is valid, we can
maximize (42) over all prime values of satisfying (45), i.e.,
over all values in as defined in (7), which yields
(5). Finally, since there must be at least one codebook in the
ensemble with a smaller (or equal) error probability than the
average over the ensemble, the theorem is proved.

IV. APPLICATION TO INTERFERENCE ALIGNMENT

In the previous section, we found an achievable symmetric
rate for the Gaussian modulo-additive MAC where both users
use the same linear codebook. The motivation for developing
such a coding scheme is to enable a finite SNR analysis of lattice
interference alignment.
Assume a receiver observes a linear combination of code-

words transmitted by several users (corrupted by noise) and is
interested in decoding only one of the codewords, namely the
received signal is

where are the channel gains, is the desired code-
word, are the interfering codewords, and is a vector
of i.i.d. Gaussian noise.
One approach is to treat all the interfering codewords as noise.

This approachwould not be effective when the total power of the
interference is on the order of that of the desired codeword (or
stronger). Another possible approach would be trying to decode
all the codewords , thus treating the channel as a MAC
with users. It is well known (see, for example, [25]) that at
high SNR, time sharing is essentially optimal for the Gaussia
MAC. In particular, for such a channel, if all users are working
at the same rate, the symmetric rate scales like

Since the decoder is only interested in one of the codewords, it
seems wasteful to decode all of the interferers as well. For this
reason, it is desirable to align all interferers to one codeword, as
was first noticed in [17]. After alignment is performed, the re-
ceiver only has to decode two codewords: the desired codeword
, and the aligned interference codeword.
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A linear code, as defined in (2), facilitates the task of aligning
the interfering codewords into one codeword. Specifi-
cally, if all interfering codewords are taken from the
same linear code , and the channel gains associated
with the interfering codewords are all integers, we have

and therefore the received vector can be reduced modulo the
interval to yield

(46)

Since and are both members of the same linear code-
book, the equivalent channel in (46) satisfies the conditions of
Theorem 1, and we can find an achievable symmetric rate for it.
At this point, it is worth noting the advantage of joint de-

coding over successive decoding. A successive decoding pro-
cedure, as used in [18] and [20], can decode both codewords
only if a very strong interference condition is satisfied, i.e., one
of the codewords can be treated as noise while decoding the
other codeword. For a wide range of values of , successive
decoding does not allow for positive transmission rates. The re-
sult of the previous section provides a nontrivial achievable rate
region for a much wider range of values of .
We next give a formal definition for the Gaussian interfer-

ence channel, and then use the results of the previous section in
order to derive achievable rates for certain classes of interfer-
ence channels.

A. -User Gaussian Interference Channel

The -user Gaussian interference channel consists of
pairs of transmitters and receivers, where each transmitter
tries to convey one message out of a set of possible
messages to its corresponding receiver. Specifically, the signal
observed by receiver is

where is the channel gain from transmitter to receiver ,
and is the Gaussian noise present at receiver . All transmit-
ters and receivers have perfect knowledge of all channel gains.
We assume that the Gaussian noise at each receiver is i.i.d. with
zero mean and variance and that the noises at different
receivers are statistically independent. We assume all transmit-
ters are subject to the same power constraint

Each transmitter has an encoding function

such that the signal transmitted by user during channel uses
is

Receiver recovers the message using a decoding function

Let

be the estimate receiver produces for the message transmitted
by transmitter . We define the error probability as the proba-
bility that at least one of the receivers did not decode its intended
message correctly

where the expectation here is over a uniform distribution on the
messages.
We say that a rate tuple is achievable if there

exists a set of encoding and decoding functions such that
vanishes as goes to infinity, and that a symmetric rate is
achievable if the rate tuple is achievable. In
the sequel, we focus on the achievable symmetric rate.

B. Integer-Interference Channel

We restrict attention to a special family of -user Gaussian
interference channels which we refer to as the integer-interfer-
ence channel. In this family, all the channel gains corresponding
to interferers are integers, i.e., for all

Note that the symmetric Gaussian -user interference channel
falls in this family of channels. The following theorem estab-
lishes an achievable symmetric rate for the integer-interference
channel.

Theorem 2: For the -user integer-interference channel, the
following symmetric rate is achievable:

(47)

where is defined in (6), and is defined in (7).
Proof: We begin by recalling the encoding and decoding

procedures.
Encoding: Consider the linear ensemble of codebooks of

rate over described in Section III, where is taken
as the maximizing value in (47). Choose the codebook which
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achieves the smallest average error probability, . Each user
encodes its message using this codebook.

Decoding: Each receiver first reduces its observation
modulo the interval . The equivalent channel receiver sees
is therefore

where

The linearity of the codebook implies that .
From Theorem 1, we know that and can be decoded

reliably (by receiver ) as long as the symmetric rate sat-
isfies

(48)

(49)

and
(50)

The codebook satisfies conditions (48)–(50) for every3

, and thus, the theorem is proved.

As we shall see in the next section, the achievable sum rate
from Theorem 2 scales like for almost all di-
rect channel gains. Recall that the symmetric rate from The-
orem 1 for the two-user MAC does not increase with the SNR
when the channel gain is rational. For the integer-interfer-
ence channel, this translates to a bounded symmetric rate if one
of the direct channel gains is rational. Thus, while for finite
values of SNR the symmetric rate is not necessarily sensitive to
the direct channel gains being rational or irrational, the asymp-
totic behavior is poor for rational channel gains. Integer-inter-
ference channels with rational direct channel gains were consid-
ered in [26] and in [27], and finite-SNR achievable rate regions
were developed for such channels. The coding schemes used
in these works combined lattice codes with an additional alge-
braic coding procedure. In certain cases, these schemes achieve
better DoF than time sharing. Thus, in the case of rational direct
channel gains with small denominator, for which our scheme is
less effective, the schemes of [26] and [27] may be used.

3The existence of a codebook that is simultaneously good for all equiva-
lent MACs is guaranteed for any finite number of users , as this is a compound
channel model.

C. Integer-Interference Channel: DoFs

Theorem 2 provides an achievable symmetric rate for the in-
teger-interference channel that is valid for any SNR. We now
show that in the limit where the SNR goes to infinity, for al-
most all direct channel gains, the coding scheme achieves
DoFs, which is the upper bound established in [28]. This sanity
check shows that for the integer-interference channel, the pro-
posed scheme is optimal in a DoF sense for almost all channel
gains, and (partially) recovers the asymptotic results of [5].
Before giving a formal definition to the number of DoF, we

need a few preliminary definitions. We define an interference
channel code as a set of encoders and decoders

. We define an interference channel coding scheme as
a family of interference channel codes , and define

as the set of all rate-tuples that are achievable for the
interference channel code .

Definition 1: An interference channel coding scheme
is said to achieve degrees of freedom if

Theorem 3: The lattice interference alignment scheme from
Section IV-B achieves DoF for almost every integer-inter-
ference channel.
For the proof, we will need the following theorem from the

field of Diophantine approximations, which is due to Khinchin.

Theorem 4 (Khinchin): For almost every , the number
of solutions to the inequality

for and is finite if the series

converges, and infinite if it diverges.
Proof: See, e.g., [29].

Using Khinchin’s Theorem, we now prove Theorem 3.
Proof of Theorem 3: Setting in Theorem 4,

it follows that for any , and almost every , there
exist an integer for which there are no solutions to the
inequality

(51)

in the range . Moreover, for such , there exist a
constant for which

(52)

for every . Combining (51) with (52), it follows that
for almost every , there exist a positive integer ,
such that if , there are no solutions to the inequality
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in the range . Thus, for any and large
enough, we have

(53)

for almost every .
We would now like to show that

(54)

where is the symmetric rate from (47).
Set (where is chosen such that is a

prime number). From (53), we see that for this choice, for high
enough SNR, and almost every , we have

(55)

We now use (55) in order to find lower bounds on the maximal
achievable symmetric rate of Theorem 2 for asymptotic SNR
conditions.
For almost every , the argument of the logarithm in

(48) can be upper bounded (after some straightforward algebra)
by

(56)

and the argument of the logarithm in (49) by

(57)

Taking , and chosen such that is
prime ensures that for any , for high enough, (56)
and (57) can be bounded by

(58)

and

(59)

Since (58) and (59) continue to hold simultaneously for almost
all sets of direct channel gains in , for any , for
high enough, the symmetric rate

(60)

is achievable for almost every . Taking to zero gives
(54), from which the theorem follows.

D. Example

Consider the five-user integer-interference channel where the
channel gains are the entries of the matrix

(61)

The integers in the off-diagonal elements of are arbitrary.
For this channel, we plot the achievable sum rate of our scheme
(which is five times the symmetric rate ), and for reference,
we also plot the sum rate a time-sharing scheme would have
achieved. One more curve we plot for reference is the curve

(62)

which at high SNR corresponds to the sum rate that could have
been achieved if the symmetric rate for a two-user Gaussia
MAC with one linear code was the same as that of the same
channel with two random codes, in other words, if given
in (13) were 1. In the absence of explicit upper bounds for the
-user interference channel with finite SNR, (62) serves as a

reasonable benchmark to the best performance one can expect
to achieve, which is based on the known fact that the number
of DoF the channel offers is .
We consider two different values of : , and
.4 The results are shown in Fig. 5. In Fig. 6, we plot the

same curves for and .
These examples show the advantages of lattice interference

alignment over time sharing for high enough SNR. For a larger
number of users, interference alignment is preferable over time
sharing for lower values of SNR. We note that in this paper
we have not considered further optimizations for the achievable
rate, such as combining it with time sharing of powers, or super-
position (layered coding schemes), which may result in higher
gains. Time sharing of powers, i.e., having all users transmit
with more power for some of the time and remain silent for the
rest of the time is important at low SNR values, since our coding
scheme only achieves positive rates above some SNR threshold.
An important insight from Figs. 5 and 6 is the sensitivity of

interference alignment to the channel gain . Even though in
each figure we have used values of that are very close, the

4Our coding scheme would have the same performance for
as well; however, the reference curves do change when adding integers to .
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Fig. 5. Achievable sum rate for the integer-interference channel (61) for
and .

performance of the scheme differs significantly when the SNR
is very high. This sensitivity is the subject of the next section.

V. QUANTIFYING RATIONALITY

Previous results regarding interference alignment for the
static -user Gaussian interference channel were mainly fo-
cused on the DoF of the channel. In [5], it is proved that the
number of DoF of a -user integer-interference channel are

when the direct channel gains are irrational algebraic5

and is strictly smaller than when the channel gains are
rational. This result is also supported by the results of [6] where
it is shown that the DoF of a -user (not necessarily integer)
interference channel is , unless there exist some rational
connections between the channel coefficients.
Clearly, from an engineering perspective, the dependence of

the DoF on whether the direct channel gains are rational or irra-
tional is very displeasing. It is therefore important to understand
the effect of the channel gains being rational at finite SNR.
Theorem 2 sheds light on thismatter. Specifically, it quantifies

the loss associated with a rational direct channel gain in
the symmetric rate as a function of how large the denominator
of is w.r.t. the SNR. Specifically, if is a rational
number of the form , the symmetric rate achieved
by the proposed coding scheme can never exceed . This
is evident from the presence of the factor in (47).
For any , we have . Thus, in order to
get positive rates, we must choose and the symmetric
rate would be smaller than for any SNR. For this
reason, a small denominator limits the symmetric rate even
for low values of SNR. However, a large value of limits
performance only at high SNR. This phenomenon can be
seen in Fig. 5 where at a certain SNR point, the symmetric
rate corresponding to (which is a rational number)
saturates. In Fig. 6, this effect is even more pronounced for

as the denominator of in this case is ,

5In fact, it was proved in [30] (and also in [12]) that the number of DoF is
for all irrational direct channel gains.

Fig. 6. Achievable sum rate for the integer-interference channel (61) for
and .

rather than which is the case for . It is
also seen from Figs. 5 and 6 that for low values of SNR, the
symmetric rates corresponding to the irrational values of and
their quantized rational versions are nearly indistinguishable.
Another question that arises from the results of [5] and [6] is

how the rate behaves when the direct gains approach a rational
number. Theorem 2 provides an answer to this question as well.
If is small, then would also be small for
, which would result in an effectively lower SNR.However, the
function is continuous in the second variable, and thus,
letting approach (where ) results in a continuous
decrease of the effective SNR.

VI. NONINTEGER INTERFERENCE CHANNELS

We have seen that for the integer-interference channel, the
result of Theorem 1 was very useful for finding a new achiev-
able rate region. The requirement that at each receiver all the
channel gains corresponding to interferers are integers is neces-
sary because the codebook we use is only closed under addition
of integer-valued multiplications of codewords, which allows
us to align all interfering signals into one codeword.
Unfortunately, the integer-interference channel model does

not capture the essence of the physical wireless medium. Under
realistic statistical models for the interference channel, the prob-
ability of getting an integer-interference channel is clearly zero.
It is thus desirable to transform a general interference channel

into an integer-interference channel by applying certain oper-
ations at the transmitters and the receivers.6 Specifically, it is
necessary that at each receiver, the ratios between all interfer-
ence gains be rational, and then, an appropriate scaling at each
receiver can transform the channel into an integer-interference
channel.
For the general -user interference channel with arbitrary

channel gains, assume that each receiver had scaled its observa-
tion such that one of the interference gains equals 1. We would

6We do not discuss the possibility of adding more antennas at the receivers
or the transmitters which could also assist in the problem.
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like to “shape” the other interfering gains seen at each receiver
to be integers as well, using operations at the transmitters. It
turns out that by using power back-off at each transmitter, i.e.,
each transmitter scales its codeword by a factor of
prior to transmission, it is possible to transform only (in
addition to the channel gains that were equalized to 1 by the
receivers) of the total of interfering channel gains
into integers. It follows that perfect alignment, i.e., alignment
of all interferers at all receivers simultaneously, is not possible
(by these methods) even for users.
One solution to this problem is performing partial alignment,

as described in [6], which is suitable for almost every set of
channel gains. This method roughly transforms the channel seen
by each receiver into a MAC with a large number of inputs,
where about half of the inputs correspond to the information
transmitted by the desired transmitter, and the other half to in-
terferences. At asymptotic (high) SNR conditions, it was shown
in [6] that this approach achieves DoF, i.e., each receiver is
capable of decoding all the inputs corresponding to its intended
messages in the presence of the interfering inputs.
An extension of the partial interference alignment approach

proposed in [6] to the nonasymptotic SNR regime, in the same
manner we extended the results of [5] for the integer-interfer-
ence channel to nonasymptotic SNR, requires an extension of
Theorem 1 to more than two users. After the appearance of this
work, such an extension was derived in [21]. This extension en-
ables us to translate the DoF results of [6] into achievable rate
regions. Nevertheless, the large number of layers used by the
partial alignment scheme of [6] makes this rate region inferior
to that achieved by time sharing for most channel parameters of
practical interest.
A different approach that is yet to be exhausted for the static

interference channel is using the time dimension in conjunction
with power back-off in order to achieve alignment, and allow
for joint decoding of the intended message and some function
of the interferers at each receiver.
Such an approach can be thought of as the interference

channel’s dual of space-time codes, and we refer to it as
“power-time” codes. An example of such a power-time code is
given in Section VI-A. The power-time code in the example is
suitable for the three-user interference channel (with arbitrary
channel coefficients), and allows us to achieve DoF for
almost all channel gains. While it is already known from [6]
that the number of DoF offered by this channel is , our
“power-time” approach gives an explicit expression for the
symmetric rate for finite SNR.

A. Example of a Three-User Interference Channel Power-Time
Code

In this section, we introduce a coding scheme that utilizes
both power back-off at the transmitters, and the time domain,
in order to allow for perfect interference alignment (with some
loss in the number of DoF). We illustrate the scheme by an ex-
ample which is useful for the general three-user interference
channel and achieves 9/8 DoFs out of the 3/2 DoF afforded by
the channel for almost all channel gains (see [6]).

We consider the channel

We use the channel times, in order to transmit three code-
words of length by each user. We refer to consecutive
channel uses as a frame. The actions taken by the transmitters
and the receivers vary from frame to frame, as will be described
in detail. All transmitters and receivers use the same linear
codebook of rate and length during all frames. The
codeword transmitted by user at frame is denoted by .
We assume that , , and . There

is no loss of generality in this assumption, as the scheme we now
describe can be easily modified for different ratios between the
channel gains. For all frames, receiver 1 scales its observation
by , receiver 2 scales its observation by , and re-
ceiver 3 scales its observation by such that the equivalent
channel is

where , , and .
We describe the operations taken by the transmitters and the

receivers at each frame.
1) Frame 1: User 1 transmits the codeword , user 2 trans-
mits the codeword , and user 3 transmits the codeword

.
User 3 scales its codeword by the factor , and
all other transmitters do not scale their codewords. The
equivalent channel is thus

Due to the perfect alignment at receiver 1, it can decode
, the codeword transmitted by user 1. The other re-

ceivers cannot decode their codewords at this stage.
2) Frame 2: User 1 transmits the codeword , user 2 trans-
mits the codeword , and user 3 transmits the codeword

.
User 1 scales its codeword by the factor , and
all other transmitters do not scale their codewords. The
equivalent channel is thus

Due to the perfect alignment at receiver 2, it can decode
, the codeword transmitted by user 2. The other re-

ceivers cannot decode their codewords at this stage.
3) Frame 3: User 1 transmits the codeword , user 2 trans-
mits the codeword , and user 3 transmits the codeword

.
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User 2 scales its codeword by the factor , and
all other transmitters do not scale their codewords. The
equivalent channel is thus

Due to the perfect alignment at receiver 3, it can decode
, the codeword transmitted by user 3. The other re-

ceivers cannot decode their codewords at this stage.
4) Frame 4: In this frame, each user repeats a codeword it has
already transmitted in one of the previous frames. Specifi-
cally, user 1 transmits the codeword , user 2 transmits
the codeword , and user 3 transmits the codeword .
None of the users scale their codewords, such that the
equivalent channel is . Now, receiver observes the
signal

where is the Gaussian noise present at receiver .
Since receiver had already decoded the codeword
in the th frame, it can subtract from which
results in the equivalent two-user MAC

User can now decode the two codewords transmitted by
the other users during the fourth frame. For instance, in this
step, user 1 decodes the codewords and .
Now that user 1 has the side information and , it
can return to its observations from the second and the third
frames. It can subtract from the term , leaving it
with a two-userMACwhich allows it to decode . In the
same manner, it can subtract the term from ,
leaving it with a two-user MAC which allows it to decode

.
The same procedure is done by each one of the other de-
coders.

The described power-time code results in three different
codewords, each with a rate that scales like ,
that were decoded by each decoder. Taking into account the
(symbol) rate of the power-time code, which is 3/4 (since the
fourth channel use is “wasted”), we get a sum rate that scales
like , which means that the number of DoF is 9/8 .
More importantly, using Theorem 1, we can find an achievable
symmetric rate for this power-time code for any SNR. From
our DoF analysis of Section IV-C, we know that for almost
any channel realization, there exist a certain value of SNR
from which the described power-time code outperforms time
sharing. While this value of SNR may be very high, it is finite,
and can be explicitly computed for a given channel realization.
To the best of our knowledge, this is the first nontrivial example
for a scheme that outperforms time sharing at finite values
of SNR over a general fully connected real -user interfer-
ence channel. Note that for general complex fully connected

three-user interference channels, Cadambe et al. [31] proposed
an asymmetric complex signaling scheme that achieves 6/5
DoF and gives a finite SNR achievable rate region.

VII. CONCLUDING REMARKS

In this work, we have made a first attempt toward character-
izing the performance of lattice-based interference alignment
schemes at finite SNR. To do that, we recognized that a fun-
damental feature of such schemes is that each receiver sees an
induced MAC where all inputs are from the same lattice code-
book. A new coding theoremwas derived for the two-userMAC
where both users use the same lattice codebook. While the rate
expressions given by this theorem are not very tight, they seem
to capture the essence of the problem.
The new coding theorem was utilized for establishing a new

achievable rate region for the integer-interference channel,
which is based on lattice interference alignment, and is valid
for any value of SNR. Previous DoF results for this family of
channels suggested that at high SNR conditions, its capacity
becomes very sensitive to the exact values of the channel gains.
While at high SNR the rate region derived here agrees with

those results, and is indeed very sensitive to the channel gains,
at moderate values of SNR, it is rather robust. This shows that
lattice interference alignment is a legit candidate for coding
over fully connected static interference channels at SNR con-
ditions of practical interest. Indeed, subsequent work [21] used
lattice interference alignment in order to approximate the ca-
pacity of the symmetric Gaussian -user interference channel
for all channel gains outside some outage set.
The channel model used here, as well as in [21], is such that

all interfering lattice codewords are received aligned in all re-
ceivers. For general interference channels, this is not the case.
Thus, efficient precoding schemes for creating alignment need
to be developed in order to make lattice interference alignment
attractive. For very high SNR, this problem was solved in [6],
but the problem remains open for moderate values of SNR.

APPENDIX I
PROOF OF LEMMA 1

Proof: Let

and denote by the set of indices for which the absolute value
of is not greater than , and by the set of indices for which
it is greater than , namely

Let be subvectors of in the
indices , and be their subvectors in the in-
dices . It suffices to show the next two inequalities

(63)
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and

(64)

The first inequality (63) is true since for every index , we
have

and since .
In order to see that (64) is true, we note that for any index

(and in particular ), we have

On the other hand, for any , the inequality
must hold, since otherwise the value of minimizing

cannot be greater than . Moreover, since
, it follows that

Finally, for every , we can write

which establishes (64).

APPENDIX II
PRELIMINARY LEMMAS

In this appendix, we state four lemmas that are repeatedly
used in Appendix III for the derivations of error probabilities
for the different cases of statistical dependences. The proofs are
rather cumbersome and are given in Appendix IV.

Lemma 3: Let be a random variable uniformly dis-

tributed over , and let be some random variable
statistically independent of . Define the random variable
by

The following inequality holds:

Lemma 4: Let be a random variable uniformly dis-

tributed over , and be some random variable
statistically independent of . Define

where is a constant in , and . For any

where

(65)

Lemma 5: Let , , and be three i.i.d. random vari-

ables uniformly distributed over , and some ar-
bitrary constant. Define

(66)

Then

where is defined in (65).

Lemma 6: Let be a random variable uniformly dis-

tributed over , and some arbitrary constant.
Define

(67)

where and . Then

We also state two properties that are extensively used (some-
times implicitly) throughout the calculations in Appendix III.

Property 1: For any and

Property 2: For any and

APPENDIX III
DERIVATION OF THE ERROR PROBABILITIES FOR THE

DIFFERENT CASES

In this appendix, we analyze the different cases of statistical
dependences, and give upper bounds for the error probability in
each one.

1) Case A: In this case, we have
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where , , , and are four i.i.d. random variables

uniformly distributed over . Let

and note that is uniformly distributed over , and is
statistically independent of and . We have

Applying Lemma 5 gives

(68)

Denote by the value of associated with case A. Substi-
tuting (68) into (26), we have

(69)

2) Case B: In this case

where , , and are three i.i.d. random variables uni-

formly distributed over . Define

and

Using these notations, we have

(70)

We now show that if the vectors and are linearly
independent (over ), the first and the second elements in the
sum are statistically independent. To that end, we prove the fol-
lowing lemma.

Lemma 7: Let be a full-rank deterministic matrix with
dimensions over where is a prime number, and

a vector with dimensions containing elements which are
i.i.d. random variables uniformly distributed over .
Let (with operations over ). Then, the elements

of are also i.i.d. random variables uniformly distributed over
.
Proof: Since is full rank, for any vector , there exists

one and only one vector that satisfies . Since the
elements of are i.i.d. and uniformly distributed, the vector
is uniformly distributed over , which implies that

for every vector . This in turn implies that the elements
of are i.i.d. with uniform distribution over .

Let

(71)

With this notation, (70) can be rewritten as

We now have to distinguish between the case where and
are linearly independent which will be referred to as Case

B1, and the case where they are linearly dependent. The case
where and are linearly dependent and
will be called Case B2, and the case where will be
called Case B3.

Case B1: If and are linearly independent, the
matrix in (71) is full rank, and it follows from Lemma 7 that

are each uniformly distributed over and
are statistically independent. In this case

where

is statistically independent of .
Applying Lemma 3 gives

(72)

Denote by the value of associated with case . Substi-
tuting (72) into (26), we have

(73)

Case B2: We now consider the case where and
are linearly dependent and . In this case, we have

for some . Let



ORDENTLICH AND EREZ: ON THE ROBUSTNESS OF LATTICE INTERFERENCE ALIGNMENT 2753

and note that is uniformly distributed over and is
statistically independent of . We can rewrite as

Now let

and note that is statistically independent of . Using this
notation, we have

(74)

where

Let

and note that is statistically independent of . Using
Lemma 4, we have

(75)

which means that

(76)

We further note that

Thus, (76) is equivalent to

(77)

Case B3: Since it follows that and
. Thus, (70) can be written as

Letting

and using the fact that is uniformly distributed over
and is statistically independent of , Lemma 3 can be ap-
plied, which yields

(78)

Denote by the value of associated with case . Substi-
tuting (78) into (26) gives

(79)

Since , combining (73) with (77) and (79) yields

(80)

for all possible values of , , and .
3) Case C: In this case

(81)

where , , and are three i.i.d. random variables uni-

formly distributed over .
We distinguish between the case where , which we refer

to as Case C1, and the case where , which we refer to as
Case C2.

Case C1: Since , the random variable

is uniformly distributed over . We further define the
random variable

which is statistically independent of . Applying
Lemma 3 yields

(82)

Denote by the value of associated with case . Substi-
tuting (82) into (26), we have

(83)

Case C2: Since , (81) can be rewritten as

(84)

where
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and

Letting

and applying Lemma 4 gives

(85)

Combining (83) with (85), and using the fact that ,
yields

(86)

for all possible values of , , and .
4) Case D: In this case, we have

(87)

where and are two i.i.d. random variables uniformly dis-

tributed over , and as earlier. Further, letting

and

we have

This is the most complicated case in terms of the number of
different combinations of , , , and we have to consider.
Case D1 corresponds to , Case D2 to ,
Case D3 to , and, finally, the case where

will be referred to as Case D4. The case
where does not have to be considered
as in this case , and hence, the message vectors
and are linearly dependent. As we recall, the decoder in our
scheme does not consider such pairs of message vectors.
We denote by , the value of associated

with Case .
Case D1: Define

which is statistically independent of as . Now

(88)

where is the inverse element of in the field . Let

and

With these notations, (88) can be written as

(89)

Letting

and applying Lemma 4 gives

(90)

Case D2: Since , (87) becomes

We define

which is statistically independent of . Since ,
the random variable is uniformly distributed over

. We can therefore apply Lemma 3 and get

(91)

Case D3: Substituting , , and into (87)
gives

Applying Lemma 3 with gives

(92)

for any . The case is not interesting because it
implies and , and an error does not occur.

Case D4: We are left only with the case
for which

(93)

Since is uniformly distributed over , ,

and , we can apply Lemma 6 which gives

(94)

Combining (90), (91), (92), (94), and the fact that ,
we conclude that for all values of , , , and that are consid-
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ered by the decoder (except for
which does not incur an error event), we have7

(95)

APPENDIX IV
PROOFS OF PRELIMINARY LEMMAS

The aim of this section is to prove Lemmas 3–6. We begin by
deriving some auxiliary lemmas that will be used.

Lemma 8:
a) For any and

(96)

b) For any and

(97)

Proof: In order to prove part (a) of the lemma, we write

(98)

We have

(99)

and

(100)

7We also used the fact that .

Substituting (99) and (100) into (98) yields

(101)

which establishes the first part of the lemma.
In order to prove part (b), we have

(102)

Letting and , we have

(103)

where we have used part (a) of the lemma for the first inequality.

Lemma 9: For any and a prime number

(104)

where , and the notation stands for
equality between sets of points (constellations).

Proof:

(105)
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We are now ready to prove Lemma 3.
Proof of Lemma 3:

(106)

(107)

where (106) follows from Lemma 9, and (107) follows from part
(b) of Lemma 8, and the fact that .

Before proceeding to the proof of Lemma 4, we need to derive
two more simple results.

Lemma 10: Let be some constellation of finite cardi-
nality , with minimum distance

Then

(108)

for some .
Proof: Let

Each point in the constellation can be written in terms of
its distance from , i.e., as

where .

Let us sort the points of in ascending order by

where the different ’s correspond to the distance of each point
from . Note that there are points in with magnitude
greater than and points in with magnitude smaller
than . Moreover, for and

for .
We have

Setting , the lemma is proved.

Remark 1: We note that the bound (108) is rather loose, and
is one of the weakest links in the chain of bounds we use for ob-
taining an upper bound on the average pairwise error probability

.

Lemma 11: Let

and let where , and are
arbitrary constants. The minimum distance in the constellation
is lower bounded by

Proof: The distance between any pair of distinct constel-
lation points can be written as

(109)

where and are two distinct points in . Letting

and
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we can further bound (109) as

(110)

where inequality (110) is true since .
Recall that

and hence

Aided by Lemmas 10 and 11, we can now prove Lemma 4.
Proof of Lemma 4:

(111)

(112)

(113)

where (111) follows from Lemma 10, (112) follows from part
(b) of Lemma 8, and (113) from Lemma 11.

We use a similar technique for the proof of Lemma 5.

Proof of Lemma 5: Let

such that , and are three i.i.d. random variables uni-
formly distributed over . With this notation,
(66) can be written as

Further, let

and note that for , we have

(114)

Now

(115)

For any value of , we have

(116)

(117)

(118)

where (116) follows from Lemma 9 and (117) follows from part
(b) of Lemma 8.
We note that for , (118) becomes

(119)

and for any

(120)

which follows directly from the definition of and the fact
that .
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Substituting (114), (119), and (120) into (115) yields

Proof of Lemma 6: The first step in proving the lemma is
showing that for any , there exists at least one

value of for which .

For any value of , define

. We have

(121)

We focus on the expression

(122)

We show that for any value of , there exists a
value of for which (122) equals 1. In order
to see that, we observe that the following equation

(123)

has a (single) solution for any . Further, since

(124)

it can be deduced that for any , there exists a (single)
value of for which (122) equals either 1 or . Since
(122) equals only if

which is possible only for , we conclude that for any
, there is a value of , which we denote , for

which (122) equals 1. Substituting into (121) yields

(125)

We are left with the case , for which

(126)

Substituting (126) into (121) gives

It follows that for and

(127)

Combining (125) and (127), we conclude that for any
, there exists at least one value of for which

(128)

Now, since at least one of the equiprobable possible values
of is bigger (in absolute value) than ,

can be upper bounded by

(129)
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