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Abstract—We consider an uncoordinated Gaussian multiple
access channel with a relatively large number of active users
within each block. A low complexity coding scheme is proposed,
which is based on a combination of compute-and-forward and
coding for a binary adder channel. For a wide regime of
parameters of practical interest, the energy-per-bit required by
each user in the proposed scheme is significantly smaller than
that required by popular solutions such as slotted-ALOHA and
treating interference as noise.

I. INTRODUCTION

One of the key challenges in the design of next generation’s

wireless networks is to allow for a large number of bursty

users, each with a small amount of data, to transmit simulta-

neously in a grantless fashion. This need, which was already

identified by Gallager three decades ago [1], is now returned

to the research forefront due to explosion of the number of

wireless devices [2].

To model this scenario, we consider a Gaussian multiple

access channel where communication is performed in blocks

of n channel uses. There are Ktot possible users that can

transmit over the channel, but only Ka of them are active

within each block, such that the receiver observes

y =

Ktot
∑

i=1

sixi + z, (1)

where (s1, . . . , sKtot
) ∈ {0, 1}Ktot is the “activity pattern”

vector whose Hamming weight is Ka, xi ∈ R
n is the

codeword transmitted by user i assuming it was active, and

z ∼ N (0, I) is additive white Gaussian noise (AWGN).

We further assume that all users have the same message set

[M ] , {1, . . . ,M}, such that if user i is active, its message Wi

is uniformly distributed over [M ], and that all users are subject

to the same power constraint ‖xi‖2 ≤ nP , i = 1, . . . ,Ktot.

The activity pattern is assumed unknown to the decoder, and

known only locally to the transmitters, i.e., each user only

knows whether or not it is active, but does not know which

of the other users are active.

The typical regime of interest is where the total number of

devices connected to the network Ktot is orders of magnitude

greater than the coding blocklength n, the number of active
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users Ka within each block scales as Ka = µn, with some

µ ≪ 1, and the length in bits, k , log2 M , of each active

user’s message does not scale with n. Thus, although each

user only has a small number of bits to send, the total number

of bits per channel use that needs to be decoded, ρ , k·Ka

n
,

is fixed. We refer to ρ as the required spectral efficiency. For

example, in LP-WANs such as LoRaWAN and Weightless,

Ktot ≈ 107, n ≈ 104, Ka ≈ 100, and k ≈ 100, such that ρ
typically takes a moderate value between a fraction of a bit to

a few bits per channel use.

Our formulation diverges from traditional multiple access

literature [3], as well as that of [4], in our definition of

successful decoding. We only require the decoder to output

a list L(y) = (w1, . . . , wJ ) ⊂ [M ] of no more than Ka

messages (i.e., J ≤ Ka) that should contain most messages

that were transmitted by the active users, where the order in

which the messages appear in the list is of no significance.

Our model therefore decouples the user identification problem

(“who was active”) and the data transmission problem (“what

messages were sent”), and is more consistent with the network

theoretic studies. There, it is common to think of MAC

layers job as that of delivering packets and not identifying

who sent them. The reasoning is that part of the payload

(headers) contains identifying information. The scheme’s error

probability is therefore defined as

Pe = max
|(s1,...,sKtot)|=Ka

1

Ka

Ktot
∑

i=1

si · Pr (Wi /∈ L(y)) , (2)

where | · | denotes Hamming weight. An advantage of this

formulation is that it allows to set Ktot = ∞, which conse-

quently leads to leaving the parameter Ktot out of our model,

as we do in the sequel. See [2] for further justification of the

model. Note that the assumption of Ktot = ∞ naturally leads

to schemes where all users transmit from the same codebook,

possibly with some additional randomization in the encoding

procedure.

Let ǫ be the target error probability, measured according

to (2). For fixed n, k,Ka, ǫ, our goal is to design a scheme

with Pe ≤ ǫ which requires the smallest possible transmission

power P . In particular, we measure performance in terms of

the energy per bit Eb

N0

, nP
2k required for each user, where P

is the minimal power such that Pe ≤ ǫ.

The grantless nature of the communication precludes the

use of orthogonalization methods (TDMA,FDMA, orthogonal



CDMA), and alternative efficient coding schemes are needed

for this random access channel. Two popular solutions are

“treat interference as noise” (TIN), which is implemented

in practice via un-coordinated CDMA with a matched filter

detector (i.e., no multi-user detection), and slotted-ALOHA.

Unfortunately, both schemes have severe limitations in our

regime of interest, as can be seen from Figure 1.1See [6] for

further details.

While the performance of TIN is limited by noise accumu-

lation, the large Eb/N0 required by slotted-ALOHA is due to

the fact that the scheme only supports single-user decoding.

On the other extreme, if we had a computationally unlimited

decoder, we could let all active users transmit simultaneously

from the same (randomly constructed) codebook and perform

joint decoding. A finite blocklength achievability bound for

this setup was derived in [2, Theorem 1], and corresponds to

the “random coding” curve in Figure 1.

As a compromise between these two extremes, we propose

an approach referred to as T -fold ALOHA. This approach is

similar to standard slotted-ALOHA in the sense that the block

is split to sub-blocks and each active user only transmits in

one random sub-block. However, in T -fold ALOHA, the code

is designed such that if at most T users transmitted during

the same sub-block, the decoder can decode all corresponding

messages, whereas when more than T users simultaneously

transmitted within the same sub-block, nothing is decoded.

Thus 1-fold ALOHA is just slotted-ALOHA, whereas Ka-

fold ALOHA corresponds to the scheme described in the

previous paragraph. A random coding achievability bound for

the Eb/N0 required by 5-fold ALOHA, with a joint decoder

applied within each sub-block, is plotted in Figure 1. However,

to make T -fold ALOHA a practical solution, low complexity

schemes for the random access channel with T active users

are needed. In this paper, we propose such a scheme, which

works well for moderate values of T .

A high-level description of the proposed coding scheme is

as follows. First, the n channel uses are split into V sub-

blocks of length n̄ = n/V , and each active user randomly

chooses only one of these sub-blocks, over which it transmits.

All users encode their messages using the same codebook C ⊂
F
n̄
2 , which is then mapped to a BPSK constellation. The code

C is a concatenation of two codes. The first is an inner binary

linear code, whose goal is to enable the receiver to decode the

modulo-2 sum of all codewords transmitted within the same

sub-block. We refer to recovering this modulo-2 sum as the

compute-and-forward [7] (CoF) phase. The second code, is an

outer code whose goal is to enable the receiver to recover the

individual messages that participated in the modulo-2 sum. We

refer to recovering the individual messages from their modulo-

2 sum as the binary adder channel (BAC) phase.

The success probability of the CoF phase in our scheme

is independent of the actual number of users that transmit-

ted within the same sub-block. The outer code, however, is

1Another appealing alternative is coded slotted ALOHA [5]. See [2] for an
optimistic estimate of its performance in term of energy per bit.

designed such that if at most T active users approached the

channel during the same sub-block, it is possible to determine

the individual messages from their modulo-2 sum, essentially

with zero error probability. Thus, loosely speaking, for any

active user, the probability that its message is not in the

list L(y) is dictated by the probability that the compute-

and-forward phase was unsuccessful in the sub-block where

it transmitted, and the probability that more than T users

approached the channel within this sub-block.

The design of an inner code for the CoF phase, reduces

to that of finding codes that perform well over a binary-

input memoryless output-symmetric (BMS) channel, for which

many off-the-shelf codes can be used. We construct the outer

code for the BAC phase from the columns of a T -error

correcting BCH codes, and show that this code can be decoded

efficiently [8], even though the blocklength for the underlying

BCH code is orders of magnitudes greater than the allowed

number of operations that can be performed by a practical

decoder.

Both components of our scheme are not new and there is

a large body of literature on each of them separately. The

observation that BCH-codes can be used for constructing zero-

error codes with rate 1/T for the T -ary modulo-2 adder

channel dates back to Lindström [9] and have since then

appeared and was generalized in various works, see e.g., [8],

[10]. A particularly related work is [10] where the authors

used a similar concatenated code to construct a code with

good minimum Hamming distance for the T -user modulo-2
adder channel. The use of linear codes for decoding modulo

sums of codewords from the output of a Gaussian multiple

access channel is more recent, and has its roots in the work

of Körner and Marton [11]. However, the combination of the

these two components, in conjunction with T -fold ALOHA,

for providing a low complexity scheme with low energy per

bit for the Gaussian random access channel is novel, and, as

can be seen in Figure 1, leads to performance that cannot

be attained by other known schemes of similar complexity, in

some regimes of practical interest. The recent works [12], [13]

propose coding schemes of similar flavor to ours, but those are

less suitable for our regime of interest, where the number of

possible users is unbounded, the message length of each user

is small, and the target is to minimize the energy per bit.

II. THE BASIC CODING SCHEME

Our scheme has two design parameters, T which is the

maximal number of users that can simultaneously transmit in

the same sub-block without incurring an error, and α ∈ [0, 1],
such that the number of sub-blocks is V = Ka/(αT ).

Code construction: We construct one codebook C ⊂ F
n̄
2

with |C| = 2k = 2n̄R codewords, to be used by all active

transmitters, where n̄ = n
V

= αT n
Ka

and R = ρ
αT

.

The codebook C is a concatenated code. The “inner” code

is a systematic binary linear code Clin ⊂ F
n̄
2 of rate Rlin, with
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Fig. 1. Comparison between the Eb/N0 required by various schemes for the
setup k = 100 bits, n = 30, 000 channel uses, number of active users Ka

varies, and ǫ = 0.05.

generating matrix G ∈ F
n̄Rlin×n̄
2 , such that

Clin =
{

aG : a ∈ F
1×n̄Rlin

2

}

. (3)

The “outer” code is a binary code (not necessarily linear)

CBAC ⊂ F
n̄Rlin

2 with rate RBAC. The concatenated binary code

C ⊂ F
n̄
2 with rate R = Rlin ·RBAC = k

n̄
is defined as

C = {cBACG : cBAC ∈ CBAC} . (4)

The roles played by the inner code and outer code, as well as

the criteria according to which they should be chosen, will be

discussed in the sequel.

Encoding: Each active user i first encodes its message Wi

to a codeword cBAC,i ∈ CBAC, and then uses G to generate the

codeword

ci = cBAC,iG ∈ C. (5)

Next, it maps the binary vector ci to the real vector xi =
2
√
V · P

(

ci − 1
2

)

, where here and throughout the rest of the

paper we interchangeably treat {0, 1} as either integers or ele-

ments of F2, according to the context. Note that ‖xi‖2 = nP .

User i transmits the vector xi during one and only one of

the V sub-blocks. The location of this sub-block is randomly

drawn independently across users from the uniform distribu-

tion over {1, . . . , V }. We denote by E1,i be the event that

more than T−1 other active users transmitted within the same

sub-block as user i.

Decoding: Decoding is done in a sub-block by sub-block

manner. For each sub-block v ∈ [V ], the decoder outputs a

list Lv of at most T messages. The list of messages for the

entire block is then constructed as L(y) = ∪V
v=1Lv .

We describe the decoding procedure for the first sub-block.

For the other V −1 sub-blocks decoding is done in an identical

fashion. Let y1 = (y1, . . . , yn̄) and z1 = (z1, . . . , zn̄) be the

vectors of channel outputs and channel noise, respectively,

corresponding to the first sub-block, and let i1, . . . , iL be the

active users that transmitted during this sub-block. We have

y1 =

L
∑

j=1

xij + z1 = 2
√
V · P





L
∑

j=1

cij +
z1

2
√
V · P

− L

2



 .

We may assume the number of active users L within the sub-

block is known to the receiver. This follows since we can first

apply the decoding algorithm for all values L = 1, . . . , T , and

then choose the produced list that has the “best agreement”

with y1, which should correspond to the actual value of L, or

decide that L > T if all the produced lists are not in “good

agreement” with y1 [6]. If L > T , the receiver outputs L1 = ∅.

Otherwise, it computes

yCoF,1 =

[

1

2
√
V P

y1 +
L

2

]

mod 2 =





L
∑

j=1

cij + z̃1



 mod 2,

where the modulo 2 reduction is into the interval [0, 2) and is

taken componentwise, and z̃1 = z1

2
√
V ·P ∼ N (0, σ2I), σ2 =

1/4V P . Let c⊕1 , [
∑L

j=1 cij ] mod 2, and note that since c⊕1
is the modulo-2 sum of codewords from the same linear code

Clin, we have that c⊕1 ∈ Clin. Thus, we constructed an effective

memoryless channel

yCoF,1 =
[

c⊕1 + z̃1
]

mod 2, (6)

whose input is a codeword from the linear code Clin. The

decoder ignores the fact that c⊕1 is not distributed uniformly on

Clin, and simply performs point-to-point decoding of Clin from

yCoF,1 to produce the estimate ĉ⊕1 . We denote the erroneous

decoding event by E2 , {ĉ⊕1 6= c⊕1 }.

Now, assuming E2 did not occur, the decoder proceeds to

recover the L messages transmitted by the active users from

c⊕1 . By (5) and the fact that Clin is systematic, we have that

the first n̄Rlin coordinates of c⊕1 correspond to

yBAC,1 =

L
∑

j=1

cBAC,ij mod 2. (7)

Thus, the decoder uses yBAC,1 to produce a list of L vectors

L̃(yBAC,1) = {ĉBAC,1, . . . , ĉBAC,L} ∈ CL
BAC that satisfy (7). We

denote the corresponding error event by

E3 ,

{

L̃(yBAC,1) 6= {cBAC,i1 , . . . , cBAC,iL}
}

, (8)

where both L̃(yBAC,1) and {cBAC,i1 , . . . , cBAC,iL} are sets and

therefore there is no significance to the order in which their

elements appear.

Finally, the decoder re-maps the codewords in L̃(yBAC,1) to

a list of the corresponding messages L1 ⊂ [M ].

Error probability: Assume user i was one of the Ka active

users, and without loss of generality, assume further that it

transmitted during the first sub-block. Since the role of all

active users in the proposed scheme is symmetric, we have



that Pe = Pr(Wi /∈ L(y)) ≤ Pr(Wi /∈ L1). Thus,

Pe ≤ Pr(E1,i) + Pr(E2|Ē1,i) + Pr(E3|Ē1,i, Ē2).

For the event E1,i, using V = Ka/αT we have that

Pr(E1,i) = 1− Pr

(

Binomial

(

Ka − 1,
αT

Ka

)

< T

)

, ǫ1

(9)

regardless of the codes Clin, CBAC that are used. The error

probability Pr(E2|Ē1,i) depends on the choice of Clin, whereas

Pr(E3|Ē1,i, Ē2) depends on the choice of CBAC. We will

therefore treat them in the next subsection.

A. Choice of inner and outer codes

Code for CoF phase: The code Clin should allow decoding

of c⊕1 from the channel (6), with error probability smaller

than some target ǫ2. The channel (6) is a BMS channel, for

which the art of designing efficient coding schemes is well

advanced. Thus, any off-the-shelf low complexity code with

good performance over a BMS (e.g., LDPC, turbo, polar) can

be used for Clin. For the numerical analysis of Figure 1, we

refrain from committing to a particular code, and use the

fundamental coding limits of the channel (6) for evaluating

ǫ2 = Pr(E2|Ē1,i). Specifically, in order to determine the

smallest P that allows correct decoding of c⊕1 with error

probability below ǫ2, we use the normal approximation [14]

Rlin ≈ C(P )−
√

V (P )

n̄
Q−1(ǫ2) (10)

and solve for P . To evaluate the quantities C(P ) and V (P )
we define the random variable Z̃ = [Z̄] mod 2 with pdf fZ̃ ,

where Z̄ ∼ N (0, 1/4V P ), and set

i(Z̃) = log2

(

fZ̃(Z̃)
1
2fZ̃(Z̃) + 1

2fZ̃([Z̃ − 1] mod 2)

)

, (11)

C(P ) = E i(Z̃), V (P ) = Var i(Z̃). (12)

Code for BAC phase: The code CBAC for the BAC phase

should enable recovering (cBAC,i1 , . . . , cBAC,iL) from yBAC,1

as long as L ≤ T . Thus the coding task is equivalent to that

of coding for the T -user modulo-2 binary adder channel where

all users’ codewords are taken from the same codebook CBAC.

An obvious upper bound on the rate of such a code, if a small

error probability is desired, is RBAC ≤ 1/T . Remarkably, this

bound can be achieved using the columns of a binary BCH

code parity check matrix as the codewords of CBAC [9]. To

see this, first recall that if a linear code has minimum distance

2T + 1, then all modulo-2 sums of T or less columns of its

parity check matrix are distinct. It is well known [15] that for

any k ≥ 3 and T < 2k−1 there exists a binary BCH code with

parameters (n = 2k − 1, n− k ≤ kT, dmin ≥ 2T + 1). Thus,

taking the columns of a BCH parity check matrix results in a

code CBAC ⊂ F
kT
2 of size |CBAC| = 2k−1 with the property that

the modulo-2 sum of any set of at most T distinct codewords

is distinct. Thus, a codebook CBAC constructed this way has

rate RBAC = log2(2
k − 1)/kT ≈ 1/T . The error probability

associated with this code is

ǫ3 , Pr(E3|Ē1,i, Ē2) = Pr





⋃

i6=j

{Wi = Wj}



 ≤
(

T
2

)

2k − 1

as errors can only occur if some of the L users that approached

the channel during the first sub-block had the same message.

The encoding procedure for this codebook merely con-

sists of mapping a message to a corresponding ele-

ment α in GF (2k), and then computing its odd powers

(α, α3, . . . , α2T−1), which requires O(T 2) multiplications in

GF (2k). The decoding procedure shares many similarities

with standard Gorenstein-Peterson-Zierler (GPZ) decoding of

BCH codes [15], but is far less demanding computationally. In

particular, the standard BCH decoding algorithm has complex-

ity linear in the blocklength. Since for our underlying BCH

code the blocklength is 2k − 1, such a computational cost is

prohibitive even for relatively small k, say k ≈ 100. Luckily,

the most demanding operations in the GPZ algorithm are not

needed for our purposes and the computational cost becomes

O(kT 2) additions and multiplications in GF (2k). The exact

encoding and decoding algorithms we use, which are quite

similar to [8], are described in [6]

III. EXTENSION TO MULTILEVEL CODES

The CoF phase in the scheme proposed in Section II reduces

the L-user Gaussian MAC channel into an L-user binary input

modulo-2 Gaussian MAC. As such, the rate of the linear

code is limited by Rlin < 1 total bits per channel use. As

Rlin = ρ/α, this restricts both the total spectral efficiency of

the scheme, and the regime of valid choices for α (which is

related to ǫ1 by (9)). In order to circumvent this problem,

while keeping the many practical advantages of binary codes,

we propose to modify the basic scheme from Section II using a

multilevel code design. We only describe below a scheme that

uses two layers, and can therefore attain 0 < Rlin < 2, but the

extension to an arbitrary number of layers is straightforward.

We construct two codebooks Ca, Cb ∈ F
n̄
2 with rates Ra, Rb,

respectively, each according to the same code construction

described in Section II. Thus, Ca (Cb) is a concatenation of

an inner code Ca
lin (Cb

lin) and Ca
BAC (Cb

BAC), with rates Ra
lin and

Ra
BAC (Rb

lin and Rb
BAC), respectively.

Let 0 < m < n̄ · min{Ra, Rb} be an integer. Each active

user i has a message vector wi = (wa
i ,w

b
i ) ∈ F

n̄Ra−m
2 \

{0} × F
n̄Rb−m
2 \ {0}. Then, user i draws an m-dimensional

binary vector ui with i.i.d. uniform entries, and creates the

effective message vectors w̃a
i = (ui,w

a
i ) ∈ F

n̄Ra

2 \ {0} and

w̃b
i = (ūi,w

b
i ) ∈ F

n̄Rb

2 \ {0}, where ūi is the complement of

ui such that ui+ūi = 1 mod 2. Now, w̃a
i (w̃b

i ) is encoded to a

codeword cai (cbi ) in Ca (Cb) exactly as described in Section II,

and the transmitted vector is

xi =

√

V · P
5

(

2

(

cai −
1

2

)

+ 4

(

cbi −
1

2

))

,

and as long as either Ca or Cb (or both) are such that for



a random codeword ca (cb) uniformly distributed over Ca

(Cb) we have E(ca − 1
2 ) = 0 (E(cb − 1

2 ) = 0), we have

that E‖xi‖2 ≤ nP . Note that here we can only guarantee

that the power constraint is maintained on average, and not

with probability 1 as in the single layer construction. Each

active user then chooses one sub-block in which it transmits

its codeword exactly as in the basic scheme from Section II.

The decoding is performed layer by layer in each sub-block.

As before, we only describe the decoding process in the first

sub-block. We first compute

yCoF,1 =
1

2

√

5

V · P

(

y1 +
3L

2

)

=
L
∑

j=1

caij + 2
L
∑

j=1

cbij + z̃a1 ,

where z̃a1 =
√
5z1√
4V ·P ∼ N (0, σ2

aI), σ
2
a = 5

4V P
. Now, setting

ya
CoF,1 = [yCoF,1] mod 2, and continuing exactly as in the

basic scheme from Section II, we can recover {w̃a
i1
, . . . , w̃a

iL
}.

This allows us to form
∑L

j=1 c
a
ij

, and then construct

yb
CoF,1 =





1

2



yCoF,1 −
L
∑

j=1

caij







 mod 2

=





L
∑

j=1

cbij + z̃b1



 mod 2,

where z̃b1 ∼ N (0, σ2
b I), σ2

b = 5
16V P

. We can now recover

{w̃b
i1
, . . . , w̃b

iL
}, exactly as in the basic scheme from Sec-

tion II. The effective channel z̃b1 is “cleaner” than z̃a1 , therefore

we will choose Ca
lin, Cb

lin such that Ra
lin ≤ Rb

lin, where their exact

values should be optimized w.r.t. the target error probability

and to V ·P . The codes Ca
BAC, Cb

BAC for the BAC phase are both

BCH-based codes of rate Ra
BAC = Rb

BAC = 1/T , as described

in Section II-A, where they only differ in their blocklengths

n̄Ra
lin and n̄Rb

lin, respectively.

The final step is to use the two lists {w̃a
i1
, . . . , w̃a

iL
}

and {w̃b
i1
, . . . , w̃b

iL
} in order to construct a single list

{wi1 , . . . ,wiL}. This is done by first constructing L pairs,

that should ideally be of the form w̃ij = (w̃a
ij
, w̃b

ij
), and then

removing the prefixes uij , ūij to get the messages wij . The

problem in doing this is that the messages in each of the two

lists are decoded “un-indexed”. Thus, the pairing operation is

done by matching the random prefixes {ui1 , . . . ,uiL} from the

first list to the prefixes {ūi1 , . . . , ūiL} of the second list. As

long as the L prefixes {ui1 , . . . ,uiL} drawn by the users are

distinct, the pairing is successful. Thus, the error probability

associated with this step is

ǫ4 = 1−
L−1
∏

ℓ=1

(1 − ℓ2−m) ≤ T (T − 1) · 2−(m+1). (13)

Once the target ǫ4 is chosen, it therefore suffices to take m =
⌈log2(T (T − 1)/ǫ4)⌉ − 1, where the clear disadvantage of

increasing m is that it requires the linear codes to operate

with higher rates in order to deliver the k information bits.

IV. NUMERICAL EVALUATION

Fix k, n, Ka, and target error probability Pe. As the error

probability for the BAC phase decays exponentially with k, it

can be ignored. Thus, Pe is essentially dictated by the “T -

collision” probability ǫ1, the error probability for the CoF

phase ǫ2, and when a multilevel code is used, also the “pairing”

error probability ǫ4.

We fix target probabilities ǫ1, ǫ2, ǫ4 such that ǫ1+ǫ2+ǫ4 = ǫ,
and assume temporarily that T is also fixed. We set α to be

the solution of the equation (9) in α. Assume we are using a

multilevel code with τ ≥ 1 layers. The “pairing” procedure

increases the effective length of each user’s message from k to

k(1+τγ), where γ , m/k, and m = ⌈log2(T (T−1)/ǫ4)⌉−1.

Recalling that RBAC = 1/T for the BCH-based construction,

and that R = RBAC ·Rlin, we see that the rate the of linear code

must satisfy Rlin = Tk/n̄ = ρ/α in the single level case, and

in the multilevel case the sum of linear codes rates must be

ρ(1+τγ)/α, whereas the blocklength for this code (or codes)

is n̄ = αTn/Ka. The required average power P · V in order

to achieve error probability ǫ2 with this rate and blocklength,

over the channel (6) can be computed using (10), and the

resulting Eb/N0 after optimization on T , τ and the choices of

ǫ1, ǫ2, ǫ4 that sum up to ǫ, is shown in Figure 1.
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