
Low Complexity Schemes for the Random Access
Gaussian Channel

Or Ordentlich
MIT

ordent@mit.edu

Yury Polyanskiy
MIT

yp@mit.edu

Abstract—We consider an uncoordinated Gaussian multiple
access channel with a relatively large number of active users
within each block. A low complexity coding scheme is proposed,
which is based on a combination of compute-and-forward and
coding for a binary adder channel. For a wide regime of
parameters of practical interest, the energy-per-bit required by
each user in the proposed scheme is significantly smaller than
that required by popular solutions such as slotted-ALOHA and
treating interference as noise.

I. I NTRODUCTION

One of the key challenges in the design of next generation’s
wireless networks is to allow for a large number of bursty
users, each with a small amount of data, to transmit simulta-
neously in a grantless fashion. This need, which was already
identified by Gallager three decades ago [1], is now returned
to the research forefront due to explosion of the number of
wireless devices [2].

To model this scenario, we consider a Gaussian multiple
access channel where communication is performed in blocks
of n channel uses. There areKtot possible users that can
transmit over the channel, but onlyKa of them are active
within each block, such that the receiver observes

y =

Ktot
∑

i=1

sixi + z, (1)

where (s1, . . . , sKtot) ∈ {0, 1}Ktot is the “activity pattern”
vector whose Hamming weight isKa, xi ∈ R

n is the
codeword transmitted by useri assuming it was active, and
z ∼ N (0, I) is additive white Gaussian noise (AWGN).
We further assume that all users have the same message set
[M ] , {1, . . . ,M}, such that if useri is active, its messageWi

is uniformly distributed over[M ], and that all users are subject
to the same power constraint‖xi‖2 ≤ nP , i = 1, . . . ,Ktot.
The activity pattern is assumedunknownto the decoder, and
known only locally to the transmitters, i.e., each user only
knows whether or not it is active, but does not know which
of the other users are active.

The typical regime of interest is where the total number of
devices connected to the networkKtot is orders of magnitude
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greater than the coding blocklengthn, the number of active
usersKa within each block scales asKa = µn, with some
µ ≪ 1, and the length in bits,k , log2 M , of each active
user’s message does not scale withn. Thus, although each
user only has a small number of bits to send, the total number
of bits per channel use that needs to be decoded,

ρ ,
k ·Ka

n
, (2)

is fixed. We refer toρ as the requiredspectral efficiency. For
example, in LP-WANs such as LoRaWAN and Weightless,
Ktot ≈ 107, n ≈ 104, Ka ≈ 100, andk ≈ 100, such thatρ
typically takes a moderate value between a fraction of a bit to
a few bits per channel use.

Our formulation diverges from traditional multiple access
literature [3]–[5], as well as that of [6], in our definition of
successful decoding. We only require the decoder to output
a list L(y) = (w1, . . . , wJ) ⊂ [M ]J of no more thanKa

messages (i.e.,J ≤ Ka) that should contain most messages
that were transmitted by the active users, where the order in
which the messages appear in the list is of no significance.
In other words, the decoder is only required to declare which
messages were transmitted, without associating the messages
to the users that transmitted them. Our model therefore decou-
ples the user identification problem (“who was active”) and
the data transmission problem (“what messages were sent”),
and is more consistent with the network theoretic studies.
There, it is common to think of MAC layers job as that
of delivering packets and not identifying who sent them.
The reasoning is that part of the payload (headers) contains
identifying information. The scheme’s error probability is
therefore defined as

Pe = max
|(s1,...,sKtot)|=Ka

1

Ka

Ktot
∑

i=1

si · Pr (Wi /∈ L(y)) , (3)

where | · | denotes Hamming weight. An advantage of this
formulation is that it allows to setKtot = ∞, which conse-
quently leads to leaving the parameterKtot out of our model,
as we do in the sequel. See [2] for further justification of the
model. Note that the assumption ofKtot = ∞ naturally leads
to schemes where all users transmit from the same codebook,
possibly with some additional randomization in the encoding



procedure.

Let ǫ be the target error probability, measured according
to (3). For fixedn, k,Ka, ǫ, our goal is to design a scheme
with Pe ≤ ǫ which requires the smallest possible transmission
powerP . In particular, we measure performance in terms of
the energy per bit

Eb

N0
,

nP

2k
, (4)

required for each user, whereP is the minimal power such
thatPe ≤ ǫ.

The grantless nature of the communication precludes the
use of orthogonalization methods (TDMA,FDMA, orthogonal
CDMA), and alternative efficient coding schemes are needed
for this random accesschannel. Two popular solutions are treat
interference as noise (TIN), which is implemented in practice
via un-coordinated CDMA with a matched filter detector (i.e.,
no multi-user detection), and slotted-ALOHA. Unfortunately,
as we explain below, both schemes have severe limitations in
our regime of interest.1

For TIN, the highest rate that can be achieved by an active
user is1

2 log2(1+
P

1+(Ka−1)P ). The sum-rate is therefore upper

bounded bylog2(e)·Ka

2(Ka−1) , and consequently, whenKa is such that
ρ > log2(e)/2, this scheme cannot succeed with anyEb/N0.
When finite blocklength effects are taken into account, the
highestρ that can be achieved by TIN becomes even smaller
under the assumption thatKa = µn [2].

In slotted-ALOHA, the block is split toV = Ka/α sub-
blocks, where0 < α ≤ 1, each of sizen/V , and each
active user only transmits in one of these sub-blocks, selected
uniformly at random, independently across users. Whenever
only one user transmitted in a sub-block, its message is
decoded, but when collisions occur, all colliding codewords
are not decoded. Thus,Pe is mainly dictated by the collision
probability, which is approximately1−e−α for largeKa. The
disadvantage of this scheme is that the effective blocklength
for each active user is decreased by a factor ofα w.r.t. TDMA,
such that the effective spectral efficiency is increased toρ/α.
The requiredEb/N0 for this scheme is therefore at least
22ρ/α−1
2ρ/α ≈ − 2−2ρ/ ln(1−ǫ)−1

2ρ/ ln(1−ǫ) , which becomes very large when
the required error probabilityǫ is small. The performance
of TIN and slotted-ALOHA for our parameters of interest is
depicted in Figure 1.

The largeEb/N0 required by slotted-ALOHA is due to
the fact that the scheme only supports single-user decoding.
On the other extreme, if we had a computationally unlimited
decoder, we could let all active users transmit simultaneously

1Another appealing alternative is coded slotted ALOHA [7], [8]. However,
the non-asymptotic performance of this scheme is currentlynot fully under-
stood, which precludes including it in our comparisons. In particular, in our
regime of interest the blocklength (per user) is short, which leads to non-
negligible losses due to pointers to locations of repetitions. Moreover, the
number of active users per block varies from tens to hundreds, and therefore,
asymptotic analysis of the successive cancellation decoding scheme is not
valid.

from the same (randomly constructed) codebook and perform
joint decoding. A finite blocklength achievability bound for
this setup was derived in [2, Theorem 1], and corresponds to
the “random coding” curve in Figure 1.

As a compromise between the these two extremes, we pro-
pose an approach referred to asT -fold ALOHA. This approach
is similar to standard slotted-ALOHA in the sense that the
block is split to sub-blocks and each active user only transmits
in one random sub-block. However, inT -fold ALOHA, the
code is designed such that if at mostT users transmitted during
the same sub-block, the decoder can decode all corresponding
messages, whereas when more thanT users simultaneously
transmitted within the same sub-block, nothing is decoded.
Thus 1-fold ALOHA is just slotted-ALOHA, whereasKa-
fold ALOHA corresponds to the scheme described in the
previous paragraph. A random coding achievability bound for
the Eb/N0 required by5-fold ALOHA, with a joint decoder
applied within each sub-block, is plotted in Figure 1. However,
to makeT -fold ALOHA a practical solution, low complexity
schemes for the random access channel withT active users
are needed. In this paper, we propose such a scheme, which
works well for moderate values ofT .

A high-level description of the proposed coding scheme is
as follows. First, then channel uses are split intoV sub-
blocks of lengthn̄ = n/V , and each active user randomly
chooses only one of these sub-blocks, over which it transmits.
All users encode their messages using the same codebookC ⊂
F
n̄
2 , which is then mapped to a BPSK constellation. The code

C is a concatenation of two codes. The first is an inner binary
linear code, whose goal is to enable the receiver to decode the
modulo-2 sum of all codewords transmitted within the same
sub-block. We refer to recovering this modulo-2 sum as the
compute-and-forward [9] (CoF) phase. The second code, is an
outer code whose goal is to enable the receiver to recover the
individual messages that participated in the modulo-2 sum. We
refer to recovering the individual messages from their modulo-
2 sum as thebinary adder channel (BAC) phase.

The success probability of the CoF phase in our scheme
is independent of the actual number of users that transmit-
ted within the same sub-block. The outer code, however, is
designed such that if at mostT active users approached the
channel during the same sub-block, it is possible to determine
the individual messages from their modulo-2 sum, essentially
with zero error probability. Thus, loosely speaking, for any
active user, the probability that its message is not in the
list L(y) is dictated by the probability that the compute-
and-forward phase was unsuccessful in the sub-block where
it transmitted, and the probability that more thanT users
approached the channel within this sub-block.

The design of an inner code for the CoF phase, reduces to
that of finding codes that perform well over a BMS channel,
for which many off-the-shelf codes can be used. We construct
the outer code for the BAC phase from the columns of aT -
error correcting BCH codes, and show that this code can be



decoded efficiently [10], even though the blocklength for the
underlying BCH code is orders of magnitudes greater than
the allowed number of operations that can be performed by a
practical decoder.

Both components of our scheme are not new and there is
a large body of literature on each of them separately. The
observation that BCH-codes can be used for constructing zero-
error codes with rate1/T for the T -ary modulo-2 adder
channel dates back to Lindström [11] and have since then
appeared and was generalized in various works, see e.g., [10],
[12]. A particularly related work is [12] where the authors
used a similar concatenated code to construct a code with good
minimum Hamming distance for theT -user modulo-2 adder
channel. The use of linear codes for decoding modulo sums
of codewords from the output of a Gaussian multiple access
channel is more recent [9], [13]–[16], and has its roots in the
work of Körner and Marton [17]. However, the combination
of the these two components for providing a low complexity
scheme for the Gaussian random access channel is novel, and,
as can be seen in Figure 1, leads to performance that cannot
be attained by other schemes of similar complexity in some
regimes of practical interest.
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Fig. 1. Comparison between theEb/N0 required by various schemes for the
setupk = 100 bits, n = 30, 000 channel uses, number of active usersKa

varies, andǫ = 0.05.

II. T HE BASIC CODING SCHEME

Our scheme has two design parameters,T which is the
maximal number of users that can simultaneously transmit in
the same sub-block without incurring an error, andα ∈ [0, 1],
such that the number of sub-blocks isV = Ka/(αT ).

Code construction:We construct one codebookC ⊂ F
n̄
2

with |C| = 2k = 2n̄R codewords, to be used by all active
transmitters, wherēn = n

V = αT n
Ka

andR = ρ
αT .

The codebookC is a concatenated code. The “inner” code
is a systematic binary linear codeClin ⊂ F

n̄
2 of rateRlin , with

generating matrixG ∈ F
n̄Rlin×n̄
2 , such that

Clin =
{

aG : a ∈ F
1×n̄Rlin
2

}

. (5)

The “outer” code is a binary code (not necessarily linear)
CBAC ⊂ F

n̄Rlin
2 with rateRBAC. The concatenated binary code

C ⊂ F
n̄
2 with rateR = Rlin ·RBAC = k

n̄ is defined as

C = {cBACG : cBAC ∈ CBAC} . (6)

The roles played by the inner code and outer code, as well as
the criteria according to which they should be chosen, will be
discussed in the sequel.

Encoding:Each active useri first encodes its messageWi

to a codewordcBAC,i ∈ CBAC, and then usesG to generate the
codeword

ci = cBAC,iG ∈ C. (7)

Next, it maps the binary vectorci to the real vectorxi =
2
√
V · P

(

ci − 1
2

)

, where here and throughout the rest of the
paper we interchangeably treat{0, 1} as either integers or ele-
ments ofF2, according to the context. Note that‖xi‖2 = nP .

User i transmits the vectorxi during one and only one of
theV sub-blocks. The location of this sub-block is randomly
drawn independently across users from the uniform distribu-
tion over {1, . . . , V }. We denote byE1,i be the event that
more thanT−1 other active users transmitted within the same
sub-block as useri.

Decoding:Decoding is done on a sub-block by sub-block
basis. For each sub-blockv ∈ [V ], the decoder outputs a list
Lv of at mostT messages. The list of messages for the entire
block is then constructed asL(y) = ∪V

v=1Lv.

We describe the decoding procedure for the first sub-block.
For the otherV −1 sub-blocks decoding is done in an identical
manner. Lety1 = (y1, . . . , yn̄) andz1 = (z1, . . . , zn̄) be the
vectors of channel outputs and channel noise, respectively,
corresponding to the first sub-block, and leti1, . . . , iL be the
active users that transmitted during this sub-block. We have

y1 =
L
∑

j=1

xij + z1

= 2
√
V · P





L
∑

j=1

cij +
z1

2
√
V · P

− L

2



 . (8)

We assume the number of active usersL within the sub-
block is known to the receiver, and justify this assumption
in Section II-B. If L > T , the receiver outputsL1 = ∅.
Otherwise, it computes

yCoF,1 =

[

1

2
√
V · P

y1 +
L

2

]

mod 2

=





L
∑

j=1

cij + z̃1



 mod 2, (9)



where the modulo2 reduction is into the interval[0, 2) and is
taken componentwise, and̃z1 = z1

2
√
V ·P ∼ N (0, σ2I), σ2 =

1/4V P . Let c⊕1 , [
∑L

j=1 cij ] mod 2, and note that sincec⊕1
is the modulo-2 sum of codewords from the same linear code
Clin , we have thatc⊕1 ∈ Clin . Thus, we constructed an effective
memoryless channel

yCoF,1 =
[

c⊕1 + z̃1
]

mod 2, (10)

whose input is a codeword from the linear codeClin . The
decoder ignores the fact thatc⊕1 is not distributed uniformly on
Clin , and simply performs point-to-point decoding ofClin from
yCoF,1 to produce the estimatêc⊕1 . We denote the erroneous
decoding event byE2 , {ĉ⊕1 6= c⊕1 }.

Now, assumingE2 did not occur, the decoder proceeds to
recover theL messages transmitted by the active users from
c⊕1 . By (7) and the fact thatClin is systematic, we have that
the first n̄Rlin coordinates ofc⊕1 correspond to

yBAC,1 =

L
∑

j=1

cBAC,ij mod 2. (11)

Thus, the decoder usesyBAC,1 to produce a list ofL vectors
L̃(yBAC,1) = {ĉBAC,1, . . . , ĉBAC,L} ∈ CL

BAC that satisfy (11).
We denote the corresponding error event by

E3 ,

{

L̃(yBAC,1) 6= {cBAC,i1 , . . . , cBAC,iL}
}

, (12)

where bothL̃(yBAC,1) and{cBAC,i1 , . . . , cBAC,iL} are sets and
therefore there is no significance to the order in which their
elements appear.

Finally, the decoder re-maps the codewords inL̃(yBAC,1) to
a list of the corresponding messagesL1 ∈ [M ]L.

Error probability: Assume useri was one of theKa active
users, and without loss of generality, assume further that it
transmitted during the first sub-block. Since the role of all
active users in the proposed scheme is symmetric, we have
thatPe = Pr(Wi /∈ L(y)) ≤ Pr(Wi /∈ L1). Thus,

Pe ≤ Pr(E1,i) + Pr(E2|Ē1,i) + Pr(E3|Ē1,i, Ē2) (13)

For the eventE1,i we have that

Pr(E1,i) = Pr

(

Binomial

(

Ka − 1,
1

V

)

≥ T

)

= 1− Pr

(

Binomial

(

Ka − 1,
αT

Ka

)

< T

)

, ǫ1 (14)

regardless of the codesClin , CBAC that are used. The error
probabilityPr(E2|Ē1,i) depends on the choice ofClin , whereas
Pr(E3|Ē1,i, Ē2) depends on the choice ofCBAC. We will
therefore treat them in the next subsection.

A. Choice of inner and outer codes

Code for CoF phase: We begin with discussing the design
of Clin . This code should allow decoding ofc⊕1 from the
channel (10), with error probability smaller than some target

ǫ2. The channel (10) is a binary-input memoryless output-
symmetric (BMS) channel, for which the art of designing
efficient coding schemes is well advanced. Thus, any off-
the-shelf low complexity code with good performance over
a BMS (e.g., LDPC, turbo, polar) can be used forClin . For the
numerical analysis that follows, we refrain from committing to
a particular code, and use the fundamental coding limits of the
channel (10) for evaluatingǫ2 = Pr(E2|Ē1,i). Specifically, in
order to determine the smallestP that allows correct decoding
of c⊕1 with error probability belowǫ2, we use the normal
approximation [18]

Rlin ≈ C(P )−
√

V (P )

n̄
Q−1(ǫ2) (15)

and solve forP . To evaluate the quantitiesC(P ) andV (P )
we define the random variablẽZ = [Z̄] mod 2 with density
PZ̃ , whereZ̄ ∼ N (0, 1/4V P ), and set

i(Z̃) = log2

(

PZ̃(Z̃)
1
2PZ̃(Z̃) + 1

2PZ̃([Z̃ − 1] mod 2)

)

, (16)

C(P ) = E i(Z̃), V (P ) = Var i(Z̃). (17)

Code for BAC phase: Next, we discuss the task of choosing
a suitable codeCBAC for the BAC phase. This code should
enables recovering(cBAC,i1 , . . . , cBAC,iL) from yBAC,1 as long
as L ≤ T . Thus the coding task is equivalent to that of
coding for theT -user modulo-2 binary adder channel where
all users’ codewords are taken from the same codebookCBAC.
An obvious upper bound on the rate of such a code, if a small
error probability is desired, isRBAC ≤ 1/T . Remarkably, this
bound can be achieved using the columns of a binary BCH
code parity check matrix as the codewords ofCBAC [11]. To
see this, first recall that if a linear code has minimum distance
2T + 1, then all modulo-2 sums ofT or less columns of its
parity check matrix are distinct. It is well known [19] that for
anyk ≥ 3 andT < 2k−1 there exists a binary BCH code with
parameters(n = 2k − 1, n − k ≤ kT, dmin ≥ 2T + 1). Thus,
taking the columns of a BCH parity check matrix results in a
codeCBAC ⊂ F

kT
2 of size|CBAC| = 2k−1 with the property that

the modulo-2 sum of any set of at mostT distinct codewords
is distinct.2 Thus, a codebookCBAC constructed this way has
rateRBAC = log2(2

k − 1)/kT ≈ 1/T . The error probability
associated with this code is

ǫ3 , Pr(E3|Ē1,i, Ē2)

= Pr (∪i6=j{Wi = Wj}) ≤
(

T
2

)

2k − 1
(18)

as errors can only occur if some of theL users that approached
the channel during the first sub-block had the same message.

Next, we describe low complexity encoding and decoding
algorithms for the BCH-basedCBAC, whose computational

2In some cases the dimension may be smaller thatkT . Nevertheless, the
code we will use forCBAC, as elaborated in the main text, will always have
dimension exactlykT .



cost is polynomial ink and T . Let GF (2k) be a Galois
field. Our 2k − 1 possible messages can be identified with
the vectorsFk

2 \ {0}, where each of these vectors naturally
corresponds to the element ofGF (2k) \ {0} with matching
coefficients in its polynomial representation. Thus, the BAC
encoder maps the message vectorwi of user i to its cor-
responding elementαi ∈ GF (2k) \ {0}, and constructs the
vectorvi = (αi, α

3
i , . . . , α

2T−1
i ) ∈ GFT (2k). The codeword

ci ∈ F
kT
2 is constructed by writing the binary coefficients of

the polynomial representation of each element invi, one after
the other. It follows that each message vector fromFk

2 \ {0}
is indeed mapped to a different column of the BCH parity
check matrix. This procedure requiresO(T 2) multiplication
in GF (2k).

The decoding procedure shares many similarities with stan-
dard Gorenstein-Peterson-Zierler (GPZ) decoding of BCH
codes [19], but is far less demanding computationally. In
particular, the standard BCH decoding algorithm has complex-
ity linear in the blocklength. Since for our underlying BCH
code the blocklength is2k − 1, such a computational cost is
prohibitive even for relatively smallk, sayk ≈ 100. Luckily,
the most demanding operations in the GPZ algorithm are not
needed for our purposes and the computational cost becomes
polynomial ink andT . We now describe the steps in decoding
{ĉBAC,1, . . . , ĉBAC,L} from yBAC,1. The procedure below is
quite similar to the one described in [10]. Letα1, . . . , αL be
the GF (2k) \ {0} elements corresponding to the messages
wii , . . . ,wiL of the active users transmitting in the first sub-
block.

1) Syndrome computations: LetSt =
∑L

i=1 α
t
i, t =

1, . . . , 2L, be the set of required syndromes, and note
that yBAC,1 as a vector inGFT (2k) is the vector of
odd syndromes(S1, S3, . . . , S2T−1), whereL ≤ T by
assumption. We can easily recover the required even
syndromes by recalling thatS2i = S2

i for all i.
2) Construction of error locator polynomial: We apply

the Berlekamp-Massey algorithm to compute from
S1, . . . , S2L the error locator polynomial

σ(X) = 1 +
L
∑

t=1

σtX
t =

L
∏

i=1

(1 + αiX), (19)

where {σt} are the coefficients computed by the algo-
rithm.

3) Finding the roots ofσ(X): We apply the probabilistic
root finding algorithm from [20] (see also [21]) in order
to find (α−1

1 , . . . , α−1
L ).

4) Inversion of the roots: We invertα−1
i , to get the desired

αi, i = 1, . . . , L, whose binary polynomial representation
coefficients are the message vectorswi. This is done by
recalling that for anyα ∈ GF (2k) \ {0} we have that
1 = α2k−1 = α · α2k−2. Thus,α−1 = α2k−2, and can
be computed by(k − 1) consecutive squaring ofα, and
multiplication of the result byαk−2.

The number of sums and multiplications overGF (2k) re-

quired by the four steps isO(T 2) for step 1,O(T 2) for
step 2 [19],O(kT log2 T log logT ) for step 3 [21], andO(kT )
for step 4.

B. Further comments

1) Detection of number of active users per sub-block:Our
description of the decoder’s operation assumed that the
number of active usersL in the sub-block is known.
Although this is not the case in practice, we can apply
the decoderT + 1 times, each time assumingL took a
different value in the set{0, 1, . . . , T }. For each such
“guess” ofL the decoder will produce a list of decoded
messages. We can use this list in order to create the
corresponding codewords and subtract their sum fromy1.
If the correct value ofL was guessed and the decoder was
successful for this value, the resulting vector would be a
pure AWGN vectorz1. Otherwise, the result would be
z1 plus the sum of certain codewords. We can therefore
easily detect which value ofL was the correct one, with
a negligible error probability.
Alternatively, we could have used the fact that the first
n̄R symbols ofy1 are essentially i.i.d., due to the fact that
Clin is systematic, and the fact that the firstn̄R symbols
in our BCH-based codeCBAC are uniform onFn̄R

2 \ {0}.
The distribution of these (almost) i.i.d. random variables
is dictated byL, and therefore we could estimateL from
those symbols and bound the error probability by standard
concentration of measure arguments.
We remark further that the value ofL is only used
by the decoder in order to shift the constellation used
by each transmitters fromc{−1, 1} to 2c{0, 1}, where
c =

√
V · P . The need for knowingL at the decoder can

be bypassed altogether by using instead the constellation√
2c{0, 1} at each transmitter, to begin with. TheEb/N0

loss for using this asymmetric constellation which is less
power efficient, instead ofc{−1, 1}, is 3dB.

2) Dithers: In compute-and-forward schemes, it is common
to use random dithers, independent across users, known
to the encoders and decoders (common randomness), in
order to create a slightly better effective channel from
c⊕1 to yCoF,1, via linear minimum mean square error
(MMSE) processing [9]. In our case creating such form of
common randomness is impossible, as the decoder does
not know which of theKtot possible users were active
within each sub-block, and consequently it does not know
which of the dithers were used. One could generate the
same random dither for all users, but it is not clear what
performance can be guaranteed in this case.

3) Codes with larger alphabets and shaping:The perfor-
mance of the CoF phase in our scheme can be improved
by replacing our binary codebookClin mapped to a BPSK
constellation, with a Voronoi codebook based on a “good”
nested-lattice pair [15], [22]. The possible improvement is
two-fold: i)A shaping gain of up to10 log10(2πe/12) ≈
1.53dB, due to using an high-dimensional coarse lattice



(instead of the one-dimensional cubic shaping lattice
used by the scheme described above). ii)The capacity
achieving input distribution of a modulo-reduced additive
noise channel (as is the channel (10)) is uniform on the
modulo interval (Voronoi region). Our codebookClin on
the other hand induces a distribution on a two point
constellation. Using linear codes over larger prime fields
Fp may therefore result in better performances [9], [15],
[16], [22].
When the underlying field for the CoF phase isFp, the
induced channel for the BAC phase will be aT -user
modulo-p adder MAC. A capacity achieving codebook
for this channel can be obtained using the parity check
matrix of a[n = ps−1, n−k = 2T ] Reed-Solomon code,
constructed over the fieldGFps−1. More specifically, if
H = [h1| . . . |hn] is the parity check matrix of this code,
we construct the code

CBAC = {α · hi : α ∈ GFps−1 \ {0}, i = 1, . . . , n} ,
(20)

whose rate islog(p
s−1)2

2T ·s ≈ log(p)
T .

Despite this opportunity for improvement, this paper
restricts attention to the casep = 2, as we believe that
the severe computational requirements on the encoders in
our setup makes the binary choice most practical.

III. E XTENSIONS

In this section we briefly describe three extensions of the
basic scheme proposed in Section II. The first deals with the
possibility to decode thereal sum of theL codewords in the
CoF phase, rather than their modulo-2 sum, the second deals
with the scenario where the spectral efficiency is too high
for binary codes to be applied, and third deals with a “near-
far” users scenario, where the channel gains significantly differ
across the different users.

A. Real sum decoding in the CoF phase

Assume the two error events{E1, E2} did not occur. In
this case, the decoder has access toc⊕1 . We would now like to
use c⊕1 and y1 in order to further decode

∑L
j=1 cBAC,ij ∈

{0, . . . , L}n̄Rlin . Let ỹ1 = (y1, . . . , yn̄Rlin) and (with some
abuse of notation)̃z1 = (z1, . . . , zn̄Rlin)/2

√
V · P , and set

y1,uncoded=
1

2
√
V · P

ỹ1 +
L

2
− yBAC,1 = yuncoded

BAC,1 + z̃1,

whereyBAC,1 is as defined in (11) and

yuncoded
BAC,1 ,

L
∑

j=1

cBAC,ij −





L
∑

j=1

cBAC,ij



 mod 2 ∈ (2Z)n̄Rlin .

Now, settingŷuncoded
BAC,1 , 2 · round(y1,uncoded/2), we have that

ǫ2b , E2b|Ē1,Ē2
, Pr

(

ŷuncoded
BAC,1 6= yuncoded

BAC,1

)

≤ 2n̄Rlin ·Q
(

2
√
V · P

)

, (21)

where we have used the union bound in the last inequality.
Note that in many applications of interestn̄Rlin is of moderate
size (≈ 100− 1000), and the total target error probabilityǫ of
the scheme is not required to be very small (≈ 10−3− 10−1).
Thus, even thoughyuncoded

BAC,1 consists of uncoded symbols, the
resultingǫ2b is of acceptable value.

Now, assuming{E1, E2, E2b} did not occur, the receiver
can compute

ỹBAC,1 , yBAC,1 + yuncoded
BAC,1 =

L
∑

j=1

cBAC,ij . (22)

Thus, using this modification, after the CoF phase the receiver
has access to the output of a binary adder channelwith addition
over the reals, rather than a modulo-2 binary adder MAC as
in (11).

The symmetric (per-user) capacity of the real binary adder
T -user MAC isH(Binomial(T,1/2))

T = 1
2T log2

(

Tπe
2

)

+O
(

1
T 2

)

bits per channel use [23], rather than only1/T bits per channel
use for the modulo-2 binary adder MAC. Thus, the additional
step described here can potentially lead to great savings in
Eb/N0. However, an obstacle for realizing these gains in
practice is that, to the best of the authors’ knowledge, no
efficient coding scheme for the real binary adder channel with
the same codebook for all users is known to achieve rates
greater than1/T . We also note in passing that while the
restriction that all users transmit codewords from the same
codebook does not decrease the symmetric capacity of the
real binary adder channel, further insisting that this codebook
be linear does (even under our setting where the decoded
messages do not have to be associated with the users that sent
them). Thus, the task of designing low complexity capacity
approaching same-codebook schemes for the real binary adder
channel seems quite challenging.

B. Higher spectral efficiency

The CoF phase in the scheme proposed in Section II reduces
theL-user Gaussian MAC channel into anL-user binary input
modulo-2 Gaussian MAC. As such, the rate of the linear
code is limited byRlin < 1 total bits per channel use. As
Rlin = ρ/α, this restricts both the total spectral efficiency of
the scheme, and the regime of valid choices forα (which is
related toǫ1 by (14)). In order to circumvent this problem,
while keeping the many practical advantages of binary codes,
we propose to modify the basic scheme from Section II using a
multi-level code design. We only describe below a scheme that
uses two layers, and can therefore attain0 < Rlin < 2, but the
extension to an arbitrary number of layers is straightforward.

We construct two codebooksCa, Cb ∈ F
n̄
2 with ratesRa, Rb,

respectively, each according to the same code construction



described in Section II. Thus,Ca (Cb) is a concatenation of
an inner codeCa

lin (Cb
lin) andCa

BAC (Cb
BAC), with ratesRa

lin and
Ra

BAC (Rb
lin andRb

BAC), respectively.

Let 0 < m < n̄ · min{Ra, Rb} be an integer. Each active
user i has a message vectorwi = (wa

i ,w
b
i ) ∈ F

n̄Ra−m
2 \

{0} × F
n̄Rb−m
2 \ {0}. Then, useri draws anm-dimensional

binary vectorui with i.i.d. uniform entries, and creates the
effective message vectors̃wa

i = (ui,w
a
i ) ∈ F

n̄Ra

2 \ {0} and
w̃b

i = (ūi,w
b
i ) ∈ F

n̄Rb

2 \ {0}, whereūi is the complement of
ui such thatui+ūi = 1 mod 2. Now,w̃a

i (w̃b
i ) is encoded to a

codewordcai (cbi ) in Ca (Cb) exactly as described in Section II,
and the transmitted vector is

xi =

√

V · P
5

(

2

(

cai −
1

2

)

+ 4

(

cbi −
1

2

))

,

and as long as eitherCa or Cb (or both) are such that for
a random codewordca (cb) uniformly distributed overCa

(Cb) we haveE(ca − 1
2 ) = 0 (E(cb − 1

2 ) = 0), we have
that E‖xi‖2 ≤ nP . Note that here we can only guarantee
that the power constraint is maintained on average, and not
with probability 1 as in the single layer construction. Each
active user then chooses one sub-block in which it transmits
its codeword exactly as in the basic scheme from Section II.

The decoding is performed layer by layer in each sub-block.
As before, we only describe the decoding process in the first
sub-block. We first compute

yCoF,1 =
1

2

√

5

V · P

(

y1 +
3L

2

)

=

L
∑

j=1

caij + 2

L
∑

j=1

cbij + z̃a1 ,

(23)

where z̃a1 =
√
5z1√
4V ·P ∼ N (0, σ2

aI), σ
2
a = 5

4V P . Now, setting
ya

CoF,1 = [yCoF,1] mod 2, and continuing exactly as in the
basic scheme from Section II, we can recover{w̃a

i1
, . . . , w̃a

iL
}.

This allows us to form
∑L

j=1 c
a
ij , and then construct

yb
CoF,1 =





1

2



yCoF,1 −
L
∑

j=1

caij







 mod 2

=





L
∑

j=1

cbij + z̃b1



 mod 2, (24)

where z̃b1 ∼ N (0, σ2
b I), σ2

b = 5
16V P . We can now recover

{w̃b
i1 , . . . , w̃

b
iL}, exactly as in the basic scheme from Sec-

tion II. The effective channel̃zb1 is “cleaner” thañza1 , therefore
we will chooseCa

lin , Cb
lin such thatRa

lin ≤ Rb
lin , where their exact

values should be optimized w.r.t. the target error probability
and toV ·P . The codesCa

BAC, Cb
BAC for the BAC phase are both

BCH-based codes of rateRa
BAC = Rb

BAC = 1/T , as described
in Section II-A, where they only differ in their blocklengths
n̄Ra

lin and n̄Rb
lin , respectively.

The final step is to use the two lists{w̃a
i1 , . . . , w̃

a
iL}

and {w̃b
i1
, . . . , w̃b

iL
} in order to construct a single list

{wi1 , . . . ,wiL}. This is done by first constructingL pairs,
that should ideally be of the form̃wij = (w̃a

ij
, w̃b

ij
), and then

removing the prefixesuij , ūij to get the messageswij . The
problem in doing this is that the messages in each of the two
lists are decoded “un-indexed”. Thus, the pairing operation is
done by matching the random prefixes{ui1 , . . . ,uiL} from the
first list to the prefixes{ūi1 , . . . , ūiL} of the second list. As
long as theL prefixes{ui1 , . . . ,uiL} drawn by the users are
distinct, the pairing is successful. Thus, the error probability
associated with this step is

ǫ4 = 1−
L−1
∏

ℓ=1

(1− ℓ2−m) ≤ T (T − 1) · 2−(m+1). (25)

Once the targetǫ4 is chosen, it therefore suffices to takem =
⌈log2(T (T − 1)/ǫ4)⌉ − 1, where the clear disadvantage of
increasingm is that it requires the linear codes to operate
with higher rates in order to deliver thek information bits.

C. Unbalanced channel gains

In the schemes discussed thus far, we have assumed all
users have the same channel gain. In practice, of course, this
is never the case. Nevertheless, if each useri knows its gain
hi to the receiver (which can be attained by, e.g., exploiting
reciprocity), it can scale its codeword by1/hi, to create an
effective channel gain of̃hi = 1. When this strategy is taken
by all users, we get the symmetric channel model that was
treated above, where the requiredEb/N0 for useri is the one
for the symmetric model, multiplied by1/h2

i .

Often, the magnitudes of the channel gains, and conse-
quently the requiredEb/N0, significantly vary between the
users. Below, we describe a modification of our scheme that
enables to reduce the requiredEb/N0 of the weak users at
the expense of increasing theEb/N0 for the strong users, and
therefore create a somewhat more balanced distribution of the
resources among users.

The main idea in the proposed modification is that instead
of multiplying its codeword by1/h1, in order to equalize its
channel gain tõhi = 1, the ith user equalizes its gainhi

to some number in the gridG , {1 = 20, 21, 22, · · · , 2b},
for some naturalb, where the mapping between values ofhi

and points in the grid is according to some predetermined
monotonically increasing quantization functionq : R+ 7→ G
whose input is|hi|.

Let L be the number of users that transmitted during the
first sub-block, and letLm ≤ L be the number of users that
transmitted in the first sub-block whose effective gain ish̃i =
2m, such thatL =

∑

m Lm. We compute

yCoF,1 =
1

2
√
V · P

y1 +

b
∑

m=0

2m
Lm

2
=

b
∑

m=0

2m
Lm
∑

j=1

cimj
+ z̃1,

where z̃1 ∼ N (0, σ2), σ2 = 1
4V ·P . The decoding can now

be performed in a successive cancellation manner. First we
computey0

CoF,1 = [yCoF,1] mod 2 = [
∑L1

j=1 ci1j + z̃1] mod 2,



from which we can decode the messages of the weakest users.
Next, we subtract the sum of corresponding codewords from
yCoF,1, divide by 2 and reduce modulo2 to get y1

CoF,1 =

[
∑L2

j=1 ci1j + z̃1

2 ] mod 2, from which we decode the group
of messages transmitted by the users whose gains satisfy
q−1(|hi|) = 21, and so on.

The advantage of this approach is that now the decoding can
succeed ifLm ≤ T for all m, which is a weaker constraint
than L =

∑

m Lm ≤ T . When the distribution of channel
magnitudes|hi| among theKtot users is known in advance, the
function q(·) can be chosen to induce a favorable distribution
on {Lm}, which in turn leads to the possibility of decreasing
T without increasing the “forbidden collisions” probability ǫ1.
Note that potentially, we can use a different codebook for each
group of users, where the users are grouped according to their
equalized channel gain. Indeed, the signal-to-noise ratio(SNR)
for the channelym

CoF,1 is 6m dBs better than that ofy0
CoF,1.

Thus, the rate forCm
lin , the inner linear code for themth group

of users, can increase withm. Since each user only has a fixed
number ofk bits to send, and that the transmission power
of each user is fixed according to its group, the increase in
Rlin can only be exploited for enabling to deal with a larger
number of collisions. Specifically, increasingRm

lin can allow to
use codesCm

BAC, with lower ratesRm
BAC = 1

Tm
, that can decode

whenever at mostTm users from groupm simultaneously
transmitted within the same sub-block.

IV. CHOICE OFCODE PARAMETERS AND NUMERICAL

EVALUATION

In this section we evaluate theEb/N0 required by our
scheme, first for the basic setup described in Section II, and
then with the extension discussed in Section III-B. Fixk, n,
andKa, and assume a moderate target error probabilityPe is
required, say between10−3 and10−1. For the basic scheme,
the error probability is upper bounded byPe ≤ ǫ1 + ǫ2 + ǫ3,
whereǫ1 is as defined in (14),ǫ2 is the error probability of
the CoF phase, andǫ3 corresponds to the BAC phase, and can
be neglected when the BCH-based codeCBAC is used, as seen
from by (18).

We fix target probabilitiesǫ1, ǫ2 such thatǫ1 + ǫ2 = ǫ,
and assume temporarily thatT is also fixed. Letα∗(ǫ1) be
the solution of the equation (14) inα. By the monotonicity
of Pr(Binomial(Ka − 1, αTKa

) < T ) in α, we have that all
α ∈ [0, α∗(ǫ1)], would lead to “T-collision” probability smaller
than ǫ1. Choosing someα from this interval and recalling
that RBAC = 1/T for the BCH-based construction, and that
R = RBAC · Rlin , we see that the rate of the linear codeClin

must satisfy

Rlin =
Tk

n̄
=

Tk

αTn/Ka
=

ρ

α
,

whereas the blocklength for this code isn̄ = αTn/Ka. Let
P̃ = V · P be the average transmission power of an active
user within its sub-block and let̃P (r, n, ǫ) be the smallest̃P

for which there exists a rater linear code of blocklengthn,
that achieves error probabilityǫ over the channel (10). Note
that P̃ (r, n, ǫ) can be found using (15). Now, recalling that
V = Ka/(αT ) and using the definition ofEb/N0 from (4),
we see that our basic scheme requires

Eb

N0
=

n

2k

P̃
(

ρ
α ,

αTn
Ka

, ǫ2

)

Ka/(αT )
= T ·

P̃
(

ρ
α ,

αTn
Ka

, ǫ2

)

2 ρ
α

. (26)

Recall that the infinite blocklength fundamental limit for
transmittingρ bits per channel use for the AWGN channel
is (Eb/N0)

∗ = (22ρ − 1)/2ρ. In a coordinated MAC (unlike
our random access one),(Eb/N0)

∗ can be achieved asymp-
totically for n → ∞, Ka fixed andk = nρ/Ka, by, e.g.,
TDMA. Contrasting the performance of our scheme (26) with
(Eb/N0)

∗, and ignoring finite blocklength effects for the sake
of the discussion, we identify three different losses:

• OurEb/N0 scales withT . This is due to the fact that we
decode the modulo-2 sum of the codeword rather than
their real sum, and therefore our scheme does not exploit
the fact that the received constellation has average power
T P̃ rather thanP̃ ;

• The effective spectral efficiency for our scheme is1/α
higher than that required by the TDMA scheme. This is
due to the fact that our scheme is designed to avoid more
thanT collisions, which in turn leads to a less efficient
use of the channel resources.

• Our scheme reduces the communication channel to a
modulo-2 AWGN channel (10), rather than an AWGN
one. The capacity of this channel can be roughly ap-
proximated by1

2 log
+
2 (

12
2πe P̃ ). Contrasting this with the

AWGN channel capacity12 log(1 + P̃ ), we identify a
shaping loss of10 log10(2πe/12) ≈ 1.53 dB and an
additional power loss of−10 log10(1− 2−2ρ) dB, due to
the loss of+1 in the capacity expression for the modulo-
2 AWGN channel. The latter loss becomes negligible as
the spectral efficiency increases, whereas the former is
independent ofρ.

Thus, a rough estimate on the loss of our scheme w.r.t.
hypothetical TDMA is

∆ =

(

Eb

N0

)

dB−
(

Eb

N0

)∗
dB

≈ 10 log10

(

T · 2
2ρ/α

2ρ/α
· 2ρ

22ρ(1 − 2−2ρ)
· 2πe
12

)

≈ 1.53− 10 log10(1− 2−2ρ) + 6ρ
1− α

α
+ 10 log10(αT ) dB,

(27)

which can be minimized w.r.t.α ∈ [0, α∗(ǫ1)].3

Recall Ungerboeck’s rule of thumb [24] that states that the
information rates for communicating over an AWGN channel
with binary inputs are close to capacity when capacity is
below 1/2 a bit per channel use, but significantly diverge

3The minimizing value is typically the extreme oneα∗(ǫ1).



Ka 20 50 100 150 200 250 300

Eb/N0[dB] 7.38 8.83 11.89 15.00 17.32 20.65 23.02
T 1 3 5 5 9 13 12
α 0.048 0.269 0.389 0.385 0.513 0.584 0.573
τ 2 1 1 2 2 2 3

Rate for Linear Code 1.38 0.62 0.86 1.61 1.66 1.85 2.53

Fig. 2. Optimized parameters

from the capacity when it grows above this value. The same
behavior is also true for communication over the modulo-
2 AWGN channel (10). Thus, whenα and ρ are such that
ρ/α > 1/2, binary codes are insufficient and we use the
multilevel construction described in Section III-B.

The performance analysis remains quite similar to that
of the basic scheme, where the main difference is that we
have an additional error eventE4, which corresponds to the
“pairing” of message vectors decoded in the different layers.
Consequently, we need to add anm-bit prefix to each message,
wherem = ⌈log2(T (T − 1)/ǫ4)⌉ − 1 and ǫ4 is the target
error probability for the eventE4. This in turn, increases
the required spectral efficiency for the linear code fromρα
to ρ(1+τγ)

α , whereγ , m/k and τ is the number of layers
in our code. Using similar calculations to those we performed
above, lead to the following rough estimate on the asymptotic
gap (in dB) between theEb/N0 required by our multi-layer
scheme and the hypothetical TDMA

∆ ≈ 1.53− 10 log10(1 − 2−2ρ)

+ 6ρ
1 + τγ − α

α
+ 10 log10(αT ) (28)

where according to Ungerboeck’s rule of thumb, the ap-
proximation is valid if the number of layers satisfiesτ >
ρ(1+τγ)

α + 1
2 which is equivalent toτ > 2ρ+α

2(α−ργ) .

We perform a numerical evaluation of the proposed
scheme’s performance, and compare it to relevant benchmarks
in Figure 1. For the evaluation we tookk = 100, n = 30, 000,
Pe = 0.05 andKa varies from20 to 300. This is the regime of
interest for LP-WANs such as LoRaWAN and Weightless. We
plot theEb/N0 required by our scheme with the parameters
T , α, and τ optimized. For all values of20 ≤ Ka ≤ 300,
the required values ofT were betweenT = 1 andT = 13.
We also plot theEb/N0 required by other related schemes,
as discussed in Section I. In the calculations, we have always
chosenǫ1 = 0.9ǫ, ǫ4 = 0.05ǫ and ǫ2 = 0.05ǫ, where ǫ2
was equally split between theτ levels when multilevel codes
were used. The optimal values ofT , α andτ , as well as the
corresponding rate for the linear code (or sum of rates when
τ > 1), is given in Table IV for selected values ofKa.
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