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Abstract—Suppose that Y n is obtained by observing a uni-
form Bernoulli random vector Xn through a binary symmetric
channel with crossover probability α. The “most informative
Boolean function” conjecture postulates that the maximal mutual
information between Y n and any Boolean function b(Xn) is
attained by a dictator function. In this paper, we consider the
“complementary” case in which the Boolean function is replaced
by f : {0, 1}n → {0, 1}n−1

, namely, an n − 1 bit quantizer,
and show that I(f(Xn);Y n) ≤ (n − 1) · (1− h(α)) for any
such f . Thus, in this case, the optimal function is of the form
f(xn) = (x1, . . . , xn−1).

I. INTRODUCTION

Let Xn be an n-dimensional binary vector uniformly dis-

tributed over {0, 1}n, and let Y n be the output of passing

Xn through a binary symmetric channel (BSC) with crossover

probability α ∈ [0, 1/2]. In other words, Y n = Xn ⊕ Zn,

where Zn is a sequence of n independent and identically

distributed (i.i.d.) Bernoulli(α) random variables, statistically

independent of Xn. The following conjecture [1] have recently

received considerable attention.

Conjecture 1: For any Boolean function b : {0, 1}n →
{0, 1}, we have I(b(Xn);Y n) ≤ 1 − h(α), where h(α) ,

−α log2 α−(1−α) log2(1−α) is the binary entropy function.

Since the dictator function b(Xn) = Xi (for any 1 ≤ i ≤
n) achieves this upper bound with equality, then intuitively

Conjecture 1 postulates that the dictator function is the most

“informative” one-bit quantization of Xn in terms of achieving

the maximal I(b(Xn);Y n). Clearly, by the symmetry of the

pair (Xn, Y n) we have that for any function I(b(Xn);Y n) =
I(Xn; b(Y n)), so we can equivalently think of the problem

at hand as seeking the optimal one-bit quantizer of n outputs

of the channel. Despite attempts in various directions [1]–

[7], Conjecture 1 remains open in general. However, for the

“very noisy” case, where α > 1/2 − δ, for some δ > 0
independent of n, the validity of the conjecture was established

by Samorodnitsky [8].

In this paper, we consider the “complementary” case in

which the Boolean function in Conjecture 1 is replaced by

an n− 1 bit quantizer. Our main result is the following.

Theorem 1: For any function f : {0, 1}n → {0, 1}n−1
we

have
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I(f(Xn);Y n) ≤ (n− 1) · (1− h(α)) , (1)

and this bound is attained with equality by, e.g., f(xn) =
(x1, . . . , xn−1).

One may wonder whether for any f : {0, 1}n → {0, 1}k we

have I(f(Xn);Y n) ≤ k · (1− h(α)). However, for k = Rn
with 0 < R < 1, the problem essentially reduces to remote

source coding under log-loss distortion measure, for which the

maximal value of I(f(Xn);Y n)/n (as a function of R,α) can

be determined up to o(n) terms. Indeed, [3], [9] characterizes

this quantity which turns out to be greater than R · (1−h(α)).
Conjecture 1 as well as Theorem 1 deal with the extreme cases

of k = 1 and k = n − 1, respectively, where neglecting the

o(n) terms leads to non-informative characterization of the

maximal I(f(Xn);Y n), and therefore [3], [9] do not suffice.

Theorem 1 can be generalized to a stronger statement

concerning the entire class of binary-input memoryless output-

symmetric (BMS) channels.

Definition 1 (BMS channels): A memoryless channel with

binary input X and output Y is called binary-input memoryless

output-symmetric (BMS) if there exists a sufficient statistic

g(Y ) = (X ⊕ ZT , T ) for X , where (T, ZT ) are statistically

independent of X , and ZT is a binary random variable with

Pr(ZT = 1|T = t) = t.

Corollary 1 ( [10]): Let Xn be an n-dimensional binary

vector uniformly distributed over {0, 1}n, and let Y n be the

output of passing Xn through a BMS with capacity C. Then

for every f : {0, 1}n → {0, 1}n−1
, we have

I(f(Xn);Y n) ≤ (n− 1) · C,

and this bound is attained with equality by, e.g., f(xn) =
(x1, . . . , xn−1).

Proof of Corollary 1: Let W be a BMS channel

with capacity C = 1 − h(α). Let Y n
W and Y n

BSC be the

outputs corresponding to the channel W and a BSC with

crossover probability α, respectively, when the input to both

channels is Xn. Define [n] , {1, 2, . . . , n}. For any function

f : {0, 1}n → [M ], we can write

I(f(Xn);Y n
W ) = I(f(Xn), Xn;Y n

W )− I(Xn;Y n
W |f(Xn))

= I(Xn;Y n
W ) + I(f(Xn);Y n

W |Xn)− I(Xn;Y n
W |f(Xn))

= I(Xn;Y n
W )

−
M
∑

m=1

Pr(f(Xn) = m)I(Xn;Y n
W |f(Xn) = m).



We proceed by noting that I(Xn;Y n
W ) = I(Xn;Y n

BSC) = nC
as the capacity achieving input distribution of both channels

is Bernoulli(1/2). Furthermore, recall the fact that the BSC

is the least capable among all BMS channels with the same

capacity [11, page 116], [12, Lemma 7.1]. To wit, for any

input Un, the corresponding outputs of W and the BSC will

satisfy I(Un;Y n
BSC) ≤ I(Un;Y n

W ). This implies that

I(Xn;Y n
W |f(Xn) = m) ≥ I(Xn;Y n

BSC|f(X
n) = m),

for all m = 1, . . . ,M . Thus, we get that for any function f ,

I(f(Xn);Y n
W ) ≤ I(f(Xn);Y n

BSC). (2)

The corollary now follows by invoking Theorem 1.

II. PROOF OF THEOREM 1

Since the vector Y n is uniformly distributed over {0, 1}n,

we have

I(f(Xn);Y n) = n−H(Y n|f(Xn)). (3)

Our goal is therefore to lower bound H(Y n|f(Xn)).

Consider the function f : {0, 1}n → [2n−1], and define the

sets

f−1(j) , {xn ∈ {0, 1}n : f(xn) = j} , j = 1, . . . , 2n−1,

which form a disjoint partition of {0, 1}n. Further, define the

sizes of these sets as

mj ,
∣

∣f−1(j)
∣

∣ =
∑

xn∈{0,1}n

1 {f(xn) = j} , j = 1, . . . , 2n−1,

and assume without loss of generality that mj > 0, for all j. To

see why this assumption is valid, first note that there must exist

some i, for which mi ≥ 2. Let f−1(i) = {xn
i1
, . . . , xn

imi
}.

Now if there exists some j 6= i, such that mj = 0, we can

define a new function f̃ : {0, 1}n → [2n−1] where f̃−1(i) =
{xn

i1
, . . . , xn

imi−1
}, f̃−1(j) = {xn

imi
}, and f̃−1(t) = f−1(t),

for all t 6= i, j. For this function we must have

H (Y n|f(Xn)) ≥ H
(

Y n|f(Xn),1
{

Xn = ximi

})

= H(Y n|f̃(Xn)),

and consequently I(f(Xn);Y n) ≤ I(f̃(Xn);Y n).

Next, for every m = 0, 1, . . . , 2n define the quantity

λ(m) ,

2n−1

∑

j=1

1 {mj = m} , (4)

which counts the number of sets f−1(j) with cardinality m, in

the partition induced by the function f .1 The next proposition

expresses λ(1) in terms of {λ(m)}m≥2.

Proposition 1: For any f : {0, 1}n → [2n−1] with mj > 0
for all j, we have that

λ(1) =
∑

m≥3

(m− 2)λ(m). (5)

1In fact, since we have already assumed that mj > 0 for all j, we have
that λ(0) = 0 and λ(m) = 0 for m > 2n − (2n−1 − 1).

Intuitively, this proposition states that since the average size

of the sets f−1(j) is 2, then every set f−1(j) of cardinality

m > 2, must be compensated for by (m−2) sets of cardinality

1.

Proof: Using the definition of λ(m) in (4), and the fact

that {f−1(j)} forms a disjoint partition of {0, 1}n, we have

2n
∑

m=0

λ(m) = 2n−1, (6)

2n
∑

m=0

mλ(m) = 2n. (7)

Multiplying (6) by 2 and equating it with the left-hand side

of (7), we get

2n
∑

m=0

2λ(m) =

2n
∑

m=0

mλ(m),

which implies

2λ(0) + λ(1) =
∑

m≥3

(m− 2)λ(m).

Invoking our assumption that λ(0) = 0 gives the desired result.

Definition 2 (Minimal entropy of a noisy subset): For a

family of vectors S ⊂ {0, 1}n let US be a random vector

uniformly distributed over S, and let Zn be a sequence of n
i.i.d. Bernoulli(α) random variables, statistically independent

of US . For m = 1, . . . , 2n, we define the quantity

Hn
m(α) , min

S⊂{0,1}n : |S|=m
H(US ⊕ Zn). (8)

Some properties of Hn
m(α) will be studied in the next

section. In particular, we will prove the following lemma.

Lemma 1: For any 2 < m < 2n,

m− 2

2m− 2
Hn

1 (α) +
m

2m− 2
Hn

m(α) ≥ Hn
2 (α). (9)

We can now write

H(Y n|f(Xn)) =

2n−1

∑

j=1

Pr (f(Xn) = j)H (Y n|f(Xn) = j)

=
2n−1

∑

j=1

Pr
(

Xn ∈ f−1(j)
)

H
(

Y n|Xn ∈ f−1(j)
)

= 2−n

2n−1

∑

j=1

∣

∣f−1(j)
∣

∣H
(

Uf−1(j) ⊕ Zn
)

≥ 2−n

2n−1

∑

j=1

mjH
n
mj

(α)

= 2−n

2n
∑

m=1

mλ(m)Hn
m(α)



= 2−n



λ(1)Hn
1 (α) + 2λ(2)Hn

2 (α) +

2n
∑

m≥3

mλ(m)Hn
m(α)





= 2−n

(

2λ(2)Hn
2 (α)

+

2n
∑

m≥3

(m− 2)λ(m)Hn
1 (α) +mλ(m)Hn

m(α)

)

(10)

= 2−n

(

2λ(2)Hn
2 (α)

+
2n
∑

m≥3

(2m− 2)λ(m)

[

m− 2

2m− 2
Hn

1 (α) +
m

2m− 2
Hn

m(α)

])

≥ Hn
2 (α) · 2

−n

2n
∑

m=1

(2m− 2)λ(m) (11)

= Hn
2 (α), (12)

where in (10) follows from Proposition 1, in (11) we have used

Lemma 1, and (12) follows from (6) and (7). Proposition 4,

stated and proved in the next section, shows that Hn
2 (α) =

1+(n−1)h(α). Combining this with (3) and (12) establishes

the desired result.

III. PROPERTIES OF Hn
m(α)

The main goal of this section is to prove Lemma 1. To

this end, we establish some properties of the function Hn
m(α),

which may be of independent interest.

Proposition 2 (Monotonicity in m): The function Hn
m(α)

is monotonically non-decreasing as a function of m.

Proof: It is suffice to show that for any natural number

1 ≤ m < 2n it holds that Hn
m(α) ≤ Hn

m+1(α). To this end,

let S = {s1, . . . , sm+1} ⊂ {0, 1}n be a family of m+ 1
vectors, and let S−i , S \ {si}, for i = 1, . . . ,m + 1.

Clearly, |S−i| = m for all i. Furthermore, the random vector

US can be generated by first drawing a random variable

A ∼ Uniform([m + 1]) and then drawing a statistically

independent random vector uniformly over S−A. Thus, for

any S ⊂ {0, 1}n of size m+ 1 we have that

H(US ⊕ Zn) ≥ H (US ⊕ Zn|A)

=
1

m+ 1

m+1
∑

a=1

H
(

US−a
⊕ Zn

)

≥ Hn
m(α),

and in particular Hn
m(α) ≤ Hn

m+1(α).

We define the partial order “≤” on the hypercube {0, 1}n

as y ≤ x iff yi ≤ xi, for all i = 1, . . . , n.

Definition 3 (Monotone sets): A set S ⊂ {0, 1}n is mono-

tone if x ∈ S implies y ∈ S, for all y ≤ x.

Let Mn
m , {S ⊂ {0, 1}n : |S| = m, S is monotone}. We

will prove the following result.

Lemma 2 (Sufficiency of monotone sets):

Hn
m(α) = min

S∈Mn
m

H(US ⊕ Zn).

Remark 1: Theorem 3 in [1] states that among all boolean

functions, I(b(Xn);Y n) is maximized by functions for which

the induced set b−1(0) is monotone.2 While this statement is

closely related to our Lemma 2, it does not imply it, although

the proof technique is somewhat similar.

The proof of Lemma 2 is based on applying a procedure

called shifting [13]–[15].

Definition 4 (Shifting): For a set of binary vectors S ⊂
{0, 1}n the shifting procedure is defined as follows. For i ∈ [n]
and x ∈ {0, 1}n write x− i for the vector obtained by setting

xi = 0, and define

Si , {x ∈ S : xi = 1, x− i /∈ S}.

Find the smallest i such that Si 6= ∅. If there is no such i
then we are done. Otherwise, replace S with the set (S \Si)∪
(Si − i), where Si − i , {x − i : x ∈ Si}, and repeat. The

output of this process is a monotone set, denoted by Sshifted,

with cardinality |Sshifted| = |S|.

The proof of Lemma 2 hinges on the following result.

Lemma 3: Let S ⊂ {0, 1}n be some subset of vectors, and

S̄ ⊂ {0, 1}n be the result of applying one iteration of the

shifting procedure, say, on the first coordinate. Let PY |X be

some discrete memoryless channel with binary input, and let

Y n be its output when the input is US and Ȳ n be its output

when the input is US̄ . For every ω ∈ Yn−1 we have that

Pr(Y n
2 = ω) = Pr(Ȳ n

2 = ω), and
∣

∣

∣

∣

Pr(US̄,1 = 1|Ȳ n
2 = ω)−

1

2

∣

∣

∣

∣

≥

∣

∣

∣

∣

Pr(US,1 = 1|Y n
2 = ω)−

1

2

∣

∣

∣

∣

.

Proof of Lemma 3: Let Sn
2 be the projection of S onto

the coordinates {2, . . . , n}, and note that the projection of S̄
onto these coordinates is also Sn

2 , as the shifting operations

does not effect these coordinates. Consequently, Un
S,2 and Ūn

S,2

have the same distribution, and therefore Y n
2 and Ȳ n

2 have the

same distribution.

Next, for any vector ω ∈ Yn−1, we have

Pr(US,1 = 1|Y n
2 = ω)

=
∑

x∈Sn
2

Pr(US,1 = 1, Un
S,2 = x|Y n

2 = ω)

=
∑

x∈Sn
2

Pr(US,1 = 1|Un
S,2 = x) Pr(Un

S,2 = x|Y n
2 = ω).

The fact that Un
S,2 and Un

S̄,2
have the same distribution, implies

that PUn
S,2

|Y n
2
= PUn

S̄,2
|Ȳ n

2

, and therefore

Pr(US̄,1 = 1|Ȳ n
2 = ω)

=
∑

x∈Sn
2

Pr(US̄,1 = 1|Un
S̄,2 = x) Pr(Un

S,2 = x|Y n
2 = ω).

We partition the set Sn
2 into three subsets:

2In fact, [1, Theorem 3] provides a stronger statement about the structure
of the induced b−1(0).



• A , {x ∈ Sn
2 : [0 x] ∈ S, [1 x] ∈ S}

• B , {x ∈ Sn
2 : [0 x] /∈ S, [1 x] ∈ S}

• C , {x ∈ Sn
2 : [0 x] ∈ S, [1 x] /∈ S}

and we note that

Pr(US,1 = 1|Un
S,2 = x) =











1/2 x ∈ A

1 x ∈ B

0 x ∈ C

.

Letting

aω , Pr(Un
S,2 ∈ A|Y n

2 = ω),

bω , Pr(Un
S,2 ∈ B|Y n

2 = ω),

cω , Pr(Un
S,2 ∈ C|Y n

2 = ω),

we get

Pr(US,1 = 1|Y n
2 = ω) =

aω
2

+ bω.

By the definition of the shifting procedure in Definition 4,

Pr(US̄,1 = 1|Un
S̄,2 = x) =











1/2 x ∈ A

0 x ∈ B

0 x ∈ C

.

Thus,

Pr(US̄,1 = 1|Ȳ n
2 = ω) =

aω
2
.

We can use this to see that Pr(US̄,1 = 1|Ȳ n
2 = ω) is more

biased than Pr(US,1 = 1|Y n
2 = ω). Indeed

(

1

2
− Pr(US̄,1 = 1|Ȳ n

2 = ω)

)2

−

(

1

2
− Pr(US,1 = 1|Y n

2 = ω)

)2

=

(

1

2
(1− aω)

)2

−

(

1

2
(1− aω)− bω

)2

= bω(1 − aω)− b2ω = bωcω ≥ 0,

as desired.

Corollary 2 (Shifting decreases output entropy): Let S ⊂
{0, 1}n be some subset of vectors, and S̄ ⊂ {0, 1}n be the

result of applying one iteration of the shifting procedure, say,

on the first coordinate. Let Zn be a sequence of n i.i.d.

Bernoulli(α) random variables, statistically independent of

US and US̄ . Then,

H(US̄ ⊕ Zn) ≤ H(US ⊕ Zn). (13)

Proof: By the chain rule,

H(US ⊕ Zn) = H(Un
S,2 ⊕ Zn

2 ) +H(US,1 ⊕ Z1|U
n
S,2 ⊕ Zn

2 ),

and

H(US̄ ⊕ Zn) = H(Un
S̄,2 ⊕ Zn

2 ) +H(US̄,1 ⊕ Z1|U
n
S̄,2 ⊕ Zn

2 )

= H(Un
S,2 ⊕ Zn

2 ) +H(US̄,1 ⊕ Z1|U
n
S̄,2 ⊕ Zn

2 )

where the last equality follows from the fact that PUn
S,2

⊕Zn
2
=

PUn
S̄,2

⊕Zn
2

due to Lemma 3. Thus, it suffices to show that

H(US̄,1 ⊕ Z1|U
n
S̄,2 ⊕ Zn

2 ) ≤ H(US,1 ⊕ Z1|U
n
S,2 ⊕ Zn

2 ).

For any ω ∈ {0, 1}n−1 let αω , Pr(US,1 = 1|Un
S,2⊕Zn

2 = ω)

and βω , Pr(US̄,1 = 1|Un
S̄,2

⊕ Zn
2 = ω). Then, we get

H(US̄,1 ⊕ Z1|U
n
S̄,2 ⊕ Zn

2 )

=
∑

ω∈{0,1}n−1

Pr(Un
S̄,2 ⊕ Zn

2 = ω)h (α ∗ βω)

=
∑

ω∈{0,1}n−1

Pr(Un
S,2 ⊕ Zn

2 = ω)h (α ∗ βω)

≤
∑

ω∈{0,1}n−1

Pr(Un
S,2 ⊕ Zn

2 = ω)h (α ∗ αω)

= H(US,1 ⊕ Z1|U
n
S,2 ⊕ Zn

2 ), (14)

where a ∗ b , a · (1− b) + (1− a) · b for any a, b ∈ [0, 1], the

second equality follows since PUn
S,2

⊕Zn
2
= PUn

S̄,2
⊕Zn

2
, and the

inequality is because βω is more biased than αω, by Lemma 3.

Applying Corollary 2 recursively, we see that for any S ⊂
{0, 1}n we have

H (USshifted
⊕ Zn) ≤ H(US ⊕ Zn). (15)

In fact, it is easy to extend the above argument to show that

for any BMS channel with inputs US and USshifted
and corre-

sponding outputs Y n and Ỹ n, respectively, we get H(Ỹ n) ≤
H(Y n). Inequality (15) immediately establishes Lemma 2.

We now turn to finding Hn
m(α) for m = 1, 2, 3, 4.

Proposition 3: Hn
1 (α) = n · h(α).

Proof: For any vector u ∈ {0, 1}n we have that H(u ⊕
Zn) = H(Zn) = n · h(α).

Proposition 4: Hn
2 (α) = 1 + (n− 1) · h(α).

Proof: By Lemma 2, it is suffice to minimize H(US⊕Zn)
over S ∈ Mn

2 . It is easy to see that Mn
2 consists of a single

set S∗ = {[1 0 · · · 0], [0 0 · · · 0]}, up to permuting the order

of coordinates. Thus, direct calculation gives

Hn
2 (α) = H(US∗ ⊕ Zn) = 1 + (n− 1) · h(α). (16)

Proposition 5:

Hn
3 (α) = h

(

1

3
∗ α

)

+

(

2

3
∗ α

)

h

(

1− α2

2− α

)

+

(

1

3
∗ α

)

h

(

1− α+ α2

1 + α

)

+ (n− 2)h(α) (17)

≥ h

(

1

3
∗ α

)

+
1

3
h(α) +

2

3
+ (n− 2)h(α) (18)

Proof: By Lemma 2, it is suffice to minimize H(US⊕Zn)
over S ∈ Mn

3 . It is easy to see that Mn
3 consists of a single

set S∗ = {[1 0 0 · · · 0], [0 1 0 · · · 0], [0 0 0 · · · 0]}, up



to permuting the order of coordinates. Thus, (17) is obtained

by direct calculation of H(US∗ ⊕ Zn). To obtain the lower

bound (18) we write

Hn
3 (α) = H(US∗ ⊕ Zn)

= H(US∗

1
⊕ Z1) +H(US∗

2
⊕ Z2|US∗

1
⊕ Z1) +H (Zn

3 )

≥ H(US∗

1
⊕ Z1) +H(US∗

2
⊕ Z2|US∗

1
) +H (Zn

3 )

= h

(

1

3
∗ α

)

+
1

3
h(α) +

2

3
+ (n− 2)h(α).

Proposition 6: Hn
4 (α) = 2 + (n− 2) · h(α).

Proof: By Lemma 2, it is suffice to minimize H(US⊕Zn)
over S ∈ Mn

4 . It is easy to see that Mn
4 consists of two sets

C , {[1 1 0 · · · 0], [1 0 0 · · · 0],

[0 1 0 · · · 0], [0 0 0 · · · 0]},

B , {[1 0 0 0 · · · 0], [0 1 0 0 · · · 0],

[0 0 1 0 · · · 0], [0 0 0 0 · · · 0]},

up to permuting the order of coordinates. In particular, C is

the 2-dimensional cube padded by (n−2) zeros, whereas B is

the 3-dimensional Hamming ball of radius 1, padded by n−3
zeros. Thus,

Hn
4 (α) = min {H (UC ⊕ Zn) , H (UB ⊕ Zn)} .

It is easy to verify that H (UC ⊕ Zn) = 2 + (n − 2) · h(α).
We show that H (UB ⊕ Zn) ≥ 2 + (n− 2) · h(α). Indeed,

H (UB ⊕ Zn)

= H
(

U2
B,1 ⊕ Z2

1

)

+H
(

UB,3 ⊕ Z3|U
2
B,1 ⊕ Z2

1

)

+H(Zn
4 )

≥ H
(

U2
B,1 ⊕ Z2

1

)

+H
(

UB,3 ⊕ Z3|U
2
B,1

)

+ (n− 3) · h(α)

= H
(

U2
B,1 ⊕ Z2

1

)

+
1

2
+

h(α)

2
+ (n− 3) · h(α). (19)

Direct calculation gives

H
(

U2
B,1 ⊕ Z2

1

)

=
3

2
+

h(α)

2
, (20)

which together with (19) shows that H (UB ⊕ Zn) ≥ 2+(n−
2) · h(α).

We are now in a position to prove Lemma 1.

Proof of Lemma 1: For any m ≥ 4 we have that

Hn
m(α) ≥ Hn

4 (α) > Hn
1 (α), which implies that

m− 2

2m− 2
Hn

1 (α) +
m

2m− 2
Hn

m(α) ≥
Hn

1 (α) +Hn
m(α)

2

≥
Hn

1 (α) +Hn
4 (α)

2
= 1 + (n− 1) · h(α) = Hn

2 (α).

It then remains to verify (9) for m = 3. Using the lower

bound (18) for Hn
3 (α), it suffices to verify that

1

4
nh(α) +

3

4

[

h

(

1

3
∗ α

)

+
1

3
h(α) +

2

3
+ (n− 2)h(α)

]

≥ 1 + (n− 1)h(α), (21)

which is equivalent to

3 · h ((1/3) ∗ α)− 2− h(α) ≥ 0. (22)

Let g(α) , 3 · h
(

1
3 ∗ α

)

− 2 − h(α). It is easy to check that

g(0) > 0 and that g(1/2) = 0. Thus, it suffices to show that

g(α) is monotonically decreasing as a function of α, namely,

that dg(α)/dα < 0, for any α ∈ (0, 1/2). We have

d

dα
g(α) = − log2

( 1
3 ∗ α
2
3 ∗ α

)

+ log2

(

α

1− α

)

(23)

= log2

(

2α− α2

1− α2

)

, (24)

which is negative for all α ∈ (0, 1/2).
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