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Abstract—SupposeX is a uniformly distributed n-dimensional In this paper, we derive an upper bound&if (X); Y) that

binary vector and Y is obtained by passing X through a holds for all balanced functions, and improves upon (2) for a

binary symmetric channel with crossover probability «. A recent 1 1 ifically. w in the following r |
conjecture by Courtade and Kumar postulates that/(f(X);Y) < 3 < o < 3. Specifically, we obtain the following result.

1—h(c) for any Boolean function f. So far, the best known upper ~ Theorem 1:For any balanced Boolean functiofiz) :

bound was essentiallyl (f(X);Y) < (1 —2c)?. In this paper, we {0,1}" v+ {0,1}, and anyl (1 _ L) < o<1 wehave
derive a new upper bound that holds for all balanced functiors, h ' T 2 v3) = 7 = 2
and improves upon the best known previous bound fora, > % that
log(e) log(e)
|. INTRODUCTION I(f(X);Y) < > (1—2a)?+9(1- — (1-2a)*.
Let X be ann-dimensional binary vector uniformly dis- (3)

tributed over{0,1}", andY be the output of passing each
component ofX through a binary symmetric channel with
crossover probabilityx < 1/2. The following was recently
conjectured by Courtade and Kumar [1].

Conjecture 1:For any Boolean functiory : {0,1}" —

For the proof of Theorem 1, we first lower bound the
conditional entropyH (f(X)|Y") in terms of the second and
fourth moments of the random variableé — 2P{;), where
P/ £Pr(f(X)=0[Y =y). Specifically, we show that

{0,1} it holds that HF(X)|Y) > 1— @Eu _oply2
I(f(X):Y) <1=h(a), (1) log(e) v
where I(f(X);Y) is the mutual information betweefi(X) - (1 I )E(l — ) )

A

andY’, andh(p) = —plogp — (1 —p)log(l —p) is the binary 4 \5her bound the second and fourth moments in (4), we use

entropy function. basic Fourier analysis of Boolean functions along with a-sim
For a dictatorship functionf(X) = X; the conjectured ple application of the Hypercontractivity Theorem [8]-]10

upper bound (1) is attained with equality. Therefore, th@ order to derive universal upper bounds Bl — 2P;)2

conjecture can be interpreted as postulating that dicthipr that hold for all balanced Boolean functiohsn particular,

is the most “informative” Boolean function, i.e., it achés/ these bounds show that(l — 2P{)? < (1 — 2a)? and

the maximall(f(X);Y). E(1 — 2PL)* < 9(1 — 2a)*. Plugging these bounds in (4)
Recently, Samorodnitsky have proved that the conjectuelds the Theorem.

holds for the very noisy regime, where> 5 — 4, for some  An appealing feature of the new upper bound, is that the

universal (small) constant [2].? For o outside this regime, ratio between the RHS of (3) anid— h(a) approached in

so far, the best known bound that holds universally for ahe limit of o — 1. For the bound (2), on the other hand, the

Boolean functions is same ratio does not approathRather
T(f(X);Y)<(1-2a) 2 1—2a)? 2
(X)) < ) @) lim (L2297 _ ~ 1.3863.
This bound can be established through various techniques, a_% 1—h(a)  log(e)
including an application of Mrs. Gerber's Lemma [3]-[5]eth
strong data-processing inequality [6], [7] and standardrieo Il. PRELIMINARIES

analysis as described below. To prove our results, it will be more convenient to map the
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{-1,1}". Specifically, letX be ann-dimensional binary vec- Proof.

tor uniformly distributed ove{ —1,1}™ andY be the output (i) By definition /(0) = Ef(X) = 0 for f balanced
of passing each component &f through a binary symmetric (i) We note that the sunp F) Lo g 2 .is an
channel with crossover probability < 1/2. Thus, for all integer, and the claim foﬁl%%g’;%lmediateﬁis ¢

i€ {1, n}wehavey; = X;-Z;, where{Z, }_, isan i.i.d. (iii) Let f be a balanced Boolean functiofi(§) = 0) with

sequence of binary random variables statistically inddpah > F2(S) = 0. Then f(X) = 3 FHiD X

An : 1) — 1) — 1 S:|8|>2 = U = Zuig[n) i

of {Xi}iy, \.N'th Pr(ZZ. 1) . a_andPr(ZZ )=1-c. Since there always exists somes {—1, 15»" for which

Note thatY is also uniformly distributed ovef—1,1}™. F(z) = 3. |F({i})], we must have thak>, |F({i})| =

Let f : {-1,1}" — {-1,1} be abalancedBoolean 1. On Athez other hand, by Parseval's identity we have

function, i.e., >y F2({i}) = 1. Clearly, the last two equations can

p )= 1) — 1 simultaneously hold if and only if there is a uniquéor

r(f(X)=-1)= 2" which |f({¢})| > 0. Hence,f must be a dictatorship.

Note that this condition is equivalent #x (f(X)) = 0. For m
eachy € {—1,1}" define the posterior distribution of(X)

¢ ) For any functionf : {-1,1}" — R with Fourier co-
given the observation

efficients {f(S)} and p € R*, the noise operator,f :

PJ 2 Pr(f(X)=—-1]Y =y), {-1,1}" — R is defined as [8]
and note that (T, ) @) 2 > F(S)p ] )
E(fOOIY =y)=1-2P]. (5) oo '

Recall that in our setting{ andY are the input and output
In what follows, we will extensively use Fourier analysis obf a binary symmetric channel with crossover probabitity

real functions on the hyperculfe-1,1}". Let X be a random Thus we can use the Fourier representationfofo write

vector uniformly distributed on{—1,1}" and define[n] £ E(f(X)[Y =y) as follows [8]

{1,2,...,n}. The Fourier-Walsh transform of a functigh:

{-1,1}" — R is given by E(f(X)|Yy)E(Z f(S)HXz |Yy)
f@)y="> f$) ][] (6) SC - ies
SC[n] = .
where - F(S)E <H ini)
SC[n] icS
f(5) =Ex (f(X) HXi> () =3 FSE <H Zi) 1
i€s SC[n] ies /) ies
is the correlation off with the “parity” function on the subset _ f(S) E(Z) 4
. . ) = i Yi
S. It is easy to ve.rlfy that the bas@p.s(m) =Lics xi}sgn] s%;] g g
is orthonormal with respect to the inner productf, g >= . 15|
E (f(X)g(X)), which implies that for any two functiong ¢ : = > fS1-20)" []wi,  (10)
{-1,1}" — R it holds that SC(n] =
7 A = (T172af)(y)a (11)
E(f(X)g(X)= > f(5)a(S). ®) o
SCn] where we have used the fact thigf;} is an i.i.d. sequence.

_ ) ) ) . Recalling equation (5), this also yields
In particular, Parseval’s identity givesy o f*(S) =

E(f?(X)). Thus, if f is a Boolean function, i.e.f : 1-2P) = (T1-20)(y)
{-=1,1}" = {~1,1}, we have}_4 f*(S5) = 1. =Y fa-20)" ] v (12)
The following proposition gives three simple properties of SC[n] i€s

the Fourier coefficients that will be useful in the sequel. i , )
. ) ) , The following well-known theorem will play an important
Proposition 1 (Basic properties of the Fourier transform)'m'e in the derivation of Theorem 1

Let f: {-1,1}"+— {—1,1} be a Boolean function. We have .
that Theorem 2 (Hypercontractivity Theorem, [8]—-[10]Let
1 < p < q < oo Then for all p < /2=, and all

. . . PRSI, =1’
(i) f is balanced if and only iff () = 0; g: {—1,1}" > R, it holds that

(i) If |£(S)| >0 then|f(S)| >27™; ) )
(ii)) Any balanced functionf which is not a dictatorship E((T,9)(X))]* < [E(lg(X)|")]" . (13)
function must satisfy) . |55, f7(S) > 0;



Il PROOF OFTHEOREM 1 ( Z s T v S Fs® I y)
S1C[n

In this section we prove Theorem 1, which gives a universal €51 5:Cn] €S2
upper bound on the mutual informatidff (X ); Y'), that holds A
for any balancedBoolean function. The mutual information = Z f(S1)p!%! Z £(S2)p%2Ey (H H Y)
can be expressed as S1C[n i€S1  jES2

f51 [S1] Z f52 ISz\]l =5,)

SQC

=
Z S)p*l, (18)
SCln

I(f(X);Y) = H(f(X)) — H(f(X)|Y) =
=1-Eyh(P{). (14)

We note that:(-) admits the following Taylor series

h (u) =1- Z Mp%, (15) Where]l(Sl S) is the indicator function on the evefi{ =
2 2k(2k — 1) Ss. Recalling thagsc[n] f2(S) = 1 and our assumptions that
and can be lower bounded by replacipf with p2 for all p < 1 and thatf(§) = E(f(X)) = 0, the “weight” assignment
k>t ie., F2(9) that maximizes) " g |, F2(5)p?5! puts all the weight
1 1 og(e) = Jog(e) on characterss’ whose ca?dinality igS| = 1. Hence,

—p ogle 2% _ 2t ogle
h<—)2127p —p 27 72 21| « 2

2 £ 2k(2k — 1) £ 2k(2k — 1) scz[]f (9)p?51 < p?,

1 t—1
log(e) 2k log(e) 2t i
—1_ 2k 1= o\ as desired.m
D %2k —1)F D o2k —1) )P
=1 k=1 Proof of Lemma 1. Let f : {-1,1}" — {-1,1} be a
(16) Boolean function and lej £ T, _,, f. Letk > 1 be an integer,
where we have used the fact thaf0) = 0. Using (16), for and letp = \/1/(2k — 1) = /(2 — 1)/(2k — 1). By (12), we

anyt € N, we can further lower bounily (P f) as have
B = (%_M) B (1 -2P)™) =By ()
] = By ((T,(Ti,9) ™ (V)
> ror o (1-270%) < [By ((T1,0)°(1)))" (19)

- [EY ((Tﬂfza)mf)Q(Y))r, (20)

t
log(e) 2t
- <1 - Z 2k(2k — 1)) Ey ((1 —2Fy) ) : (A7) \where (19) follows from the Hypercontractivity Theoremeak
k=1 with p = 2, q = 2k (asp satisfies the premise of the theorem),

Thl}s, any upper bound on the firsteven moment&£[(1 — and (20) from the definition of the functiop. Invoking
2Py )**], k = 1,...,t, would directly translate to an upperproposition 2 withp = (1 — 2a)v2k —1 < 1, we obtain
bound on/(f(X);Y). that for any balanced Boolean function and @ny 1

We obtain an upper bound on all even moments of the £k & ok
random variablel — 2P{;, using a simple trick combined Ey ((1 - 2h) ) < (2k - 1)*(1 - 20) (21)
with the Hypercontractivity Theorem. Formally, we prove thas desired.m

following lemma. L . .
9 The following is an immediate consequence of Lemma 1

Lemma 1:let & > 1 be an integer satisfyingl — and (17).
2a)v/2k —1 < 1. For any balanced Boolean functigh :

{(—1,1}" > {~1,1} we have that Proposition 3: For any balanced Boolean functiofi :

{-1,1} — {-1,1}, any integert > 1 and any

For the proof, we will need the following proposition. =1 log(e
Proposition 2: For any balanced Boolean functiofi : Z 2k (2k — 1 (2k = 1) (1 = 20)*"
{—1,1}" — {—1,1} and any0 < p < 1 we have that S (
log(e)
y (TLf)*(Y)) < p°. + <1 - m) (2t = 1)'(1 = 2)".
k=1
Proof. By the definition of the operatdrf,: (22)

R Theorem 1 now follows by evaluating (22) with= 2. Note
Ey ((T,f)*(Y)) =Ey Z f(S)p!*! H Y; that for balanced functions the upper bound- 2«)?, which
i€s was the best known bound hitherto, is obtained as a special



case of Proposition 3 by settitg= 1. It is easy to verify that in this range
for % <a< % the upper bound in Theorem 1 is tighter. See

Figure 1 for a comparison between the bounds. Ey ((1 —2P{) ) Z 201)°15]
SC[n
06 ‘ ‘ ‘ ‘ ‘ <Y (9] 120 > S | (120,
[S|=1 |S|>2
05 s ) 1 (25)
............. Theorem 1 A
04r o2 1 where we have used the fact thgt)) = 0 for balanced func-

tions (Proposition 1). Combining the above three ineqeslit
and using the fact thgt_ g, f2(S) =1, yields

1(F(x) ) < B (1Zf2 )12a>2

1S|>2

| | | log(e log(
00.2 0.25 0.3 0.35 0.4 0.45 0.5 + (9 (1 - g2( )) g Z f2 ) 1 - 20&)4

« |S|>2
(26)

o
N

Bounds on the Mutual Information
o
w

e
o

Fig. 1. A comparison between the bound from Theorem 1, th¢ectured
bound and best known previous upper bound¢#i(X); Y'). Note that the

bound from Theorem 1 is only valid for balanced functions. Now, suppose thaf is a balanced Boolean function which

is not a dictatorship function. This implies (in fact, equivalent

Remark 1:In [1, Appendix B, Remark 6], it is claimed ©) Z\spzf (5) > 0. By Proposition 1, it therefore must be
that Conjecture 1 can be shown to hold in the limitof+ 1. the case that
Theorem 1 demonstrates this fact for balanced functiorfaras Z F2(S) > 27 =4,
a— % the ratio between the RHS of (3) and the conjectured -

bound tends tol. As we discuss below, a slightly stronger
statement can be shown to hold. Therefore, for suclyf, the RHS of (26) can be upper bounded

|S]>2

The next simple corollary of Theorem 1 establishes ttpey
optimality of the dictatorship function among all balanced log(e) n 9
. . . ; . . (1-47(1 - 2a)
functions in the very noisy regime. The proof is essentially 2
a consequence of the discreteness of the space of Boolean o(1 log(e) log(e)
functions. + T 9 + 2

4—") (1-2a)*  (27)

Corollary 1 (Dictatorship is optimal for very noisy chan- L

nels): Let f : {0,1}"  {0,1} be any balanced Boolean !t €an bAe ?irectly verified that for ang € [5 — @y, 3],

function. There existsw, > 0 such thatl(f(X);Y) < Where@, = 3-27", the expression in (27) is smaller than
1 — h(a) for all a € [3 —a,, 3]. In particular, dictatorship 18(9) (1 —2a)? < 1 — h(a), and thus by (26), for such we
is the most informative balanced function in the noise waéer have

(A S [%—an,é}.

I(f(X):Y) <1=h(a), (28)
Proof. By equation (17) applied withh = 2, we have that for
any balanced Boolean function (and amy which completes the proofm
log(e) Remark 2:1n an unpublished work, Sushant Sachdeva, Alex
I(f(X);Y)< gT]EY ((1 — 2P§)2) Samorodnitsky and Ido Shahaf have shown, using different

log(e) techniques, that dictatorship is optimal among all (not jus
+ (1 _ ogTe) Ey ((1 _ 2P;)4) . (23) balanc?d) Boglean1 functions frodDn,1}™ to {0,1} for fill
a € [3—279( 1] More recently, Alex Samorodnitsky
) have showed that dictatorship is optimal for some interval

Lemma 1 (applied with = 2) implies that for (1 ~7) < ae [L-61] wheres > 0 is a dimension independent
a<i number [2], [11].
Ey ((1 - 2P{;)4) <(2-2-1)2%1-2a)* IV. DISCUSSION
=9(1 — Qa)4, (24) A natural question that arises from this work is: What are

the limits of the approach pursued in this paper? To this end
Furthermore, by equations (12) and (18), we have thatforwe note the following two limitations:



Firstly, the dictatorship function, which is conjecturedite  [8] R. O’Donnell, Analysis of Boolean functions Cambridge University

. o 2k 2k Press, 2014.
optimal, satisfiesy ( (1 —2P) ) = (1 —2a)™ for every [9] A. Bonami, “tude des coefficients de fourier des fonctictte I (g),”
k € N. The ratio between the bound in Lemma 1 on the Annales de linstitut Fourigrvol. 20, no. 2, pp. 335402, 1970.
th moment of any balanced Boolean function iﬂ]d— 204)% [10] W. Beckner, “Inequalities in fourier analysis &i*,” Proceedings of the
. . . : National Academy of Sciencesl. 72, no. 2, pp. 638-641, 1975.
grows rapidly withk. For this reason, we only get m”ea'QQM] A. Samorodnitsky, “On the entropy of a noisy functio2015, arXiv
from applying the lemma withk = 1,2 and not for higher preprint, available online : http://arxiv.org/abs/150B464.

moments.

The second limitation is that Lemma 1 upper bouedsh
moment separatelywhile we are seeking an upper bound
on the entire distribution (weighted sum) of the moments:
Quantifying the tradeoff between higher and lower moments
seems to be one of the “brick walls” in proving the conjecture
For example, the dictatorship function has the largestrsgco
moment among all balanced functions, but it is not hard to
see that the majority function, for example, has a much targe
(relatively speaking)th moment for very large values @f.

To see this, note that foe > 27,

Ey ((1 - 2P{;)2k) 2 27" max|1 - 2P][*.

For the majority function, the maxignum is attainedat=
(1,1,,1...,1) for which P} ~ o~"D(3llo) and consequently

1
max,, 1 —2PY*| ~ 1 _g D (zlle) For dictatorship, on the
other hand]1 — 2P| = 1 — 2a for everyy, and therefore

max |1 — 2P % |?* >> max |1 — 2P|
Y Y

Therefore, one cannot hope to prove that there is a single
function thatsimultaneouslymaximizes all moments; rather,
the conjecture postulates that there is some tradeoff legtwe
these values and the largest mutual information is attained
by functions that maximize lower moments at the expense of
higher ones.
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