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Abstract—SupposeX is a uniformly distributed n-dimensional
binary vector and Y is obtained by passing X through a
binary symmetric channel with crossover probability α. A recent
conjecture by Courtade and Kumar postulates thatI(f(X);Y ) ≤
1−h(α) for any Boolean functionf . So far, the best known upper
bound was essentiallyI(f(X);Y ) ≤ (1− 2α)2. In this paper, we
derive a new upper bound that holds for all balanced functions,
and improves upon the best known previous bound forα > 1

3
.

I. I NTRODUCTION

Let X be ann-dimensional binary vector uniformly dis-
tributed over{0, 1}n, and Y be the output of passing each
component ofX through a binary symmetric channel with
crossover probabilityα ≤ 1/2. The following was recently
conjectured by Courtade and Kumar [1].

Conjecture 1:For any Boolean functionf : {0, 1}n 7→
{0, 1} it holds that

I (f(X);Y ) ≤ 1− h(α), (1)

whereI(f(X);Y ) is the mutual information betweenf(X)
andY , andh(p) , −p log p− (1− p) log(1− p) is the binary
entropy function.1

For a dictatorship function,f(X) = Xi the conjectured
upper bound (1) is attained with equality. Therefore, the
conjecture can be interpreted as postulating that dictatorship
is the most “informative” Boolean function, i.e., it achieves
the maximalI(f(X);Y ).

Recently, Samorodnitsky have proved that the conjecture
holds for the very noisy regime, whereα > 1

2 − δ, for some
universal (small) constantδ [2].2 For α outside this regime,
so far, the best known bound that holds universally for all
Boolean functions is

I (f(X);Y ) ≤ (1− 2α)2. (2)

This bound can be established through various techniques,
including an application of Mrs. Gerber’s Lemma [3]–[5], the
strong data-processing inequality [6], [7] and standard Fourier
analysis as described below.
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1All logarithms are taken to base2.
2An online version of the current manuscript preceded [2], and in fact some

of the steps in the proof of our main result were also used in [2].

In this paper, we derive an upper bound onI(f(X);Y ) that
holds for all balanced functions, and improves upon (2) for all
1
3 < α < 1

2 . Specifically, we obtain the following result.

Theorem 1:For any balanced Boolean functionf(x) :

{0, 1}n 7→ {0, 1}, and any1
2

(

1− 1√
3

)

≤ α ≤ 1
2 , we have

that

I(f(X);Y ) ≤ log(e)

2
(1− 2α)2 + 9

(

1− log(e)

2

)

(1− 2α)4.

(3)

For the proof of Theorem 1, we first lower bound the
conditional entropyH(f(X)|Y ) in terms of the second and
fourth moments of the random variable(1 − 2P f

Y ), where
P f
y , Pr (f(X) = 0|Y = y). Specifically, we show that

H(f(X)|Y ) ≥ 1− log(e)

2
E(1− 2P f

Y )
2

+

(

1− log(e)

2

)

E(1− 2P f
Y )

4. (4)

To upper bound the second and fourth moments in (4), we use
basic Fourier analysis of Boolean functions along with a sim-
ple application of the Hypercontractivity Theorem [8]–[10],
in order to derive universal upper bounds onE(1 − 2P f

Y )
2k

that hold for all balanced Boolean functions.3 In particular,
these bounds show thatE(1 − 2P f

Y )
2 ≤ (1 − 2α)2 and

E(1 − 2P f
Y )

4 ≤ 9(1 − 2α)4. Plugging these bounds in (4)
yields the Theorem.

An appealing feature of the new upper bound, is that the
ratio between the RHS of (3) and1 − h(α) approaches1 in
the limit of α → 1

2 . For the bound (2), on the other hand, the
same ratio does not approach1. Rather

lim
α→ 1

2

(1− 2α)2

1− h(α)
=

2

log(e)
≈ 1.3863.

II. PRELIMINARIES

To prove our results, it will be more convenient to map the
additive group{0, 1}n to the (isomorphic) multiplicative group

3We remark that using similar techniques it is possible to obtain an upper
bound onI(f(X); Y ) of a similar form that holds for anyq-biased function
(i.e., any function for whichE(f(X)) = 1 − 2q). However, the obtained
bound is not maximized atq = 1

2
, and therefore cannot be used to establish (3)

for all Boolean functions.



{−1, 1}n. Specifically, letX be ann-dimensional binary vec-
tor uniformly distributed over{−1, 1}n andY be the output
of passing each component ofX through a binary symmetric
channel with crossover probabilityα ≤ 1/2. Thus, for all
i ∈ {1, · · · , n} we haveYi = Xi·Zi, where{Zi}ni=1 is an i.i.d.
sequence of binary random variables statistically independent
of {Xi}ni=1, with Pr(Zi = −1) = α andPr(Zi = 1) = 1−α.
Note thatY is also uniformly distributed over{−1, 1}n.

Let f : {−1, 1}n 7→ {−1, 1} be a balanced Boolean
function, i.e.,

Pr (f(X) = −1) =
1

2
.

Note that this condition is equivalent toEX(f(X)) = 0. For
eachy ∈ {−1, 1}n define the posterior distribution off(X)
given the observationy

P f
y , Pr(f(X) = −1|Y = y),

and note that

E(f(X)|Y = y) = 1− 2P f
y . (5)

In what follows, we will extensively use Fourier analysis of
real functions on the hypercube{−1, 1}n. Let X be a random
vector uniformly distributed on{−1, 1}n and define[n] ,
{1, 2, . . . , n}. The Fourier-Walsh transform of a functionf :
{−1, 1}n 7→ R is given by

f(x) =
∑

S⊆[n]

f̂(S)
∏

i∈S

xi, (6)

where

f̂(S) = EX

(

f(X)
∏

i∈S

Xi

)

(7)

is the correlation off with the “parity” function on the subset
S. It is easy to verify that the basis

{

ϕS(x) =
∏

i∈S xi

}

S⊆[n]
is orthonormal with respect to the inner product< f, g >=
E (f(X)g(X)), which implies that for any two functionsf, g :
{−1, 1}n 7→ R it holds that

E (f(X)g(X)) =
∑

S⊆[n]

f̂(S)ĝ(S). (8)

In particular, Parseval’s identity gives
∑

S f̂2(S) =
E
(

f2(X)
)

. Thus, if f is a Boolean function, i.e.,f :

{−1, 1}n 7→ {−1, 1}, we have
∑

S f̂2(S) = 1.

The following proposition gives three simple properties of
the Fourier coefficients that will be useful in the sequel.

Proposition 1 (Basic properties of the Fourier transform):
Let f : {−1, 1}n 7→ {−1, 1} be a Boolean function. We have
that

(i) f is balanced if and only if̂f(∅) = 0;

(ii) If |f̂(S)| > 0 then |f̂(S)| ≥ 2−n;

(iii) Any balanced functionf which is not a dictatorship
function must satisfy

∑

S: |S|≥2 f̂
2(S) > 0;

Proof.

(i) By definition f̂(∅) = Ef(X) = 0 for f balanced.
(ii) We note that the sum

∑

x∈{−1,1}n f(x)
∏

i∈S xi is an
integer, and the claim follows immediately.

(iii) Let f be a balanced Boolean function (f̂(∅) = 0) with
∑

S: |S|≥2 f̂
2(S) = 0. Then f(X) =

∑

i∈[n] f̂({i})Xi.
Since there always exists somex ∈ {−1, 1}n for which
f(x) =

∑

i |f̂({i})|, we must have that
∑

i |f̂({i})| =
1. On the other hand, by Parseval’s identity we have
∑

i=1 f̂
2({i}) = 1. Clearly, the last two equations can

simultaneously hold if and only if there is a uniquei for
which |f̂({i})| > 0. Hence,f must be a dictatorship.

For any functionf : {−1, 1}n 7→ R with Fourier co-
efficients {f̂(S)} and ρ ∈ R

+, the noise operatorTρf :
{−1, 1}n 7→ R is defined as [8]

(Tρf)(x) ,
∑

S⊆[n]

f̂(S)ρ|S|
∏

i∈S

xi. (9)

Recall that in our settingX andY are the input and output
of a binary symmetric channel with crossover probabilityα.
Thus we can use the Fourier representation off to write
E (f(X)|Y = y) as follows [8]

E (f(X)|Y = y) = E





∑

S⊆[n]

f̂(S)
∏

i∈S

Xi

∣

∣Y = y





=
∑

S⊆[n]

f̂(S)E

(

∏

i∈S

yiZi

)

=
∑

S⊆[n]

f̂(S)E

(

∏

i∈S

Zi

)

∏

i∈S

yi

=
∑

S⊆[n]

f̂(S)
∏

i∈S

E (Zi)
∏

i∈S

yi

=
∑

S⊆[n]

f̂(S)(1 − 2α)|S|
∏

i∈S

yi, (10)

= (T1−2αf)(y), (11)

where we have used the fact that{Zi} is an i.i.d. sequence.
Recalling equation (5), this also yields

1− 2P f
y = (T1−2αf)(y)

=
∑

S⊆[n]

f̂(S)(1− 2α)|S|
∏

i∈S

yi. (12)

The following well-known theorem will play an important
role in the derivation of Theorem 1.

Theorem 2 (Hypercontractivity Theorem, [8]–[10]):Let

1 ≤ p < q < ∞. Then for all ρ ≤
√

p−1
q−1 , and all

g : {−1, 1}n 7→ R, it holds that

[E(|(Tρg)(X)|q)]
1

q ≤ [E(|g(X)|p)]
1

p . (13)



III. PROOF OFTHEOREM 1

In this section we prove Theorem 1, which gives a universal
upper bound on the mutual informationI(f(X);Y ), that holds
for any balancedBoolean function. The mutual information
can be expressed as

I(f(X);Y ) = H(f(X))−H(f(X)|Y )

= 1− EY h(P
f
Y ). (14)

We note thath(·) admits the following Taylor series

h

(

1− p

2

)

= 1−
∞
∑

k=1

log(e)

2k(2k − 1)
p2k, (15)

and can be lower bounded by replacingp2k with p2t for all
k > t, i.e.,

h

(

1− p

2

)

≥ 1−
t−1
∑

k=1

log(e)

2k(2k − 1)
p2k − p2t

∞
∑

k=t

log(e)

2k(2k − 1)

= 1−
t−1
∑

k=1

log(e)

2k(2k − 1)
p2k −

(

1−
t−1
∑

k=1

log(e)

2k(2k − 1)

)

p2t,

(16)

where we have used the fact thath(0) = 0. Using (16), for
any t ∈ N, we can further lower boundEY h(P

f
Y ) as

EY h(P
f
Y ) = EY h

(

1− (1 − 2P f
Y )

2

)

≥ 1−
t−1
∑

k=1

log(e)

2k(2k − 1)
EY

(

(1− 2P f
Y )

2k
)

−
(

1−
t−1
∑

k=1

log(e)

2k(2k − 1)

)

EY

(

(1− 2P f
Y )

2t
)

. (17)

Thus, any upper bound on the firstt even momentsE[(1 −
2P f

Y )
2k], k = 1, . . . , t, would directly translate to an upper

bound onI(f(X);Y ).

We obtain an upper bound on all even moments of the
random variable1 − 2P f

Y , using a simple trick combined
with the Hypercontractivity Theorem. Formally, we prove the
following lemma.

Lemma 1: Let k ≥ 1 be an integer satisfying(1 −
2α)

√
2k − 1 ≤ 1. For any balanced Boolean functionf :

{−1, 1}n 7→ {−1, 1} we have that

EY

(

(1− 2P f
Y )

2k
)

≤ (2k − 1)k(1− 2α)2k.

For the proof, we will need the following proposition.

Proposition 2: For any balanced Boolean functionf :
{−1, 1}n 7→ {−1, 1} and any0 ≤ ρ ≤ 1 we have that

EY

(

(Tρf)
2(Y )

)

≤ ρ2.

Proof. By the definition of the operatorTρ:

EY

(

(Tρf)
2(Y )

)

= EY











∑

S⊆[n]

f̂(S)ρ|S|
∏

i∈S

Yi





2






= EY

(

∑

S1⊆[n]

f̂(S1)ρ
|S1|

∏

i∈S1

Yi

∑

S2⊆[n]

f̂(S2)ρ
|S2|

∏

j∈S2

Yj

)

=
∑

S1⊆[n]

f̂(S1)ρ
|S1|

∑

S2⊆[n]

f̂(S2)ρ
|S2|EY





∏

i∈S1

Yi

∏

j∈S2

Yj





=
∑

S1⊆[n]

f̂(S1)ρ
|S1|

∑

S2⊆[n]

f̂(S2)ρ
|S2|1(S1 = S2)

=
∑

S⊆[n]

f̂2(S)ρ2|S|, (18)

where1(S1 = S2) is the indicator function on the eventS1 =
S2. Recalling that

∑

S⊆[n] f̂
2(S) = 1 and our assumptions that

ρ ≤ 1 and thatf̂(∅) = E(f(X)) = 0, the “weight” assignment
f̂2(S) that maximizes

∑

S⊆[n] f̂
2(S)ρ2|S| puts all the weight

on charactersS whose cardinality is|S| = 1. Hence,
∑

S⊆[n]

f̂2(S)ρ2|S| ≤ ρ2,

as desired.

Proof of Lemma 1. Let f : {−1, 1}n 7→ {−1, 1} be a
Boolean function and letg , T1−2αf . Let k ≥ 1 be an integer,
and letρ =

√

1/(2k − 1) =
√

(2− 1)/(2k − 1). By (12), we
have

EY ((1 − 2P f
Y )

2k) = EY

(

g2k(Y )
)

= EY

(

(

Tρ(T1/ρg)
)2k

(Y )
)

≤
[

EY

(

(T1/ρg)
2(Y )

)]k
(19)

=
[

EY

(

(T(1−2α)
√
2k−1f)

2(Y )
)]k

, (20)

where (19) follows from the Hypercontractivity Theorem taken
with p = 2, q = 2k (asρ satisfies the premise of the theorem),
and (20) from the definition of the functiong. Invoking
Proposition 2 withρ = (1 − 2α)

√
2k − 1 ≤ 1, we obtain

that for any balanced Boolean function and anyk ≥ 1

EY

(

(1− 2P f
Y )

2k
)

≤ (2k − 1)k(1− 2α)2k (21)

as desired.

The following is an immediate consequence of Lemma 1
and (17).

Proposition 3: For any balanced Boolean functionf :
{−1, 1}n 7→ {−1, 1}, any integer t ≥ 1 and any
1
2

(

1− 1√
2t−1

)

≤ α ≤ 1
2 , we have that

I(f(X);Y ) ≤
t−1
∑

k=1

log(e)

2k(2k − 1)
(2k − 1)k(1 − 2α)2k

+

(

1−
t−1
∑

k=1

log(e)

2k(2k − 1)

)

(2t− 1)t(1− 2α)2t.

(22)

Theorem 1 now follows by evaluating (22) witht = 2. Note
that for balanced functions the upper bound(1− 2α)2, which
was the best known bound hitherto, is obtained as a special



case of Proposition 3 by settingt = 1. It is easy to verify that
for 1

3 < α < 1
2 the upper bound in Theorem 1 is tighter. See

Figure 1 for a comparison between the bounds.
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Fig. 1. A comparison between the bound from Theorem 1, the conjectured
bound and best known previous upper bound onI(f(X); Y ). Note that the
bound from Theorem 1 is only valid for balanced functions.

Remark 1:In [1, Appendix B, Remark 6], it is claimed
that Conjecture 1 can be shown to hold in the limit ofα → 1

2 .
Theorem 1 demonstrates this fact for balanced functions, asfor
α → 1

2 the ratio between the RHS of (3) and the conjectured
bound tends to1. As we discuss below, a slightly stronger
statement can be shown to hold.

The next simple corollary of Theorem 1 establishes the
optimality of the dictatorship function among all balanced
functions in the very noisy regime. The proof is essentially
a consequence of the discreteness of the space of Boolean
functions.

Corollary 1 (Dictatorship is optimal for very noisy chan-
nels): Let f : {0, 1}n 7→ {0, 1} be any balanced Boolean
function. There existsαn > 0 such thatI(f(X);Y ) ≤
1 − h(α) for all α ∈

[

1
2 − αn,

1
2

]

. In particular, dictatorship
is the most informative balanced function in the noise interval
α ∈

[

1
2 − αn,

1
2

]

.

Proof. By equation (17) applied witht = 2, we have that for
any balanced Boolean function (and anyα),

I (f(X);Y ) ≤ log(e)

2
EY

(

(1 − 2P f
Y )

2
)

+

(

1− log(e)

2

)

EY

(

(1− 2P f
Y )

4
)

. (23)

Lemma 1 (applied withk = 2) implies that for12

(

1− 1√
3

)

≤
α ≤ 1

2

EY

(

(1− 2P f
Y )

4
)

≤ (2 · 2− 1)2(1− 2α)4

= 9(1− 2α)4. (24)

Furthermore, by equations (12) and (18), we have that forα

in this range

EY

(

(1− 2P f
Y )

2
)

=
∑

S⊆[n]

f̂2(S)(1− 2α)2|S|

≤





∑

|S|=1

f̂2(S)



 (1− 2α)2 +





∑

|S|≥2

f̂2(S)



 (1− 2α)4,

(25)

where we have used the fact thatf̂(∅) = 0 for balanced func-
tions (Proposition 1). Combining the above three inequalities
and using the fact that

∑

S⊆[n] f̂
2(S) = 1, yields

I (f(X);Y ) ≤ log(e)

2



1−
∑

|S|≥2

f̂2(S)



 (1− 2α)2

+



9

(

1− log(e)

2

)

+
log(e)

2

∑

|S|≥2

f̂2(S)



 (1− 2α)4.

(26)

Now, suppose thatf is a balanced Boolean function which
is not a dictatorship function. This implies (in fact, equivalent
to)
∑

|S|≥2 f̂
2(S) > 0. By Proposition 1, it therefore must be

the case that
∑

|S|≥2

f̂2(S) ≥ 2−2n = 4−n.

Therefore, for suchf , the RHS of (26) can be upper bounded
by

log(e)

2
(1 − 4−n)(1 − 2α)2

+

(

9

(

1− log(e)

2

)

+
log(e)

2
4−n

)

(1− 2α)4. (27)

It can be directly verified that for anyα ∈
[

1
2 − αn,

1
2

]

,
whereαn , 1

4 · 2−n, the expression in (27) is smaller than
log(e)

2 (1− 2α)2 < 1− h(α), and thus by (26), for suchα we
have

I (f(X);Y ) ≤ 1− h(α), (28)

which completes the proof.

Remark 2:In an unpublished work, Sushant Sachdeva, Alex
Samorodnitsky and Ido Shahaf have shown, using different
techniques, that dictatorship is optimal among all (not just
balanced) Boolean functions from{0, 1}n to {0, 1} for all
α ∈

[

1
2 − 2−O(n), 1

2

]

. More recently, Alex Samorodnitsky
have showed that dictatorship is optimal for some interval
α ∈

[

1
2 − δ, 12

]

, where δ > 0 is a dimension independent
number [2], [11].

IV. D ISCUSSION

A natural question that arises from this work is: What are
the limits of the approach pursued in this paper? To this end
we note the following two limitations:



Firstly, the dictatorship function, which is conjectured to be
optimal, satisfiesEY

(

(1− 2P f
Y )

2k
)

= (1 − 2α)2k for every
k ∈ N. The ratio between the bound in Lemma 1 on thek-
th moment of any balanced Boolean function and(1− 2α)2k

grows rapidly withk. For this reason, we only get mileage
from applying the lemma withk = 1, 2 and not for higher
moments.

The second limitation is that Lemma 1 upper boundseach
moment separately, while we are seeking an upper bound
on the entire distribution (weighted sum) of the moments:
Quantifying the tradeoff between higher and lower moments
seems to be one of the “brick walls” in proving the conjecture.
For example, the dictatorship function has the largest second
moment among all balanced functions, but it is not hard to
see that the majority function, for example, has a much larger
(relatively speaking)kth moment for very large values ofk.
To see this, note that fork ≫ 2n,

EY

(

(1− 2P f
Y )

2k
)

& 2−n ·max
y

|1− 2P f
y |2k.

For the majority function, the maximum is attained aty =

(1, 1, , 1 . . . , 1) for whichP f
y ≈ 2

−nD
(

1
2 ||α

)

and consequently

maxy |1−2PMaj
y | ≈ 1−2

−nD
(

1
2 ||α

)

. For dictatorship, on the
other hand,|1− 2P f

Y | = 1− 2α for everyy, and therefore

max
y

|1− 2PMaj
y |2k ≫ max

y
|1− 2PDict

y |2k.

Therefore, one cannot hope to prove that there is a single
function thatsimultaneouslymaximizes all moments; rather,
the conjecture postulates that there is some tradeoff between
these values and the largest mutual information is attained
by functions that maximize lower moments at the expense of
higher ones.
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