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Integer-Forcing Source Coding
Or Ordentlich and Uri Erez, Member, IEEE

Abstract— Integer-Forcing (IF) is a new framework, based
on compute-and-forward, for decoding multiple integer linear
combinations from the output of a Gaussian multiple-input
multiple-output channel. This paper applies the IF approach
to arrive at a new low-complexity scheme, IF source coding,
for distributed lossy compression of correlated Gaussian sources
under a minimum mean squared error distortion measure.
All encoders use the same nested lattice codebook. Each encoder
quantizes its observation using the fine lattice as a quantizer
and reduces the result modulo the coarse lattice, which plays the
role of binning. Rather than directly recovering the individual
quantized signals, the decoder first recovers a full-rank set of
judiciously chosen integer linear combinations of the quantized
signals, and then inverts it. In general, the linear combinations
have smaller average powers than the original signals. This
allows to increase the density of the coarse lattice, which in
turn translates to smaller compression rates. We also propose
and analyze a one-shot version of IF source coding that is simple
enough to potentially lead to a new design principle for analog-
to-digital converters that can exploit spatial correlations between
the sampled signals.

Index Terms— Distributed lossy compression, lattice codes,
structured binning, modulo-lattice additive noise channel,
Analog-to-Digital conversion.

I. INTRODUCTION

THE distributed lossy compression problem, depicted in
Figure 1, consists of multiple distributed encoders and

one decoder. The encoders have access to correlated observa-
tions which they try to describe to the decoder with minimum
rate and minimum distortion [1]–[3]. This problem naturally
arises in numerous scenarios. For instance, consider a sen-
sor network where multiple sensors that observe correlated
random variables are connected via finite rate links to a
central processor, but not to one another, and have to describe
their observations to the central processor with minimum
distortion. Although the distributed lossy compression problem
is usually classified as a pure source-coding problem, it is
also an important building block in network channel coding
problems. For example, multiple relays may observe correlated
signals that describe the messages transmitted by the different
encoders in the network. The relays can compress-and-forward
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Fig. 1. The distributed source coding problem. The kth encoder Ek has access
to the vector xk that contains n i.i.d. realizations of the random variable xk . It
encodes xk to an index taking values in 1, . . . , 2n Rk . The sources x1, . . . , xK
are assumed correlated and the encoders are not allowed to cooperate. The
decoder’s goal is to produce estimates of each xk with average distortions dk
using the K indices it received from the encoders.

these signals further down the network in order to ultimately
help the decoder recover the transmitted messages.

A special case that received considerable attention is that
of distributed lossy compression of jointly Gaussian random
variables under a quadratic distortion measure. In general,
the best known achievable scheme is that of Berger and
Tung [1], [2], although some examples where Berger-Tung
compression can be outperformed are known [4]–[6]. In the
Gaussian case, the Berger-Tung approach reduces to each
encoder compressing its source using a standard point-to-point
quantizer, followed by Slepian and Wolf [7] encoding. For
the quadratic Gaussian case with K = 2, Wagner et al. [8]
proved that this approach is optimal. For arbitrary K , Zamir
and Berger [9] showed that the Berger-Tung inner bound with
a forward additive Gaussian test channel is asymptotically
optimal in the limit of high-resolution, provided that the source
is non-degenerate, i.e., that its covariance matrix has full-rank.

The importance of the quadratic-Gaussian distributed lossy
compression problem has motivated researchers to design low-
complexity encoding schemes that approach the performance
of the Berger-Tung inner bound. This line of work was pio-
neered in [10] and [11] and remains an active area of research,
see, e.g., [12]–[15] and references therein. However, at a high
level, the existing approaches for distributed source coding
are either notably asymmetric in the rates they require from
the encoders, as they rely on the lattice-based implementation
of Wyner-Ziv coding [14], [16] and successive Wyner-Ziv
coding [12], or specifically tailored to predefined correla-
tion characteristics of the sources [11]. In general, the rate
requirements in schemes that are based on Wyner-Ziv coding
can be symmetrized by time-sharing between different com-
pression/decompression orders [14]. Nevertheless, schemes
using time-sharing have a few drawbacks. First, time-sharing
requires the encoders and the decoders to use a larger number

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1254 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 2, FEBRUARY 2017

of codebooks, which complicates implementation. Second, it
requires coordination between the distributed encoders, which
is less crucial when time-sharing is not used. Finally, the
compression block must be at least as long as the number
of operation points that are time-shared.

In this work we propose a novel framework, integer-
forcing source coding, for distributed lossy compression with
symmetric rate and distortion requirements for all encoders.
This scheme does not incorporate time-sharing. As in previ-
ous works, our approach is based on standard quantization
followed by lattice-based binning. However, in contrast to
previous works, in the proposed framework the decoder first
uses the bin indices for recovering linear combinations with
integer coefficients of the quantized signals, and only then
recovers the quantized signals themselves. The decoder is
free to optimize the full-rank set of integer-valued coeffi-
cients such as to best exploit the correlations between the
quantized signals. Choosing these coefficients appropriately
results in performance that is close to that of a joint typicality
decoder, with a substantially smaller computational burden.
In fact, the only operations performed by the encoders are
quantization and lattice-binning which corresponds to nearest
neighbor decoding, whereas the decoder is only required to
perform matrix multiplications and nearest neighbor decoding
operations.

In certain scenarios, coding schemes based on lattice bin-
ning have been shown to attain larger achievable rate regions
than the Berger-Tung inner bound, see e.g. [5], [17]. However,
in most applications of practical interest, the source covariance
matrix is full-rank, and the Berger-Tung inner bound becomes
tight as the target distortion level decreases [9]. We stress that
although the integer-forcing source coding scheme makes use
of lattice binning, our goal is not to provide new theoretical
inner bounds. Rather, it is to derive a reduced-complexity
coding scheme that mimics the asymptotically optimal Berger-
Tung coding scheme with an additive forward test channel.

An important feature of the proposed approach is that
it allows the system designer to trade off performance and
complexity. At one extreme, integer-forcing (IF) source coding
can be implemented using high-dimensional nested lattices
that have near-optimum quantization and channel coding per-
formance. At the other extreme, IF source coding can be
implemented with the low-complexity one-dimensional scaled
integer lattice Z, used as a quantizer as well as a channel code.
Surprisingly, the rate loss from using the 1D lattice rather
than “good” high-dimensional nested lattices, amounts to
about 2 bits per sample per encoder, at any distortion level.
At high resolution, where the compression rate is high, this
loss of 2 bits is insignificant.

Implementing the 1D version of IF source coding only
requires each encoder to reduce its observation modulo the
lattice 2R�Z and then quantize the obtained signal onto �Z,
for some � > 0 which depends on the required distortion.
This simple operation can actually be implemented using an
analog-to-digital converter (ADC).1 The observation that at

1The analog modulo operation is actually already implemented, to some
extent, in a class of ADCs called folding ADCs [18].

high resolution 1D IF source coding does not lose much
w.r.t. the asymptotic performance achieved by Berger-Tung’s
compression may challenge the current paradigm of ADC
design - rather than sample each source at a high rate and
then compress it, why not sample at the compression rate
to begin with? An idea in a similar spirit lies at the heart
of compressed sensing [19], where the number of samples
required to reconstruct a sparse signal is reduced according to
its sparseness level. Here, in contrast, the number of sampled
bits required for reconstructing a source is reduced towards
the source’s rate-distortion function. The power consumption
of an ADC depends on the number of bits it produces
per second [20]. If the front end of the ADC includes an
analog modulo operation, the ADC will need less quantization
levels, i.e., less bits. Thus, if analog modulo reduction can be
implemented efficiently, the IF approach may potentially lead
to a more efficient ADC architecture.

IF source coding can be seen as the source coding dual
of IF equalization [21]. IF equalization is a low complexity
receiver architecture for the Gaussian multiple-input multiple-
output (MIMO) channel. The IF receiver first decodes integer
linear combinations of the transmitted codewords, which is
possible if all transmitted codewords are taken from the same
linear code [22], and then solves these linear combinations for
the transmitted codewords. In IF source coding, all encoders
first quantize their observations to the desired distortion
level, and then reduce them modulo the same lattice �.2

The decoder receives the quantized modulo reduced signals.
In order to form estimates of the original signals with the
desired distortion level, it has to figure out what was the
effect of the modulo reduction on each observation. Rather
than doing this directly, it first tries to figure out what is the
effect of reducing K linear combinations with integer-valued
coefficients of the original signals modulo �, and only then
extract the desired effects. See Figure 2.

The rest of the paper is organized as follows. In Section II
we formally define the distributed lossy compression problem
at hand, and introduce the performance benchmark we use
throughout the paper which is based on the Berger-Tung
inner bound. Basic lattice definitions and figures of merit
are recalled in Section III, where standard results on lattice
quantization are also reviewed. The IF source coding scheme
is presented in Section IV, and the performance limits of
the scheme are derived for the asymptotic case of high-
dimensional “good” nested lattice codebooks. In Section V, a
comparison between the performance of IF source coding and
other known coding schemes is given for several scenarios.
Applications of IF source coding to several communication
problems that are not restricted to pure lossy compression
are also given. In particular, we study the performance of
a compress-and-forward scheme for relay networks where
the compression is performed via IF source coding. We
also study the problem of distributively transmitting K cor-
related Gaussian random variables over K parallel AWGN

2If the quantization is performed by the 1D lattice � f = �Z and the coarse
lattice used for binning is � = 2R�Z, where 2R is a positive integer, the
order of the modulo and quantization operations can be switched.
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Fig. 2. A schematic overview of the integer-forcing source coding framework with the nested lattice pair � ⊂ � f . Each encoder adds a dither dk uniformly
distributed over the Voronoi region of the fine lattice � f and statistically independent of all other quantities, quantizes the dithered signal onto � f and
reduces the result modulo the coarse lattice �. The encoding rate is 1

n log(Vol(�)/Vol(� f )). The decoder subtracts back the dithers and reduces the results
modulo � (this mod � reduction is actually not necessary and is only illustrated for didactic purposes). Then, the decoder multiplies the signals by a full-rank
integer matrix A ∈ Z

K ×K , reduces the results mod� and multiplies by A−1 to form the estimates x̂1, . . . , x̂K .

channels, and show that IF source coding can improve over
standard approaches. In Section VI we describe and ana-
lyze the one-shot version of IF source coding, where the
scaled 1D integer lattice is used for quantization and channel
coding.

Notation: We denote scalars by lowercase letters, vectors by
boldface lowercase letters and matrices by boldface uppercase
letters, e.g., x , x and X. Column vectors usually represent
the spatial dimension whereas row vectors represent the time
dimension. For example x = [x1 · · · xK ]T ∈ R

K×1 may
represent a Gaussian vector of correlated random variables,
whereas xk ∈ R

1×n may represent n i.i.d. realizations of the
random variable xk . We denote the Euclidean norm of a vector
by ‖ · ‖ and the absolute value of the determinant of a square
matrix by | · |. All variables in the paper are real-valued and
all logarithms are to the base 2.

II. PROBLEM STATEMENT

We consider a distributed source coding setting with
K encoding terminals and one decoder. Each of the K
encoders has access to a vector xk ∈ R

n of n i.i.d. realizations
of the random variable xk , k = 1, . . . , K . The random vector
x = [x1 · · · xK ]T is assumed Gaussian with zero mean and
covariance matrix

Kxx � E(xxT ).

Each encoder maps its observation xk to an index using the
encoding function

Ek : R
n → {1, . . . , 2nRk },

and sends the index to the decoder.
The decoder is equipped with K decoding functions

Dk : {1, . . . , 2nR1} × · · · × {1, . . . , 2nRK } → R
n,

for k = 1, . . . , K . Upon receiving K indices, one from each
terminal, the decoder generates estimates

x̂k = Dk (E1(x1), . . . , EK (xK )) , k = 1, . . . , K .

A rate-distortion vector (R1, . . . , RK , d1, . . . , dK ) is achiev-
able if for n large enough, there exist encoding functions
E1, . . . , EK and decoding functions D1, . . . ,DK such that

1

n
E

(
‖xk − x̂k‖2

)
≤ dk, (1)

for all k = 1, . . . , K .
We focus on the symmetric case where R1 = · · · = RK = R

and d1 = · · · = dK = d . The reason for this is twofold.
First, such a symmetry constraint naturally arises in many
applications, where the coding burden has to be equally split
between the distributed encoders. Second, this allows for a
simpler description of the proposed coding scheme and the
rate-distortion region it achieves. Nevertheless, we stress that
the scheme proposed in this paper is not restricted to the sym-
metric case, and can be easily extended to achieve asymmetric
rate-distortion vectors by using a more complicated chain of
nested lattices, rather than the nested lattice pair we use in
the sequel.

Finding the full rate-distortion region, i.e., the set of all
achievable rate-distortion vectors, for the described setup is an
open problem for K > 2. For K = 2, Wagner et al. [8] showed
that the Berger-Tung approach is optimal. This approach
consists of quantizing each source using standard single-source
rate-distortion theory with a Gaussian test channel, and then
using Slepian-Wolf encoding for compressing the quantization
indices. For K > 2 it is now known that the Berger-
Tung approach does not attain the full rate-distortion region
(see e.g. [5]). However, to the best of our knowledge, it is not
known whether the Berger-Tung inner bound is loose for the
symmetric case. Moreover, whenever |Kxx| > 0 the Berger-
Tung coding scheme with a forward additive test channel
is asymptotically optimal in the limit of d → 0 [9]. Thus,
we take the symmetric rate from Berger-Tung’s inner bound
with this particular test channel as our benchmark. More
specifically, the sum-rate in Berger-Tung’s inner bound is
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given by

K∑
k=1

Rk ≥ I (x; u), (2)

where u = [u1 · · · uK ]T is a vector of auxiliary random
variables that satisfy the set of Markov chains

uk − xk − ({x j , u j } j �=k
)

and such that there exist functions x̂k(u1, . . . , uK ) satisfying
E(xk − x̂k)

2 < dk for all k = 1, . . . , K . Optimizing over u is a
difficult task. A common and natural choice in the quadratic-
Gaussian case is taking

uk = αk xk + wk, k = 1, . . . , K , (3)

where w1, . . . , wK are statistically independent zero mean
Gaussian random variables that are also independent of x, and
α1, . . . , αK are some constants [23]. Such a choice was shown
to be optimal for K = 2 [8], but may be suboptimal for larger
dimensions. In particular, the choice αk = 1, wk ∼ N (0, d)
and x̂k(u1, . . . , uK ) = uk for all k = 1, . . . , K , was shown
in [9] to be asymptotically optimal. We refer to this particular
choice of auxiliary random variables as a forward additive test
channel. Substituting this choice in (2) gives

K∑
k=1

Rk ≥ 1

2
log

|Kxx + dI|
|dI|

= 1

2
log

∣∣∣∣I + 1

d
Kxx

∣∣∣∣ . (4)

In this paper we are interested in the symmetric rate-distortion
region. To this end, we take (4) normalized by K as our
benchmark

RBT
bench(d) � 1

2K
log

∣∣∣∣I + 1

d
Kxx

∣∣∣∣ . (5)

Note that RBT
bench(d) is not a lower bound on the minimal

symmetric rate-distortion function achieved by Berger-Tung
compression, as our choice of u is not necessarily the best one.
It is also not an upper bound on the minimal symmetric rate-
distortion function achieved by Berger-Tung compression, as
the symmetric rate with our choice of u may not be dominated
by the sum-rate constraint.

An important feature of the forward additive test channel,
is that the estimation errors x̂k − xk = uk are statistically
independent of the source x. Our integer-forcing source coding
scheme, introduced in Section IV, mimics this additive test
channel, and will consequently also induce estimation errors
that are statistically independent of the source. This property
is crucial for certain applications. For instance, consider a
communication scenario where distributed antenna terminals
observe noisy linear combinations of the signals transmitted
by several encoders and want to forward a compressed version
of these signals to a central processor that needs to decode the
transmitted messages. In such a scenario it is most convenient
to treat the quantization noise as an additive one, meaning
that it is statistically independent of the signals that are being
quantized. Nevertheless, whenever only the MSE distortion

is of interest, and statistical independence of the source and
errors is not crucial, the distortion can be further reduced by
performing an additional linear mean squared estimation step,
as described in Proposition 1, stated in Section IV.

III. PRELIMINARIES

In this section we recall several lattice properties that will
be useful in the sequel and review the concept of dithered
lattice quantization.

A lattice � is a discrete subgroup of R
n which is closed

under reflection and real addition. We denote the nearest
neighbor quantizer associated with the lattice � by

Q�(y) = argmin
t∈�

‖y − t‖. (6)

The basic Voronoi region of �, denoted by V , is the set of
all points in R

n which are quantized to the zero vector, where
ties in (6) are broken in a systematic manner. The modulo
operation returns the quantization error w.r.t. the lattice,

[
y
]

mod � = y − Q�(y)

and satisfies the property

[a[y] mod �] mod � = [ay] mod � (7)

for any a ∈ Z and y ∈ R
n . This property will be used exten-

sively in the sequel. The second moment of � is defined as

σ 2(�) = 1

n

1

Vol(V)

∫

u∈V
‖u‖2du,

where Vol(V) is the volume of V . The effective radius of a
lattice reff(�) is defined as the radius of an n-dimensional ball
whose volume equals Vol(V).

The lattice � can be used for quantizing continuous sources.
In particular, an encoder which is interested in conveying a
source y ∈ R

n to a decoder can compute Q�(y), which is
a lattice point in �, and send a description of this point
to the decoder. The quantization error of such a scheme is
e = y − Q�(y), which is a deterministic function of y.
The quantization error can be made statistically independent
of the source by allowing the encoder and decoder to use
common randomness. Let d ∼ Unif(V) be a random dither
vector uniformly distributed over V and statistically inde-
pendent of y, known to both the encoder and the decoder.
The dithered lattice quantizer associated with the lattice �
computes Q�(y + d) and sends a description of the obtained
lattice point to the decoder. The decoder produces the estimate

ŷ = Q�(y + d) − d

= y + Q�(y + d) − (y + d)

= y − [y + d] mod �.

The Crypto Lemma [24, Lemma 1] ensures that the estimation
error u = −[y+d] mod � is statistically independent of y and
is uniformly distributed over V . The symmetry of the Voronoi
region V further guarantees that the estimation error u has the
same distribution as d and has zero mean. The average MSE
distortion attained by dithered lattice quantization is given by

1

n
E

(
‖y − ŷ‖2

)
= 1

n
E(‖u‖2) = σ 2(�).
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Of course, dithered lattice quantization, as described above,
requires an infinite rate as there is an infinite number of
points in �. This can be handled using an entropy coded
dithered quantizer (ECDQ) [17], [25], [26], or a nested lattice
codebook [14]. In this work we take the latter approach.

The following definitions characterize the lattice “goodness”
properties needed in this paper.

Definition 1 (Goodness for MSE Quantization): A lattice
�, or more precisely, a sequence of lattices with growing
dimension n, is said to be good for MSE quantization if3

lim
n→∞ σ 2(�) = lim

n→∞
r2

eff(�)

n
.

Definition 2 (Semi Norm-Ergodic Noise): We say that a
random noise vector z, or more precisely, a sequence of
random noise vectors with growing dimension n, with (finite)
effective variance σ 2

Z � E‖z‖2/n, is semi norm-ergodic if for
any ε > 0, δ > 0 and n large enough

Pr

(
‖z‖ >

√
(1 + δ)nσ 2

z

)
≤ ε. (8)

Note that by the law of large numbers, any i.i.d. noise is semi
norm-ergodic.

The next Lemma will be needed in the sequel.
Lemma 1 ( [27, Corollary 2]): Let u1, · · · , uK be statis-

tically independent random dither vectors, each uniformly
distributed over the Voronoi region V of a lattice � that is good
for MSE quantization. Let z be an i.i.d. random vector statisti-
cally independent of {u1, · · · , uK }. For any α, β1, . . . , βK ∈ R

the random vector αz +∑K
k=1 βkuk is semi norm-ergodic.

Definition 3 (Goodness for Channel Coding): A lattice �,
or more precisely, a sequence of lattices with growing
dimension n, is said to be good for channel coding if
for any 0 < δ < 1 and any n-dimensional semi norm-
ergodic vector z with zero mean and effective variance
E‖z‖2/n < (1 − δ)r2

eff(�)/n

lim
n→∞ Pr (z /∈ V) = 0.

A lattice � is said to be nested in � f if � ⊆ � f . The
coding scheme presented in this paper utilizes a sequence of
nested lattice pairs �(n) ⊆ �

(n)
f with growing dimensions

such that the sequence of fine lattices �
(n)
f is good for MSE

quantization and the sequence of coarse lattices �(n) is good
for channel coding. To lighten notation, we omit the sequence
index and simply write � ⊆ � f . An ensemble of nested
lattice pairs, where almost all members satisfy these goodness
properties is proposed and analyzed in [27].45 The existence of

3Note that our condition for MSE goodness is equivalent to the more
commonly used condition σ 2(�)/Vol(V)2/n → 1/(2πe) since the volume
of a unit n-dimensional ball grows like (2πe/n)n/2.

4In fact, in [27] it was shown that for any K and any σ 2
0 ≥ σ 2

1 ≥ · · · ≥
σ 2

K there exists a chain of nested lattices �0 ⊆ �1 ⊆ · · · ⊆ �K with
σ 2

k (�k) = σ 2
k , k = 0, 1, . . . , K , where all lattices are good for both coding

and quantization. Such chains of nested lattices can be used for an asymmetric
version of IF source coding, where the compression rates and distortions are
not necessarily identical for all sources.

5All members of the ensemble from [27] have the additional property that
V f ⊆ V ⊆ a

√
n[− 1

2 , 1
2 )n for some finite a > 0. Thus, for any v ∈ V f

and w ∈ V we have that 1
n ‖v‖2 < a2/4, and 1

n ‖w‖2 < a2/4. This property
ensures that the distortion incurred by the coding schemes described in this
paper is finite even when decoding/overload errors occur.

nested lattice pairs with slightly more demanding “goodness”
requirements was shown in [5] and [28]. A nested lattice code
C = � f ∩ V with rate

R = 1

n
log

(
Vol(�)

Vol(� f )

)
= 1

2
log

(
r2

eff(�)

r2
eff(� f )

)
(9)

is associated with the nested lattice pair.
Before describing the integer-forcing source coding scheme,

let us illustrate how the codebook C described above can
be used for compressing n samples of a single memoryless
Gaussian source Y ∼ N (0, P) with distortion d . Assume
that the fine lattice � f , which is good for MSE quantiza-
tion, has second moment σ 2(� f ) = d . This implies that
r2

eff(� f )/n → d . The coarse lattice �, which is good for
AWGN channel coding, has effective radius r2

eff(�) = n(P +
d + ε), for some arbitrarily small ε > 0. A dither d uniformly
distributed over V f is known to both the encoder and the
decoder. The encoder computes

[Q� f (y + d)] mod � ∈ C,

and sends its index to the decoder. The decoder computes

ŷ = [[Q� f (y + d)] mod � − d
]

mod �

= [
y + u

]
mod �

(w.h.p.)= y + u (10)

where u ∼ Unif(V f ) is statistically independent of y. Here,

as well as in the remainder of the paper, the notation
(w.h.p.)=

stands for equality with probability that approaches 1 as the
dimension n of the nested lattice pair sequence increases. The
equality (10) follows from the fact that the random vector
y + u is semi norm-ergodic due to Lemma 1 and has effective
variance E(‖y+u‖2)/n = P +d . Since � is good for channel
coding and E‖y + u‖2/n < r2

eff(�)/n, the probability that

Q�(y + u) �= 0 vanishes, and hence,
[
y + u

]
mod �

(w.h.p.)=
y + u. Thus,

lim
n→∞

1

n
E(‖y − ŷ‖2) = 1

n
E(‖u‖2) = d,

as desired. The required rate for achieving this distortion is

R(d) = 1

2
log

(
r2

eff(�)

r2
eff(� f )

)

= 1

2
log

(
n(P + d + ε)

nd

)

= 1

2
log

(
1 + P + ε

d

)
(11)

where the additional +1 inside the logarithm, w.r.t. the stan-
dard Gaussian rate-distortion function, is a consequence of
our requirement that the estimation error ŷ − y is statistically
independent of y. In fact, we can eliminate this term by
performing an additional Wiener estimation step on ŷ, at the
expense of introducing bias [17].
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IV. INTEGER-FORCING SOURCE CODING

In the IF source coding scheme all encoders use the same
nested lattice codebook C = � f ∩ V , constructed from the
nested lattice pair � ⊂ � f , with rate

R = 1

2
log

(
r2

eff(�)

r2
eff(� f )

)
.

As in the previous section, the fine lattice � f is good for
MSE quantization with σ 2(� f ) = d whereas the coarse
lattice � is good for channel coding. All encoders employ
a similar encoding operation. The kth encoder uses a dither
dk , statistically independent of everything else and uniformly
distributed over V f , and employs dithered quantization of xk

onto � f . Then, it reduces the obtained lattice point modulo
the coarse lattice � and sends n R bits describing the index of
the resulting point to the decoder. Specifically, the kth encoder
conveys the index corresponding to the point

[
Q� f (xk + dk)

]
mod �

to the decoder.
The decoder first subtracts back the dithers from each of

the reconstructed signals and reduces the results modulo �,
giving rise to

x̃k = [[Q� f (xk + dk)
]

mod � − dk
]

mod �

= [xk + [Q� f (xk + dk)
]

mod � − (xk + dk)
]

mod �

= [xk + uk] mod �, (12)

where {u1, . . . , uK } are mutually independent random vec-
tors, statistically independent of {x1, . . . , xK }, each uniformly
distributed over V f . If the coarse lattice � is chosen such
that its effective radius is large enough, the modulo operation
in (12) would have no effect on xk +uk , and the decoder would
have estimates of each xk with average MSE of d , as desired.
However, the encoding rate grows with r2

eff(�), and we would
therefore prefer to choose it as small as possible.

The key idea behind IF source coding is that if the elements
of x are correlated, then linear combinations of {xk + uk}K

k=1
with integer-valued coefficients may have smaller effective
variances than the original signals. The IF decoder therefore
first estimates K integer linear combinations of {xk + uk}K

k=1,
and then uses these estimates for estimating the desired
signals. Using this approach, r2

eff(�) should only be greater
than the largest effective variance among the K linear combi-
nations. When the entries of x are sufficiently correlated, and
the integer-valued coefficients are chosen appropriately, this
may significantly reduce the required encoding rate.

Let X = [xT
1 · · · xT

K ]T , U = [uT
1 · · · uT

K ]T and X̃ =
[x̃T

1 · · · x̃T
K ]T . Using this notation, the decoder has access to

X̃ = [X + U] mod �,

where the notation mod � is to be understood as reducing
each row of the obtained matrix modulo the coarse lattice. The
decoder chooses a full-rank integer-valued matrix A ∈ Z

K×K

and computes

ÂX �
[
AX̃
]

mod �

= [A [X + U] mod �] mod �

= [A(X + U)] mod � (13)

where (13) follows from the modulo property (7). It is worth
mentioning that (7) only holds for scaling by integers, and
hence the restriction that A ∈ Z

K×K is crucial.
Let aT

k be the kth row of the matrix A. The random vector
aT

k (X + U) satisfies the conditions of Lemma 1 as aT
k X is an

i.i.d. Gaussian vector and each of the statistically independent
vectors u1, . . . , uK is uniformly distributed over the Voronoi
region of a lattice that is good for MSE quantization. There-
fore, aT

k (X + U) is semi norm-ergodic. It follows from the
goodness of � for channel coding that if

E
(‖aT

k (X + U)‖2
)

n
<

r2
eff(�)

n

then
[
aT

k (X + U)
]

mod �
(w.h.p.)= aT

k (X + U).

Moreover, if this holds for all k = 1, . . . , K , i.e., if

max
k=1,...,K

E
(‖aT

k (X + U)‖2
)

n
<

r2
eff(�)

n

then

ÂX
(w.h.p.)= A(X + U). (14)

Noting that

E
(‖aT

k (X + U)‖2
)

n
= aT

k (Kxx + dI)ak,

this implies that for (14) to hold, it suffices to set

r2
eff(�)

n
= max

k=1,...,K
aT

k (Kxx + dI)ak + ε

for some arbitrarily small ε > 0, which corresponds to a rate
of

R = 1

2
log

(
maxk=1,...,K aT

k (Kxx + dI)ak + ε

d

)
.

The decoder proceeds by computing

X̂ = A−1ÂX
(w.h.p.)= X + U.

Since E(‖uk‖2) = d for all k = 1, . . . , K , we have that
limn→∞ E(‖x̂k − xk‖2) = d . The next theorem summarizes
the performance of IF source coding.

Theorem 1 (Performance of IF Source Coding):
For any distortion d > 0 and any full-rank integer matrix
A = [a1 · · · aK ]T ∈ Z

K×K , there exists a (sequence of)
nested lattice pair(s) � ⊂ � f such that IF source coding can
achieve any rate satisfying

R > RIF(A, d) � 1

2
log

(
max

k=1,...,K
aT

k

(
I + 1

d
Kxx

)
ak

)
.
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For the optimal choice of A, IF source coding can achieve any
rate satisfying

R > RIF(d) � 1

2
log

⎛
⎜⎝ min

A∈Z
K×K

det(A) �=0

max
k=1,...,K

aT
k

(
I + 1

d
Kxx

)
ak

⎞
⎟⎠ .

Note that the estimation error U produced by the IF source
coding scheme is statistically independent of the source X.
This property is important for certain applications where
distributed lossy compression is used as an intermediate step of
a channel coding scheme, see Subsection V-B. When statistical
independence of the source and estimation error is not essential
to the application at hand, one can perform linear minimum
mean-squared error estimation of X from X̂ and further reduce
the MSE distortion, as stated in the following proposition,
whose proof is brought in Appendix A.

Proposition 1 (From Unbiased to Biased Estimates):
Assume RIF(d) is achievable using the IF source coding
scheme. Let X̂ = [x̂T

1 · · · x̂T
K ]T be the estimates produced

by the IF source coding scheme, B = Kxx(Kxx + dI)−1,
X̄ = BX̂ = [x̄T

1 · · · x̄T
K ]T , and D = (K−1

xx + 1
d I)−1. Then for

any k = 1, . . . , K , we have that

1

n
E‖x̄k − xk‖2 = D(k, k),

where D(k, k) is the kth diagonal entry of D.
The matrix I+ 1

d Kxx is symmetric and positive definite, and
therefore it admits a Cholesky decomposition

I + 1

d
Kxx = FFT , (15)

where F is a lower triangular matrix with strictly positive
diagonal entries. With this notation,

RIF(d) = 1

2
log

⎛
⎜⎝ min

A∈Z
K×K

det(A) �=0

max
k=1,...,K

‖FT ak‖2

⎞
⎟⎠ . (16)

Denote by �(FT ) the K dimensional lattice spanned by the
matrix FT , i.e.,

�(FT ) �
{

FT a : a ∈ Z
K
}

.

It follows that the problem of finding the optimal matrix A
is equivalent to finding the K shortest linearly independent
vectors of �(FT ). Although this problem is NP-hard in
general, its solution can be efficiently approximated using the
LLL algorithm [29], whose running time is polynomial. In all
numerical experiments described in Section V, we have used
the LLL algorithm in order to find (a possibly suboptimal) A.

We can express the rate-distortion function achieved by
IF source coding using the successive minima of the lattice
�(FT ).

Definition 4 (Successive Minima): Let �(G) be the lat-
tice spanned by the full-rank matrix G ∈ R

K×K . For
k = 1, . . . , K , we define the kth successive minimum as

λk(G) � inf
{

r : dim
(

span
(
�(G)

⋂
B(0, r)

))
≥ k
}

where B(0, r) = {x ∈ R
K : ‖x‖ ≤ r

}
is the closed ball of

radius r around 0. In words, the kth successive minimum of a

lattice is the minimal radius of a ball centered around 0 that
contains k linearly independent lattice points.

Using Definition 4 and (16), the IF rate-distortion function
is given by

RIF(d) = 1

2
log
(
λ2

K (FT)
)

, (17)

where the dependence of the r.h.s. on Kxx and d is through
the matrix F defined in (15).

Next, we show in Lemma 2 that the performance of IF
source coding, in the symmetric setting considered, is inferior
to the Berger-Tung benchmark, i.e., RIF(d) ≥ RBT

bench(d). We
will need the simple following proposition.

Proposition 2: For a lattice spanned by some full rank
matrix G ∈ R

K×K

|G| ≤
K∏

k=1

λk(G)

Proof: Let a1, . . . , aK ∈ Z
K be K linearly independent

vectors such that λk(G) = ‖Gak‖ for all k = 1, . . . , K , and
let A = [a1 · · · aK ]. Since all entries of A are integer-valued
we must have |A| ≥ 1, and therefore

|G| ≤ |G| |A| = |GA|
= |[Ga1 · · · GaK ]| ≤

K∏
k=1

‖Gak‖

=
K∏

k=1

λk(G).

Lemma 2: For any d > 0 and for any choice of full-rank
A ∈ Z

K×K we have

1

2
log

(
max

k=1,...,K
aT

k

(
I + 1

d
Kxx

)
ak

)
≥ 1

2K
log

∣∣∣∣I + 1

d
Kxx

∣∣∣∣ ,

and therefore, in the considered symmetric setting, the rate-
distortion function RIF(d) of IF source coding is never smaller
than the benchmark RBT

bench(d).
Proof: Let F be as defined in (15). For the optimal choice

of A and for any d > 0 we have

1

2
log

(
max

k=1,...,K
aT

k

(
I + 1

d
Kxx

)
ak

)
= 1

2
log
(
λ2

K

(
FT
))

≥ 1

2

1

K

K∑
k=1

log
(
λ2

k

(
FT
))

(18)

= 1

2K
log

(
K∏

k=1

λ2
k

(
FT
))

≥ 1

2K
log
(
|F|2
)

(19)

= 1

2K
log

∣∣∣∣I + 1

d
Kxx

∣∣∣∣ , (20)

where (18) follows from the monotonicity of λk(FT) in k along
with the monotonicity of the logarithm function, (19) follows
from Proposition 2 and (20) follows from (15).

As discussed in Section II, in an asymmetric problem
setting, structured binning may result in a better rate-distortion
region than the one obtained by Berger-Tung compression.
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Lemma 2 shows that under the symmetric setup, at least with
IF source coding, this may not be the case. Nevertheless,
the complexity reduction obtained by using IF source coding
rather than Berger-Tung compression makes it an attractive
candidate for practical implementation. Moreover, as we shall
see in Section VI, a one-shot version of IF source coding can
be easily derived and analyzed. Although one-shot versions of
Berger-Tung compression were also considered in [30] and an
inner bound was derived, it is unclear how to interpret this
inner bound for the problem at hand.

Remark 1: The crucial element in the IF source
coding scheme is that all encoders reduce their quantized
signals modulo the same coarse lattice. The modulo reduction
plays the role of binning. Theoretically, each encoder can
first reduce its observation mod� and only then quantize
it using a quantizer designed for the modulo reduced
source [17]. No nesting is required between the quantizer
and the coarse lattice. This results in the decoder receiving
the signals x̃k = [xk] mod � + uk , k = 1, . . . , K , where
uk is quantization noise. The decoder can proceed to
compute ÂX as described above. The difficulty with such
an implementation is that the quantizer needs to be matched
to the modulo reduced source, which requires some sort of
(high-dimensional) entropy coding. As we shall see in
Section VI-A, in the 1D version of IF source coding, where
the coarse lattice as well as the quantizer are scaled integer
lattices, the modulo reduction can precede quantization
without increasing complexity.

Remark 2: Another implementation issue to consider is the
goodness requirements on �. When � is used for modulation
over the AWGN channel, it suffices to require that � is good
under coset nearest neighbor decoding. This means that � is
split into cosets, usually using a coarse lattice nested inside it,
and the decoder only needs to choose the coset the transmitted
point belongs to. As a result, when coding for the AWGN
channel is considered, a construction A lattice [31], [32] with
an underlying linear codebook of small prime cardinality p
suffices to achieve a vanishing error probability. In such a
construction, the minimum distance is limited by p, and the
error probability for decoding the actual point transmitted,
rather than the coset, cannot vanish with the dimension.
However, all pairs of points with nonincreasing (as a function
of n, the code dimension) Euclidean distance belong to the
same coset, and therefore such a lattice is still good for coset
nearest neighbor decoding.

In IF source coding, the decoder needs to decode the actual
lattice point of � closest to aT

k (X + U), rather than just its
coset. Therefore, construction A lattices obtained from a linear
codebook with small p do not suffice in order to achieve a
vanishing error probability. However, one can still achieve
a very small error probability, though not vanishing with
the dimension, using standard Construction A lattices with
moderate values of p. See Section VI for further discussion
of implementation issues.

V. EXAMPLES AND APPLICATIONS

This section provides several examples that demonstrate the
performance of IF source coding, along with applications and

communication scenarios where IF source coding is advanta-
geous. The section consists of three parts. First we compare the
performance of IF source coding to that of a naive distributed
compression scheme that ignores the correlation between the
sources and to the Berger-Tung benchmark. Then, we use IF
source coding as a building block in a Gaussian layered relay
network, and demonstrate its advantages compared to other
known low complexity schemes. Finally, we show how the
idea behind IF source coding can be extended to form a signal-
to-noise ratio (SNR) independent joint source channel coding
scheme, whose distortion decreases as the SNR improves.

A. Examples

In this subsection we evaluate the minimal symmetric rate
needed in order to achieve average MSE of d with the
estimation error being statistically independent of the source.
We consider two schemes:

1) IF source coding - this rate is given in Theorem 1.
2) Compressing each source using standard rate-distortion

theory without exploiting the correlations between the
sources - this rate is given by

Rnaive(d) = max
k=1,...,K

1

2
log

(
1 + Kxx(k, k)

d

)
, (21)

where Kxx(k, k) is the kth diagonal entry of the matrix
Kxx. Note that Rnaive(d) is identical to RIF(I, d) which is
the rate obtained using IF source coding with the choice
A = I.

We also compare these rates to the Berger-Tung benchmark
RBT

bench(d) (5).
Example 1 (Integer Decomposable Covariance Matrix):

As a first example, consider the case where x is a Gaussian
source with zero mean and covariance matrix Kxx = B−1B−T

for some full-rank integer matrix B ∈ Z
K×K with determinant

|B| = 1.
The Berger-Tung benchmark symmetric rate-distortion

function is given by

RBT
bench(d) = 1

2K
log

∣∣∣∣I + 1

d
B−1B−T

∣∣∣∣

= 1

2K

(
log |B|−2 + log

∣∣∣∣BBT + 1

d
I

∣∣∣∣
)

= 1

2K
log

∣∣∣∣BBT + 1

d
I

∣∣∣∣ .

It can be seen that RBT
bench(d) → −1/2 log(d) as d → 0.

For IF source coding, one can choose A = B. This choice
gives

RIF(B, d) = 1

2
log

(
max

k=1,...,K
bT

k

(
I + 1

d
Kxx

)
bk

)

= 1

2
log

(
max

k=1,...,K
‖bk‖2 + 1

d

)

It is easy to see that RIF(B, d) → −1/2 log(d) as d → 0,
just as the benchmark rate-distortion function, and therefore,
according to Lemma 2, the choice A = B is optimal at high
resolution.
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Fig. 3. A Gaussian network with M users and K relays. Each relay sees one
output of the channel x = Hs + z and has a clean bit-pipe of R0 bits/channel
use to the central processor (CP). The CP tries to estimate the messages
transmitted by the M users.

The naive approach that compresses each source without
exploiting the existing correlations fails to achieve the bench-
mark rate-distortion function. In fact, it can only achieve

Rnaive(d) = 1

2
log

(
1 + maxk=1,...,K ‖b̃k‖2

d

)
, (22)

where b̃T
k is the kth row of B−1. All entries of b̃k are integer-

valued since the matrix B is integer-valued with determinant 1.
Therefore ‖b̃k‖2 ≥ 1 for all k = 1, . . . , K . The obtained
compression rate approaches 1

2 log(max ‖b̃k‖2) − 1/2 log(d)
as d → 0. Thus, at high resolution, IF source coding requires
1
2 log(max ‖b̃k‖2) bits less than the naive approach in order to
achieve the same distortion. This improvement can be made
unbounded by choosing B appropriately.

Example 2 (Compressing Observations of Correlated
Relays): Consider the problem of distributively compressing
a K -dimensional Gaussian source x with zero mean and
covariance matrix Kxx = SNRHHT + I for some SNR > 0
and some matrix H ∈ R

K×M . This choice of covariance
matrix corresponds to the joint distribution of the signals
observed by K relays in the Gaussian network depicted in
Figure 3, where it is assumed that each of the M transmitters
uses a random i.i.d. Gaussian codebook such that each of
the signals s1, . . . , sM behaves statistically as white Gaussian
noise. This network will be studied in more detail in the next
subsection.

We plot the averages of the minimal required compression
rates for the two schemes, i.e. the ergodic rate-distortion func-
tions of the two schemes, along with the ergodic benchmark
rate-distortion function, under the assumption that the entries
of H are i.i.d. standard normal random variables. Figure 4a
depicts these rates for K = M = 4 and SNR = 20dB as a
function of d . It is seen that at moderate to high resolution
(small to moderate values of d) IF source coding closes
about half of the gap between the naive compression scheme
and the benchmark which corresponds to the Berger-Tung
compression scheme.

One can argue that in the considered scenario the gap
between the performance of the naive scheme and the
benchmark is quite small, and therefore it is not clear if
IF source coding only slightly improves over the naive
scheme, or closely follows the performance of the Berger-Tung

benchmark. To illustrate that the latter is true, in Figure 4b
we consider a similar scenario where now H ∈ R

8×2 with
i.i.d. N (0, 1) entries. This models a network with M = 2
transmitters and K = 8 relays. This choice of distribution
tends to induce more correlation between the entries of x,
which enlarges the performance gap between Berger-Tung’s
compression and the naive compression approach. Neverthe-
less, as seen from Figure 4b, the gap between the performance
of the Berger-Tung benchmark and IF source coding remains
approximately the same.

B. Layered Gaussian Relay Network

In this subsection we consider the Gaussian network from
Figure 3, and show that for a wide regime of parameters using
IF source coding as a building block improves upon other
competing low-complexity coding schemes.

The Gaussian network we consider consists of M non-
cooperating transmitters, each with message wm and rate Rm .
A central processor (CP) is interested in decoding all M
messages. However, it does not have a direct access to the
signals transmitted by the M transmitters. Instead, there are
K relays, each of which observes a noisy linear combination
of the transmitted signals. Each relay has a clean bit-pipe of
rate R0 bits/channel use connecting it to the CP which it uses
for helping the CP decode all messages.

Let sm ∈ R
1×n be the signal transmitted by the mth

transmitter during n consecutive channel uses. We assume all
transmitters are subject to the same power-constraint such that
E‖sm‖2 ≤ nSNR for all m = 1, . . . , M . Let xk ∈ R

1×n be the
signal received by the kth relay during n consecutive channel
uses, and let S = [sT

1 · · · sT
M ]T and X = [xT

1 · · · xT
K ]T . The

signals are related by

X = HS + Z, (23)

where H ∈ R
K×M is the channel matrix between the

M transmitters and the K relays and the entries of Z ∈ R
K×n

are i.i.d. N (0, 1). We are interested in the maximal achievable
sum-rate Rsum =∑M

m=1 Rm .
Clearly, Rsum cannot exceed the MIMO capacity6 corre-

sponding to the channel (23) between the transmitters and
relays, and it also cannot exceed K R0 because even if each
relay could decode all messages, the K relays cannot convey
more than K R0 bits/channels use to the CP through the bit-
pipes. Thus, we have

Rsum ≤ RMIMO � min

(
1

2
log |I + SNRHHT |, K R0

)
. (24)

An inner bound for Rsum can be attained by the following
scheme. Each relay can compress its observation xk with
rate R0 and send the compression index to the CP. The CP
obtains K estimates x̂k = xk + uk of the relays’ observations,
where uk ∈ R

1×n is the quantization error, and can use these
estimates in order to decode the desired messages. Specifically,
using this approach the CP decodes the messages from

X̂ = HS + Z + U, (25)

6Here, by capacity we mean the mutual information corresponding to a
white input, as the transmitters are non-cooperating.
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Fig. 4. Comparison between the ergodic rates for the various compression schemes from Example 2. (a) H ∈ R
4×4 with i.i.d. N (0, 1) entries. (b) H ∈ R

8×2

with i.i.d. N (0, 1) entries.

Fig. 5. Ergodic rates over the network from Figure 3 for K = M = 4. (a) R0 = 2. (b) R0 = 3.

where U = [uT
1 · · · uT

K ]T . If the quantization errors are
statistically independent of everything else, as in IF source
coding, U can be treated as another additive noise. Let

d(R0) = max
k=1,...,K

1

n
E(‖uk‖2).

Assuming that all transmitters use i.i.d. Gaussian codebooks, it
follows from the entropy power inequality [33, Problem 9.21]
that the CP can decode all messages w1, . . . , wM from the
channel (25) if

Rsum ≤ 1

2
log

∣∣∣∣I + SNR
1 + d(R0)

HHT
∣∣∣∣ (26)

Clearly, the degradation of this scheme w.r.t. the MIMO capac-
ity depends on the value of d(R0). Improving the compression
scheme decreases d(R0) which in turn increases Rsum. One
can use the Berger-Tung scheme with a forward additive
test channel in order to obtain a small d(R0). However, this
solution requires joint typicality decoding at the CP which
is difficult to implement. Alternatively, IF source coding can
be employed, which considerably reduces the implementation
complexity at the price of slightly increasing d(R0). The

relays can also employ naive compression, which is also a
low-complexity scheme. This reduces to performing IF source
coding with the choice A = I which is often suboptimal. The
latter approach is often termed compress-and-forward in the
literature [22].

Alternatively, instead of compressing their noisy obser-
vations, the relays can attempt to decode the transmitted
messages, or a function of the transmitted messages. In the
decode-and-forward scheme [34] each relay decodes one of
the messages and forwards this message to the CP. The
compute-and-forward scheme [22] generalizes decode-and-
forward and allows each relay to decode a linear combination
of the messages, which is forwarded to the CP. Since decode-
and-forward is a special case of compute-and-forward, its
performance is never better.

In Figure 5a we plot the ergodic rates achieved using
IF source coding, compress-and-forward and compute-and-
forward, over the Gaussian network from Figure 3 For R0 = 2
and K = M = 4, where the entries of H are assumed i.i.d.
N (0, 1). Figure 5b depicts the same ergodic rates for R0 = 3.

The figures demonstrate that while compute-and-forward
outperforms both compression-based schemes when R0 is
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Fig. 6. A distributed joint source-channel coding setting. Each encoder wishes
to describe its observation xk to the decoder through an AWGN channel, with
minimal average MSE distortion. The sources are correlated and the encoders
are distributed.

the system’s bottleneck, for relatively large R0 (w.r.t. the
1/K times the MIMO capacity) compression is preferable
over decoding. The gains of IF source coding over naive
compression are evident.

One can further improve performance using a quantize-map-
and-forward like scheme [35], [36] where each relay quantizes
its observation, bins it, and sends the bin index to the CP.
The difference between such schemes and the compression
based schemes described above is that in quantize-map-and-
forward the CP decodes the messages from the bin indices
themselves without “decompressing” the relays’ observations.
Such an approach improves upon compression based schemes.
However, to date it lacks a signal processing based architecture
allowing to reduce the problem to multiple instances of a
point-to-point problem, as is the case for IF source coding.
We note however that progress in the direction of developing
a low-complexity architecture for quantize-map-and-forward
has been made in [37].

C. Distributed Joint Source-Channel Coding

In this subsection we consider the setup depicted
in Figure 6. In this setup, there are K distributed encoders,
each with access to the vector xk that contains n i.i.d. samples
of the random variable xk . We assume that the random vector
x = [x1 · · · xK ]T is a Gaussian vector with zero mean
and covariance matrix Kxx. Each encoder is equipped with
an encoding function Ek : R

n → R
n , such that the signal

it transmits to the decoder is sk = Ek(xk). All encoders are
subject to the same power constraint E(‖sk‖2) = n P . The
decoder observes the transmitted signals through K parallel
AWGN channels

yk = sk + zk, k = 1, . . . , K

where the entries of z1, . . . , zK are i.i.d. Gaussian random
variables with zero mean and variance N . The decoder has K
functions Dk : R

n × · · · × R
n → R

n that it uses in order to
form estimates x̂k = Dk(y1, . . . , yK ) for each source.

Let SNR � P/N . An SNR-distortion vector
(SNR, d1, . . . , dK ) is achievable if for n large enough
there exist encoding functions E1, . . . , EK and decoding
functions D1, . . . ,DK such that

1

n
E

(
‖xk − x̂k‖2

)
≤ dk, (27)

for all k = 1, . . . , K . As before, we focus on the maximal
distortion among the K vectors, i.e., d = maxk=1,...,K dk .

An obvious approach for the considered problem is separa-
tion of source coding and channel coding. This corresponds to
using AWGN capacity achieving codebooks for transforming
the K AWGN channels into K bit-pipes each with capacity
C = 1/2 log(1 + SNR) bits/channel use, and then using
distributed source coding with rate C bits/sample at each
encoder in order to describe the sources to the decoder. The
main drawback of this approach is that it must be designed for
specific values of SNR and required distortions d1, . . . , dK .
The predefined SNR acts as a threshold. If the actual SNR
experienced by the communication system turns out to be
higher than this threshold, the expected distortions would be
d1, . . . , dk , but would not improve when the actual SNR is
improved.

Taking K = 1 in our setup reduces it to a point-to-point
problem of Gaussian source transmission over an AWGN
channel. It is well known [38] that analog transmission of the
source with appropriate scaling at the encoder and decoder
achieves the optimal performance. Moreover, the transmitter’s
operation does not depend on the noise’s variance at the
receiver. As a result, if the noise variance turns out to be
smaller than expected, the decoder can improve the quality
of its estimate for the source. This desirable phenomena was
extended to the Wyner-Ziv/dirty-paper setting in [39]. Here,
we use the idea of IF source coding for constructing a joint
source-channel coding scheme for our setup with an arbitrary
number of users. The encoders’ operation in the proposed
scheme is independent of the noise variance, and the obtained
expected distortion at the decoder decreases with N , provided
that N is below some predefined threshold.

The proposed coding approach utilizes a single lattice �
with σ 2(�) = P , that is good for channel coding and for MSE
quantization. In particular, its goodness for MSE quantization
implies that r2

eff(�)/n ≈ P . The coding scheme is designed
assuming that the AWGN variance is not greater than some
nominal value Nnom. However, when N < Nnom, the obtained
distortion decreases as N decreases.

Each encoder scales its observation by some β > 0 to be
defined shortly,7 adds a dither dk uniformly distributed over V ,
and reduces the resultmod � such that the transmitted signals
are

sk = [βxk + dk ] mod �, k = 1, . . . , K .

Note that the power constraints are satisfied as sk is uniformly
distributed over V and therefore its second moment equals
σ 2(�). The decoder first performs MMSE estimation of each
sk , by scaling each yk by α = P

P+N , subtracting back the
dither and reducing mod �. This gives

ỹk = [αyk − dk
]

mod �

= [sk + (α − 1)sk + αzk − dk] mod �

= [βxk + zeff,k
]

mod �,

7In general, performance can be improved by letting each encoder use a
different βk . We disregard this possibility for simplicity of exposition.
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where

zeff,k � (α − 1)sk + αzk .

The noise zeff,k is statistically independent of xk , and has
effective variance of

1

n
E(‖zeff,k‖2) = N P

N + P
, k = 1, . . . , K .

Moreover, it is a linear combination of a dither uniformly
distributed over the Voronoi region of a lattice that is good for
MSE quantization and an AWGN, and therefore, by Lemma 1,
it is semi norm-ergodic.

As before, let X = [xT
1 · · · xT

K ]T , and define Ỹ and Zeff
in a similar manner. The decoder chooses a full-rank matrix
A ∈ Z

K×K and computes

β̂AX �
[
AỸ
]

mod �

= [A([βX + Zeff] mod �)] mod �

= [A(βX + Zeff)] mod �.

Let aT
k be the kth row of A. The random vector aT

k (βX+Zeff)
is semi norm-ergodic with zero mean and effective variance

σ 2
k � 1

n
E(‖aT

k (βX + Zeff)‖2)

= aT
k

(
β2Kxx + N P

N + P
I
)

ak .

Since � is good for channel coding, if σ 2
k < P for all k =

1, . . . , K , then

β̂AX
(w.h.p.)= A(βX + Zeff), (28)

and the decoder can further compute

X̂ = 1

β
A−1β̂AX

(w.h.p.)= X + 1

β
Zeff,

which are unbiased estimates of each xk with average MSE
distortion of dIF = N P/β2(N + P).

The remaining question is how to choose β such that (28)
indeed holds. Recall that β is chosen by the encoders that
only know that N < Nnom, rather than the exact value of N .
Therefore, the encoders should choose β as

βopt(P, Nnom, Kxx)

� argmax
β>0

s.t . min
A∈ZK×K

det(A) �=0

max
k=1,...,K

aT
k (β2Kxx + Nnom P

Nnom + P
I)ak = P

and the symmetric distortion obtained by the proposed
scheme is

dIF = N

β2
opt(P, Nnom, Kxx)

which decreases as N decreases, as desired.
A naive joint source-channel coding schemes that ignores

the correlations between the entries of x would be transmitting
each xk in an analog Goblick-like scheme. Specifically, each

transmitter can send sk =
√

P
maxk=1,...,K Kxx(k,k) xk and the

receiver can scale each output by
√

maxk=1,...,K Kxx(k,k)
P . The

distortion achieved by such a scheme would be

dnaive = N

P
max

k=1,...,K
Kxx(k, k).

It can be easily verified that the same distortion is achieved if
one constrains A = I in the scheme proposed here. Therefore,
the proposed IF based joint source-channel coding scheme
strictly improves upon the naive one. Note that for both
schemes the estimation errors are statistically independent of
the source. Thus, the MSE can be further reduced by an
additional linear minimum mean squared error estimation.

It is also worth mentioning that the proposed scheme easily
generalizes to a dirty paper scenario, where the output of
each AWGN channel is further corrupted by an arbitrary
interference vk known to encoder k but not to the decoder,
i.e., yk = sk + vk + zk . In the proposed scheme, the encoders
can transmit sk = [βxk − vk + dk] mod � and the decoder
remains the same.

VI. ONE-SHOT INTEGER-FORCING SOURCE CODING

One of the advantages of IF source coding is that its
complexity and performance can be traded-off, by choosing
nested lattice codes that can be easily implemented, but are
less effective as channel codes and MSE quantizers.

In the previous sections we have considered the extreme
case of high-dimensional pairs of nested lattices where the fine
lattice is good for MSE quantization and the coarse lattice is
good for channel coding. In this section we consider the other
extreme, where both lattices are scaled versions of the integer
lattice Z. With this choice of nested lattice pair, IF source
coding becomes extremely easy to implement. Moreover, this
one-shot version of IF source coding does not induce any
latency and does not assume the existence of an unlimited
number of i.i.d. samples to be compressed.

Let � f = √
12dZ and � = 2R

√
12dZ. If 2R is a positive

integer then � ⊆ � f , and the codebook C = � f ∩ V with
rate R is a valid codebook for IF source coding. Let dk be a
random dither uniformly distributed over V f , known to both
the kth encoder and the decoder. The kth encoder conveys the
index corresponding to the point

[
Q� f (xk + dk)

]
mod �

to the decoder. Note that for a 1D lattice, the quantization
operation reduces to a simple slicer. Thus all operations are
easy to implement.

The decoder first subtracts back the dither and reduces
mod� to obtain

x̃k = [xk + uk] mod �,

where uk = Q� f (xk +dk)− (xk +dk) is uniformly distributed
over V f and is statistically independent of xk . Then, the
decoder chooses some full-rank matrix A ∈ Z

K×K and
computes

Âx �
[
Ax̃
]

mod � = [A(x + u)] mod �, (29)
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where u = [u1 · · · uK ]T . In contrast to the case of a high-
dimensional nested lattice codebook, where the probability that
Âx �= A(x + u) could be made as low as desired if r2

eff(�) is
larger than the effective variance corresponding to the worst
linear combination, here this probability is finite for any finite
value of 2R

√
12d. Let us denote this “overload” error event

by

OL �
{
Âx �= A(x + u)

}
. (30)

In what follows, we will upper bound the probability that the
event OL occurs, which we denote by Pol . Let aT

k be the
kth row of A and define the random variable

wk � aT
k (x + u)

with zero mean and variance

σ 2
w,k = aT

k (Kxx + dI)ak .

We have that

OL =
K⋃

k=1

{[wk] mod � �= wk} ,

and consequently

Pol = Pr

(
K⋃

k=1

{Q�(wk) �= 0}
)

= Pr

(
K⋃

k=1

{
|wk | ≥ 1

2
2R

√
12d

})

≤
K∑

k=1

Pr
(
|wk| ≥ 2R

√
3d
)

, (31)

where the last inequality follows from the union bound. Next,
we apply the following Lemma from [40] and [41].

Lemma 3 ( [41, Lemma 3]): Consider the random variable

zeff =
L∑

�=1

α�z� +
K∑

k=1

βkuk

where {z�}L
�=1 are i.i.d. Gaussian random variables with zero

mean and some variance σ 2
z and {uk}K

k=1 are i.i.d. random
variables, statistically independent of {z�}L

�=1, uniformly dis-
tributed over the interval [−ρ/2, ρ/2) for some ρ > 0. Let
σ 2

eff � E(z2
eff). Then

Pr(zeff > τ) = Pr(zeff < −τ ) ≤ exp

{
− τ 2

2σ 2
eff

}
.

One can easily verify that wk satisfies the conditions of
Lemma 3 as aT

k x is a Gaussian random variable statisti-
cally independent of the vector u. Therefore, we can further
bound (31) as

Pol ≤
K∑

k=1

2 exp

{
− 22R3d

2aT
k (Kxx + dI) ak

}

≤ 2K exp

{
−3

2
2

2
(

R− 1
2 log(maxk=1,...,K aT

k

(
I+ 1

d Kxx

)
ak)
)}

= 2K exp

{
−3

2
22(R−RIF(A,d))

}
, (32)

where RIF(A, d) is the minimum required rate for a IF source
coding when a good nested lattice pair is used, as defined in
Theorem 1. The decoder proceeds by computing

x̂ = A−1Âx = x + u + A−1 (Âx − A(x + u)
)
. (33)

Thus, conditioned on the event OL (i.e., the event that overload
did not occur), we have that x̂k−xk = uk , for all k = 1, . . . , K ,
and the expected distortion is

E(u2
k |OL) = E(u2

k) − PolE(u2
k |OL)

1 − Pol

≤ d

1 − Pol
.

The overload probability Pol can be controlled by increasing
R − RIF(A, d) which is the coding overhead w.r.t. to IF source
coding with an optimal nested lattice pair. For instance, if
K = 4, taking R = RIF(A, d) + 2 results in Pol ≤ 3 · 10−10.
The next theorem summarizes the discussion above.

Theorem 2 (One-Shot IF Source Coding): Let RIF(d) be
as defined in Theorem 1. For any 0 < Pol < 1 let

δ(Pol) � 1

2
log

(
2

3
ln

2K

Pol

)
, (34)

and set R = log
⌈

2RIF(d)+δ(Pol )
⌉

. The one-shot version of IF
source coding with lattices � f = √

12dZ and � = 2R
√

12dZ

attains overload probability smaller than Pol , and for all
k = 1, . . . , K we have

E

(
(x̂k − xk)

2|OL
)

≤ d
1−Pol

.

A. Modulo Analog-to-Digital Converters

Theorem 2 shows that a simple implementation of IF source
coding with 1D lattices only requires a small rate overhead
w.r.t. to the asymptotic performance of IF source coding. The
simplicity of the one-shot IF source coding scheme suggests
that this framework may be useful for designing Analog-to-
Digital converters (ADCs) that can exploit correlations in a
distributed manner. To motivate the problem, consider the
Gaussian MIMO channel x = Hs+z, where H ∈ R

K×M is the
channel matrix, z ∈ R

K×1 is a vector of AWGN and s are the
M inputs to channel, which are assumed to be i.i.d. normally
distributed. The front-end of the MIMO receiver consists of
K ADCs, one for the output of each receive antenna. Today,
each of these ADCs is designed w.r.t. the marginal distribution
of each output, ignoring the fact that the K ADCs sample
correlated signals. Often, the variance of each output is quite
large although the conditional variance when all other samples
are given is small. Thus, exploiting the spatial correlation
may significantly reduce the distortion created by the ADCs.
However, the ADCs are expected to work at very high rates,
which precludes cooperation between their operations. We
show that a variant of the one-shot IF source coding scheme
allows the ADCs to exploit the spatial correlations with no
cooperation and with roughly the same encoding complexity
as a standard ADC, and only a small increase in the decoding
complexity.
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Fig. 7. A schematic illustration of the modulo ADC for 2R = 5. This
component can act as an encoder in the one-shot version of IF source coding.

The one-shot version of IF source coding described above
requires each encoder to first quantize its observation using
a scaled integer lattice, and then reduce the result modulo
the coarse lattice, which is also a scaled version of Z. This
can be implemented by applying an ADC as the quantizer
followed by a digital modulo reduction. However, the power
consumption and the complexity of an ADC are dictated by
the number of bits it produces. Therefore, if the modulo
operation can be implemented efficiently in the analog domain,
performance can be improved by first applying the modulo
reduction, and only then incorporating the ADC. Since the
modulo reduced signal is of a smaller support, less bits are
required for describing it with the same average distortion
level. The next lemma shows that if � f = √

12dZ and
� = 2R

√
12dZ the operations Q� f and mod� commute,

i.e., one can first reduce the signal mod� and then quan-
tize to � f , rather than first quantizing and then reducing
mod�.

Lemma 4: Let 2R be a positive odd integer and define the
nested lattices � f = √

12dZ and � = 2R
√

12dZ for some
d > 0. For any x ∈ R we have

[
Q� f (x)

]
mod � = Q� f ([x] mod �) .

For the proof, we will need the following statement, proved
in Appendix B.

Lemma 5 (Perfect Tiling Condition): If the pair of nested
lattices � ⊆ � f satisfies the tiling condition V = (� f ∩ V)+
V f then

[
Q� f (x)

]
mod � = Q� f ([x] mod �) .

for any x ∈ R
n .

Proof of Lemma 4: It is easy to verify that if 2R is a
positive odd integer the nested lattices � = √

12dZ and � f =
2R

√
12dZ satisfy the tiling condition V = (� f ∩ V)+V f , and

Lemma 4 immediately follows from Lemma 5
Lemma 4 implies that the 1D version of IF source coding

can indeed be implemented by first reducing the source x
modulo � and only then quantizing it to � f . The advantage in
switching the order of the operations is that if the 1D modulo
reduction, which is equivalent to the “saw-tooth” function,
can be efficiently implemented in the analog domain, then
the quantizer that follows it can be implemented using an
ADC with only R bits/sample. The relation between R, the
obtained distortion, and the error probability is characterized
in Theorem 2 and depends on RIF(d). Figure 7 depicts the

architecture of the proposed modulo ADC, that can replace
the encoders in the one-shot IF source coding scheme.

VII. SUMMARY AND CONCLUSIONS

We have presented and analyzed a new low-complexity
framework for distributed lossy compression, which is based
on the integer-forcing architecture. This framework allows
the system designer to trade performance and complexity by
appropriately choosing the nested lattice codebooks that are
used. A remarkable feature of the proposed scheme is that it
admits a very simple one-shot version, whose performance
is not very far from that obtained using IF source coding
with asymptotically good nested lattice codes. We have also
shown that if one can implement the 1D modulo operation
with an analog circuit, which corresponds to implementing the
“saw-tooth” function, then the IF source coding approach can
translate to a novel ADC design, suitable for sampling spatially
correlated sources. Such ADCs can potentially be very useful
for the front-end of a MIMO receiver, where standard ADC
designs are already challenged by the growing transmission
rates.

This paper considered the distributed lossy compression
setting, where no form of cooperation between encoders is
possible. This occurs, for example, when the encoders are
in different physical locations. In certain scenarios, however,
even if joint compression of the sources is possible, practical
considerations for encoding as well as decoding lead to per-
forming the compression task in a distributed manner, possibly
after some simple joint linear pre-processing. In particular, the
transform coding approach follows this paradigm. Typically,
in transform coding the vector source is first multiplied by
some precoding matrix, chosen according to Kxx, and then
the outputs of this pre-processing operation are compressed
using simple quantizers. The integer-forcing source coding
scheme can also be beneficial in such scenarios, and in
Section V we have demonstrated that for typical choices of
Kxx the performance is quite close to optimal without applying
any pre-processing. However, there exist certain covariance
matrices for which RIF(d) is arbitrarily far from RBT

bench(d).
It turns out that this drawback can be completely eliminated
if a universal precoding operation, that does not depend
on Kxx, can be applied before using the integer-forcing
source coding scheme for compressing the sources. These
universal precoding matrices are based on perfect space-time
codes [42]–[44], and jointly process K realizations of the
K -dimensional source (thus, the dimension of such a matrix
is K 2 × K 2). When such matrices are used for pre-processing,
it can be shown that the loss of integer-forcing source coding
w.r.t. the Berger-Tung benchmark is always bounded by some
constant that depends only on K , but not on Kxx and d .
This result is derived in a similar fashion to [41] and [45],
and the details are omitted. The special case where Kxx is
a diagonal matrix, but not necessarily scaled identity, was
treated in [46].

We also mention that the performance of IF source cod-
ing can be further improved by sequentially estimating the
K integer-linear combinations one after the other, and using
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linear combinations that were already estimated as side infor-
mation when trying to estimate the new linear combinations.
This approach is the source coding analogue of the successive
integer-forcing technique for MIMO channel coding [47].
The symmetric rate achieved by such a scheme was derived
in [46], whereas [48] derived the achievable (asymmetric)
rate region and established a duality relation to the rate
region achieved by successive integer-forcing for channel
coding.

We remark that the IF equalization framework for Gaussian
MIMO channels [21] has been extended to an equaliza-
tion framework for Gaussian intersymbol-interference chan-
nels [49]. In a similar manner, the IF source coding framework
proposed here, which is suitable for distributed lossy compres-
sion of spatially correlated signals, can be extended to an IF
compression framework for stationary temporally correlated
signals. Nevertheless, such a solution is less attractive as
one can always use a sequential Wyner-Ziv like compression
scheme for a stationary source. In such a scheme the first
samples of the source are compressed without binning/modulo
reduction, and the next samples are first binned/modulo
reduced and then compressed. The decoder uses the sam-
ples that are not binned for recovering the next samples in
a sequential manner. This Wyner-Ziv scheme suffers from
the intrinsic overhead of having to describe the first sam-
ples to the decoder without binning. This overhead can be
made negligible by increasing the length of the compression
block. For spatially correlated sources a similar Wyner-Ziv
like compression scheme will result in asymmetric compres-
sion rates, which is a consequence of the lack of “spatial
stationarity”.

APPENDIX A
PROOF OF PROPOSITION 1

Let x̂k = xk + uk be the estimates produced by the IF
source coding scheme. We will use linear minimum mean-
squared error estimation of X � [xT

1 · · · xT
K ]T from X̂ =

[x̂T
1 · · · x̂K ]T in order to further reduce the distortion. Let

U � [uT
1 · · · uT

K ]T ∈ R
K×n be the matrix whose rows are the

estimation errors induced by the scheme. Following [50, Sec.
II], we define the reduced covariance matrix K̃UU of U as

{
K̃UU

}
i j

� 1

n
E

(
ui uT

j

)

=
{

d i = j

0 i �= j
,

and the reduced cross-covariance matrix of X and X̂ as
{

K̃XX̂

}
i j

� 1

n
E

(
xi x̂T

j

)

= 1

n
E

(
xi (x j + u j )

T
)

= {Kxx}i j ,

where we have used the fact thats {u1, . . . , uK } are mutually
independent and that U and X are independent. Similarly, the

reduced covariance matrix of X̂ is given by
{

K̃X̂X̂

}
i j

� 1

n
E

(
x̂i x̂T

j

)

= {Kxx}i j +
{

K̃UU

}
i j

.

Let B = K̃XX̂K̃−1
X̂X̂

= Kxx(Kxx+dI)−1, and set X̄ = BX̂ as the

new (biased) estimate of X. Further, let E = [eT
1 · · · eT

K ]T =
X̄ − X be the associated estimation error, and define

{
K̃EE

}
i j

� 1

n
E

(
ei eT

j

)
.

From [50, Sec. II], we have that

K̃EE = Kxx − K̃XX̂K̃−1
X̂X̂

K̃T
XX̂

, (35)

and applying the matrix inversion lemma [3, Appendix B],
gives

K̃−1
EE = K−1

xx + K̃−1
UU

= D−1,

which completes the proof.

APPENDIX B
PROOF OF LEMMA 5

The proof of Lemma 5 is based on the following statement.
Lemma 6: For any pair of n-dimensional nested lattices

� ⊆ � f and any x ∈ R
n

[
Q� f (x)

]
mod � = Q� f ([x] mod �)

+ Q�

([
Q� f (x)

]
mod �+x − Q� f (x)

)
.

Proof:
[
Q� f (x)

]
mod � = Q� f (x) − Q�

(
Q� f (x)

)

= Q� f (x − Q�(x) + Q�(x)) − Q�

(
Q� f (x)

)

= Q� f (x − Q�(x)) + Q� f (Q�(x)) − Q�

(
Q� f (x)

)

= Q� f ([x] mod �) + Q�(x) − Q�

(
Q� f (x)

)
, (36)

where in the last equality we have used the fact that
Q� f (Q�(x)) = Q�(x) since � ⊆ � f . We have,

Q�(x) = Q�

(
Q� f (x) + x − Q� f (x)

)

= Q�

(
Q� f (x) − Q�

(
Q� f (x)

)+ Q�

(
Q� f (x)

)

+ x − Q� f (x)
)

= Q�

([
Q� f (x)

]
mod � + x − Q� f (x)

)+ Q�

(
Q� f (x)

)
.

(37)

Substituting (37) in (36) gives the desired result.
Proof of Lemma 5: For any x ∈ R

n we have
[
Q� f (x)

]
mod � ∈ (� f ∩ V) , and x − Q� f (x) ∈ V f .

Therefore
[
Q� f (x)

]
mod � + x − Q� f (x) ∈ (� f ∩ V)+ V f ,

The tiling condition V = (� f ∩ V)+ V f implies that
[
Q� f (x)

]
mod � + x − Q� f (x) ∈ V,
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which implies that

Q�

([
Q� f (x)

]
mod � + x − Q� f (x)

) = 0.

The result now follows immediately from Lemma 6.
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