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Abstract—Integer-Forcing (IF) is a new framework, based compression/decompression orders [7]. Neverthelesenses
on compute-and-forward, for decoding multiple integer linear ysing time-sharing suffer from several drawbacks. First, i
combinations from the output of a Gaussian multiple-input o4 ires the encoders and the decoders to use a larger number
multiple-output channel. This work develops the source coihg f codebook hich licates imol tati Secand. i
dual of the IF approach to arrive at a new low-complexity 0 CO, €boo S',W '.C complicates Imp gmen ation. ep o
scheme, IF source coding, for distributed lossy compressioof —requires coordination between the distributed encodengw
correlated Gaussian sources under a minimum mean squared is less essential when time-sharing is not used. Finally, th
error distortion measure. All encoders use the same nested compression block must be at least as long as the number of
lattice codebook. Each encoder quantizes its observationsing operation points that are time-shared.

the fine lattice as a quantizer and reduces the result modulo In thi K | f ot
the coarse lattice, which plays the role of binning. Rather han n this work we propose a novel frameworiteger-

directly recovering the individual quantized signals, thedecoder forcing source COdingTor d?StribUteq lossy compression with
first recovers a full-rank set of judiciously chosen integerlinear symmetricrate and distortion requirements for all encoders.

combinations of the quantized signals, and then inverts itIn  This scheme does not incorporate time-sharing. As in previ-
general, the linear combinations have smaller average pow® g \orks, our approach is based on standard quantization
than the orlglqal S|gn.als..Th|s allows to increase the densi .of foll d by lattice-b d binni H . trast t
the coarse lattice, which in tumn translates to lower comprasion '0'0OWed Dy lattice-based binning. However, in contrast 10
rates. We also propose and analyze a one-shot version of IFPrevious works, in the proposed framework the decoder first
source coding, that is simple enough to potentially lead to aew uses the bin indices for recovering linear combination$ wit
design principle for analog-to-digital converters that can exploit  jnteger coefficients of the quantized signals, and only then
spatial correlations between the sampled signals. recovers the quantized signals themselves. The decoder is
free to optimize the full-rank set of integer-valued coédfits
such as to best exploit the correlations between the quehtiz

The distributed lossy compression problem, consists signals. Choosing these coefficients appropriately resalt
multiple distributed encoders and one decoder. The ensodperformance that is close to that of a joint typicality deegd
have access to correlated observations which they try with a substantially smaller computational burden.
describe to the decoder with minimum rate and minimum An important feature of the proposed approach is that it
distortion. A special case that received considerable@tie affords the system designer a flexible trade-off between per
is that of distributed lossy compression of jointly Gaussiaformance and complexity. At one extreme, integer-forciifg (
random variables under a quadratic distortion measure. Témurce coding can be implemented using high-dimensional
best known achievable scheme is that of Berger and Tung [dgsted lattices that have near-optimum quantization aad-ch
[2], although some examples where Berger-Tung compressiwal coding performance. At the other extreme, IF source
can be outperformed are known [3]. In the Gaussian case, tlgling can be implemented with the low-complexity one-
Berger-Tung approach reduces to each encoder compressiimgensional scaled integer latticg used as a quantizer as
its source using a standard point-to-point quantizerpfedld well as a channel code. Surprisingly, the rate loss fromgusin
by Slepian-Wolf encoding. For the quadratic Gaussian cage 1D lattice rather than “good” high-dimensional nested
with K = 2, Wagneret al. [4] proved that this approach islattices, amounts to abo@t bits per sample per encoder, at
optimal. any distortion level. At high resolution, where the comgies

The importance of the quadratic-Gaussian distributedylossate is high, this loss o? bits becomes less significant.
compression problem has motivated researchers to design lo Due to space limitation, technical details are often orditte
complexity encoding schemes that approach the performatiteughout the paper and may be found in [9].
of the Berger-Tung inner bound. This line of work was Notation.We denote scalars by lowercase letters, vectors by
pioneered in [5], [6] and remains an active area of researdinldface lowercase letters and matrices by boldface upperc
However, at a high level, the existing approaches for diketters, e.g.,x, x and X. Column vectors usually represent
tributed source coding are either notably asymmetric in tlilee spatial dimension whereas row vectors represent thee tim
rates they require from the encoders, as they rely on thiedatt dimension. For example = [z; --- xx]? € RE*! may
based implementation of Wyner-Ziv coding [7] and successivepresent a Gaussian vector of correlated random varijables
Wyner-Ziv coding [8], or specifically tailored to predefinedvhereasx, € R'*" may represent i.i.d. realizations of the
correlation characteristics of the sources [5]. In gendare@ random variable:;,. We denote the Euclidean norm of a vector
rate requirements in schemes that are based on Wyner-Bjv/|| - || and the absolute value of the determinant of a square
coding can be symmetrized by time-sharing between differenatrix by | - |. All variables in the paper are real-valued and

I. INTRODUCTION
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Fig. 1. A schematic overview of the integer-forcing sourogling framework with the nested lattice pairC Ay.

all logarithms are to the base application at hand, one can always perform minimum mean-
squared estimation X from X and further reduce the MSE
distortion.

We consider a distributed source coding setting with We further focus on the symmetric case wheRe =
encoding terminals and one decoder. Each ofkhencoders ... — Rx = Randd, = --- = di. = d. Nevertheless,
haS access to a Vectﬁﬂg (S Rlxn Of n ||d rea"zations Of we stress that the scheme proposed in this paper is not
the random variabler;, & = 1,..., K. The random vector restricted to the symmetric case, and can be easily extended
x = [z1 --- xk]" is assumed Gaussian with zero meag achieve asymmetric rate-distortion vectors by using aemo
and covariance matri, = E(xx"). Each encoder maps complicatedchain of nested lattices, rather than the nested
its observationx,, to an index using the encoding functionattice pair we use in the sequel.

& + RY™ — {1,...,2"%} and sends the index to the Finding the full rate-distortion region, i.e., the set of al
decoder. The decoder is equipped withdecoding functions achievable rate-distortion vectors, for the describedpsit an
Dy : {l,...,2M0} <o {1,..., 2"} — R™™ for  gpen problem folk > 2. ForK = 2, Wagneret al. [4] showed

Il. PROBLEM STATEMENT AND PRELIMINARIES

k = 1,...,K. Upon receivingK indices, one from each that the Berger-Tung approach is optimal. Her> 2 it is
terminal, the decoder generates estimates now known that the Berger-Tung approach does not attain the
%k = Dy (E1(x1),- -, Ex(xK)), k=1,.... K. full rate-distortion rgg_ion (see e.g. [3]). However, to thest

of our knowledge, it is not known whether the Berger-Tung
A rate-distortion vecto( Ry, ..., Rx;di,...,dk) is achiev- inner bound is loose for the symmetric case. In the absence
able if there exist encoding functiods, . . ., £ and decoding of a better known coding scheme, we take the symmetric rate
functionsDy, ..., Dk such that from Berger-Tung’s inner bound as our benchmark. Under the
1 unbiased requirement (2), this benchmark is given by

EE (IIxk — %x]1?) < di,

1 1
REI Hd) 2 —log [T+ ~Kyxx| . 3
for all & = 1,...,K. Let X 2 [xT ... xL|T e RExn, bene{d) = 57z log T+ 3
A conditionally unbh_a\sed _rate—dlstc_)rtlo_n ve_c_tor See [9] for further details.
(Ry,...,Rk,d1,...,dx) is achievable if in addition
to (1), the condition A. Lattice Preliminaries
Exp|X) =%, k=1,...,K ) Several lattice properties that will be useful in the sequel

are briefly recalled. A lattice\ is a discrete subgroup @&"
is satisfied for any realization aX. Although condition (2) which is closed under reflection and real addition. We denote
is not as common in the literature as condition (1), in thighe nearest neighbor quantizer associated with the lattice
paper we restrict attention to the conditionally unbiasasec py (), (y) = argmin,, |ly — t||. The basic Voronoi region
i.e., we impose condition (2). Several applications ofi@$e of A, denoted by, is the set of all points ifR™ which are
require the estimates formed by the decoder to be condilyongyantized to the zero vector. The modulo operation returas t
unbiased. For instance, consider a communication scenafifantization error w.r.t. the latticéy] mod A = y — Q4 (y)

where distributed antenna terminals observe noisy linear-c and satisfies the properfy|y] mod A] mod A = [ay] mod A
binations of the signals transmitted by several encodets §3r any ¢ € Z andy € R". The second moment ot is

want to forward a compressed version of these signals dgfined as

a central processor that needs to decode the transmitted 11

messages. In such a scenario it is most convenient to treat o?(A) = — / lul|?du,
the quantization noise as an additive one, meaning that it is nVol(V) Juev
statistically independent of the signals that are beingitiped. where Vol(V) is the volume ofV. The effective radius of a
This amounts to requiring condition (2). Moreover, when thlattice re(A) is defined as the radius of andimensional ball
conditionally unbiased requirement (2) is not essentight®® whose volume equal§ol()V).




The following definitions characterize the lattice “goodsie distributed over);, and employs dithered quantization of
properties needed in this paper. onto A¢. Then, it reduces the obtained lattice point modulo
Definition 1 (Goodness for MSE quantizatior: lattice the coarse latticd and sends R bits describing the index of
A, or more precisely, a sequence of lattices with growirtpe resulting point to the decoder. Specifically, ktle encoder

dimensionn, is said to be good for MSE quantization if conveys the index corresponding to the point

lim o(A) = lim Teff—(A). [Qa, (xx +di)|] mod A €C
n— o0 n— o0 n
to the decoder.
The decoder first subtracts back the dithers from each of

he reconstructed signals and reduces the results matulo

Definition 2 (Semi-norm ergodic noiseWe say that a
random noise vector, or more precisely, a sequence 0[
random noise vectors with growing dimensionwith (finite)

effective variancerZ = E||z||?/n, is semi norm-ergodidf for glving rise to
anye >0, d >0 andn large enough %1, = [[Qa, (xx +dy,)] mod A — d,] mod A
Pr(HzH > (1+5)mg) <e 4) =[xk + [Qa, (x5 + di)] mod A — (x5, + dy)] mod A
(i.d.)

Note that by the law of large numbers, any i.i.d. noise is semi [x); + di] mod A, (6)
d

norm-ergodic. (i.d.) o S
The next Lemma restates Corollary 2 from [10] to fit ou\é\m?‘e C_: denEtes equillztylln dlstnblutl(l)fn,hand (6)is jlust}@ed
purposes. by the rypto emma [12, emma ].. t e coarse lattice
o ) is chosen such that its effective radius is large enough, the
Lemma 1:Let di,---,dx be statistically independentmogulo operation in (6) would have no effect gp+dy,, and
random dither vectors, each uniformly distributed over th@e decoder would have estimates of eaghwith average
Voronoi region)’ of a latticeA that is good for MSE quantiza- \SE of d, as desired. However, the encoding rate grows with
tion. Letz be an i.i.d. random vector statistically independer}tezﬁ(A), and we would therefore prefer to choose it as small
of {d,---,dk}. Any deterministic linear combination of a5 possible. In IF source codingy(A) may be chosen such
di,---,dg,z is semi norm-ergodic. that x;, + dj, cannot be recovered frof, alone, but can be
Definition 3 (Goodness for channel codingylattice A, or  recovered from{x; } &£ ;.
more precisely, a sequence of lattices with growing dim@nsi  The key idea behind IF source coding is that if the elements
n, is said to be good for channel coding if for aby< 6 < 1  of x are correlated, then linear combinations{af, +d }X_,
and anyn-dimensional semi norm-ergodic vectowith zero with integer-valued coefficients may have smaller effectiv
mean and effective variand®|z||?/n < (1 — §)rZs(A)/n variances than the original signals. The IF decoder thezefo
first estimateds integer linear combinations dfc, +d } <,
and then uses these estimates for estimating the desired
signals. Using this approachZ(A) should only be greater
A lattice A is said to be nested iy if A C Ay. The coding than the largest effective variance among fidinear combi-
scheme presented in this paper utilizes a pair of nesteddstt nations. When the entries afare sufficiently correlated, and
such that the fine lattica ; is good for MSE quantization andthe integer-valued coefficients are chosen appropriathiy,
the coarse latticé\ is good for channel coding. An ensemblgnay significantly reduce the required encoding rate.

nh_)rrgo Pr(z¢V)=0.

for drawing pairs of nested lattices that satisfy these gesd T T T 1T
o : : . CLet X = [x1 - xk]', D = [df --- dg]' and
properties is described in [10], and the existence of kattl(s‘( — %7 ... %%]". Using this notation, the decoder has

pairs with slightly more demanding “goodness” requiremengccgs
was shown in [3], [11]. A nested lattice code= ANV with
rate

s tiX = [X + D] mod A where the notatiomod A is
to be understood as reduciegch rowof the obtained matrix
modulo the coarse lattice. The decoder chooses a full-rank
1 Vol(A) \ _ 1 re(A) integer-valued matribA € ZX*X and computes
R = —log =—-1lo 5 (5)
Vol(Ay) ) 2 i(Ar)

n Te

AX 2 |AX] mod A
=[A[X + D] mod A] mod A
= [A(X + D)] mod A.

is associated with the nested lattice pair.

IIl. INTEGER-FORCING SOURCE CODING

In the IF distributed source coding scheme all encoders use
the same nested lattice codebabk ANV, constructed from  Let al be thekth row of the matrixA. The random vector
the nested lattice paih C Ay. The fine latticeA; is good a} (X + D) satisfies the conditions of Lemma 1 a§X is an
for MSE quantization witho?(A ;) = d whereas the coarsei.i.d. Gaussian vector and each of the statistically indelpet
lattice A is good for channel coding. All encoders employlithersd,,...,dx is uniformly distributed over the Voronoi
a similar encoding operation. Thegh encoder uses a ditherregion of a lattice that is good for MSE quantization. There-
dy, statistically independent of everything else and unifgrmfore, a} (X + D) is semi-norm ergodic. It follows from the



goodness of\ for channel coding that if extreme, where both lattices are scaled versions of thgente
lattice Z. With this choice of nested lattice pair, IF source
X+D ) ) ’ .
(”ak( + D)l ) ren(A) coding becomes extremely easy to implement. Moreover, this
n one-shot version of IF source coding does not induce any
then forn large enough latency and does not assume the existence of an unlimited
T (whp) T number of i.i.d. samples to be compressed.

[ax (X +D)] mod A =" 2 (X + D). Let Ay = v12dZ and A = 2B/12dZ. If 2% is a positive
Moreover, if this holds for alk = 1, ..., K, then forn large integer, thenA C Ay, and the codebook = A; NV with
enough rate R is a valid codebook for IF source coding. L&t be a
) random dither uniformly distributed ovérs;, known to both

A(X+ D). (7) the kth encoder and the decoder. Thth encoder conveys

. , the index corresponding to the poif@s, (zx + di)] mod A
For (7) to hold, it suffices to set to the decoder. Note that for BD lattice, the quantization

a;‘g (Kxx + dDay, =

AX ML

2 . . . .
reir(A) T operation reduces to a simple slicer. The decoder first sciistr
= = Kyx + dI ) X ) :

n k:Hllf.l.)fK a +dDay + ¢ back the dither and applies raod A opertaion to obtain
for some arbitrarily smalk > 0, which corresponds to a ratezx (.2 [z + di] mod A and then chooses some full-rank
of matrix A € ZX*X and computes

T ~ ~
R— % log (man—l,...,K ay (;<xx +dl)ay, + 6) . Ax £ [Ax] mod A = [A(x +d)] mod A,
The decod ds b . whered = [d; --- dk]T. In contrast to the case of a high-
e decoder proceeds by computing dimensional nested lattice codebook, where the probymllatt
X = A1AX W) x o D, Ax # A(x+d) could be made as low as desired-3f;(A

large enough, here this probability is finite for any fmnéum
which is (w.h.p.) a conditionally unbiased estimatedofwith  of R. In [9] this probability is bounded as
average MSE distortiod per component. The next theorem
summarizes the performance of IF source coding. Pr (ﬁ # A(x+ d)) < 2K exp {_%22(RR.F(A,d))} ,

Theorem 1 (Performance of IF source codingyr any dis- 2

tortiond > 0 and any choice oA = [a; --- ak|! € ZKE*K,
there exists a (sequence of) nested lattice pait(s) Ay such
that IF source coding can achieve any rate satisfying

whereRg(A, d) is the minimum required rate for a IF source
coding when a good nested lattice pair is used, as defined in
Theorem 1. The decoder proceeds by computing

1 . 1 _ _
R > Rr(A.d) £ 5 log <k1{1aXK ay (I + aKxx> ak> - x=A"'"Ax=x+d+A"! (Ax —A(x+ d)) :
For the optimal choice ofA, IF source coding can achieveginced, is statistically independent of andE(d?) = d for all
any rate satisfying k=1,...,K, we see that provided th#x = A (x + d) the
one- shot version of IF source coding produces conditignall
1 1
R> Rie(d) 2 = log min max al (14 Ko unbiased estimates of; with distortiond. The probability that
AcZEXK k= d Ax = A(x+d) can be controlled by increasidg— Rig (A, d)

det(A)7#0 which is the coding overhead w.r.t. to IF source coding with a

It can be shown [9] that the problem of finding the opUma?ptlmaI nested Iattllce pair. For instanceAif= 4, taklngli:
matrix A is equivalent to finding thé shortest linearly inde- Rir(A,d) + 2 results inPr (AX 7 A+ d)) < 3-107.
pendent vectors of a lattice induced by the malrix LK The next theorem summarizes the discussion above.
Although this problem is NP-hard in general, its solutiomca Theorem 2 (One-shot IF source codinget Ry (d) be as
be efficiently approximated using the LLL algorithm [13]Oleflned in Theorem 1 and sét = Rie(d) + A for some

whose running time is polynomial. > 0. If 2% is a positive integer, the one-shot version of IF
source coding with latticed ; = v/12dZ and A = 27\/12dZ
IV. ONE-SHOT INTEGER-FORCING SOURCE CODING produces conditionally unbiased estimates with averagé MS
One of the advantages of IF source coding is that igistortiond for eachzy, £ =1, ..., K with probability greater

complexity and performance can be traded-off, by choositigan1 — 2K eXp{—%22A}.

nested lattice codes that can be easily implemented, but ardhe next lemma, which is proved in [9], shows that the

less effective as channel codes and MSE quantizers. encoders in thé D version of IF source coding can first reduce
In the previous section we have considered the extreme cétseir observation moduld and then quantize to the fine lattice

of high-dimensional pairs of nested lattices where the finey.

lattice is good for MSE quantization and the coarse lattice i Lemma 2:Let 27 be a positive odd integer and define the

good for channel coding. In this section we consider therotheested lattices\ = v12dZ and Ay = 2%/12dZ for some



d > 0. for anyz € R we have
[Qa, (z)] mod A = Qa, ([z] mod A).

The advantage of switching the order of the operations is SN
that if the 1D modulo reduction, which is equivalent to the N
“saw-tooth” function, can be efficiently implemented in the
analog domain, then the quantizer that follows it can be énpl
mented using an analog-to-digital converter (ADC) withyonl
R bits/sample. The relation betweé&h the obtained distortion,
and the error probability is characterized in Theorem 2 and
depends omRjr(d). Such amodulo-ADCarchitecture can be
useful for sampling spatially correlated signals. Foranse,
consider the Gaussian MIMO channel= Hs + z, where
H ¢ REXM js the channel matrixz € RX*! is a vector
of AWGN and s are the M inputs to channel, which are
assumed to be i.i.d. normally distributed. The front-enthef
MIMO receiver consists o ADCs, one for the output of
each receive antenna. Today, each of these ADCs is designed

w.r.t. themarginaldistribution of each output, ignoring the factihree schemes, i.e. the ergodic rate-distortion functafrtae

that theK’ ADCs sample correlated signals. Often, the varianggree schemes, along with the ergodic Berger-Tung bendhmar
of each output is quite large although thenditionalvariance rate-distortion function, under the assumption that thigies
when all other samples are given is small. Thus, exploiting 11 are i.i.d. standard normal random variables. Figure 2
the spatial correlation may significantly reduce the digtar depicts these rates f& € R®*2 andSNR = 20dB as a func-
created by the ADCs. However, the ADCs are expected #gn of 4. This choice of dimensions fd models a network
work at very high rates, which precludes cooperation betwegjith 2 transmitters and relays. Such a choice of dimensions
their operations. Replacing these ADCs with modulo-ADGgnds to induce more correlation between the entriest,of
reduces to performing D integer-forcing source encoding.which enlarges the performance gap between Berger-Tung’s
This allows the encoders to exploit the spatial correlenio%mpression and the naive compression approach, as well as
with no cooperation and with roughly the same encoding,ccessive Wyner-Ziv compression. Nevertheless, as seen f
complexity as a standard ADC, and only a small increase in thﬁjure 2, the gap between the performance of the Berger-Tung
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Fig. 2. H € R8%2 with i.i.d. A'(0,1) entries

decoding complexity. It should be noted that the modulo-ADgenchmark and IF source coding is quite small.

architecture was proposed in [14] in the context of quadtize
compute-and-forward. However, its advantages in the &onte
of source coding were not addressed there. [1]
V. NUMERICAL EXAMPLE %
Consider the problem of distributively compressingsa
dimensional Gaussian sourgavith zero mean and covariance [4]
matrix Kxx = SNRHH? + I for someSNR > 0 and some
matrix H € R**". This choice of covariance matrix corre- 5
sponds to, e.g., the joint distribution of the signals obser
by K relays in a two-hop Gaussian network witf users [6]
and K relays, where it is assumed that each relay observes
a noisy linear combination of the signals transmitted by ali7]
users and that each of thé transmitters uses a random i.i.d. ]
Gaussian codebook such that each of the sigsals. ., sk
behaves statistically as white Gaussian noise. [9]
We compareRr(d), the minimal required symmetric com-
pression rate of IF source coding, with that of a naive scherhlg]
that compresses each source using standard rate-distortia]
theory without exploiting the correlations between therses,

. : : 12]
as well as with the symmetric rate for a successive Wynér—
Ziv compression scheme. In the latter scheme, itierelay
compresses its observation assuming the decoder already pé!
sesses the compressed signals of relays. , &k — 1. We plot [14]
the averages of the minimal required compression rate$éor t
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