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Abstract—Integer-Forcing (IF) is a new framework, based
on compute-and-forward, for decoding multiple integer linear
combinations from the output of a Gaussian multiple-input
multiple-output channel. This work develops the source coding
dual of the IF approach to arrive at a new low-complexity
scheme, IF source coding, for distributed lossy compression of
correlated Gaussian sources under a minimum mean squared
error distortion measure. All encoders use the same nested
lattice codebook. Each encoder quantizes its observation using
the fine lattice as a quantizer and reduces the result modulo
the coarse lattice, which plays the role of binning. Rather than
directly recovering the individual quantized signals, thedecoder
first recovers a full-rank set of judiciously chosen integerlinear
combinations of the quantized signals, and then inverts it.In
general, the linear combinations have smaller average powers
than the original signals. This allows to increase the density of
the coarse lattice, which in turn translates to lower compression
rates. We also propose and analyze a one-shot version of IF
source coding, that is simple enough to potentially lead to anew
design principle for analog-to-digital converters that can exploit
spatial correlations between the sampled signals.

I. I NTRODUCTION

The distributed lossy compression problem, consists of
multiple distributed encoders and one decoder. The encoders
have access to correlated observations which they try to
describe to the decoder with minimum rate and minimum
distortion. A special case that received considerable attention
is that of distributed lossy compression of jointly Gaussian
random variables under a quadratic distortion measure. The
best known achievable scheme is that of Berger and Tung [1],
[2], although some examples where Berger-Tung compression
can be outperformed are known [3]. In the Gaussian case, the
Berger-Tung approach reduces to each encoder compressing
its source using a standard point-to-point quantizer, followed
by Slepian-Wolf encoding. For the quadratic Gaussian case
with K = 2, Wagneret al. [4] proved that this approach is
optimal.

The importance of the quadratic-Gaussian distributed lossy
compression problem has motivated researchers to design low-
complexity encoding schemes that approach the performance
of the Berger-Tung inner bound. This line of work was
pioneered in [5], [6] and remains an active area of research.
However, at a high level, the existing approaches for dis-
tributed source coding are either notably asymmetric in the
rates they require from the encoders, as they rely on the lattice-
based implementation of Wyner-Ziv coding [7] and successive
Wyner-Ziv coding [8], or specifically tailored to predefined
correlation characteristics of the sources [5]. In general, the
rate requirements in schemes that are based on Wyner-Ziv
coding can be symmetrized by time-sharing between different

compression/decompression orders [7]. Nevertheless, schemes
using time-sharing suffer from several drawbacks. First, it
requires the encoders and the decoders to use a larger number
of codebooks, which complicates implementation. Second, it
requires coordination between the distributed encoders, which
is less essential when time-sharing is not used. Finally, the
compression block must be at least as long as the number of
operation points that are time-shared.

In this work we propose a novel framework,integer-
forcing source coding, for distributed lossy compression with
symmetricrate and distortion requirements for all encoders.
This scheme does not incorporate time-sharing. As in previ-
ous works, our approach is based on standard quantization
followed by lattice-based binning. However, in contrast to
previous works, in the proposed framework the decoder first
uses the bin indices for recovering linear combinations with
integer coefficients of the quantized signals, and only then
recovers the quantized signals themselves. The decoder is
free to optimize the full-rank set of integer-valued coefficients
such as to best exploit the correlations between the quantized
signals. Choosing these coefficients appropriately results in
performance that is close to that of a joint typicality decoder,
with a substantially smaller computational burden.

An important feature of the proposed approach is that it
affords the system designer a flexible trade-off between per-
formance and complexity. At one extreme, integer-forcing (IF)
source coding can be implemented using high-dimensional
nested lattices that have near-optimum quantization and chan-
nel coding performance. At the other extreme, IF source
coding can be implemented with the low-complexity one-
dimensional scaled integer latticeZ, used as a quantizer as
well as a channel code. Surprisingly, the rate loss from using
the 1D lattice rather than “good” high-dimensional nested
lattices, amounts to about2 bits per sample per encoder, at
any distortion level. At high resolution, where the compression
rate is high, this loss of2 bits becomes less significant.

Due to space limitation, technical details are often omitted
throughout the paper and may be found in [9].

Notation.We denote scalars by lowercase letters, vectors by
boldface lowercase letters and matrices by boldface uppercase
letters, e.g.,x, x and X. Column vectors usually represent
the spatial dimension whereas row vectors represent the time
dimension. For examplex = [x1 · · · xK ]T ∈ R

K×1 may
represent a Gaussian vector of correlated random variables,
whereasxk ∈ R

1×n may representn i.i.d. realizations of the
random variablexk. We denote the Euclidean norm of a vector
by ‖ · ‖ and the absolute value of the determinant of a square
matrix by | · |. All variables in the paper are real-valued and
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Fig. 1. A schematic overview of the integer-forcing source coding framework with the nested lattice pairΛ ⊂ Λf .

all logarithms are to the base2.

II. PROBLEM STATEMENT AND PRELIMINARIES

We consider a distributed source coding setting withK
encoding terminals and one decoder. Each of theK encoders
has access to a vectorxk ∈ R

1×n of n i.i.d. realizations of
the random variablexk, k = 1, . . . ,K. The random vector
x = [x1 · · · xK ]T is assumed Gaussian with zero mean
and covariance matrixKxx , E(xxT ). Each encoder maps
its observationxk to an index using the encoding function
Ek : R

1×n → {1, . . . , 2nRk} and sends the index to the
decoder. The decoder is equipped withK decoding functions
Dk : {1, . . . , 2nR1} × · · · × {1, . . . , 2nRK} → R

1×n for
k = 1, . . . ,K. Upon receivingK indices, one from each
terminal, the decoder generates estimates

x̂k = Dk (E1(x1), . . . , EK(xK)) , k = 1, . . . ,K.

A rate-distortion vector(R1, . . . , RK ; d1, . . . , dK) is achiev-
able if there exist encoding functionsE1, . . . , EK and decoding
functionsD1, . . . ,DK such that

1

n
E
(
‖xk − x̂k‖2

)
≤ dk, (1)

for all k = 1, . . . ,K. Let X , [xT
1 · · · xT

K ]T ∈ R
K×n.

A conditionally unbiased rate-distortion vector
(R1, . . . , RK , d1, . . . , dK) is achievable if in addition
to (1), the condition

E(x̂k|X) = xk, k = 1, . . . ,K (2)

is satisfied for any realization ofX. Although condition (2)
is not as common in the literature as condition (1), in this
paper we restrict attention to the conditionally unbiased case,
i.e., we impose condition (2). Several applications of interest
require the estimates formed by the decoder to be conditionally
unbiased. For instance, consider a communication scenario
where distributed antenna terminals observe noisy linear com-
binations of the signals transmitted by several encoders and
want to forward a compressed version of these signals to
a central processor that needs to decode the transmitted
messages. In such a scenario it is most convenient to treat
the quantization noise as an additive one, meaning that it is
statistically independent of the signals that are being quantized.
This amounts to requiring condition (2). Moreover, when the
conditionally unbiased requirement (2) is not essential tothe

application at hand, one can always perform minimum mean-
squared estimation ofX from X̂ and further reduce the MSE
distortion.

We further focus on the symmetric case whereR1 =
· · · = RK = R and d1 = · · · = dk = d. Nevertheless,
we stress that the scheme proposed in this paper is not
restricted to the symmetric case, and can be easily extended
to achieve asymmetric rate-distortion vectors by using a more
complicatedchain of nested lattices, rather than the nested
lattice pair we use in the sequel.

Finding the full rate-distortion region, i.e., the set of all
achievable rate-distortion vectors, for the described setup is an
open problem forK > 2. ForK = 2, Wagneret al. [4] showed
that the Berger-Tung approach is optimal. ForK > 2 it is
now known that the Berger-Tung approach does not attain the
full rate-distortion region (see e.g. [3]). However, to thebest
of our knowledge, it is not known whether the Berger-Tung
inner bound is loose for the symmetric case. In the absence
of a better known coding scheme, we take the symmetric rate
from Berger-Tung’s inner bound as our benchmark. Under the
unbiased requirement (2), this benchmark is given by

RBT
bench(d) ,

1

2K
log

∣∣∣∣I+
1

d
Kxx

∣∣∣∣ . (3)

See [9] for further details.

A. Lattice Preliminaries

Several lattice properties that will be useful in the sequel
are briefly recalled. A latticeΛ is a discrete subgroup ofRn

which is closed under reflection and real addition. We denote
the nearest neighbor quantizer associated with the latticeΛ
by QΛ(y) = argmint∈Λ ‖y − t‖. The basic Voronoi region
of Λ, denoted byV , is the set of all points inRn which are
quantized to the zero vector. The modulo operation returns the
quantization error w.r.t. the lattice,[y] mod Λ = y − QΛ(y)
and satisfies the property[a[y] mod Λ] mod Λ = [ay] mod Λ
for any a ∈ Z and y ∈ R

n. The second moment ofΛ is
defined as

σ2(Λ) =
1

n

1

Vol(V)

∫

u∈V

‖u‖2du,

whereVol(V) is the volume ofV . The effective radius of a
latticereff(Λ) is defined as the radius of ann-dimensional ball
whose volume equalsVol(V).



The following definitions characterize the lattice “goodness”
properties needed in this paper.

Definition 1 (Goodness for MSE quantization):A lattice
Λ, or more precisely, a sequence of lattices with growing
dimensionn, is said to be good for MSE quantization if

lim
n→∞

σ2(Λ) = lim
n→∞

r2eff(Λ)

n
.

Definition 2 (Semi-norm ergodic noise):We say that a
random noise vectorz, or more precisely, a sequence of
random noise vectors with growing dimensionn, with (finite)
effective varianceσ2

Z
, E‖z‖2/n, is semi norm-ergodicif for

any ǫ > 0, δ > 0 andn large enough

Pr
(
‖z‖ >

√
(1 + δ)nσ2

z

)
≤ ǫ. (4)

Note that by the law of large numbers, any i.i.d. noise is semi
norm-ergodic.

The next Lemma restates Corollary 2 from [10] to fit our
purposes.

Lemma 1: Let d1, · · · ,dK be statistically independent
random dither vectors, each uniformly distributed over the
Voronoi regionV of a latticeΛ that is good for MSE quantiza-
tion. Let z be an i.i.d. random vector statistically independent
of {d1, · · · ,dK}. Any deterministic linear combination of
d1, · · · ,dK , z is semi norm-ergodic.

Definition 3 (Goodness for channel coding):A latticeΛ, or
more precisely, a sequence of lattices with growing dimension
n, is said to be good for channel coding if for any0 < δ < 1
and anyn-dimensional semi norm-ergodic vectorz with zero
mean and effective varianceE‖z‖2/n < (1− δ)r2eff(Λ)/n

lim
n→∞

Pr (z /∈ V) = 0.

A latticeΛ is said to be nested inΛf if Λ ⊆ Λf . The coding
scheme presented in this paper utilizes a pair of nested lattices
such that the fine latticeΛf is good for MSE quantization and
the coarse latticeΛ is good for channel coding. An ensemble
for drawing pairs of nested lattices that satisfy these goodness
properties is described in [10], and the existence of lattice
pairs with slightly more demanding “goodness” requirements
was shown in [3], [11]. A nested lattice codeC = Λf ∩V with
rate

R =
1

n
log

(
Vol(Λ)

Vol(Λf )

)
=

1

2
log

(
r2eff(Λ)

r2eff(Λf )

)
(5)

is associated with the nested lattice pair.

III. I NTEGER-FORCING SOURCE CODING

In the IF distributed source coding scheme all encoders use
the same nested lattice codebookC = Λf∩V , constructed from
the nested lattice pairΛ ⊂ Λf . The fine latticeΛf is good
for MSE quantization withσ2(Λf ) = d whereas the coarse
lattice Λ is good for channel coding. All encoders employ
a similar encoding operation. Thekth encoder uses a dither
dk, statistically independent of everything else and uniformly

distributed overVf , and employs dithered quantization ofxk

onto Λf . Then, it reduces the obtained lattice point modulo
the coarse latticeΛ and sendsnR bits describing the index of
the resulting point to the decoder. Specifically, thekth encoder
conveys the index corresponding to the point

[
QΛf

(xk + dk)
]
mod Λ ∈ C

to the decoder.
The decoder first subtracts back the dithers from each of

the reconstructed signals and reduces the results moduloΛ,
giving rise to

x̃k =
[[
QΛf

(xk + dk)
]
mod Λ− dk

]
mod Λ

=
[
xk +

[
QΛf

(xk + dk)
]
mod Λ− (xk + dk)

]
mod Λ

(i.d.)
= [xk + dk] mod Λ, (6)

where
(i.d.)
= denotes equality in distribution, and (6) is justified

by the Crypto Lemma [12, Lemma 1]. If the coarse latticeΛ
is chosen such that its effective radius is large enough, the
modulo operation in (6) would have no effect onxk+dk, and
the decoder would have estimates of eachxk with average
MSE of d, as desired. However, the encoding rate grows with
r2eff(Λ), and we would therefore prefer to choose it as small
as possible. In IF source codingr2eff(Λ) may be chosen such
that xk + dk cannot be recovered from̃xk alone, but can be
recovered from{x̃k}Kk=1.

The key idea behind IF source coding is that if the elements
of x are correlated, then linear combinations of{xk+dk}Kk=1

with integer-valued coefficients may have smaller effective
variances than the original signals. The IF decoder therefore
first estimatesK integer linear combinations of{xk+dk}Kk=1,
and then uses these estimates for estimating the desired
signals. Using this approach,r2eff(Λ) should only be greater
than the largest effective variance among theK linear combi-
nations. When the entries ofx are sufficiently correlated, and
the integer-valued coefficients are chosen appropriately,this
may significantly reduce the required encoding rate.

Let X = [xT
1 · · · xT

K ]T , D = [dT
1 · · · dT

K ]T and
X̃ = [x̃T

1 · · · x̃T
K ]T . Using this notation, the decoder has

access toX̃ = [X+D] mod Λ where the notationmod Λ is
to be understood as reducingeach rowof the obtained matrix
modulo the coarse lattice. The decoder chooses a full-rank
integer-valued matrixA ∈ Z

K×K and computes

ÂX ,

[
AX̃

]
mod Λ

= [A [X+D] mod Λ] mod Λ

= [A(X+D)] mod Λ.

Let aTk be thekth row of the matrixA. The random vector
aTk (X+D) satisfies the conditions of Lemma 1 asaTk X is an
i.i.d. Gaussian vector and each of the statistically independent
dithersd1, . . . ,dK is uniformly distributed over the Voronoi
region of a lattice that is good for MSE quantization. There-
fore, aTk (X + D) is semi-norm ergodic. It follows from the



goodness ofΛ for channel coding that if

aTk (Kxx + dI)ak =
E
(
‖aTk (X+D)‖2

)

n
<

r2eff(Λ)

n

then forn large enough
[
aTk (X+D)

]
mod Λ

(w.h.p.)
= aTk (X+D).

Moreover, if this holds for allk = 1, . . . ,K, then forn large
enough

ÂX
(w.h.p.)

= A(X+D). (7)

For (7) to hold, it suffices to set

r2eff(Λ)

n
= max

k=1,...,K
aTk (Kxx + dI)ak + ǫ

for some arbitrarily smallǫ > 0, which corresponds to a rate
of

R =
1

2
log

(
maxk=1,...,K aTk (Kxx + dI)ak + ǫ

d

)
.

The decoder proceeds by computing

X̂ = A−1ÂX
(w.h.p.)

= X+D,

which is (w.h.p.) a conditionally unbiased estimate ofX with
average MSE distortiond per component. The next theorem
summarizes the performance of IF source coding.

Theorem 1 (Performance of IF source coding):For any dis-
tortion d > 0 and any choice ofA = [a1 · · · aK ]T ∈ Z

K×K ,
there exists a (sequence of) nested lattice pair(s)Λ ⊂ Λf such
that IF source coding can achieve any rate satisfying

R > RIF(A, d) ,
1

2
log

(
max

k=1,...,K
aTk

(
I+

1

d
Kxx

)
ak

)
.

For the optimal choice ofA, IF source coding can achieve
any rate satisfying

R > RIF(d) ,
1

2
log


 min

A∈Z
K×K

det(A) 6=0

max
k=1,...,K

aTk

(
I+

1

d
Kxx

)
ak




It can be shown [9] that the problem of finding the optimal
matrixA is equivalent to finding theK shortest linearly inde-
pendent vectors of a lattice induced by the matrixI+ 1

d
Kxx.

Although this problem is NP-hard in general, its solution can
be efficiently approximated using the LLL algorithm [13],
whose running time is polynomial.

IV. ONE-SHOT INTEGER-FORCING SOURCE CODING

One of the advantages of IF source coding is that its
complexity and performance can be traded-off, by choosing
nested lattice codes that can be easily implemented, but are
less effective as channel codes and MSE quantizers.

In the previous section we have considered the extreme case
of high-dimensional pairs of nested lattices where the fine
lattice is good for MSE quantization and the coarse lattice is
good for channel coding. In this section we consider the other

extreme, where both lattices are scaled versions of the integer
lattice Z. With this choice of nested lattice pair, IF source
coding becomes extremely easy to implement. Moreover, this
one-shot version of IF source coding does not induce any
latency and does not assume the existence of an unlimited
number of i.i.d. samples to be compressed.

Let Λf =
√
12dZ andΛ = 2R

√
12dZ. If 2R is a positive

integer, thenΛ ⊆ Λf , and the codebookC = Λf ∩ V with
rateR is a valid codebook for IF source coding. Letdk be a
random dither uniformly distributed overVf , known to both
the kth encoder and the decoder. Thekth encoder conveys
the index corresponding to the point

[
QΛf

(xk + dk)
]
mod Λ

to the decoder. Note that for a1D lattice, the quantization
operation reduces to a simple slicer. The decoder first subtracts
back the dither and applies amod Λ opertaion to obtain

x̃k

(i.d.)
= [xk + dk] mod Λ and then chooses some full-rank

matrix A ∈ Z
K×K and computes

Âx , [Ax̃] mod Λ = [A(x+ d)] mod Λ,

whered = [d1 · · · dK ]T . In contrast to the case of a high-
dimensional nested lattice codebook, where the probability that
Âx 6= A(x+d) could be made as low as desired ifr2eff(Λ) is
large enough, here this probability is finite for any finite value
of R. In [9] this probability is bounded as

Pr
(
Âx 6= A(x+ d)

)
≤ 2K exp

{
−3

2
22(R−RIF(A,d))

}
,

whereRIF(A, d) is the minimum required rate for a IF source
coding when a good nested lattice pair is used, as defined in
Theorem 1. The decoder proceeds by computing

x̂ = A−1Âx = x+ d+A−1
(
Âx−A(x + d)

)
.

Sincedk is statistically independent ofx andE(d2k) = d for all
k = 1, . . . ,K, we see that provided that̂Ax = A(x+d) the
one-shot version of IF source coding produces conditionally
unbiased estimates ofxk with distortiond. The probability that
Âx = A(x+d) can be controlled by increasingR−RIF(A, d)
which is the coding overhead w.r.t. to IF source coding with an
optimal nested lattice pair. For instance, ifK = 4, takingR =

RIF(A, d) + 2 results inPr
(
Âx 6= A(x+ d)

)
≤ 3 · 10−10.

The next theorem summarizes the discussion above.
Theorem 2 (One-shot IF source coding):Let RIF(d) be as

defined in Theorem 1 and setR = RIF(d) + ∆ for some
∆ > 0. If 2R is a positive integer, the one-shot version of IF
source coding with latticesΛf =

√
12dZ andΛ = 2R

√
12dZ

produces conditionally unbiased estimates with average MSE
distortiond for eachxk, k = 1, . . . ,K with probability greater
than1− 2K exp{− 3

22
2∆}.

The next lemma, which is proved in [9], shows that the
encoders in the1D version of IF source coding can first reduce
their observation moduloΛ and then quantize to the fine lattice
Λf .

Lemma 2:Let 2R be a positive odd integer and define the
nested latticesΛ =

√
12dZ and Λf = 2R

√
12dZ for some



d > 0. for anyx ∈ R we have
[
QΛf

(x)
]
mod Λ = QΛf

([x] mod Λ) .

The advantage of switching the order of the operations is
that if the 1D modulo reduction, which is equivalent to the
“saw-tooth” function, can be efficiently implemented in the
analog domain, then the quantizer that follows it can be imple-
mented using an analog-to-digital converter (ADC) with only
R bits/sample. The relation betweenR, the obtained distortion,
and the error probability is characterized in Theorem 2 and
depends onRIF(d). Such amodulo-ADCarchitecture can be
useful for sampling spatially correlated signals. For instance,
consider the Gaussian MIMO channelx = Hs + z, where
H ∈ R

K×M is the channel matrix,z ∈ R
K×1 is a vector

of AWGN and s are theM inputs to channel, which are
assumed to be i.i.d. normally distributed. The front-end ofthe
MIMO receiver consists ofK ADCs, one for the output of
each receive antenna. Today, each of these ADCs is designed
w.r.t. themarginaldistribution of each output, ignoring the fact
that theK ADCs sample correlated signals. Often, the variance
of each output is quite large although theconditionalvariance
when all other samples are given is small. Thus, exploiting
the spatial correlation may significantly reduce the distortion
created by the ADCs. However, the ADCs are expected to
work at very high rates, which precludes cooperation between
their operations. Replacing these ADCs with modulo-ADCs
reduces to performing1D integer-forcing source encoding.
This allows the encoders to exploit the spatial correlations
with no cooperation and with roughly the same encoding
complexity as a standard ADC, and only a small increase in the
decoding complexity. It should be noted that the modulo-ADC
architecture was proposed in [14] in the context of quantized
compute-and-forward. However, its advantages in the context
of source coding were not addressed there.

V. NUMERICAL EXAMPLE

Consider the problem of distributively compressing aK-
dimensional Gaussian sourcex with zero mean and covariance
matrix Kxx = SNRHHT + I for someSNR > 0 and some
matrix H ∈ R

K×M . This choice of covariance matrix corre-
sponds to, e.g., the joint distribution of the signals observed
by K relays in a two-hop Gaussian network withM users
andK relays, where it is assumed that each relay observes
a noisy linear combination of the signals transmitted by all
users and that each of theK transmitters uses a random i.i.d.
Gaussian codebook such that each of the signalss1, . . . , sK
behaves statistically as white Gaussian noise.

We compareRIF(d), the minimal required symmetric com-
pression rate of IF source coding, with that of a naive scheme
that compresses each source using standard rate-distortion
theory without exploiting the correlations between the sources,
as well as with the symmetric rate for a successive Wyner-
Ziv compression scheme. In the latter scheme, thekth relay
compresses its observation assuming the decoder already pos-
sesses the compressed signals of relays1, . . . , k − 1. We plot
the averages of the minimal required compression rates for the
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three schemes, i.e. the ergodic rate-distortion functionsof the
three schemes, along with the ergodic Berger-Tung benchmark
rate-distortion function, under the assumption that the entries
of H are i.i.d. standard normal random variables. Figure 2
depicts these rates forH ∈ R

8×2 andSNR = 20dB as a func-
tion of d. This choice of dimensions forH models a network
with 2 transmitters and8 relays. Such a choice of dimensions
tends to induce more correlation between the entries ofx,
which enlarges the performance gap between Berger-Tung’s
compression and the naive compression approach, as well as
successive Wyner-Ziv compression. Nevertheless, as seen from
Figure 2, the gap between the performance of the Berger-Tung
benchmark and IF source coding is quite small.
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