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Precoded Integer-Forcing Universally Achieves the
MIMO Capacity to Within a Constant Gap

Or Ordentlich and Uri Erez, Member, IEEE

Abstract— An open-loop single-user multiple-input multiple-
output (MIMO) communication scheme is considered where
a transmitter, equipped with multiple antennas, encodes the
data into independent streams all taken from the same linear
code. The coded streams are then linearly precoded using the
encoding matrix of a perfect linear dispersion space-time code.
At the receiver side, integer-forcing equalization is applied,
followed by standard single-stream decoding. It is shown that
this communication architecture achieves the capacity of any
Gaussian MIMO channel up to a gap that depends only on the
number of transmit antennas.

Index Terms— Equalizers, Linear codes, MIMO, Space-time
codes.

I. INTRODUCTION

THE Gaussian Multiple-Input Multiple-Output (MIMO)
channel has been the focus of extensive research

efforts since the pioneering works of Foschini [1],
Foschini and Gans [2], and Telatar [3]. Mathematically, the
single-user complex MIMO channel with M transmit and N
receive antennas is modeled as

y = Hx + z (1)

where H ∈ C
N×M is the channel matrix, y ∈ C

N×1 is the
channel output, x ∈ CM×1 is the input vector that is subject
to the power constraint1

E(x†x) ≤M · SNR,

and z is an additive noise vector of i.i.d. circularly symmetric
complex Gaussian entries with zero mean and unit variance.

The mutual information of this channel is maximized by
a circularly symmetric complex Gaussian input [3] with
covariance matrix Q satisfying trace(Q) ≤ M · SNR, and is
given by2

C = max
Q�0 : traceQ≤M·SNR

log det
(
I + QH†H

)
. (2)
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per channel use.

The choice of Q that maximizes (2) is determined by the
water-filling solution. When the matrix H is known at both
transmission ends, i.e., in a closed-loop scenario, this mutual
information is the capacity of the channel and may closely
be approached using the singular-value decomposition in
conjunction with standard scalar codes designed for an
additive white Gaussian noise (AWGN) channel. In certain
scenarios, the natural choice Q = SNR · I is used, resulting
in the white-input (WI) mutual information

log det
(
I + SNRH†H

)
.

We may define the set

H(CWI, SNR) =
{
H ∈ C

N×M :

log det
(
I + SNRH†H

)
= CWI

}
, (3)

of all channel matrices with the same white-input mutual
information CWI. The corresponding compound channel
model is defined by (1) with the channel matrix H arbitrarily
chosen from the set H(CWI, SNR), and fixed throughout the
whole transmission period. The matrix H that was chosen
by the channel is revealed to the receiver, but not to the
transmitter. Clearly, the capacity of this compound channel
is CWI, and is achieved with a white Gaussian input. This
paper is concerned with approaching the compound capacity
using a low-complexity scheme.

The compound MIMO channel model appears in several
important communication scenarios. Wireless systems often
operate in open-loop mode, where the receiver knows the chan-
nel matrix H but the transmitter only knows the corresponding
white-input mutual information. This scenario is well captured
by the compound model, and will be the focus of this paper.
One may be even more conservative in the assumptions on the
channel state information available at the transmitter (CSIT),
and assume that even CWI is unknown. In this case, a reason-
able approach is to transmit codewords from an i.i.d. white
Gaussian codebook with target rate R, such that the receiver
will be able to correctly decode the transmitted message if
R < log det

(
I + SNRH†H

)
. It follows that from the

transmitter’s perspective, the coding task for this scenario
is identical to that of coding for a compound channel with
CWI = R. It may be argued that if the channel matrix
H remains constant for a long period, the receiver can
communicate (a quantized version of) it to the transmitter
with a negligible overhead, which reduces the communication
problem to the simpler closed-loop scenario. Sometimes,
however, the transmitter wishes to broadcast the same
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message to many receivers, such that all receivers with a
“good-enough” link should be able to decode the information.
This communication model approaches the compound channel
model (3) as the number of potential receivers grows.

While the theoretical performance limits of open-loop
communication over a Gaussian MIMO channel are well
understood, unlike for closed-loop transmission, much is still
lacking when it comes to practical schemes that are able to
approach these limits. In general, the notion of practicality is
rather vague and can be understood in different ways. In this
paper, we use it in the following sense: a scheme is deemed
practical if it decouples the signal-processing task of channel
equalization from the coding task. In other words, a prac-
tical scheme applies simple signal processing operations to
transform the MIMO channel to a set of scalar channels, over
which standard “off-the-shelf” codes for an AWGN channel
may be used. This notion of practicality is motivated by the
fact that in the past decades, coding for AWGN channels
has reached an advanced state, and low-complexity coding
schemes (e.g., turbo and LDPC codes) operating near capacity
are known. It is thus desirable to combine AWGN coding and
decoding techniques with equalization in a modular way, with
the aim of approaching the capacity of the MIMO channel.
For the closed-loop scenario, this can be achieved using the
singular-value decomposition. However, for the compound
MIMO channel, practical capacity-approaching schemes are
not known in general.

Such a modular scheme is known for the 1 × 2 MISO
channel where Alamouti modulation offers an optimal
solution. More generally, modulation via orthogonal space-
time block “codes” allows one to approach the WI mutual
information using scalar AWGN coding and decoding in the
limit of small rate [4].

Beyond the low rate regime, the multiple degrees of
freedom offered by the channel need to be utilized in order to
approach capacity. For this reason, despite considerable work
and progress, the problem of designing a practical scheme
that approaches the capacity of the compound MIMO channel
remains unsolved. As a consequence, less demanding
benchmarks became widely accepted in the literature. First,
since statistical modeling of a wireless communication link
is often available, one may be content with guaranteeing
good performance only for channel realizations that have
a “high” probability. Further, to simplify analysis and
design, the asymptotic criterion of the diversity-multiplexing
tradeoff (DMT) [5] has broadly been adopted.

Unfortunately, statistical characterizations, and the
DMT criterion in particular, offer only a coarse figure of
merit for assessing schemes. Specifically, assuming an i.i.d.
fading model with a continuous distribution on the channel
coefficients precludes the possibility of having an entire row
in the channel matrix nulled out. For example, if the channel
is assumed to have N = 2 receive antennas and M = 2
transmit antennas with i.i.d. Rayleigh fading, the class of
matrices of the form

H =
[
h1 h2

0 0

]
(4)

where h1 and h2 satisfy log(1 + SNR(|h1|2 + |h2|2)) = CWI,
has zero probability. Thus, the DMT optimality of a scheme
w.r.t. a 2×2 i.i.d. Rayleigh fading distribution, tells us nothing
about its performance over channels of the form (4). The class
of channels described by (4) corresponds to receivers that are
equipped with a single antenna, rather than two. It follows
that, a scheme that is DMT optimal for a 2× 2 i.i.d. Rayleigh
fading distribution, may exhibit terrible performance over
channels with dimensions 1×2. Thus, the DMT framework is
inadequate for analyzing communication scenarios with
degrees-of-freedom mismatch, i.e., when the transmitter
does not know in advance the number of receive antennas,
or alternatively, has to simultaneously transmit (the same
message) to several users, equipped with a different number
of receive antennas. The compound channel model, on the
other hand, does not distinguish between channel matrices
with the same WI mutual information, and is therefore more
suitable for such scenarios.

In [6], Tavildar and Vishwanath introduced the notion of
approximately universal space-time codes and derived a nec-
essary and sufficient criterion for a code to be approximately
universal. This criterion is closely related to the nonvanishing
determinant criterion and is met by several known coding
schemes [7]–[9]. Roughly speaking, approximate-universality
guarantees that a scheme is DMT optimal for any statistical
channel model. The criterion derived in [6] ensures that the
minimum distance at the receiver scales appropriately with
CWI regardless of the exact realization of H, which, in turn,
guarantees DMT optimality. Thus, the problem of finding
coding schemes that are DMT optimal regardless of the
channel statistics is now solved.

Approximately universal schemes still suffer, however, from
the asymptotic nature of the DMT criterion. Essentially, the
approximate universality of a scheme guarantees that if the
white-input mutual information of the MIMO channel is CWI,
the scheme’s error probability at a certain rate R scales
roughly as3 Q(

√
2CWI−R) , for large CWI. This is the same

error probability behavior as that of uncoded transmission
over a single-input single-output (SISO) AWGN channel with
capacity CWI. This may suffice when CWI is large enough and
moderate error probabilities are required, but does not provide
performance guarantees for finite values of CWI. In particular,
the approximate universality criterion was designed for coding
schemes with short block lengths, and does not attempt to
exploit the opportunity of reducing the error probability by
increasing the block length when the channel remains constant
for a long period of time.

While designing a practical communication scheme that
approaches the compound MIMO capacity is still out of reach,
in the present work we take a step in this direction. Namely,
a practical communication architecture that achieves the
compound MIMO capacity up to a constant gap, that depends
only on the number of transmit antennas, is studied. Such a
traditional information-theoretic performance guarantee is sub-
stantially stronger than approximate universality. In the con-
sidered scheme, which we refer to as precoded integer-forcing,

3The Q-function is defined as Q(x) � 1
2π

�∞
x e−

t2
2 dt.
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Fig. 1. An illustrative comparison between linear dispersion space-time coding and precoded integer-forcing. Linear dispersion space-time coding consists
of precoding uncoded QAM symbols, and detecting these symbols at the receiver. The detector’s performance is dictated by dmin which is the minimum
distance at the received constellation. In precoded integer-forcing, coded streams are precoded and transmitted over the channel. The receiver first applies an
integer-forcing equalizer and then decodes linear combinations of the streams. The performance is dictated by SNReff. In this paper we show that dmin and
SNReff are closely related.

the transmitter encodes the data into independent streams,
as in the standard V-BLAST [4] architecture. However, in
contrast to standard V-BLAST where each one of the streams
can be encoded by a different code, in the considered scheme
it is crucial that all streams are encoded using the same linear
code. The coded streams are then linearly precoded using
the generating matrix of a space-time code from the class of
perfect codes [8]–[11], which are approximately universal.
At the receiver side, integer-forcing (IF) equalization [12]
is applied.

An IF receiver [12] attempts to decode a full-rank set
of linear combinations of the transmitted streams with
integer-valued coefficients. Once these equations are decoded,
they can be solved for the transmitted streams. The receiver’s
front end consists of a linear equalization matrix that trans-
forms the MIMO channel into a set of SISO sub-channels,
each corresponding to a different linear combination, with an
effective SNR that depends on the integer coefficients of this
linear combination. The performance of the scheme is dictated
by the worst effective SNR, over all sub-channels.

A. Our Contribution

The integer-forcing receiver architecture was introduced
in [12] and has since received considerable attention in the lit-
erature (see [13]–[16]). While numerical experiments revealed
that in many cases its performance is quite close to that
of the optimal maximum-likelihood decoder [12], [16], [17],
the analytic performance guarantees available in the literature
prior to this work were quite weak. In particular, the strongest
result was that for M ≤ N the IF receiver achieves the
optimal DMT for Rayleigh fading MIMO channels when the
transmit antennas are restricted to transmitting independent
streams [12]. The main contribution of the current work is
in providing solid analytic performance guarantees for the
integer-forcing receiver.

The key step in our analysis is Lemma 2 which
lower bounds the effective SNR seen by the integer-forcing
receiver in terms of dmin - the minimum distance seen at the
receiver when all antennas transmit QAM symbols. When the

number of transmit antennas M is larger than the number of
receive antennas N , the minimum distance typically decreases
as the cardinality of the QAM constellation increases.
Our result, takes this phenomena into account and is therefore
useful for any number of transmit and receive antennas.
We then apply Lemma 2 together with a recent result from
number theory that concerns the typical rate of decrease of
dmin with the cardinality of the transmitted constellation [18] to
prove Lemma 3 which establishes that the IF receiver achieves
the optimal number of degrees-of-freedom (DoF) for almost all
H ∈ RN×M , regardless of N and M . While this result is not
surprising for the case N ≥ M , where standard zero-forcing
or MMSE receivers suffice to achieve the maximal number
of DoF, it is quite remarkable for channels with M > N ,
where standard linear receivers are practically useless in the
high-SNR regime.

Although Lemma 3 provides strong motivation for using
the IF receiver, it suffers from two shortcomings. First, it
characterizes the performance of the IF receiver only in
the asymptotic high-SNR regime. Second, it only holds for
almost all H ∈ RN×M w.r.t. Lebesgue measure on RN×M ,
but provides no guarantees for specific channel realizations.
To circumvent these weaknesses, we employ space-time
precoding at the transmitter, resulting in a precoded IF
scheme.

Precoded IF may be viewed as an extension of linear
dispersion space-time “codes”. In such “codes”, uncoded
QAM symbols are linearly modulated over space and time.
This is done by linearly precoding the QAM symbols using
a precoding matrix P. For precoded IF, the same precoding
matrix P is applied to codewords taken from a linear
code, rather than uncoded QAM symbols. See Figure 1.
The performance of linear dispersion space-time “codes”
is dictated by dmin, the minimum distance in the received
constellation, whereas the performance of precoded IF is
determined by the effective signal-to-noise ratio SNReff.
By Lemma 2, minimum distance guarantees for precoded
QAM symbols translate to guarantees on the effective SNR
for precoded IF, when the same precoding matrix is used.
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The design of precoding matrices for uncoded QAM,
that guarantee an appropriate growth of dmin as a function
of CWI, has been extensively studied over the last decade.
A remarkable family of such matrices are the generating
matrices of perfect linear dispersion space-time codes, which
are approximately universal [8], [9]. We apply the tight
connection between dmin and SNReff to show that when such
precoding matrices are used for precoded IF, SNReff also grows
appropriately with CWI. Consequently, we are able to prove
that precoded IF achieves rates within a constant gap from the
compound MIMO capacity.

B. Related Work

Integer-forcing equalization essentially reduces to
lattice-reduction (LR) in the case of uncoded transmission.
Lattice-reduction aided receivers for perfect space-time
modulated QAM constellations were considered in the
literature, and were shown to be DMT optimal [19]. The key
difference is that while the latter approach involves uncoded
transmission and symbol-by-symbol detection, the architecture
proposed here uses linearly coded streams and the detection
phase is replaced with equalization and decoding. This in turn,
leads to performance guarantees that are valid at any (fixed)
transmission rate.

In [20], El-Gamal et al. proposed a lattice space-
time (LAST) coding scheme, and showed that it can achieve
the compound MIMO capacity. Although the LAST coding
scheme uses lattice encoding and decoding, its complexity
is in general very high. The reason for this is that the
lattice decoding performed by the receiver is w.r.t. a lattice
induced by both the transmitted constellation and the channel
matrix H. In other words, the LAST coding scheme does not
decouple the equalization and decoding tasks. In particular,
even if a lattice with low decoding complexity is transmitted,
after passing through the channel its structure is changed and
the decoding complexity of the obtained lattice may (and
is most likely to) no longer be low. This is not the case
for precoded IF. In the scheme considered here, the receiver
decodes integer linear combinations of the transmitted streams.
Since these streams are taken from the same linear code,
their integer linear combinations are also members of the
linear code. As a result, the task of decoding these linear
combinations is identical to the task of decoding a single
stream over a scalar AWGN channel. If the linear/lattice
code that was used to encode the streams can be decoded
with low complexity, so can the integer linear combinations.
The channel matrix H is handled in the equalization proce-
dure, and has no effect on the decoding task, just as in standard
linear receiver architectures.

Finding the exact capacity region of many network infor-
mation theoretic problems may be very difficult. Nevertheless,
a recent line of work has demonstrated that characterizing the
capacity region to within a constant number of bits is often a
manageable challenge (see [21]–[24] and references therein).
The constant gap result presented here is of different spirit.
The capacity of the compound MIMO channel considered
here is known and may be achieved using random coding and

maximum-likelihood decoding. Our results only show that
the rate achieved by the sub-optimal scheme precoded IF, is
a constant number of bits from the capacity. Nevertheless, the
results derived in this paper may be useful in the future for
obtaining approximate capacity characterizations for several
network problems. More specifically, it is now recognized that
lattice codes play a key role in characterizing the fundamental
limits of certain communication networks, see [25]–[30],
[31, Ch. 12]. A common feature of many of these lattice-based
coding schemes is that, from the perspective of each receiver,
they induce effective multiple-access (MAC) channels with
a reduced number of users, all of which employ the same
lattice codebook. The achievable rates for a MAC channel
where all users use the same lattice codebook is difficult to
analyze, but can be lower bounded by the rates attained via the
IF receiver. In [30] this technique was successfully applied for
approximating the sum-capacity for the symmetric Gaussian
K-user interference channel. Our bounds on the rate-loss
incurred by the IF receiver w.r.t. the mutual information may
lead to closed form inner bounds on the performance of
lattice-based coding schemes for other networks.

C. Paper Outline

The rest of the paper is outlined as follows. Section II gives
an overview of IF equalization and analyzes its performance
without precoding under various assumptions, while
Section III considers the precoded IF scheme. In Section IV
several properties of perfect linear dispersion space-time codes
are recalled and a lower bound on their worst-case minimum
distance is derived. The proof that precoded IF achieves the
compound MIMO capacity to within a constant gap is given in
Section V. As an example of the advantages of the proposed
approach, low-complexity constructions of MIMO rateless
coding schemes, which are based on precoded IF, are derived
in Section VI. Concluding remarks appear in Section VII.

II. PERFORMANCE OF THE INTEGER-FORCING SCHEME

Integer-forcing equalization is a low-complexity archi-
tecture for the MIMO channel, which was proposed by
Zhan et al. [12]. The key idea underlying IF is to first
decode integral linear combinations of the signals transmitted
by all antennas, and then, after the noise is removed, invert
those linear combinations to recover the individual transmitted
signals. This is made possible by transmitting codewords from
the same linear/lattice code from all M transmit antennas,
leveraging the property that linear codes are closed under
(modulo) linear combinations with integer-valued coefficients.

In this section we review and extend some of the results of
[12] in a way that is suitable for our purposes.

A. Nested Lattice Codes

Let Λc ⊂ Λf be a pair of n-dimensional nested lattices
(see [31], [32] for a more thorough treatment of lattice
definitions and properties). The lattice Λc is referred to as
the coarse lattice and Λf as the fine lattice. Denote by Vc
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Fig. 2. An illustration of the three different types of nested lattice codebooks given in Example 1. In all three cases the black points correspond to the
fine lattice points, the blue circles to the coarse lattice points, and the blue polygon corresponds to the shaping region. In (a) the constellation for uncoded
transmission with q = 11 is illustrated. In (b) a q-ary linear code without shaping is shown, with q = 11. In (c) a “good” nested lattice pair in two-dimensions
is illustrated.

the fundamental Voronoi region of Λc, and define the second
moment of Λc as

σ2(Λc) � 1
n

1
Vol(Vc)

∫

u∈Vc

‖u‖2du,

where Vol(Vc) is the volume of Vc. A nested lattice codebook
C = Λf ∩ Vc, with rate

R =
1
n

log |Λf ∩ Vc| bits
channel use

is associated with the nested lattice pair. The codebook is
scaled such that σ2(Λc) = SNR/2.

Example 1: We give three examples of common structures
of nested lattice codebooks. See Figure 2 for an illustration.
More examples can be found in [33].

• Uncoded transmission - The simplest nested lattice code-
book is an uncoded one, where the fine lattice Λf is the
integer lattice Z whereas the coarse lattice is Λc = qZ
for some integer q > 1. The Voronoi region in this case
is Vc = [−q/2, q/2) and the obtained nested lattice code-
book C consists of all integers in the interval [−q/2, q/2).
The rate of this codebook is R = log q bits/channel use.

• q-ary linear code without shaping - A more sophisti-
cated, yet reasonable to implement, nested lattice code-
book can be obtained by lifting a q-ary linear code with
block length n to Euclidean space using Construction
A [34], [35], and taking the resulting lattice as Λf .
The coarse lattice is taken as Λc = qZn, as in the
uncoded case. The obtained nested lattice codebook C
is therefore simply the q-ary linear code coupled with a
PAM constellation.

• “Good” nested lattice pair of high dimension - A third
option is to use a pair of lattices of high dimension
where the fine lattice is “good” for coding over an
AWGN channel, whereas the coarse lattice is “good”
for mean-squared-error quantization (see [31], [32] for
precise definitions of “goodness”). The obtained nested
lattice codebook admits a relatively simple performance
analysis, that yields closed-form rate expressions.

However, implementing such a codebook is more
complicated (although progress in this direction was
made in [36]).

The performance improvement obtained by using such
a codebook w.r.t. a q-ary linear code without shaping
is bounded from above by 1/2 log(2πe/12) bits per real
dimension, provided that the q-ary linear code performs
well over an AWGN channel.

B. Description of the IF Scheme

In the IF scheme, the information bits to be
transmitted are partitioned into 2M streams, labeled
{1Re, 1Im, . . . ,MRe,MIm}. Each of the 2M streams is
encoded by the nested lattice code C, producing 2M row
vectors, each in C ⊂ R1×n. In particular, the stream mRe,
consisting of nR information bits, is mapped to a lattice point
tmRe

∈ C. Then, a random dither dmRe
∈ R1×n uniformly

distributed over Vc and statistically independent of tmRe
,

known to both the transmitter and the receiver, is used to
produce the signal

xmRe
= [tmRe

− dmRe
] mod Λc.

The signal xmRe
is uniformly distributed over Vc and

is statistically independent of tmRe
due to the Crypto

Lemma [32, Lemma 1]. It follows that

1
n

E‖xmRe
‖2 = σ2(Λc) =

SNR

2
.

A similar procedure is used to construct the signal xmIm
. The

mth antenna transmits the signal xm = xmRe
+ ixmIm

∈ C1×n

over n consecutive channel uses. Thus, the total transmission
rate is RIF = 2MR bits/channel use.

Let X � [xT1 · · · xTM ]T ∈ C
M×n. The received signal is

Y = HX + Z,

where Z ∈ CN×n is a vector with i.i.d. circularly
symmetric complex Gaussian entries. Letting the subscripts
Re and Im denote the real and imaginary parts of a matrix,



328 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 1, JANUARY 2015

Fig. 3. A schematic overview of the integer-forcing transmitter and receiver. For simplicity, the dithers are not depicted in the figure, and a real-valued
channel is assumed. At the transmitter, the information bits are split to M streams. Each stream is encoded by the same linear codebook and transmitted by
one of the transmit antennas. The receiver first applies the equalizing matrix B whose role is to equalize the channel H to an equivalent channel with transfer
matrix approximately equal to A. The equalizer produces M outputs, each of which is an integer-valued linear combination of the transmitted codewords plus
effective noise. Each one of these outputs is decoded separately, and finally the outputs of the M decoders are multiplied by A−1 to produce the transmitted
codewords. The codewords are then mapped to information bits (this step is not depicted in the figure).

respectively, the channel can be expressed by its real-valued
representation

[
YRe

YIm

]
=
[
HRe −HIm

HIm HRe

] [
XRe

XIm

]
+
[
ZRe

ZIm

]
, (5)

which will be written as

Ỹ = H̃X̃ + Z̃

for notational compactness. Let

T̃ � [tT1Re
· · · tTMRe

tT1Im
· · · tTMIm

]T

be a 2M × n real-valued matrix whose rows consist of the
lattice points corresponding to the 2M bit streams, and

D̃ � [dT1Re
· · · dTMRe

dT1Im
· · · dTMIm

]T

be a 2M×n real-valued matrix whose rows correspond to the
2M different dither vectors.

The IF receiver chooses an equalizing matrix B ∈ R2M×2N

and a full-rank target integer-valued matrix A ∈ Z2M×2M , and
computes

Ỹeff =
[
BỸ + AD̃

]
mod Λc

=
[
AX̃ + AD̃ + (BH̃− A)X̃ + BZ̃

]
mod Λc

=
[
AT̃ + (BH̃ − A)X̃ + BZ̃

]
mod Λc

= [V + Zeff] mod Λc, (6)

where

V �
[
AT̃

]
mod Λc (7)

is a 2M×n real-valued matrix with each row being a codeword
in C owing to the linearity of the code,

Zeff � (BH̃ − A)X̃ + BZ̃

is additive noise statistically independent of V (as X̃,
as well as Z̃ are statistically independent of T̃), and the
notation mod Λc is to be understood as reducing each row
of the obtained matrix modulo the coarse lattice. Each row
of Ỹeff is the modulo sum of a codeword and effective noise.

Fig. 4. An illustration of the effective channel obtained when integer-
forcing equalization is used. The effective channel consists of M parallel
sub-channels. The output of each sub-channel is an integer-valued linear
combination of lattice points, which is itself a lattice point, plus effective
noise, modulo the coarse lattice Λc.

Thus, the IF receiver transforms the original MIMO channel
into a set of 2M point-to-point modulo-additive sub-channels

ỹeff,k = [vk + zeff,k] mod Λc, k = 1, . . . , 2M. (8)

The additive noise vectors zeff,1, . . . , zeff,2M are not
statistically independent. Therefore, strictly speaking, the 2M
effective channels ỹeff,1, . . . , ỹeff,2M are not parallel. However,
the IF decoder ignores the correlation between the noise vec-
tors and decodes the output of each sub-channel separately.4

If decoding is successful over all 2M sub-channels, the
receiver has access to V, from which it can recover the
matrix T̃ by solving the (modulo) set5 of equations (7).
See Figures 3 and 4.

Let aTk and bTk be the kth rows of A and B, respectively,
and define the effective variance of zeff,k as

σ2
eff,k � 1

n
E ‖zeff,k‖2

=
1
n

E

∥
∥
∥(bTk H̃− aTk )X̃ + bTk Z̃

∥
∥
∥

2

=
SNR

2
‖(bTk H̃− aTk )‖2 +

1
2
‖bTk ‖2.

4Some improvement can be obtained by exploiting these correla-
tions [37], [38]. Yet, we do not pursue this possibility in the present paper.

5In [39] it is shown that it suffices that A is invertible over R in order to
recover T̃ from V.
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A natural criterion for choosing the equalizing matrix B and
the target integer-valued matrix A is to minimize the effective
noise variances. It turns out [12] that for a given matrix A,
the optimal choice of B under this criterion is

Bopt = AH̃T

(
1

SNR
I + H̃H̃T

)−1

. (9)

The matrix in (9) can be interpreted as first applying the
linear MMSE estimator of X̃ form Ỹ, and then multiplying
the result by the integer-valued matrix A. In general, the
estimation errors after linear MMSE estimation may be highly
correlated, and have different powers. The role A plays here
is in decreasing these correlations and balancing the power of
the remaining estimation errors. The freedom to choose any
full-rank A ∈ Z

2M×2M and not just A = I comes from
the fact that any integer-linear combination of codewords is
a codeword itself. Setting B as in (9) results in the effective
variances

σ2
eff,k =

SNR

2
aTk

(
I + SNRH̃T H̃

)−1

ak,

for k = 1, . . . , 2M .
Define the effective signal-to-noise ratio (SNR) at the kth

sub-channel as

SNReff,k � σ2(Λc)
σ2

eff,k

=
SNR
2

SNR
2 aTk

(
I + SNRH̃T H̃

)−1

ak

=
(
aTk

(
I + SNRH̃T H̃

)−1

ak

)−1

, (10)

and let

SNReff � min
k=1,...,2M

SNReff,k. (11)

For IF equalization to be successful, decoding over all
2M sub-channels should be correct. Therefore, the worst
sub-channel constitutes a bottleneck. For this reason, the total
performance of the receiver is dictated by SNReff.

C. Achievable Rates for IF

When the codebook C is constructed from a good pair of
nested lattices (see Example 1), the distribution of the effective
noise at each sub-channel k, which is a linear combination of
an AWGN and 2M dither vectors, approaches (with the code’s
block length) that of an AWGN with zero mean and variance
σ2

eff,k [27]. Good nested lattice codebooks can achieve any rate
satisfying

R <
1
2

log (SNReff,k) (12)

over a mod-Λc AWGN channel with signal-to-noise ratio
SNReff,k [27], [32]. Since vk is a codeword from a good nested
lattice code and zeff,k approaches an AWGN in distribution,
vk can be decoded [12], [27] from ỹeff,k as long as the rate
of the codebook C satisfies (12). It follows that as long as

R <
1
2

log (SNReff) ,

all sub-channels k = 1, . . . , 2M can decode their linear com-
binations vk with a vanishing error probability, and therefore
IF equalization can achieve any rate satisfying

RIF < 2M
1
2

log (SNReff)

= M log (SNReff) . (13)

As mentioned in Example 1, good nested lattice codebooks
can be difficult to implement in practice. A more appealing
alternative may be to use a q-ary linear code without shaping.
In this case, the effective noise zeff,k at each sub-channel is
a linear combination of an AWGN and 2M random dithers
uniformly distributed over the Voronoi region of a 1-D integer
lattice. This effective noise is i.i.d. (in contrast to the case
where a higher-dimensional coarse lattice is used where zeff,k

has memory). It was shown in [40, Remark 3] that, for a prime
q large enough, q-ary linear codes without shaping can achieve
any rate satisfying

R <
1
2

log (SNReff) − 1
2

log
(

2πe
12

)

over a modulo channel with additive i.i.d. effective noise zeff,k.
Therefore, IF equalization using q-ary linear codes without
shaping can achieve any rate satisfying

RIF,q-ary < M log (SNReff) −M log
(

2πe
12

)
. (14)

When a specific q-ary linear code (such as an LDPC code or
a turbo code) is used, the achievable rate is further degraded
by 2M times the code’s gap-to-capacity at the target error
probability.

Finally, consider the case of uncoded transmission. In this
case, Λf = γZ and Λc = γqZ, where γ =

√
12SNR/q2 is

chosen so as to meet the power constraint, and q > 1 is
an integer (see Example 1). The performance of uncoded
transmission with IF equalization followed by a simple slicer
is characterized by the following lemma.

Lemma 1: The error probability of the IF receiver with
uncoded transmission rate RIF is upper bounded by

Pe,IF-uncoded ≤ 4M exp
{
− 3

22
1

M (M log(SNReff)−RIF)
}
. (15)

Proof: See Appendix A.
Remark 1: Integer-forcing equalization with uncoded trans-

mission is quite similar to the extensively studied lattice-
reduction-aided linear decoders framework [19], [41], [42].
However, two subtle differences should be pointed out. First,
under the framework of LR-aided linear decoding, the target
integer matrix A has to be unimodular, i.e., it has to satisfy
| det(A)| = 1, whereas in IF equalization A is only required
to be full-rank. Second, the use of the dithers in IF equalization
results in statistical independence between vk and zeff,k at each
of the 2M sub-channels. This allows for an exact rigorous
analysis of the error probability, which is seemingly difficult
under the LR framework.

D. Bounding the Effective SNR for an Optimal Choice of A

In this subsection, we derive a lower bound on SNReff,
which will subsequently be used to lower bound the
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achievable rate of IF. Since the IF scheme is compatible with
any choice of full-rank integer matrix A ∈ Z2M×2M , we
would like to choose A so as to maximize SNReff. We denote
the rate-maximizing target integer-valued matrix by Aopt. For
the remainder of the paper SNReff refers to the effective SNR
corresponding to the choice A = Aopt.

Using (10) and (11), this maximization criterion translates to

Aopt = argmin
A∈Z

2M×2M

det(A) �=0

max
k=1...,2M

aTk
(
I + SNRH̃T H̃

)−1

ak.

The matrix
(
I + SNRH̃T H̃

)−1
is symmetric and positive

definite, and therefore it admits a Cholesky decomposition
(
I + SNRH̃T H̃

)−1

= LLT, (16)

where L is a lower triangular matrix with strictly positive
diagonal entries. With this notation the optimization criterion
becomes

Aopt = argmin
A∈Z

2M×2M

det(A) �=0

max
k=1...,2M

‖LTak‖2.

Denote by Λ(LT ) the 2M dimensional lattice spanned by the
matrix LT , i.e.,

Λ(LT ) �
{
LTa : a ∈ Z

2M
}
.

It follows that Aopt should consist of the set of 2M linearly
independent integer-valued vectors that result in the shortest
set of linearly independent lattice vectors in Λ(LT ).

Definition 1 (Successive Minima): Let Λ(G) be a lattice
spanned by the full-rank matrix G ∈ R

K×K . For
k = 1, . . . ,K, we define the kth successive minimum as

λk(G) � inf
{
r : dim

(
span

(
Λ(G)

⋂
B(0, r)

))
≥ k

}

where B(0, r) =
{
x ∈ RK : ‖x‖ ≤ r

}
is the closed ball of

radius r around 0. In words, the kth successive minimum of
a lattice is the minimal radius of a ball centered around 0 that
contains k linearly independent lattice points.

With the above definition of successive minima, the effective
signal-to-noise ratio, when the optimal integer-valued
matrix Aopt is used, can be written as

SNReff =
1

λ2
2M (LT )

. (17)

Bounding the value of the 2M th successive minimum of
a lattice is seemingly difficult. Fortunately, a transference
theorem by Banaszczyk [43] relates the 2M th successive
minimum of a lattice to the first successive minimum of its
dual lattice. Following the derivation from [12, Proof of Th. 5],
we proceed to bound SNReff using this relation.

Definition 2 (Dual Lattice): For a lattice Λ(G) with a
generating full-rank matrix G ∈ R2M×2M the dual lattice
is defined by

Λ∗(G) � Λ
(
(GT )−1

)

=
{
(GT )−1a : a ∈ Z

2M
}
.

Theorem 1 (Banaszczyk [43, Th. 2.1]): Let Λ(G) be a
lattice with a full-rank generating matrix G ∈ R

K×K and
let Λ∗(G) = Λ

(
(GT )−1

)
be its dual lattice. The successive

minima of Λ(G) and Λ∗(G) satisfy the following inequality

λk (G)λK−k+1

(
(GT )−1

)
< K, ∀k = 1, 2, . . . ,K.

Proof: See [43].
The following theorem gives a lower bound for SNReff.
Theorem 2: Consider the complex MIMO channel

y = Hx + z with M transmit antennas and N receive
antennas, power constraint E(x†x) ≤M · SNR, and additive
noise z with i.i.d. circularly symmetric complex Gaussian
entries with zero mean and unit variance. The effective
signal-to-noise ratio when integer-forcing equalization is
applied is lower bounded by

SNReff >
1

4M2
min

a∈ZM+iZM\0
a† (I + SNRH†H

)
a. (18)

Proof: Let H̃ be the real-valued representation of the
channel H, as in (5), and let L and LT be as in (16). From (17)
we have

SNReff =
1

λ2
2M (LT )

.

The dual lattice of Λ(LT ) is Λ(L−1). Thus, Theorem 1
gives

1
λ2

2M (LT )
>

1
(2M)2

λ2
1(L

−1),

and therefore

SNReff >
1

(2M)2
λ2

1(L
−1)

=
1

4M2
min

a∈Z2M\0
‖L−1a‖2

=
1

4M2
min

a∈Z2M\0
aT (LLT )−1a

=
1

4M2
min

a∈Z2M\0
aT

(
I + SNRH̃T H̃

)
a. (19)

where (19) follows from (16). Since the matrix(
I + SNRH̃T H̃

) ∈ R2M×2M is the real-valued representation
of the complex matrix

(
I + SNRH†H

) ∈ CM×M , (19) can
be written in complex form as (18).

Remark 2: It is worth mentioning that the bound (18) is
tight up to a multiplicative factor of 4M2. Namely, it can be
easily shown [44, Chapter VIII, Th. VI] that for a full-rank
matrix G ∈ RK×K

λK (G)λ1

(
(GT )−1

) ≥ 1.

Now, repeating the same derivation as in the proof of
Theorem 2 with G = LT gives

SNReff ≤ min
a∈ZM+iZM\0

a† (I + SNRH†H
)
a.
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E. Relation Between the Effective SNR and the
Minimum Distance for Uncoded QAM

A basic communication scheme for the MIMO channel is
transmitting independent uncoded QAM symbols from each
antenna. In this case, the error probability strongly depends on
the minimum distance at the receiver. For a positive integer L,
we define

dmin(H, L) � min
a∈QAMM (L)\0

‖Ha‖, (20)

where

QAM(L) � {−L,−L+ 1, . . . , L− 1, L}
+ i {−L,−L+ 1, . . . , L− 1, L} , (21)

and QAMM (L) is an M -dimensional vector whose compo-
nents all belong to QAM(L). Note that if L is an even integer,
dmin(H, L) is the minimum distance at the receiver when each
antenna transmits symbols from a QAM(L/2) constellation.
This is true since

min
x1,x2∈QAMM (L/2)

x1 �=x2

‖Hx1 − Hx2‖ = min
x∈QAMM (L)\0

‖Hx‖.

In the IF scheme there is no assumption that QAM symbols
are transmitted. Rather, each antenna transmits codewords
taken from a linear codebook. Nevertheless, we show that the
performance of the IF receiver over the channel H can be
tightly related to those of a hypothetical uncoded QAM system
over the same channel. See Figure 1. Namely, SNReff is closely
related to dmin(H, L). This relation is formalized in the next
key lemma, which is a simple consequence of Theorem 2.

Lemma 2 (Relation Between SNReff and dmin): Consider the
complex MIMO channel y = Hx + z with M transmit
antennas and N receive antennas, power constraint
E(x†x) ≤M · SNR, and additive noise z with i.i.d. circularly
symmetric complex Gaussian entries with zero mean and
unit variance. The effective signal-to-noise ratio when
integer-forcing equalization is applied is lower bounded by

SNReff >
1

4M2
min

L=1,2,...

(
L2 + SNRd2

min(H, L)
)
,

where d2
min(H, L) is defined in (20).

Proof: The bound from Theorem 2 can be written as

SNReff >
1

4M2
min

a∈ZM+iZM\0
‖a‖2 + SNR‖Ha‖2. (22)

Let

ρ(a) � max
m=1,...,M

max (|amRe
|, |amIm

|) ,

i.e., ρ(a) is the maximum absolute value of all real and imagi-
nary components of a. With this notation, (22) is equivalent to

SNReff >
1

4M2
min

L=1,2,...
min

a∈Z
M+iZM\0
ρ(a)=L

‖a‖2 + SNR‖Ha‖2

≥ 1
4M2

min
L=1,2,...

(
L2 + SNRd2

min(H, L)
)
,

as desired.

Remark 3: In the transmission scheme described above
each antenna transmits an independent stream. Therefore,
the bounds from Theorem 2 and Lemma 2 continue to
hold true for multiple access (MAC) channels with M users
equipped with a single transmit antenna and a receiver
equipped with N receive antennas, where the gains from
the mth transmit antenna to the receiver are given by the
mth column of H and each user is subject to the power
constraint E

(|xk|2
) ≤ SNR.

Remark 4: For real-valued N × M MIMO channels
y = Hx + z with power constraint E(xTx) ≤M · SNR, and
z ∼ N (0, I) the bound from Theorem 2 becomes

SNReff >
1
M2

min
a∈ZM\0

aT
(
I + SNRHTH

)
a,

and the bound from Lemma 2 becomes

SNReff >
1
M2

min
L=1,2,...

(
L2 + SNRd̃2

min(H, L)
)
,

where

d̃min(H, L) � min
a∈PAMM (L)\0

‖Ha‖,

PAM(L) � {−L,−L+ 1, . . . , L− 1, L}.
The bound from Lemma 2 and its real-valued counterpart

from Remark 4 exhibit a Diophantine tradeoff, i.e., they
depend on how small the norm ‖Ha‖2 can be made as
a function of the largest component in the integer-valued
vector a. The typical behavior of this minimal norm, is the
subject of several results in the metrical theory of Diophantine
approximation, see [18], [45], [46]. Using these results we
derive the following lemma, which is proved in Appendix B.

Lemma 3 (DoF of Integer-Forcing): For almost all real-
valued MIMO channels (w.r.t. Lebesgue measure),
IF equalization achieves the optimal number of degrees-
of-freedom (DoF), i.e.,

lim
SNR→∞

RIF(SNR)
1/2 log(SNR)

= M lim
SNR→∞

1/2 log(SNReff)
1/2 log(SNR)

= min(M,N).

Standard linear equalizers, such as the zero-forcing equal-
izer, or the MMSE equalizer, fail to achieve the optimal num-
ber of DoF when N < M (In fact, when N < M , they achieve
zero DoF). In light of this fact, our result that IF equalization
achieves the full DoF is notable. As discussed in Remark 3,
this result is also applicable for the MIMO-MAC channel.
Thus, for almost every real-valued MIMO-MAC channel with
M users equipped with a single transmit antenna and a receiver
equipped with N receive antennas, each user can achieve
min(M,N)/M DoF using IF equalization. This extends
[30, Corollary 6], which only covered the case of N = 1.

III. PRECODED INTEGER-FORCING

The performance of IF equalization over Rayleigh fading
channels was studied in [12] and it was shown that when
N ≥ M the IF equalizer achieves the optimal receive DMT
(corresponding to transmission of independent streams from
each antenna). However, in order to approach the compound
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Fig. 5. A schematic overview of precoded integer-forcing. For simplicity, the dithers are not depicted in the figure, and a real-valued channel is assumed.
At the transmitter, the information bits are split to TM streams, each of which is encoded by the same linear code. Then, a TM × TM precoding matrix
“mixes” the TM codewords into TM linear combinations. The channel H is used T times, where in each channel use each of the antennas transmits one of
the precoded linear combinations. The receiver treats T consecutive channel outputs as the output of an aggregate NT × MT channel with transfer matrix
H̄ = (IT ⊗ H)P, and applies integer-forcing equalization to the aggregate channel.

MIMO capacity, transmitting independent streams from each
antenna is not sufficient.

Clearly, there are instances of MIMO channels for
which the lower bound (18) on SNReff does not increase
with the WI mutual information. For example, consider
a channel H where one of the NM entries equals h
whereas all other gains are zero. For such a channel
CWI = log(1 + |h|2SNR), yet SNReff = 1 (and the bound (18)
only gives SNReff > 1/(4M2)). Thus, it is evident that
IF equalization alone can perform arbitrarily far from CWI.

This problem can be overcome by transmitting linear
combinations of multiple streams from each antenna. More
precisely, instead of transmitting 2M linearly coded streams,
one from the in-phase component and one from the quadrature
component of each antenna, over n channel uses, 2MT
linearly coded streams are precoded by a unitary matrix and
transmitted over nT channel uses.

Domanovitz et al. [17] proposed to combine IF equalization
with linear precoding. The idea is to transform the N ×M
complex MIMO channel (1) into an aggregate NT ×MT
complex MIMO channel and then apply IF equalization to
the aggregate channel. The transformation is done using
a unitary precoding matrix P ∈ C

MT×MT . Specifically,
let x̄ ∈ CMT×1 be the input vector to the aggregate
channel. This vector is multiplied by P to form the vector
x = Px̄ ∈ CMT×1 which is transmitted over the channel (1)
during T consecutive channel uses. Let

H = IT ⊗ H =

⎡

⎢
⎢
⎢
⎣

H 0 · · · 0
0 H · · · 0
...

...
. . .

...
0 0 · · · H

⎤

⎥
⎥
⎥
⎦
, (23)

where ⊗ denotes the Kronecker product. The output of the
aggregate channel is obtained by stacking T consecutive
outputs of the channel (1) one below the other and is given by

ȳ = HPx̄ + z̄
= H̄x̄ + z̄, (24)

where H̄ � HP = (IT ⊗ H)P ∈ CNT×MT is the aggregate
channel matrix, and z̄ ∈ CNT×1 is a vector of i.i.d. circularly
symmetric complex Gaussian entries. See Figure 5.

A remaining major challenge is how to choose the precoding
matrix P (recall that a compound channel is considered, and
hence, the choice of P cannot depend on H). As observed in
Section II-C, the performance of the IF equalizer is dictated
by SNReff. Thus, in order to obtain achievable rates that
are comparable to the WI mutual information, SNReff must
scale appropriately with CWI. The precoding matrix P should
therefore be chosen so as to guarantee this property for all
channel matrices with the same WI mutual information.

Lemma 2 indicates that for the aggregate channel SNReff

is lower bounded by minL(L2 + SNRdmin(H̄, L))/(4M2T 2),
where

dmin(H̄, L) = min
a∈QAMMT (L)\0

‖HPa‖. (25)

Thus, the precoding matrix P could be chosen so as to
guarantee that dmin(H̄, L) scales appropriately with CWI. This
boils down to the problem of designing precoding matrices
for transmitting QAM symbols over an unknown MIMO
channel with the aim of maximizing the received minimum
distance. The latter problem was extensively studied during
the past decade, under the framework of linear dispersion
space-time coding, and unitary precoding matrices that satisfy
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the aforementioned criterion were found. Therefore, the same
matrices that proved so useful for space-time coding are
also useful for precoded integer-forcing. A major difference,
however, between the two is that while for linear dispersion
space-time coding the precoding matrix P is applied to
uncoded QAM symbols, in precoded integer-forcing it is
applied to coded streams. This in turn, yields an achievable
rate characterization for the compound MIMO channel which
is not available using linear dispersion space-time coding.
In particular, very different asymptotics can be analyzed.
Rather than fixing the block length and taking SNR to infinity,
as usually done in the space-time coding literature, here, we
fix the channel and take the block length to infinity, as in the
traditional information-theoretic framework.

In [17] the performance of IF equalization with the Golden
code’s [11] precoding matrix was numerically evaluated in
a 2 × 2 MIMO Rayleigh fading environment. The scheme’s
outage probability was found to be relatively close to that
achieved by white i.i.d. Gaussian codebooks. Here, we prove
that, in fact, precoded IF equalization, where the precoding
matrix generates a perfect linear dispersion space-time code,
achieves rates within a constant gap from the compound
MIMO capacity.

The aim of the next section is to lower bound dmin(H̄, L)
as a function of CWI for precoding matrices P that generate
perfect linear dispersion space-time codes. This lower bound
will be instrumental in proving that precoded IF universally
attains the compound MIMO capacity to within a constant gap.

IV. LINEAR DISPERSION SPACE-TIME CODES

Before deriving the lower bound on dmin(H̄, L) some
necessary background on space-time codes is given.

An M×T space-time (ST) code CST for the channel (1) with
rate R is a set of |CST| = 2RT complex matrices of dimensions
M × T . The codebook CST has to satisfy the average power
constraint6

1
2RT

∑

X∈CST

‖X‖2
F ≤MT · SNR.

When the ST code CST is used, a code matrix X ∈ CST is
transmitted column by column over T consecutive channel
uses, such that the T channel outputs can be expressed as

Y = HX + Z,

where each column of the matrices Y,Z ∈ CN×T represents
the channel output and additive noise, respectively, at one of
the T channel uses.

An ST code CST is said to be a linear dispersion ST
code [47] over the constellation S if every code matrix
X ∈ CST can be uniquely decomposed as

X =
K∑

k=1

skFk, sk ∈ S,

where S is some constellation and the matrices Fk ∈ C
M×T

are fixed and independent of the constellation symbols sk.

6The Frobenius norm of a matrix X is denoted by ‖X‖2
F .

Denoting by vec(X) the vector obtained by stacking
the columns of X one below the other, and letting
s = [s1 · · · sK ]T gives

vec(X) = Ps,

where

P = [vec(F1) vec(F2) · · · vec(FK)]

is the code’s MT ×K generating matrix. A linear dispersion
ST code is full-rate if K = MT . In the sequel, linear
dispersion ST codes over a QAM(L) constellation, defined
in (21), will play a key role. The linear dispersion ST code
obtained by using the infinite constellation QAM(∞) = Z+iZ
is referred to as CST∞ , and, after vectorization, is in fact a
complex lattice with generating matrix P. Since the QAM(L)
constellation is a subset of Z + iZ it follows that for any
finite L the QAM(L) based code CST is a subset of CST∞ .

An important class of linear dispersion ST codes with
T = M is that of perfect codes [8], [9], which is defined
next.

Definition 3: An M ×M linear dispersion ST code over a
QAM constellation is called perfect if

1) It is full-rate;
2) It satisfies the nonvanishing determinant criterion

δmin(CST
∞ ) � inf

0 �=X∈CST∞
| det(X)|2 > 0;

3) The code’s generating matrix is unitary, i.e., P†P = I.
Note that this definition is slightly different than the one

used in [8] and [9], where instead of condition 3 it is
required that the energy of the codeword corresponding to the
information symbols s will have the same energy as ‖s‖2, and
that all the coded symbols in all T time slots will have the
same average energy.

In [8], perfect linear dispersion ST codes were found for
M = 2, 3, 4 and 6, whereas in [9] perfect linear dispersion
ST codes were obtained for any positive integer M . The
constructions in [8] and [9] are based on cyclic division
algebras, and result in unitary generating matrices. Thus, for
any positive integer M , there exist codes that satisfy the
requirements of Definition 3.

The approximate universality of an ST code over the MIMO
channel was studied in [6]. This property refers to an ST code
being optimal in terms of DMT regardless of the fading
statistics of H. A sufficient and necessary condition for an
ST code to be approximately universal was derived in [6]. This
condition is closely related to the nonvanishing determinant
criterion and is satisfied by perfect linear dispersion ST codes.
The next Theorem is an extension of [6, Th. 3.1]. The notation
[x]+ � max(x, 0) is used.

Theorem 3: Let CST∞ be an M × M perfect linear
dispersion ST code over a QAM(∞) constellation with
δmin(CST

∞ ) = inf0 �=X∈CST∞ | det(X)|2 > 0, and let CST be its
subcode over a QAM(L) constellation. Then, for all channel
matrices H with corresponding WI mutual information
CWI = log det(I + SNRH†H), M transmit antennas and an
arbitrary number of receive antennas and all 0 = X ∈ CST

SNR‖HX‖2
F ≥

[
δmin(CST

∞ )
1

M 2
CWI
M − 2M2L2

]+
.
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Proof: The proof closely follows that of [6, Th. 3.1], and
is given in Appendix C.

Let H = IM ⊗H, as in (23). The next simple corollary of
Theorem 3 will be used in Section V to prove the main result
of this paper.

Corollary 1: Let P ∈ CM
2×M2

be a generating matrix
of a perfect M ×M QAM based linear dispersion ST code
CST∞ with δmin(CST∞ ) = inf0 �=X∈CST∞ | det(X)|2 > 0. Then, for all
channel matrices H with corresponding WI mutual informa-
tion CWI = log det(I + SNRH†H), M transmit antennas and
an arbitrary number of receive antennas

SNRd2
min(HP, L) ≥

[
δmin(CST

∞ )
1

M 2
CWI
M − 2M2L2

]+
.

Proof: Consider the subcode CST of CST∞ , defined over a
QAM(L) constellation. Then, for any a ∈ QAMM2

(L) there
exist a code matrix X ∈ CST such that

vec(X) = Pa.

Now,

SNR‖HPa‖2 = SNR‖H vec(X)‖2

= SNR‖HX‖2
F

≥
[
δmin(CST

∞ )
1

M 2
CWI
M − 2M2L2

]+
,

where the last inequality follows from Theorem 3. It follows
that

SNRd2
min(HP, L) = mina∈QAMM2

(L)\0 SNR‖HPa‖2

≥
[
δmin(CST∞ )

1
M 2

CWI
M − 2M2L2

]+
.

V. MAIN RESULT

The next theorem lower bounds the effective signal-to-noise
ratio of precoded IF equalization, where the precoding matrix
generates a perfect linear dispersion ST code. The obtained
bound depends on the channel matrix H only through its
corresponding WI mutual information.

Theorem 4: Consider the aggregate MIMO channel

ȳ = HPx̄ + z̄

where H = IM ⊗ H ∈ CNM×M2
, and P ∈ CM

2×M2

is a generating matrix of a perfect M ×M QAM
based linear dispersion ST code CST

∞ with δmin(CST
∞ ) =

inf0 �=X∈CST∞ | det(X)|2 > 0. Then, applying IF equalization
to the aggregate channel yields

SNReff >
1

8M6
δmin(CST

∞ )
1

M 2
CWI
M ,

for all channel matrices H with corresponding WI mutual
information CWI = log det(I + SNRH†H), M transmit
antennas and an arbitrary number of receive antennas.

Proof: Applying Lemma 2 to the aggregate NM ×M2

channel matrix H̄ = HP gives

SNReff >
1

4M4
min

L=1,2,...

(
L2 + SNRd2

min(H̄, L)
)
. (26)

Using Corollary 1, this is bounded by

SNReff >
1

4M4
min

L=1,2,...

(
L2 +

[
δmin(CST

∞ )
1

M 2
CWI
M −2M2L2

]+)

≥ 1
4M4

min
L=1,2,...

⎛

⎝L2 +

[
δmin(CST

∞ )
1

M 2
CWI
M

2M2
− L2

]+
⎞

⎠

≥ 1
8M6

δmin(CST
∞ )

1
M 2

CWI
M

as desired.
The next theorem shows that precoded IF attains the

compound MIMO capacity to within a constant gap.
Theorem 5: Let P ∈ CM

2×M2
be a generating matrix of

a perfect M ×M QAM based linear dispersion ST code CST∞
with δmin(CST

∞ ) = inf0 �=X∈CST∞ | det(X)|2 > 0. For all channel
matrices H with M transmit antennas and an arbitrary number
of receive antennas, precoded integer-forcing with the
precoding matrix P achieves any rate satisfying

RP-IF < CWI − Γ
(
δmin(CST

∞ ),M
)
,

where CWI = log det(I + SNRH†H), and

Γ
(
δmin(CST

∞ ),M
)

� log
1

δmin(CST∞ )
+ 3M log(2M2). (27)

Proof: In precoded IF, the matrix P is used as a precoding
matrix that transforms the original N×M MIMO channel (1)
to the aggregate NM ×M2 MIMO channel

ȳ = HPx̄ + z̄
= H̄x̄ + z̄, (28)

as described in Section III, and then IF equalization is applied
to the aggregate channel. Assuming a “good” nested lattice
codebook is used to encode all 2M2 streams transmitted over
the aggregate channel, by (13), IF equalization can achieve
any rate satisfying

RIF,aggregate < M2 log(SNReff).

Using Theorem 4, it follows that any rate satisfying

RIF,aggregate < M2 log
(

1
8M6

δmin(CST
∞ )

1
M 2

CWI
M

)

= MCWI −M log
1

δmin(CST∞ )
−M2 log(8M6)

is achievable over the aggregate channel.
Since each channel use of the aggregate channel (28)

corresponds to M channel uses of the original channel (1), the
communication rate should be normalized by a factor of 1/M .
Thus, RP-IF = RIF,aggregate/M , and the theorem follows.

Example 2: The Golden-code [11] is a QAM-based perfect
2×2 linear dispersion space time code, with δmin(CST

∞ ) = 1/5.
Thus, for a MIMO channel with M = 2 transmit antennas,
its generating matrix P ∈ C4×4 can be used for precoded
integer-forcing. Theorem 5 implies that with this choice of P,
precoded integer-forcing achieves CWI to within a gap of
Γ (1/5, 2) = 20.32 bits, which translates to a gap of 5.08 bits
per real dimension. In fact, using a slightly more careful
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Fig. 6. An (empirical) estimate of the probability density function of the
gap-to-capacity achieved by precoded IF with “good” nested lattices over a
2 × 2 MIMO channel with Rayleigh fading, where after drawing H it is
scaled such that log det |I+ SNRH†H| = 30bits. The precoded matrix that
was used is the generating matrix of the Golden code. The probability that
precoded IF achieves less than 90% of capacity is smaller than 0.0015 in
this scenario.

analysis,7 it can be shown that, with this choice of P, precoded
integer-forcing achieves CWI to within 15.24 bits, i.e., 3.81 bits
per real dimension.

While the constants from Example 2 may seem quite large,
one has to keep in mind that this is a worst-case bound,
whereas for the typical case, under common statistical assump-
tions such as Rayleigh fading, the gap-to-capacity obtained
by precoded IF is considerably smaller, as demonstrated in
Figure 6.

Moreover, the recent work of Fischler et al. [49]
demonstrates that for channels with a special structure, the
gap can be much smaller when precoded IF-SIC [37] is used.
In particular, [49] studies the compound parallel MIMO
channel and finds that for channels of dimensions 2 × 2
and 3 × 3 precoded IF-SIC achieves at least 94% and 82%,
respectively, of the compound capacity for any value of
capacity. Theorem 5 provides an additive bound on the
gap-to-capacity, and therefore guarantees that the fraction
of the compound MIMO capacity achieved by precoded
IF approaches 100% as the compound capacity increases.
It does not, however, provide useful efficiency guarantees, i.e.
multiplicative bounds, for small capacities. The results in [49]
indicate that with a slightly more complex scheme that also
incorporates successive interference cancelation, and a more
limited channel model (parallel MIMO channel instead of the
general MIMO channel studied here), excellent performance
can be guaranteed also for low capacities.

Note that although the proof of Theorem 5 assumed that
a “good” nested lattice code was used, a similar result holds
when a q-ary linear code without shaping is used. This follows
from the fact that the performance of the latter is only degraded

7Namely, the product of successive minima of a lattice and its dual lattice
in Theorem 1 can be bounded using Proposition 3.3 from [48] instead of the
result from [43]. The bound from [48] involves Hermite’s constant and gives
better results than those obtained using [43] only when very small values of
M are of interest.

by no more than the shaping loss of log(2πe/12) bits per
antenna w.r.t. the former. Moreover, Theorem 4 can also be
used to obtain an upper bound on the error probability of
precoded IF with uncoded transmission.

Proposition 1: For all channel matrices H with correspond-
ing WI mutual information CWI = log det(I + SNRH†H),
M transmit antennas and an arbitrary number of receive
antennas, the error probability of precoded IF with uncoded
transmission is bounded by

Pe,P-IF-uncoded ≤ 4M2 exp
{
−3

2
2

1
M (CWI−RP-IF−Γ(δmin(CST

∞),M))
}
,

provided that the precoding matrix P generates an M ×M
perfect linear dispersion ST code CST∞ with minimum
determinant δmin(CST

∞ ) = inf0 �=X∈CST∞ | det(X)|2 > 0.
Proof: Using (15), the error probability of uncoded IF

equalization over the aggregate channel (28) is bounded by

Pe,P-IF-uncoded ≤ 4M2 exp
{
−3

2
2

1
M2 (M2 log(SNReff)−MRP-IF)

}
,

where we have used the fact that the transmission rate over
the aggregate channel is M times larger than the actual
communication rate RP-IF. Now, replacing SNReff with its
bound from Theorem 4 establishes the proposition.

VI. APPLICATION: RATELESS CODING FOR MIMO
CHANNELS VIA PRECODED INTEGER-FORCING

A notable feature of precoded IF is that the scheme, as
well as its performance guarantees, do not depend on the
number of antennas at the receiver side. In this section,
we exploit this property for developing efficient rateless codes
for the MIMO channel. The rateless coding problem is another
instance of a DoF-mismatch scenario, where the transmitter
has to simultaneously transmit to different (virtual) users, each
with a different number of receive antennas.

In an open-loop scenario, in addition to not knowing the
channel gains, the transmitter may also not know the capacity
of its link to the receiver. A reasonable approach, in this case,
is to transmit a long codeword describing the information
bits, such that if the channel is “good”, the receiver can stop
listening after a short while, whereas if it is “bad” a longer
fraction of the codeword is needed to ensure correct decoding.
Since the code’s rate is not predefined, and depends on the
channel condition, such an approach is referred to as rateless
coding.

A rateless code is defined as a family of codes that has
the property that codewords of the higher rate codes are
prefixes of those of the lower rate ones. A family of such
codes is called perfect (not to be confused with perfect linear
dispersion ST codes) if each of the codes in the family is
capacity-achieving.

In this section, we show how precoded IF can be used for
constructing a rateless code for the MIMO channel which is a
constant number of bits from perfect, i.e., each of its subcodes
achieves the compound MIMO capacity to within a constant
number of bits. For sake of brevity, we only illustrate the
scheme through an example rather than give a full description.
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Fig. 7. An illustration of the proposed rateless code construction. P k
� denotes the matrix obtained by taking the �th up to kth rows of the matrix P.

Assume the channel model is the one from (1), and the goal
is to design two codes with rates R, and R/2, where the higher
rate code is a prefix of the lower rate one. It is further required
that for some predefined δ > 0 if the channel’s capacity C
satisfies C > R+ δ the high-rate (short) code can be decoded
reliably, and if C > R/2 + δ the low-rate (long) code can
be decoded reliably. This problem can be viewed as that of
designing a code which is simultaneously good for the two
channel matrices

H1 =
[
H 0
0 0

]
and H2 =

[
H 0
0 H

]
,

since the effective channel H2 is obtained from twice as many
channel uses as H1, which corresponds to a code twice as
long. If H ∈ CN×M , then H1,H2 ∈ C2N×2M . In the previous
section, it was shown that precoded IF can simultaneously
achieve the capacity of any MIMO channel to within a constant
gap. In particular, it can simultaneously achieve the capacity
of H1 and H2 to within a constant gap.

The rateless code is therefore constructed from 4M2

complex streams of linear codewords (each consisting of one
linear codeword in its quadrature component and one in its
in-phase components). Each complex stream is of length n
and carries nR/2M bits. These streams are then precoded
using the matrix P ∈ C4M2×4M2

which generates a perfect
2M × 2M linear dispersion ST code. This results in a set
of 4M2 linear combinations of the coded streams. The linear
combinations are then split into 4M groups each containing
M linear combinations, such that the first group consists of the
first M linear combinations, the next group contains the next
M linear combinations, and so on. The short code consists of
the odd groups of linear combinations, whereas the long code
consists of both odd and even groups of linear combinations.
See Figure 7 for an illustration of the code construction.

The long code is transmitted during 4Mn consecutive
channel uses. At the receiver side, integer-forcing equalization
is applied. The receiver, which knows the channel capacity,
can decide whether the first 2M2 linear combinations,
corresponding to the first 2Mn channel uses, suffice for
correct decoding of the 4M2 coded streams, or all 4M2

linear combinations, corresponding to all 4Mn channel uses,
are needed. Theorem 5 implies that if the capacity is greater
than R+ Γ

(
δmin(CST∞ ), 2M

)
the short code can be decoded

reliably, and if it is greater than R/2 + Γ
(
δmin(CST

∞ ), 2M
)

the long code can be decoded reliably.

Note that although we have only described the construction
of a code that is compatible with two different rates, the
aforementioned construction can be easily extended to any
number of rates.

VII. DISCUSSION AND SUMMARY

The additive Gaussian noise MIMO channel in an open-loop
scenario, where the receiver has complete channel state infor-
mation whereas the transmitter only knows the white-input
mutual information was considered in this paper. It was shown
that using linear precoding at the transmitter in conjunction
with integer-forcing equalization at the receiver suffices to
approach the capacity of this compound channel to within
a constant gap, depending only on the number of transmit
antennas. To the best of our knowledge, this is the first
practical scheme that guarantees an additive loss w.r.t. the
compound capacity. Such a performance guarantee is much
stronger than DMT optimality, which is at present the common
benchmark for evaluating schemes. In particular, although our
results are free from any statistical assumptions, they can
be interpreted to obtain performance guarantees in a MIMO
fading environment. Specifically, a scheme that achieves a
constant gap from capacity is DMT optimal under any fading
statistics, and achieves a constant gap from the outage capacity
under any fading statistics.

IF equalization uses coded streams, and is therefore usually
less suitable for fast fading environments. Nevertheless, we
have also developed new upper bounds on an uncoded version
of IF equalization, which is more adequate for fast fading.
We note that while uncoded IF equalization is quite similar to
lattice reduction aided decoding, to the best of our knowledge,
the performance of the latter was never analyzed at such a fine
scale.

Another appealing feature of the described scheme,
inherited from the properties of its underlying perfect
ST codes, is that it is independent of the number of receive
antennas, and the performance guarantees obtained in this
paper do not depend on the number of receive antennas as well.
Hence, the scheme is not sensitive to a degrees-of-freedom
mismatch.

The compound channel studied in this paper includes all
channel matrices with the same white-input mutual infor-
mation. In certain scenarios, such as multicasting the same
message to a finite set of users whose channel matrices
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are known at the transmitter, it makes sense to consider
compound channels with a relatively small number of users.
Recent work [50] demonstrates that precoded IF-SIC performs
remarkably well in such scenarios and achieves a large fraction
of the compound capacity, even at small SNRs, under reason-
able statistical assumptions on the distribution of the channel
matrices.

APPENDIX A
PROOF OF LEMMA 1

The output of the kth sub-channel with uncoded
transmission is

ỹk = [vk + zeff,k] mod γqZ,

where vk ∈ γZ. The estimate v̂k is generated by applying
a simple slicer (nearest-neighbor quantizer w.r.t. γZ) to ỹk,
followed by mod γqZ reduction. The detection error
probability at the kth sub-channel is upper bounded by

Pe,k � Pr (v̂k = vk)

≤ Pr
(
|zeff,k| ≥ γ

2

)
.

In order to bound Pe,k , a simple lemma, which is based
on [33, Th. 7] is needed.

Lemma 4: Consider the random variable

zeff =
L∑

�=1

α�z� +
K∑

k=1

βkdk

where {z�}L�=1 are i.i.d. Gaussian random variables with zero
mean and some variance σ2

z and {dk}Kk=1 are i.i.d. random
variables, statistically independent of {z�}L�=1, uniformly dis-
tributed over the interval [−ρ/2, ρ/2) for some ρ > 0. Let
σ2

eff � E(z2
eff). Then

Pr(zeff > τ) = Pr(zeff < −τ) ≤ exp
{
− τ2

2σ2
eff

}
.

Proof: The probability density function of zeff is symmet-
ric around zero and hence

Pr(zeff ≥ τ) = Pr(zeff ≤ −τ).

Applying Chernoff’s bound gives (for s > 0)

Pr(zeff ≥ τ) ≤ e−sτE (eszeff)

= e−sτE

(
es(

�L
�=1 α�zl+

�K
k=1 βkdk)

)

= e−sτ
L∏

�=1

E (esα�zl)
K∏

k=1

E
(
esβkdk

)
.

Using the well-known expressions for the moment generating
functions of Gaussian and uniform random variables gives

E (esα�zl) = e
1
2 s

2α2
�σ

2
z ,

E
(
esβkdk

)
=

sinh(sβkρ/2)
sβkρ/2

≤ e
1
2

s2β2
kρ2

12 ,

where the last inequality follows from sinh(x)/x ≤
exp{x2/6} (which can be obtained by simple Taylor
expansion) [33]. It follows that

Pr(zeff ≥ τ) ≤ e−sτe
s2
2

��L
�=1 α

2
�σ

2
z+
�K

k=1 β
2
k

ρ2

12

�

= e−sτ+
1
2 s

2σ2
eff . (29)

Setting s = τ/σ2
eff gives the desired result.

Now, using Lemma 4, the probability of detection error at
the kth sub-channel can be bounded as

Pe,k ≤ Pr
(
|zeff,k| ≥ γ

2

)

≤ 2 exp

{

− γ2

8σ2
eff,k

}

= 2 exp

{

− 12SNR

8q2σ2
eff,k

}

= 2 exp
{
−3

2
1
q2

SNReff,k

}
,

where the definition of SNReff,k was used in the last equality.
Using the fact that q = 2R and that SNReff,k ≥ SNReff for all
k = 1, . . . , 2M , the detection error probability at each of the
2M sub-channels can be further bounded as

Pe ≤ 2 exp
{
−3

2
22( 1

2 log(SNReff)−R)
}
.

Since the IF equalizer makes an error only if a detection
error occurred in at least one of the 2M sub-channels, and
since the total transmission rate is RIF = 2MR, the total error
probability of the IF equalizer with uncoded transmission rate
RIF is bounded by

Pe,IF-uncoded ≤ 4M exp
{
−3

2
22( 1

2 log(SNReff)− RIF
2M )

}

= 4M exp
{
−3

2
2

1
M (M log(SNReff)−RIF)

}
.

APPENDIX B
PROOF OF LEMMA 3

Let ψ : R+ → R+ be a real positive decreasing function
with ψ(r) → 0 as r → ∞, let IN×M � [−1/2, 1/2)N×M be
the set of all matrices of dimensions N ×M with all entries
taken from the interval [−1/2, 1/2), and define the set

W0(M,N,ψ) �
{
H ∈ I

N×M : ||Ha‖∞ ≤ ψ(‖a‖∞)

for i.m. a ∈ Z
M \ 0

}
, (30)

where ‖x‖∞ � maxi |xi| is the infinity norm, and i.m. means
infinitely many. The next result from [18, Corollary 2] shows
that W0(M,N,ψ) has either zero Lebesgue measure or full
Lebesgue measure, depending on the choice of the function ψ.

Theorem 6 ([18, Corollary 2]): Let ψ : R+ → R+ be a real
positive decreasing function with ψ(r) → 0 as r → ∞. For
M > N , if the series

∞∑

r=1

ψN (r)rM−N−1
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converges then the set W0(M,N,ψ) has zero Lebesgue
measure, and if it diverges the set W0(M,N,ψ) has full
Lebesgue measure.

For the choice ψ(r) = r−( M+ε
N −1), ε > 0, the sum from

Theorem 6 converges. This, implies that for M > N the set

W̃0(M,N) �
{
H ∈ I

N×M : ||Ha‖∞ ≤ ‖a‖−( M+ε
N −1)

∞

for i.m. a ∈ ZM \ 0
}

(31)

has zero measure. Define the set

S0(M,N) �
{
H ∈ I

N×M : ‖Ha‖2 ≤ ‖a‖−2( M+ε
N −1)

∞

for i.m. a ∈ ZM \ 0
}
,

and note that S0(M,N) ⊆ W̃0(M,N), as ‖Ha‖2
∞ ≤ ‖Ha‖2.

The next Corollary is straightforward.
Corollary 2: For M > N and any ε > 0, the set

H0(M,N) �
{
H ∈ I

N×M : d̃2
min(H, L) ≤ L−2( M+ε

N −1)

for i.m. L ∈ N

}
.

has zero Lebesgue measure.
Proof: By the definition of d̃min(H, L), the sets S0(M,N)

and H0(M,N) are equal. The corollary then follows from the
fact that W̃0(M,N) has zero measure and that S0(M,N) ⊆
W̃0(M,N).

Let H̄0(M,N) = IN×M \ H0(M,N) be the complement
set of H0(M,N), and note that H̄0(M,N) has full Lebesgue
measure. For any H ∈ H̄0(M,N) there exist a positive integer
L∗(H) such that the inequality

d̃ 2
min(H, L) > L−2( M+ε

N −1) (32)

holds for any integer L > L∗(H). It follows that

min
L>L∗(H)

(
L2 + SNRd̃ 2

min(H, L)
)

> min
L>L∗(H)

(
L2 + SNRL−2( M+ε

N −1)
)

> min
L>L∗(H)

max
(
L2, SNRL−2( M+ε

N −1)
)

> min
L>0

max
(
L2, SNRL−2( M+ε

N −1)
)
. (33)

Since L2 is increasing in L and SNRL−2( M+ε
N −1) is

decreasing in L, the minimum in (33) is attained when
L2 = SNRL−2( M+ε

N −1) , which occurs for

L2 = SNR
N

M+ε .

This implies that

min
L>L∗(H)

L2 + SNRd̃2
min(H, L) > SNR

N
M+ε .

On the other hand, for any H ∈ H̄0(M,N) we can find a
constant c(H) > 0 such that

min
L≤L∗(H)

d̃min(H, L) > c(H).

This follows from the fact that if there exist an integer
vector a ∈ ZM \ 0 for which ‖Ha‖2 = 0, then there are

infinitely many such vectors, which contradicts the fact that
H ∈ H̄0(M,N). Thus, for any H ∈ H̄0(M,N) we have

SNReff >
1
M2

min
L=1,2,···

(
L2 + SNRd̃2

min(H, L)
)

=
1
M2

min
(

min
L≤L∗(H)

(
L2 + d̃2

min(H, L)
)
,

min
L>L∗(H)

(
L2 + d̃2

min(H, L)
))

>
1
M2

min
(
c(H)SNR, SNR

N
M+ε

)
. (34)

Taking the limit of SNR → ∞ we see that

lim
SNR→∞

1/2 log(SNReff)
1/2 log(SNR)

≥ N

M + ε
, (35)

for any H ∈ H̄0(M,N) and M > N . Now, taking ε→ 0 we
see that for any H ∈ H̄0(M,N) and M > N the IF scheme
achieves N degrees of freedom. Since H ∈ H̄0(M,N) has
full Lebesgue measure, the IF scheme achieves N degrees of
freedom for almost every H ∈ I

N×M . To see why this is also
true for almost every H ∈ RN×M , note that if H /∈ IN×M ,
then we can scale it by a scalar ρ ≤ 1 such that ρH ∈ IN×M .
But since d̃min(H, L) ≥ d̃min(ρH, L), this will only decrease
SNReff. Thus, we conclude that the IF scheme achieves N
degrees of freedom for almost every H ∈ RN×M , which
establishes the lemma for M > N .

The case N ≥ M is much easier. For any matrix
H ∈ R

N×M we denote the smallest singular value by σM (H).
Standard linear algebra gives

‖Ha‖2 ≥ σ2
M (H)‖a‖2.

Since ‖a‖ ≥ 1 for all a ∈ PAMM (L) \ 0, we have

SNReff >
1
M2

min
L=1,2,···

(
L2 + SNRd̃2

min(H, L)
)

>
σ2
M (H)
M2

SNR. (36)

For N ≥ M , the set of matrices H ∈ RN×M for which
σ2
M (H) > 0 has full Lebesgue measure. Applying (36) gives

lim
SNR→∞

1/2 log(SNReff)
1/2 log(SNR)

≥ 1, (37)

for almost every H ∈ RN×M when N ≥M . Combining (35)
and (37), we get that

lim
SNR→∞

RIF(SNR)
1/2 log(SNR)

≥ min(M,N). (38)

It is well-known (see [4]) that for all H ∈ RN×M , the number
of DoF offered by the channel is not greater min(M,N),
regardless of the coding scheme which is used. Combining
this with (38) gives

lim
SNR→∞

RIF(SNR)
1/2 log(SNR)

= min(M,N). (39)

for almost every H ∈ RN×M , as desired.
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APPENDIX C
PROOF OF THEOREM 3

Consider some arbitrary 0 = X ∈ CST and let

H = U1ΨV†
1 and X = U2ΛV†

2

be the singular value decompositions (SVD) of H and X,
respectively. With this notation

SNR‖HX‖2
F = SNR‖ΨV†

1U2Λ‖2
F . (40)

Suppose without loss of generality that the (absolute) singular
values are ordered by increasing value in Λ and by decreasing
value in Ψ:

Λ = diag{λ1, . . . , λM},
Ψ = diag{ψ1, . . . , ψmn , 0, · · · , 0},

where mn � min{M,N}. In order to establish the desired
result one has to find the channel H with corresponding WI
mutual information CWI that minimizes (40). The rotation
matrix V1 that minimizes (40) is V1 = U2 which aligns the
weaker singular values of the channel matrix with the stronger
singular values of the code matrix [51]. Thus, the problem of
finding the worst channel matrix H w.r.t. the codeword X
reduces to the optimization problem

min
ψ1,...,ψmn

SNR
mn∑

m=1

|ψm|2|λm|2

subject to
mn∑

m=1

log(1 + |ψm|2SNR) = CWI. (41)

A lower bound on the solution of the minimization
problem (41) can be obtained by replacing mn with
M ≥ mn, which increases (or does not change) the
optimization space and results in

min
ψ1,...,ψM

SNR
M∑

m=1

|ψm|2|λm|2

subject to
M∑

m=1

log(1 + |ψm|2SNR) = CWI. (42)

The solution to (42) is given by standard water-filling [6]

SNR‖HX‖2
F ≥

M∑

m=1

[
1
λ
− |λm|2

]+

, (43)

where λ satisfies
M∑

m=1

[
log

(
1

λ|λm|2
)]+

= CWI. (44)

Without loss of generality we may assume that
2M2L2 ≤ δmin(CST∞ )

1
M 2

CWI
M as otherwise the theorem is trivial.

With this assumption, we next show that the [·]+ operation
in (44) is not needed, and hence its solution is given by

1
λ

= |λ1 · · ·λM | 2
M 2

CWI
M . (45)

To see this, one has to show that with 1/λ as above
the inequality 1/λ ≥ |λm|2 holds for all m = 1, · · · ,M .

First recall that X is a codeword from a perfect linear
dispersion ST code over an QAM(L) constellation. Let P be
the generating matrix of the code CST. Thus, vec(X) = Ps
for some vector s whose M2 components all belong to the
QAM(L) constellation. This implies that

M∑

m=1

|λm|2 = ‖X‖2
F

= ‖ vec(X)‖2

= ‖Ps‖2

= ‖s‖2 (46)

≤ 2M2L2, (47)

where (46) follows from the fact that P is unitary.
In particular, (47) implies that

|λm|2 ≤ 2M2L2

for all m = 1, . . . ,M . Since by definition

|λ1 · · ·λM |2 = | det(X)|2 ≥ δmin(CST
∞ ),

we have for all m = 1, . . . ,M

|λm|2 ≤ 2M2L2

≤ δmin(CST
∞ )

1
M 2

CWI
M

≤ |λ1 · · ·λM | 2
M 2

CWI
M

=
1
λ
.

Thus, (45) indeed solves (44).
Substituting (45) into (43) gives

SNR‖HX‖2
F ≥

[

M |λ1 · · ·λM | 2
M 2

CWI
M −

M∑

m=1

|λm|2
]+

≥
[
Mδmin(CST

∞ )
1

M 2
CWI
M − 2M2L2

]+

≥
[
δmin(CST

∞ )
1

M 2
CWI
M − 2M2L2

]+

as desired.
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