Novel Lower Bounds on the Entropy Rate of
Binary Hidden Markov Processes

Or Ordentlich
MIT
ordent@mit.edu

_ Abstract—Recently, Samorodhnitsky proved a strengthened ver- [0, 5], anda b 2 a(l —b) + b(1 — a). Here, as well as
sion of Mrs. Gerber's Lemma, where the output entropy of a throughout the rest of the paper, logarithms are taken tehas
binary symmetric channel is bounded in terms of the average Since the entropy rate of the symmetric Markov prodeks }

entropy of the input projected on a random subset of coordintes. .~ = B 7
Here, this result is applied for deriving novel lower boundson the 'S H(X) = h(q), for symmetric hidden Markov processes the

entropy rate of binary hidden Markov processes. For symmetic  bound (1) takes the simple form
underlying Markov processes, our bound improves upon the bst =
known bound in the very noisy regime. The nonsymmetric case H(Y) = h(axq). 2

is also considered, and explicit bounds are derived for Markv ; : : :
processes that satisfy thef1, oo)-RLL constraint. Unfortunately, this bound is quite loose for many regimes of
the process parametetisand q.

I. INTRODUCTION Recently, Samorodnitsky [2] proved a strengthened ver-
Let (X 19 b tric stati bi sion of MGL, where the normalized input entropy
et {Xy}, n=1,2,..., be a symmetric stationary maryH(Xl, .., X,)/n in the right hand side of (1) is replaced

; it il 1
Markov process with transition probability < ¢ < 3, such by the average normalized entropy of the random vector

(1
that X; ~ Bernoulli(3) and for anyn > 1 (X1,...,X,) projected on a random subset of coordinates.
X, = Xp1 ® W, In this paper we apply the_res.ults.of [_2]_ to derive a novel
) N . lower bound onH(Y'). Despite its simplicity, we show that
where{W,},n =2,3,..., is asequence of i.i.dBernoulli(q)  this bound is stronger than the best known lower bounds for

random variables, statistically independenfiaf. We consider the very noisy regimeo — 1), and recovers the strongest
the hidden Markov process’, }, n = 1,2, .., obtained at the pound for the fast transitions regimg (—+ ). For finite
output of a binary sygnmetrlc channel (BSC) with crossovggyes of(a, g) it is numerically demonstrated that the bound
probability 0 < a < 3, whose input is the processX,.}. s reasonably close to the true value Bi(Y), which can
Namely, be estimated to an arbitrary precision by various known

Y, =X, & 7, approximation algorithms.

We also derive a lower bound di(Y') for the case where
the procesq X,,} is a nonsymmetric binary Markov process.
For the special case of Markov processes that satisfy the so-
called (1, 00)-RLL constraint, our bound is shown to be tight
H(Y,...,Y,) in the very noisy regime.

where{Z,},n =1,2,..., is a sequence of i.i.Bernoulli(«)
random variables, statistically independentdf,, }. The task
of finding an explicit form for the entropy rate

H(Y) é nh—>H;o n

. . Il. PRELIMINARIES
of the procesdY,,} is a long-standing open problem, and the

main contribution of this paper is in providing novel lower LetX = (Xi,...,X,) be a binaryn-dimensional random
bounds for this quantity. vector, [n] £ {1,...,n}, and S C [n] some subset of

A simple lower bound onf(Y) can be obtained by in- coordinates. The projection & onto S is defined as

voking Mrs. Gerber's Lemma (MGL) [1], which states that if Xs2{X; i€ S}
{X,} is the input to a BSC with crossover probability and

[Y,} is the output, then As before, we assume thaf is the output of a BSC

with crossover probabilityy, whose input is the vectoK.
H Y,) > nh <a -l (H(le . 7Xn)>) (1) Samorodnitsky has proved the following result

T n ’ Theorem 1 ( [2, Theorem 1.11]): Let A = (1 —2a)? and let
B be a random subset uniformly distributed over all subsets
iof [n] with cardinality [An]. Then

A

where h(p) = —plog(p) — (1 — p)log(1 — p) is the binary
entropy functionh,=1(-) is its inverse restricted to the interva

. ( HXg|B
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whereE = O ( /10%) - (n — H(X)). and define the random variabl€ as the largesk for which
Aj < n. Clearly, the subse§ and the subsefA,,..., Ak}

By Han's inequality [3], the quantityd (Xp|B)/An is have the same distribution, and therefore
monotonically nonincreasing ih, and therefore, ignoring the

error term E, it can be seen that the bound (3) is strongerd (Xs|S) 1 K
than (1) n - EEZH(XAi|XAi71,...,XA1)
=1
For our purposes, it will be convenient to repldéé€X z | B) n
with H(Xs|S), whereS is a random subset df] generated — lE ZH(XAi Xa, e Xa)1(G < K)
by independently sampling each elemémtith probability . noo\i=
It is easy to verify that for any distributiof’x on {0,1}" 1 n
holds =_FE (Z H(X4,|Xa, )1(i < K)) )
n ;
i EXslB) — HXs|S) _ =1
n—o0 n ’ 1 ~
= —E(1Q<K)+Y H(Xa,_a,_ 1| XD)1(i<K
and we can therefore indeed replagewith S in Theorem 1, n ( (1<) ; (KAt [ X1 )
perhaps with a different convergence rate fbr In fact, (8)
Polyanskiy and Wu [4] distilled from [2] the inequality 1 n
IU:Y) <I(U : X5|9), @ =5 (Pr(K > 1)+ ;E(H(Xclel)ll(i < K))) ;
that holds for any random variablé satisfying the Markov re- 9)

lationU — X — Y. Using (4), the chain rule of entropy, and . L .
e ety of the MGLgfL(m)ctiorQQ(’f) s h(a*h—l(t)),r)ii/is where1(T) is an indicator on the everi, (7) follows since

a simple exercise to prove the following form of Theorem ]t{rfé”itéf}oi;'rzf;'g;?;r ;\A?:rg:)\;ngg (fsi,s% in\tljve(Bh)al:/%IIows from
Proposition 1: Let A = (1 — 2«)? and letS be a random " o

subset of[n] generated by independently sampling each elef (H(Xq, 1]X)1(i < K))

ment: with probability A. Then = Eq, (H(Xg,+1|X1) Pr(K > i|Gy))

H(Y) > nh (a o (H()§5|S))) . 5) = Ec (H(Xg.1|Xy) Pr(Binomial(n — Gi, 2) > i — 1))
n
By the law of large numbers, for arey> 0 and fixedyg;, there

exists some&V, such that for alln > Ny holds
IIl. MAIN RESULT

. . . . . 1—¢61) i<(A—¢€)n
In order to apply Proposition 1 for lower boundid§(Y), Pr(Binomial(n —g;,A) >i—1) € (0, i>(+eon
we need to evaluate the quanti(X|.S)/An for symmetric ’ -
Markov processe$ X, }. We will use the notation Combining this with (9) gives that
¢t Egrgr--xg, 1
—_— lim —H(Xs|S) = \EH (X¢11|X1)
k times n—oo N
and note that = AH(Xg41]X1,G), (10)
GF = Pr (W @ Wi = 1) = 1—(1—2q) 6) and our claim follows sincé! (X¢+1|X1,G) = Eh (¢*¢) for

2 ' stationary symmetric Markov processes.
Proposition 2. Llet0< A < 1, and letS be a random subset Remark 1: An expression similar to (10) can also be
of [n] generated by independently sampling each elemientecovered from [5, Corollary 11.2].

with probability A. Then Our main result now follows directly from combining

Propositions 1 and 2 and using the continuity of the MGL

. H(Xs|S) G
Jm === = Eh (077), function o (t).
whereG is a geometric random variable with parametei.e. Theorem 2: The entropy rate of the process obtained by
Pr(G=g)=(1-)X91Aforg=1,2,.... passing a symmetric binary Markov process with transition
Proof. Let Gy, i = 1,2,..., be a sequence of i.i.d. geometri®roPability ¢ through a BSC with crossover probability
random variables with parametar Define the autoregressiveSalisfies
process A(Y) > h(axh™ (Bh(g°9))), (11)
k
A = Z Gr, k=1,2,..., whereG is a geometric random variable with paramekter
=1 (1 - 20&)2.



IV. ASYMPTOTIC ANALYSIS AND NUMERICAL EXAMPLES

In this section We evaluate the bound from Theorem 2 lﬂ
and q fixed (very noisy regime), and in .

the limits of o % 5

the limit of ¢ — 3 L anda fixed (fast transmons regime).

Theorem 3: Let q be fixed andn = = — €. Then
=, log(e (1 —2¢)%
H(Y >1—164Z - +o(eh).

2k( 2/<;—1 )1 —(1—2q)

Proof. By, e.g., [6, Lemma 1], we have that for aby< o, v <
1 holds

h(axv) = h(y) + (1 = h(y)) - 4a(l — @)
=1-(1-2a)*(1-h(y)). (12)
Setting3 £ Eh (¢*¢), the RHS of (11) read8(a * h='(8)),
which, by (12) and the parametrization = % €, can be
bounded as
h(axh™H(B)) >1—4€6*(1 - B).

It therefore, remains to approximate Recall the Taylor
expansion of the binary entropy function

1 B . log(e) :
Using (6), we have
_ _ G
ﬂIEh<1 (12 2q) >

., log(e)

=1- ; mm — 2¢)*"¢ (14)
1\ log(e) A(L - 2¢)%

=1 ; 2k(2k — 1) 1 — (1 — A)(1 — 2¢)2*° (15)

where (14) is justified since the sul;, %E(

2¢)%k¢ converges, and in (15) we have used the fact th

Et¢ = ﬁ To further approximate (15), we write
A(1 —2¢q)%k _ A(1 —2q)%k 1
— 1 _ _ 2k 1 _ (1 _ 2k A(1—2q)2F

1= (1=X)(1 -2 1-(1-29% 14 2050

A1 —2¢q)2%k
=—~ . (1+0(\
(L 0W)
1 —2q)%*

T agE T O

Consequently,

B-1_4 zi log(e) (1 —2¢)*
—1 )1 — (1 —2q)2k

which yields the deswed resulm
To date, the best known upper and lower bounds#’)

+ 0O (64) .

and below. The upper and lower bounds from [7, Theorem
4.13] on(1 — H(Y))/e* are plotted in Figure 1, along with

e upper bound from Theorem 3. It is seen that Theorem 3
improves upon the best known lower bounds/@(Y) in the
limit of o — % Furthermore, unlike [7, Theorem 4.13] that
only holds forg > X, our result holds for all.

.......... OW Upper Bound
\ — — — OW Lower Bound | |
Theorem 3

0.5

Fig. 1. Comparison between the bounds from [7, Theorem 4n3H (V)
in the very noisy regime, and the new bound from Theorem 3.

Next, we move to show that the lower bound from Theo-
rem 2 is tight in the extreme regime of fast transitions, i.e.
g — 1 anda fixed. Letq = § — e. With this parametriza-
tion, (15) reads

= log(e) A(2¢)%F
; 2k(2k —1) 1 — (1 — X\)(2¢)2k

=1 —2log(e) e + O(eh).

B=1- (16)

PW using (12) and Theorem 2, we have the following
proposmon

Proposition 3: Let « be fixed and; = = — €. Then
1—HY)<M1-p5)
= 2log(e)A\?e? + O(e*)
= 2log(e)(1 — 2a)*e® + O(e*)

In [7 Theorem 4.12] it was proved that for < o < 1,
g=s—¢asel0

1— H(Y) =2log(e)(1 — 2a)*e® + o(€?).
It therefore follows that the bound from Theorem 2 becomes
tight asq — 1.

It can be shown that in the regimes of very high-SNR-§
0 and ¢ fixed) and rare transitions;(— 0 and « fixed), the

in the very noisy regime were the ones found in [7, TheoreBbund from Theorem 2 is looser than the bounds found in [7,
4.13]. In particular, the rané— was bounded form above Theorem 4.11] and in [8], respectively.
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Fig. 2. Comparison between the lower bound (11), MGL basettd?2), and the approximate value Hf(Y") computed using [7, Algorithm 4.25].

For any pair of finite values dfv, ), the entropy raté/ (Y')  probability matrix P, such thatX; ~ Bernoulli(7;) and
can be approximated to an arbitrary precision. For exanile, for n = 2,3,... holdsPr(X, = j|X,—-1 = i) = P;;. For
Theorem 4.5.1] shows that k=1,2,..., we define the quantities

H(Yo|Yoo1..., Y1, X1) SHY) < HY Y1, 1) gt & (PY)

ij

= Pr (X, =j|Xn-r=1).
and the two bounds converge to the same limithas> oo.
Unfortunately, the computational comple>_<|ty of the .|0\.N6|fnetric hidden Markov processes.

bound (as well as the upper bound) above, is exponentialin . _ . _

To that end, various works introduced different algorithfiors ~ Proposition 4: Let {X,,} be a stationary first-order Markov
approximatingd (Y) [7], [10]-[12], each algorithm exhibiting Process with transition probability matril® and stationary

a different trade-off between approximation accuracy affistributionz. Let0 < A <1, and letS be a random subset
complexity. of [n] generated by independently sampling each element

. - . ith bability A. Th
To obtain a better appreciation of the tightness of the bou\r’1v(|j probabiity en
H(Xs|S)

from Theorem 2 for finite values ofc, ¢), we numerically ( #G) ( #G)
( @), We N . — moEh Eh .z
compare it to the output of one such approximation algorithm n—oc Mokl (dor ) + R { dio (17)

In particular, we use [7, Algorithm 4.25] to approximatgyhereG is a geometric random variable with parameter.e.
H(Y), where the algorithm parameters are chosen to ensrR G = g) = (1 — A9 A forg=1,2,....

high enough accuracy, and plot the results alongside Wi, ¢ o proof is similar to that of Proposition 2 up to

the lower bound of Theorem 2. We also plot the lower i e
bound (2) obtained by simply applying Mrs. Gerber's Lemm&auation (10), where now (X¢-1|X1, &) = mEh <q01 )Jr

The results for fixedhw = 0.11 and varyingg are shown in r gp (qua . m
Figures 2a, and those for fixed= 0.11 and varyinge, in
Figure 2b.

The following is an extension of Proposition 2 for nonsym-

Combining this with Proposition 1 and the continuity of the
MGL function ¢(t) gives the following.

Theorem 4: The entropy rate of the process obtained by
Qassing a stationary first-order Markov process with ttaorsi

In this section we extend our lower bound from Theorem bability matrixP and stationary distributi throuah
to the case where the input to the BSC is a nonsymmet g abriity ma and stationary distributionr through a
C with crossover probability satisfies

Markov process. Let

V. NONSYMMETRIC MARKOV CHAINS

p—| - o H(Y)>h (a x«h ! (ﬂ'th (qzﬁc) +mEh (qﬁ)G))) ,

ho L= whereG is a geometric random variable with parametee
be a transition probability matrix, and = [7o 7] be a (1 —2a)2.
stationary distribution fol, such thatrP = =. Let {X,,}
be a stationary first-order Markov process with transitiof. Example: Processes Satisfying the (1, co)-RLL Constraint

In this subsection we lower bound the entropy rate of a

1Although, as shown by Birch [9], the gap between the two bsuaido et _
nonsymmetric first order Markov process, wifly = ¢ and

decreases exponentially (but possibly with a small expgriam.



q10 = 1, passed through a BSC with crossover probability Proof. Clearly, H(Y) < H(Y,)

This underlying Markov process satisfies the so-calledo)-
RLL constraint, where no consecutive ones are allowed to
appear in a sequence. It is not difficult to verify that forsthi
choice ofgg; andg¢;p we have

1 q
770:1+q7 771:1+q7
ak g+ (=gt s 1— (=9
01 — 1+q ’ 10 — 1+q .

h(a * m). From [6,

equation (11)] combined with (13) we have

haxm)=1- Z 72k10g(6)

(2¢(1—2m))**  (22)

£ 2k (2k — 1)
=1—2log(e)(1 — 2m)%e2 + O(€*),

which establishes our upper bound. For the lower bound, note
thaty > h(m ) — ce? for some universal constant> 0. From
the concavity ofh(-) we have that for al0 < = < 1 holds

h(z) < h(m)+ R (m)(xz —m1). Thus, using the monotonicity

In this case we havél (Y) > h(a* h~1(8)), where

of h~1(-) and the fact that/(r;) > 0 forall 0 < ¢ < 1, we

have

pes (v () e (55)
(18)

By the concavity ofh(-), for any natural numbeg hold

L (%) _p ((1 —q%) + qlg(jq— Q(—1)9+1))
and
h (_1 - i—qq)g) _h ((1 ) +1qg+-;<1 - q<—1>9>)

N 1 1, (1—=q(=1)7
> (1 —q¢ Y| —— g-lp [ — 22
=(1-q )(1+q)+q ( 1+4q

Substituting (19) and (20) into (18), we obtain

) . (20)
[1]
[2]

Eq“ 1—q)
h . (21
+1+q (1+q @

(4]

Eq¢ 1
Fz (1_21+Q)h(1+Q)

Now, using again the fact thal(¢®) = ﬁ
invoking Theorem 4 gives the following result. 5]
Theorem 5: The entropy rate of a nonsymmetric stationary
binary first-order Markov process with transition probaisis (6]
qo1 = q andqip = 1, passed through a BSC with crossovetyy;
probability «, is lower bounded agf (Y) > h (ax h=1(v)),

where

1
(it
" 1+g¢

(1-20)%¢
(1+9)(1—4a(l —a)g)

w

and

(8]

)
(r(53) -+ (653))
1+q 11q¢)) no

The following Corollary of Theorem 5, shows that oufll

bound becomes tight as — % and partially recovers the 1

results of [13, Section 4.2] and [14, Appendix E].
Corollary 1: For the very noisy regime, wheke = % —€

and0 < ¢ < 1, we have

[13]

_ 1-q\> [14]
H(Y)=1-2log(e) <m) e+ 0O(eh).

W) = b (h(m) — ee) > m — e

ey (23)

Now, by Theorem 5, (23) and (22), we have

A(Y) > hlax b)) > b <a . (m - m))
=1—2log(e)(1 — 2m1)%€® + O(e*).
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